ECE 538 Digital Signal Processing I Exam 2 Fall 2009 16 Nov. 2009

Cover Sheet

Test Duration: 60 minutes.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains TWO problems.
All work should be done on loose blank $8.5 " \times 11 "$ sheets (not provided.)
You do not have to return this test sheet.

Prob. No.	Topic of Problem	Points
1.	Efficient Upsampling	60
2.	Perfect Reconstruction Filter Bank	40

Problem 1. [60 points] Consider the upsampler system below in Figure 1.

Figure 1.
(a) Draw a block diagram of an efficient implementation of the upsampler system in Figure 1.
(b) Your answer to part (a) should involve the polyphase components of $h[n]: h_{0}[n]=$ $h[3 n], h_{1}[n]=h[3 n+1]$, and $h_{2}[n]=h[3 n+2]$.
(i) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, plot the magnitude of the DTFT of $h_{0}[n]=h[3 n], H_{0}(\omega)$, over $-\pi<\omega<\pi$.
(ii) For the general case where $h[n]$ is an arbitrary impulse response, derive the DTFT of $h_{1}[n]=h[3 n+1]$. Express $H_{1}(\omega)$ in terms of the DTFT of $h[n], H(\omega)$. Show all steps and all work.
(iii) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, plot both the magnitude AND phase (two separate plots) of the DTFT $h_{1}^{\pi n}[n]=h[3 n+1], H_{1}(\omega)$, over $-\pi<\omega<\pi$. Show as much detail as possible.
(iv) For the general case where $h[n]$ is an arbitrary impulse response, derive the DTFT of $h_{2}[n]=h[3 n+2]$. Express $H_{2}(\omega)$ in terms of $H(\omega)$, the DTFT of $h[n]$. Show all steps and all work.
(v) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, plot both the magnitude AND phase (two separate plots) of the DTFT $h_{2}^{\pi n}[n]=h[3 n+2], H_{2}(\omega)$, over $-\pi<\omega<\pi$. Show as much detail as possible.
(c) Consider that the input to the system in Figure 1 is a sampled version of the analog signal in Figure 2. For the remaining parts of this problem, the input signal is as defined below where $x_{a}(t)$ is the analog signal in Figure 2. Assume that $1 / T_{s}=1 / 3$ is above the Nyquist rate for this signal. That is, even though this signal is not strictly bandlimited, assume that aliasing effects are negligible.

$$
x[n]=x_{a}\left(n T_{s}\right), \quad T_{s}=3
$$

Figure 2.
(i) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine and plot the output $y[n]$ of the system in Figure 1, when $x[n]$ is input to the system. Label your plot very carefully.
(ii) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine and plot the output $y_{0}[n]=$ $x[n] * h_{0}[n]$, when $x[n]$ is input to the filter $h_{0}[n]=h[3 n]$. Label your plot very carefully.
(iii) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine and plot the output $y_{1}[n]=$ $x[n] * h_{1}[n]$, when $x[n]$ is input to the filter $h_{1}[n]=h[3 n+1]$. Label your plot very carefully.
(iv) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine and plot the output $y_{2}[n]=$ $x[n] * h_{2}[n]$, when $x[n]$ is input to the filter $h_{2}[n]=h[3 n+2]$. Label your plot very carefully.

Problem 2 is on the next page.

Problem 2. [40 points]

Figure 3.
In the frequency domain, the DTFT of the output is related to the DTFT at the input according to the expression below.

$$
Y(\omega)=A(\omega) X(\omega)+B(\omega) X\left(\omega-\frac{2 \pi}{3}\right)+C(\omega) X\left(\omega-\frac{4 \pi}{3}\right)
$$

(a) Determine expressions for $A(\omega), B(\omega)$, and $C(\omega)$ in terms of $H_{0}(\omega), H_{1}(\omega)$, and $H_{2}(\omega)$ and $G_{0}(\omega), G_{1}(\omega)$, and $G_{2}(\omega)$.
(b) Consider the case where $g_{i}[n]=h_{i}^{*}[-n], i=0,1,2$. Determine expressions for $A(\omega)$, $B(\omega)$, and $C(\omega)$ in terms of $H_{0}(\omega), H_{1}(\omega)$, and $H_{2}(\omega)$.
(c) Consider the case where $g_{i}[n]=h_{i}^{*}[-n], i=0,1,2$ AND $h_{i}[n]=e^{-j(i-1) \frac{2 \pi}{3} n} h[n]$, $i=0,1,2$. Determine expressions for $A(\omega), B(\omega)$, and $C(\omega)$ all in terms of $H(\omega)$.
(d) NOTE: this last part of the problem was canceled prior to giving the exam as it was too much work to do in the time allotted. Consider the case where $g_{i}[n]=$ $h_{i}^{*}[-n], i=0,1,2$ AND $h_{i}[n]=e^{-j(i-1) \frac{2 \pi}{3} n} h[n], i=0,1,2$ AND $h[n]=u[n]-u[n-3]$. Show that $A(\omega)=9, B(\omega)=0$, and $C(\omega)=0$ for all ω.

