ECE 538 Digital Signal Processing I Exam 2 Fall 2007 30 Oct. 2007

Cover Sheet

Test Duration: 60 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains **three** problems. All work should be done in the blue books provided. Do **not** return this test sheet, just return the blue books.

Prob. No.	Topic of Problem	Points
1.	Hilbert Transforms	30
2.	Digital Subbanding	40
3.	IIR Filter Design	30

EE538 Digital Signal Processing I

Exam 2

Problem 1. [30 points]

(a) Plot the DTFT $X(\omega)$ of the signal x[n] below over $-\pi < \omega < \pi$. Show as much detail as possible.

$$x[n] = 2\frac{\sin\left(\frac{\pi}{8}n\right)}{\pi n}\cos\left(\frac{3\pi}{8}n\right)$$

Write a simple, closed-form expression for $\hat{x}[n]$ equal to the Hilbert Transform of the signal x[n].

(b) Let $x[n] = y[n] \cos(\omega_0 n)$, where y[n] is a real-valued signal whose DTFT $Y(\omega)$ satisfies

$$Y(\omega) = 0$$
 for $\omega_c < |\omega| < \pi$

Given that

$$\omega_0 - \omega_c > 0$$
 and $\omega_0 + \omega_c < \pi$

Prove that the Hilbert Transform of x[n] is

$$\hat{x}[n] = y[n]\sin(\omega_0 n)$$

(c) Plot the DTFT $X(\omega)$ of the signal x[n] below over $-\pi < \omega < \pi$. Show as much detail as possible.

$$x[n] = 16 \left\{ \frac{\sin\left(\frac{3\pi}{8}n\right)}{\pi n} \frac{\sin\left(\frac{\pi}{8}n\right)}{\pi n} \right\} \cos\left(\frac{\pi}{2}n\right)$$

Write a simple, closed-form expression for $\hat{x}[n]$ equal to the Hilbert Transform of the signal x[n].

Problem 2. [40 points] This problem is about Vestigial Sideband (VSB) Modulation where we transmit a small part of the negative portion of the spectrum along with the positive frequency portion of the spectrum. *Note: all signals and filters in this problem have zerophase in the frequency domain.*

(a) Consider the following complex-valued filter.

$$h[n] = 16 \ e^{j\frac{7\pi}{16}n} \left\{ \frac{\sin\left(\frac{2\pi}{16}n\right)}{\pi n} \ \frac{\sin\left(\frac{7\pi}{16}n\right)}{\pi n} \right\}$$

Plot the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$.

(b) For illustrative purposes, consider the following simple input signal

$$x[n] = \frac{\sin\left(\frac{3\pi}{4}n\right)}{\pi n}$$

Plot the DTFT of x[n], $X(\omega)$, over $-\pi < \omega < \pi$.

(c) The signal in part (b) is run through the filter in part (a) to produce the output y[n]

$$y[n] = x[n] * h[n]$$

Plot the DTFT of y[n], $Y(\omega)$, over $-\pi < \omega < \pi$.

(d) The real-part of the complex-valued signal y[n] may be expressed as

$$y_R[n] = Re\{y[n]\} = \frac{1}{2}\{y[n] + y^*[n]\}$$

Plot the DTFT of the complex-conjugate signal $y^*[n]$ over $-\pi < \omega < \pi$.

- (e) Sum your respective answers to parts (c) and (d), and divide by 2, to form the DTFT of $y_R[n]$, denoted $Y_R(\omega)$. Plot $Y_R(\omega)$ over $-\pi < \omega < \pi$.
- (f) Is your answer to part (e) equal to the DTFT of the original signal x[n]? That is, is $y_R[n] = x[n]$? Why or why not? Explain your answer.
- (g) The output of the filter in part (a) includes some of the frequency content of x[n] in the band $-\frac{\pi}{8} < \omega < 0$ in addition to the positive frequency portion of the signal in $0 < \omega < \pi$. Consider a more general case where the output of the filter h[n] includes some of the frequency content of x[n] in the band $-\Delta < \omega < 0$, in addition to the positive frequency portion of the signal in $0 < \omega < \pi$. In addition to the constraints $H(\omega) = 2$ over $\Delta < \omega < \pi$, and $H(\omega) = 0$ over $-\pi < \omega < -\Delta$, what condition does $H(\omega)$ have to satisfy over $-\Delta < \omega < \Delta$ in order that the real part of the output y[n] = x[n] * h[n] be equal to x[n]?

Problem 3. [30 points]

A second-order digital filter is to be designed from an analog filter having two poles in the s-plane at $\frac{1}{5}(-3+4j) = -0.6 + 0.8j$ and $\frac{1}{5}(-3-4j) = -0.6 - 0.8j$ and two zeros at j and -j, via the bilinear transformation method characterized by the mapping

$$s = \frac{z-1}{z+1}$$

- (a) Is the resulting digital filter (BIBO) stable? Briefly explain why or why not.
- (b) Denote the frequency response of the resulting digital filter as $H(\omega)$ (the DTFT of its impulse response). You are given that in the range $0 < \omega < \pi$, there is only one value of ω for which $H(\omega) = 0$. Determine that value of ω .
- (c) Draw a pole-zero diagram for the resulting **digital** filter. Give the exact locations of the poles and zeros of the digital filter in the z-plane.
- (d) Plot the magnitude of the DTFT of the resulting digital filter, $|H(\omega)|$, over $-\pi < \omega < \pi$. You are given that H(0) = 8. Be sure to indicate any frequency for which $|H(\omega)| = 0$. Also, specifically note the numerical value of $|H(\omega)|$ for $\omega = \frac{\pi}{2}$ and $\omega = \pi$.
- (e) Determine the difference equation for the resulting digital filter.