ECE 538 Digital Signal Processing I Exam 2 Fall 2009 16 Nov. 2009

Cover Sheet

Test Duration: 60 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains **TWO** problems. All work should be done on loose blank 8.5" x 11" sheets (not provided.) You do **not** have to return this test sheet.

Prob. No.	Topic of Problem	Points
1.	Efficient Upsampling	60
2.	Perfect Reconstruction Filter Bank	40

Problem 1. [60 points] Consider the upsampler system below in Figure 1.

Figure 1.

- (a) Draw a block diagram of an efficient implementation of the upsampler system in Figure 1.
- (b) Your answer to part (a) should involve the polyphase components of h[n]: $h_0[n] = h[3n], h_1[n] = h[3n+1]$, and $h_2[n] = h[3n+2]$.
 - (i) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot the magnitude of the DTFT of $h_0[n] = h[3n], H_0(\omega)$, over $-\pi < \omega < \pi$.
 - (ii) For the general case where h[n] is an arbitrary impulse response, derive the DTFT of $h_1[n] = h[3n + 1]$. Express $H_1(\omega)$ in terms of the DTFT of h[n], $H(\omega)$. Show all steps and all work.
 - (iii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot both the magnitude AND phase (two separate plots) of the DTFT $h_1[n] = h[3n + 1]$, $H_1(\omega)$, over $-\pi < \omega < \pi$. Show as much detail as possible.
 - (iv) For the general case where h[n] is an arbitrary impulse response, derive the DTFT of $h_2[n] = h[3n+2]$. Express $H_2(\omega)$ in terms of $H(\omega)$, the DTFT of h[n]. Show all steps and all work.
 - (v) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot both the magnitude AND phase (two separate plots) of the DTFT $h_2[n] = h[3n+2]$, $H_2(\omega)$, over $-\pi < \omega < \pi$. Show as much detail as possible.

(c) Consider that the input to the system in Figure 1 is a sampled version of the analog signal in Figure 2. For the remaining parts of this problem, the input signal is as defined below where $x_a(t)$ is the analog signal in Figure 2. Assume that $1/T_s = 1/3$ is above the Nyquist rate for this signal. That is, even though this signal is not strictly bandlimited, assume that aliasing effects are negligible.

- (i) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine and plot the output y[n] of the system in Figure 1, when x[n] is input to the system. Label your plot very carefully.
- (ii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine and plot the output $y_0[n] = x[n] * h_0[n]$, when x[n] is input to the filter $h_0[n] = h[3n]$. Label your plot very carefully.
- (iii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine and plot the output $y_1[n] = x[n] * h_1[n]$, when x[n] is input to the filter $h_1[n] = h[3n+1]$. Label your plot very carefully.
- (iv) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine and plot the output $y_2[n] = x[n] * h_2[n]$, when x[n] is input to the filter $h_2[n] = h[3n+2]$. Label your plot very carefully.

Problem 2 is on the next page.

In the frequency domain, the DTFT of the output is related to the DTFT at the input according to the expression below.

$$Y(\omega) = A(\omega)X(\omega) + B(\omega)X\left(\omega - \frac{2\pi}{3}\right) + C(\omega)X\left(\omega - \frac{4\pi}{3}\right)$$

- (a) Determine expressions for $A(\omega)$, $B(\omega)$, and $C(\omega)$ in terms of $H_0(\omega)$, $H_1(\omega)$, and $H_2(\omega)$ and $G_0(\omega)$, $G_1(\omega)$, and $G_2(\omega)$.
- (b) Consider the case where $g_i[n] = h_i^*[-n]$, i = 0, 1, 2. Determine expressions for $A(\omega)$, $B(\omega)$, and $C(\omega)$ in terms of $H_0(\omega)$, $H_1(\omega)$, and $H_2(\omega)$.
- (c) Consider the case where $g_i[n] = h_i^*[-n]$, i = 0, 1, 2 AND $h_i[n] = e^{-j(i-1)\frac{2\pi}{3}n}h[n]$, i = 0, 1, 2. Determine expressions for $A(\omega)$, $B(\omega)$, and $C(\omega)$ all in terms of $H(\omega)$.
- (d) NOTE: this last part of the problem was canceled prior to giving the exam as it was too much work to do in the time allotted. Consider the case where $g_i[n] = h_i^*[-n]$, i = 0, 1, 2 AND $h_i[n] = e^{-j(i-1)\frac{2\pi}{3}n}h[n]$, i = 0, 1, 2 AND h[n] = u[n] u[n-3]. Show that $A(\omega) = 9$, $B(\omega) = 0$, and $C(\omega) = 0$ for all ω .