Solution to Prob. 1:

(a) Time-shift doesn't affect autocorrelation

\[r_{y_1 y_2}[l] = r_{x_2 x_2}[l] \]

Hence, sequences are still complementary, i.e., \(y_1[n] \) and \(y_2[n] \) are complementary.

(b) \(x[n] \) and \(x^*[\cdot-n] \) have the same autocorrelation due to commutativity of convolution \(\Rightarrow r_{y_1 y_1}[l] = r_{x_1 x_1}[l] \)

\(\Rightarrow y_1[n] \) and \(y_2[n] \) are complementary.

(c) \[r_{y_1 y_1}[l] + r_{y_2 y_2}[l] = e^{i\omega_0 l} \{ r_{x_1 x_1}[l] + r_{x_2 x_2}[l] \} \]

\[= e^{i\omega_0 l} c \cdot \delta[l] = e^{i\omega_0 n} c \cdot \delta[n] \]

\(\Rightarrow y_1[n] \) and \(y_2[n] \) are complementary.
Problem 1: Solution (cont.)

(c) \[y_1(n) = \frac{1}{2} (x_1(n) + x_2(n)) \]
\[y_2(n) = \frac{1}{2} (x_1(n) - x_2(n)) \]

\[r_{y_1y_1}[\ell] = \frac{1}{4} \{ r_{x_1x_1}[\ell] + r_{x_2x_2}[\ell] \} \]
\[+ \frac{1}{4} r_{x_2x_1}[\ell] + \frac{1}{4} r_{x_1x_2}[\ell] \]

\[r_{y_1y_2}[\ell] = \frac{1}{4} \{ r_{x_1x_1}[\ell] + r_{x_2x_2}[\ell] \} \]

\[- \frac{1}{4} r_{x_1x_2}[\ell] - \frac{1}{4} r_{x_2x_1}[\ell] \]

\[r_{y_1y_1}[\ell] + r_{y_2y_2}[\ell] = \frac{1}{2} c_0 \delta[\ell] \]

\(\Rightarrow \) complementary? Yes!

But now there are 3 possible values for either \(y_1(n) \) and \(y_2(n) \): \(\mathbb{E} \{-1, 0, 1\} \)

\(\Rightarrow \) so not unimodular

Some values are zero
(e) Starting point:

\[y_1(n) \text{ and } y_2(n) \text{ are complementary} \]

Thus:

\[
\begin{align*}
R_{z_1z_1}(e) + R_{z_2z_2}(e) & = 2 \left(R_{y_1y_1}(e) + R_{y_2y_2}(e) \right) \\
& \quad + R_{y_1y_2}(e) + R_{y_2y_1}(e) \\
& \quad - R_{y_1y_1}(e) - R_{y_2y_2}(e) \\
& = 2 \{ R_{z_1z_1}(e) - R_{z_2z_2}(e) \} \\
& \Rightarrow \text{complementary. Yes!}
\end{align*}
\]

And now \(z_1(n) \) and \(z_2(n) \) are sequences of +1's and -1's.

Whenever:

\[y_1(n) = 1 \text{ or } -1 \Rightarrow y_2(n) = 0 \]

\[y_2(n) = 1 \text{ or } -1 \Rightarrow y_1(n) = 0 \]
(T)

$$r_{y_1 y_1 [e]} = r_{x_1 x_1 [e]} + r_{x_2 x_2 [e]}$$

$$+ r_{x_1 x_2 [e+N]} + r_{x_2 x_1 [e-N]}$$

$$r_{y_2 y_2 [e]} = r_{x_1 x_1 [e]} + r_{x_2 x_2 [e]}$$

$$- r_{x_1 x_2 [e+N]} - r_{x_2 x_1 [e-N]}$$

Sum is 2 c s [e] = $r_{y_1 y_1 [e]}$ + $r_{y_2 y_2 [e]$

• The sequences do not overlap and are right up against each other

$y_1 \{n\}$ is unimodular

$y_2 \{n\}$ is unimodular
Prob. 2 (S0114) Solution

(a) \[Y(z) = \frac{1}{2} + \frac{z^{-1}}{z + \frac{1}{2}} \cdot \frac{z}{z + \frac{1}{2}} = \frac{\frac{1}{2} z + 1}{z + \frac{1}{2}} \]

Zero at \(z = -2 \) \(\{ \text{all-pass} \) \\
pole at \(z = -\frac{1}{2} \) \(\{ \text{filter} \)

(b) \[\frac{1}{2} \frac{z}{z + \frac{1}{2}} + \frac{z^{-1}}{z + \frac{1}{2}} \]

\(\Longleftrightarrow h[n] = \frac{1}{2} (-\frac{1}{2})^n u[n] \]
\[\text{note:} \]
\[\left(-\frac{1}{2}\right)^n \]
\[= -2 \left(-\frac{1}{2}\right)^n \]
\[+ \left(-\frac{1}{2}\right)^{n-1} u[n-1] \]
\[= \frac{1}{2} \delta[n] + \left(\frac{1}{2} - 2\right) \left(-\frac{1}{2}\right)^n u[n-1] \]
\[= \frac{1}{2} \delta[n] + \frac{3}{2} \left(-\frac{1}{2}\right)^n u[n-1] \]
\[= +2 \left\{ \delta[n] + \left(-\frac{3}{4}\right) \left(-\frac{1}{2}\right)^n u[n] \right\} \]
(c) \(|H(\omega)| = 1 + \omega \)

(d) \(H(\omega) \) is nonlinear

but \(|H(\omega)| = 1 + \omega \), thus:

\(A_0 = 2 \quad A_1 = 1 \quad A_2 = \sqrt{2} \quad A_3 = 3 \)

amplitudes of the sinewaves are unchanged as they pass thru all-pass filter

BUT phases change =)

\[y[n] \neq x[n] \]

(e) \(x[n] = \frac{1}{\rho} \{ \delta[n] + (\rho^2 - 1) \rho^n u[n] \} \)

\(\Rightarrow \) all-pass signal

\(R_{xx}[\ell] = \delta[\ell] \quad R_{yy}[\ell] = h[\ell] \ast R_{xx}[\ell] \)

(f) \(R_{yx}[\ell] = h[\ell] \)

\(= h[\ell] = 2 \{ \delta[\ell] - \frac{3}{4} \left(-\frac{1}{2} \right)^n u[n] \} \)
\[(x) = \begin{cases} 1 & x = 0 \\ 0 & x = 1 \end{cases} \]

\[Y = \begin{cases} 1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases} \]

\[f(x) = \begin{cases} 1 & x \leq 0 \\ 0 & x > 0 \end{cases} \]