EE538 Digital Signal Processing I Fall 2018 Exam 1 Friday, Sept. 28, 2018

Cover Sheet

Write your name on this and every page

Test Duration: 60 minutes. Coverage: Chapters 1-5. Open Book but Closed Notes. Allowed one double-sided 8.5 x 11 handwritten or typed crib sheet Calculators NOT allowed. This test contains **TWO** problems. Show your work in the space provided for each problem. You must show all work for each problem to receive full credit. Always simplify your answers as much as possible.

Prob. No.	$\operatorname{Topic}(s)$	Points
1.	Frequency Response of LTI Systems	60
	Pole-Zero Diagrams	
	DT Autocorrelation, Cross-Correlation	
	and their Related Properties	
2.	LTI Systems: Autocorrelation and Cross-Correlation	40
	and their Related Properties	

Problem 1.[60 pts] Consider the DT System characterized by the difference equation

System 1:
$$y_1[n] = y_1[n-1] + x[n] - x[n-4]$$
 (1)

- (a) Draw the pole-zero diagram for this system.
- (b) Plot the magnitude of the frequency response $|H_1(\omega)|$ over $-\pi < \omega < \pi$.
- (c) Determine the overall output $y_1[n]$ of the System when the input is the sum of infinite-length sinewaves below

$$x[n] = 2 + e^{j\frac{\pi}{2}n} + \sqrt{2}e^{-j\frac{\pi}{2}n} + 3e^{j\pi n}$$
(2)

- (d) Determine the impulse response of the system, h[n]. Write the values out in sequence form. *Hint:* the impulse response, $h_1[n]$, is finite-length.
- (e) Determine the autocorrelation of the output, $r_{yy}[\ell] = y[\ell] * y^*[-\ell]$ with the input signal below, with $p = \frac{1}{2}$. Write the values out in sequence form; indicate $\ell = 0$ point.

$$x[n] = \frac{1}{p} \left\{ \delta[n] + (p^2 - 1)p^n u[n] \right\}$$
(3)

(f) Repeat parts (a) thru (e) for System 2 below. Certainly make use of everything you did for System 1 since only the location of the pole has changed. Denote your answer for this part (f) as $r_{y_2y_2}[\ell] = y_2[\ell] * y_2^*[-\ell]$

System 2:
$$y_2[n] = j \ y_2[n-1] + x[n] - x[n-4]$$
 (4)

Hint: You can determine the autocorrelation any way you want to, but it may be helpful to first write the impulse response in the form $h[n] = e^{j\omega_o n} \{u[n] - u[n - N]\}$ (determine ω_o and N) and then use a property of autocorrelation derived in class.

(g) Repeat parts (a) thru (e) for System 3 below. Certainly make use of everything you did for System 1. Denote your answer for this part (g) as $r_{y_3y_3}[\ell] = y_3[\ell] * y_3^*[-\ell]$

System 3:
$$y_3[n] = -y_3[n-1] + x[n] - x[n-4]$$
 (5)

(h) Repeat parts (a) thru (e) for System 4 below. Certainly make use of everything you did for System 1. Denote your answer for this part (h) as $r_{y_4y_4}[\ell] = y_4[\ell] * y_4^*[-\ell]$

System 4:
$$y_4[n] = -j \ y_4[n-1] + x[n] - x[n-4]$$
 (6)

(i) Sum your answers as indicated below. Write your final answer in sequence form.

$$r_{yy}[\ell] = r_{y_1y_1}[\ell] + r_{y_2y_2}[\ell] + r_{y_3y_3}[\ell] + r_{y_4y_4}[\ell]$$
(7)

Problem 2. [40 points]

(a) Determine the autocorrelation $r_{x_1x_1}[\ell]$ of the length-5 sequence $x_1[n]$ (Barker code) below, which is written two different ways. Write your answer in sequence form indicating where the value for $\ell = 0$ is located.

$$x_1[n] = \{1, 1, 1, -1, 1\} = \delta[n] + \delta[n-1] + \delta[n-2] - \delta[n-3] + \delta[n-4]$$

(b) Determine the autocorrelation $r_{x_2x_2}[\ell]$ of the length-7 sequence $x_2[n]$ (Barker code) below, which is written two different ways. Write your answer in sequence form indicating where the value for $\ell = 0$ is located.

 $x_2[n] = \{1, 1, 1, 1, -1, 1, -1\} = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] - \delta[n-4] + \delta[n-5] - \delta[n-6] + \delta[n-$

(c) The sequence $x_1[n]$ defined above is input to the system described by the simple difference equation below. Determine the cross-correlation between the output and input, $r_{y_1x_1}[\ell]$; either write out the values in sequence form indicating $\ell = 0$ or do stem plot.

$$y_1[n] = 2x_1[n-3] - x_1[n-4]$$

(d) The sequence $x_2[n]$ defined above is input to the SAME system described by the simple difference equation below. Determine the cross-correlation between the output and input, $r_{y_2x_2}[\ell]$; either write out the values in sequence form indicating $\ell = 0$ or do stem plot.

$$y_2[n] = 2x_2[n-3] - x_2[n-4]$$

(e) Sum your answers to parts (c) and (d) to form the sum below. Write out in sequence form or do a stem plot of $r_{yx}[\ell]$.

$$r_{yx}[\ell] = r_{y_1x_1}[\ell] + r_{y_2x_2}[\ell]$$