ECE 538 Digital Signal Processing I Exam 2 Fall 2004 Session 21 Live: 13 Oct. 2004

Cover Sheet

Test Duration: 50 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains **three** problems. All work should be done in the blue books provided. Do **not** return this test sheet, just return the blue books.

Prob. No.	Topic of Problem	Points
1.	Digital Upsampling	35
2.	Digital Subbanding	30
3.	Multi-Stage Upsampling/Interpolation	35

Digital Signal Processing I Session 17

Problem 1. [35 points]

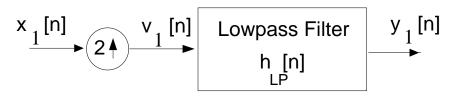


Figure 1.

The DT signal

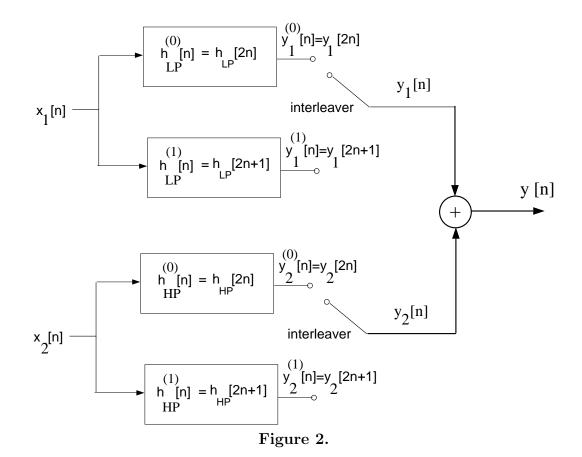
$$x_1[n] = 2\left\{\frac{\sin(\frac{\pi}{6}n)}{\pi n}\right\}\cos\left(\frac{\pi}{2}n\right)$$

is input to the system above, where the impulse response of the lowpass filter is

$$h_{LP}[n] = 6 \left\{ \frac{\sin(\frac{\pi}{2}n)}{\pi n} \right\} \left\{ \frac{\sin(\frac{\pi}{6}n)}{\pi n} \right\}, \qquad -\infty < n < \infty,$$

The zero inserts may be mathematically described as $v_1[n] = \sum_{k=-\infty}^{\infty} x_1[k]\delta[n-2k].$

- (a) Plot the magnitude of the DTFT of the impulse response of the lowpass filter $h_{LP}[n]$, $H_{LP}(\omega)$, over $-\pi < \omega < \pi$. Show as much detail as possible. This lowpass filter has a "don't care" region where the gain rolls off linearly from 1 to 0. Does this have any impact on the upsampling process?
- (b) Plot the magnitude of the DTFT of the output $y_1[n]$, $Y_1(\omega)$, over $-\pi < \omega < \pi$. Show as much detail as possible. The edge frequencies of any rectangularly shaped spectral components need to be clearly indicated.
- (c) The up-sampling by a factor of 2 in Figure 1 above can be efficiently done via the top half of the block diagram in Figure 2 at the top of the next page.
 - (i) Provide an analytical expression for $h_{LP}^{(0)}[n] = h_{LP}[2n]$ for $-\infty < n < \infty$. Simplify. Plot the magnitude of the DTFT of $h_{LP}^{(0)}[n]$, $|H_{LP}^{(0)}(\omega)|$, over $-\pi < \omega < \pi$.
 - (ii) Is $y_1^{(0)}[n] = x_1[n]$? Explain your answer.



Problem 2. [30 points] Let $x_2[n]$ be a DT signal equal to a sum of sinwaves "turned on" for all time.

$$x_2[n] = 1 + (-j)^n + (j)^n$$

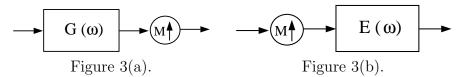
We desire to frequency division multiplex $x_1[n]$ (from Problem 1) and $x_2[n]$ through digital subbanding as shown in Figure 2 above, where the highpass filter is

$$h_{HP}[n] = (-1)^n h_{LP}[n] = (-1)^n \ 6 \ \left\{ \frac{\sin(\frac{\pi}{2}n)}{\pi n} \right\} \left\{ \frac{\sin(\frac{\pi}{6}n)}{\pi n} \right\}, \qquad -\infty < n < \infty,$$

The sum signal is $y[n] = y_1[n] + y_2[n]$, where $y_1[n]$ is the same $y_1[n]$ created in Problem 1.

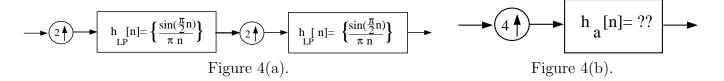
- (a) Plot the magnitude of the DTFT of the sum signal $y[n] = y_1[n] + y_2[n]$. Show as much detail as possible. The respective frequencies of any sinusoidal components need to be clearly indicated as well as the edge frequencies of any rectangularly shaped spectral components.
- (b) Draw a block diagram of a system to recover $x_1[n]$ from the sum signal $y[n] = y_1[n] + y_2[n]$. The recovery of $x_1[n]$ must be done in a computationally efficient manner. You CANNOT use any decimators and you CANNOT use any modulators (no multiplication by a sinewave). Clearly specify all the quantities in your block diagram.
- (c) Draw a block diagram of a system to recover $x_2[n]$, from the sum signal $y[n] = y_1[n] + y_2[n]$. The same rules apply as those stated in part (b) above.

If $E(\omega)$ in Figure 3(b) satsifies $E(\omega) = G(M\omega)$, the I/O relationship of the system in Figure 3(b) is exactly the same as the I/O relationship of the system in Figure 3(a). You are GIVEN this as Noble's First Identity to use in Problem 3 below.

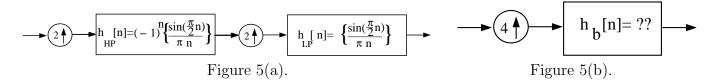


Problem 3. [35 points]

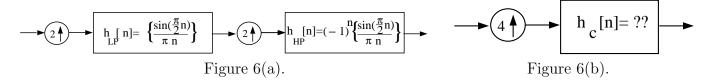
(a) Determine the impulse response $h_a[n]$ in Figure 4(b) so that the I/O relationship of the system in Figure 4(b) is exactly the same as the I/O relationship of the system in Figure 4(a). Plot the magnitude of the DTFT of $h_a[n]$ over $-\pi < \omega < \pi$.



(b) Determine the impulse response h_b[n] in Figure 5(b) so that the I/O relationship of the system in Figure 5(b) is exactly the same as the I/O relationship of the system in Figure 5(a). Plot the magnitude of the DTFT of h_b[n] over -π < ω < π.</p>



(c) Determine the impulse response $h_c[n]$ in Figure 6(b) so that the I/O relationship of the system in Figure 6(b) is exactly the same as the I/O relationship of the system in Figure 6(a). Plot the magnitude of the DTFT of $h_c[n]$ over $-\pi < \omega < \pi$.



(d) Determine the impulse response $h_d[n]$ in Figure 7(b) so that the I/O relationship of the system in Figure 7(b) is exactly the same as the I/O relationship of the system in Figure 7(a). Plot the magnitude of the DTFT of $h_d[n]$ over $-\pi < \omega < \pi$.

