EE538 Digital Signal Processing I Session 14 Exam 1 Live: Fri., Sept. 26, 2002

Cover Sheet

Test Duration: 50 minutes. Coverage: Sessions 1-10. Open Book but Closed Notes. Calculators allowed. This test contains **three** problems. All work should be done in the blue books provided. You must show all work for each problem to receive full credit. Do **not** return this test sheet, just return the blue books.

Prob. No.	$\operatorname{Topic}(s)$	Points
1.	DT Correlation	30
2.	Deriving DT Model from CT Signal/System	35
	Digital Upsampling	
	Frequency Response of LTI System	
3.	Deriving DT Model from CT Signal/System	35
	Digital Upsampling	
	Frequency Response of LTI System	

EE538 Digital Signal Processing I

Exam 1

Problem 1. [30 points]

Consider a very simplistic CDMA system with only two users assigned the following length 4 *orthogonal* codes, respectively, which are two rows of a 4x4 Walsh-Hadamard matrix:

User 1's code: $c_1[n] = \{1, -1, 1, -1\}$ User 2's code: $c_2[n] = \{1, 1, -1, -1\}$

Consider transmitting a block of two PAM symbols for each of the two users,

User 1's two info. symbols: $b_1[n] = \{b_1[0], b_1[1]\}$

User 2's two info. symbols: $b_2[n] = \{b_2[0], b_2[1], \}$

where $b_k[n]$ can take on one of four different real values (for each value of k and n):

- 1. 3 representing the bit pair $\{1,1\}$;
- 2. 1 representing the bit pair $\{0,1\}$;
- 3. -1 representing the bit pair $\{0,0\}$;
- 4. -3 representing the bit pair $\{1,0\}$;

The transmitted code-division multiplexed block may be mathematically expressed as

$$x[n] = \sum_{k=1}^{2} \sum_{m=0}^{1} b_k[m]c_k[n-4m], \qquad n = 0, 1, ..., 7$$

Given that the received block has the following numerical values

$$x[n] = \{\underbrace{4}_{\uparrow}, -2, 2, -4, -4, -2, 2, 4\}$$

where the first entry above is the value of x[0], determine the numerical values of $b_1[n]$, n = 0, 1 and $b_2[n]$, n = 0, 1. Your answer should consist of 4 numerical values all together. Show all work in arriving at your answer. Note that code 1 is orthogonal to code 2 and that the two users are synchronized.

EE538 Digital Signal Processing I

Exam 1

Fall 2003

Problem 2. [35 points]

The analog signal $x_a(t)$ is reconstructed from its samples $x[n] = x_a(nT_s)$ according to the following equation

$$x_r(t) = \sum_{k=-\infty}^{\infty} x[k] g(t - kT_s)$$
 where: $g(t) = \frac{\sin\left(\pi \frac{t}{T_s}\right)}{\pi \frac{t}{T_s}}$

Samples of the reconstructed signal at L times the original sampling rate may be obtained via the following discrete-time system.

Figure 1.

Your primary task in this problem is to determine the appropriate filter impulse response h[n] for different values of L so that the output of the system above is what you would have obtained if you had sampled the reconstructed signal at L times the original sampling rate as specified. **NOTE:** Correct answer for h[n] is different for each part (for each value of L.)

- (a) For the case of L = 1, write a closed-form expression for the filter h[n]. Plot the magnitude of the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$.
- (b) For the case of L = 2, write a closed-form expression for the filter h[n]. Plot the magnitude of the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$. The case of L = 2 in Figure 1 may be efficient implementated as in the block diagram in Figure 2 below.

Using your answer for h[n] for this part (b), do the following:

- (i) Write an expression for $h_0[n] = h[2n]$. Plot the magnitude of the DTFT of $h_0[n]$, $|H_0(\omega)|$, over $-\pi < \omega < \pi$.
- (ii) Write an analytical expression for $h_1[n] = h[2n + 1]$. Plot the magnitude of the DTFT of $h_1[n]$, $|H_1(\omega)|$, over $-\pi < \omega < \pi$.
- (c) For the case of L = 4, write a closed-form expression for the filter h[n]. Plot the magnitude of the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$.

EE538 Digital Signal Processing I

Exam 1

Fall 2003

Problem 3. [35 points]

The analog signal $x_a(t)$ is reconstructed from its samples $x[n] = x_a(nT_s)$ according to the following equation

$$x_r(t) = \sum_{k=-\infty}^{\infty} x[k] g(t - kT_s) \quad \text{where:} \quad g(t) = \Lambda \left(\frac{t}{T_s}\right) = \begin{cases} 1 - \frac{|t|}{T_s} & \text{for } |t| < T_s \\ 0 & \text{for } |t| > T_s \end{cases}$$

Samples of the reconstructed signal at L times the original sampling rate may be obtained via the following discrete-time system.

Your primary task in this problem is to determine the appropriate filter impulse response h[n] for different values of L so that the output of the system above is what you would have obtained if you had sampled the reconstructed signal at L times the original sampling rate as specified. **NOTE:** Correct answer for h[n] is different for each part (for each value of L.)

- (a) For the case of L = 1, write a closed-form expression for the filter h[n]. Plot the magnitude of the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$.
- (b) For the case of L = 2, write a closed-form expression for the filter h[n]. Plot the magnitude of the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$. The case of L = 2 in Figure 1 may be efficient implementated as in the block diagram in Figure 2 below.

Using your answer for h[n] for this part (b), do the following:

- (i) Write an expression for $h_0[n] = h[2n]$. Plot the magnitude of the DTFT of $h_0[n]$, $|H_0(\omega)|$, over $-\pi < \omega < \pi$.
- (ii) Write an analytical expression for $h_1[n] = h[2n + 1]$. Plot the magnitude of the DTFT of $h_1[n]$, $|H_1(\omega)|$, over $-\pi < \omega < \pi$.
- (c) For the case of L = 4, write a closed-form expression for the filter h[n]. Plot the magnitude of the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$.