EE538 Digital Signal Processing I Fall 2016 Exam 1 Friday, Sept. 30, 2016

Cover Sheet

Write your name on this and every page

Test Duration: 60 minutes. Coverage: Chapters 1-5. Open Book but Closed Notes. Calculators NOT allowed. This test contains **three** problems. Show your work in the space provided for each problem. You must show all work for each problem to receive full credit. Always simplify your answers as much as possible.

Prob. No.	Topic(s)	Points
1.	Frequency Response and Interconnection	35
	of LTI Systems, Pole-Zero Diagrams	
2.	DT Autocorrelation, Cross-Correlation	30
	and their Related Properties	
3.	LTI Systems: Expressing Cross-Correlation	35
	in terms of Convolution	

NAME: Problem 1. [35 points]

(a) Consider System 1 characterized by the difference equation

System 1:
$$y_1[n] = -\frac{9}{16}y_1[n-2] + \frac{9}{16}x[n] + x[n-2]$$

x[n]
h_1[n]
y_1[n]

- (i) Draw a pole-zero diagram for this system.
- (ii) Plot the magnitude of the frequency response $|H_1(\omega)|$ over $-\pi < \omega < \pi$.
- (b) Consider System 2 with impulse response $h_2[n]$ below:

System 2:
$$y_2[n] = -\frac{9}{16}y_2[n-2] + x[n] + x[n-2]$$

x[n]
h_2[n]
y_2[n]

- (i) Draw a pole-zero diagram for this system.
- (ii) Plot the magnitude of the frequency response $|H_2(\omega)|$ over $-\pi < \omega < \pi$.
- (c) Determine the overall output $y_2[n]$ of System 2 when the input is:

$$x[n] = 3 + 2\cos\left(\frac{\pi}{2}n\right) + \cos(\pi n)$$

Problem 2. [35 points]

(a) Determine the autocorrelation $r_{x_0x_0}[\ell]$ of the length-4 sequence $x_0[n]$ below, which is written two different ways. Write your answer in sequence form indicating where the value for $\ell = 0$ is located. Briefly indicate which properties of autocorrelation you use to solve each part.

$$x_0[n] = \{1, 2, 3, 4\} = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$$

(b) Determine the autocorrelation $r_{x_1x_1}[\ell]$ of the sequence $x_1[n]$ below defined in terms of $x_0[n]$ in part (a). Write your answer in sequence form indicating where the value for $\ell = 0$ is located.

$$x_1[n] = e^{j\left(\frac{\pi}{2}(n-2)\right)} x_0[n-2]$$

(c) Determine the autocorrelation $r_{x_2x_2}[\ell]$ of the sequence $x_2[n]$ below defined in terms of $x_0[n]$ in part (a). Write your answer in sequence form indicating where the value for $\ell = 0$ is located.

$$x_2[n] = e^{j(\pi n + \sqrt{\pi})} x_0[n]$$

(d) Determine the autocorrelation $r_{x_3x_3}[\ell]$ of the sequence $x_3[n]$ below defined in terms of $x_0[n]$ in part (a). Write your answer in sequence form indicating where the value for $\ell = 0$ is located.

$$x_3[n] = e^{-j\frac{\pi}{2}n} x_0^*[-n]$$

(e) Sum your answers to parts (a) thru (d) to form the sum below. Do a stem plot of $r_{xx}[\ell]$.

$$r_{xx}[\ell] = r_{x_0x_0}[\ell] + r_{x_1x_1}[\ell] + r_{x_2x_2}[\ell] + r_{x_3x_3}[\ell]$$

Problem 3. [25 points]

(a) Determine the autocorrelation $r_{xx}[\ell]$ of the length-4 sequence x[n] below, which is written two different ways. Write your answer in sequence form indicating where the value for $\ell = 0$ is located.

$$x[n] = \{1, -1, 1, 1\} = \delta[n] - \delta[n-1] + \delta[n-2] + \delta[n-3]$$

(b) The sequence x[n] defined above is input to the system described by the simple difference equation below. Determine and write an equation for the cross-correlation, $r_{yx}[\ell]$, between the output and input in terms of the autocorrelation of the input, $r_{xx}[\ell]$.

$$y[n] = 4x[n-3] + x[n-4]$$

- (c) Compute the numerical values of the cross-correlation $r_{yx}[\ell]$ between the output and input and do a stem plot OR write out the values in sequence form clearly indicating the point corresponding to $\ell = 0$.
- (d) What is the value of $r_{yx}[\ell]$ at $\ell = 3$? What is the value of $r_{yx}[\ell]$ at $\ell = 4$? Does the cross-correlation $r_{yx}[\ell]$ exhibit a peak at each of the two delays? Briefly explain.