EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, 2002

Cover Sheet

Test Duration: 50 minutes. Coverage: Sessions 1-10. Open Book but Closed Notes. Calculators **not** allowed. This test contains **three** problems. All work should be done in the blue books provided. You must show all work for each problem to receive full credit. Do **not** return this test sheet, just return the blue books.

Prob. No.	$\operatorname{Topic}(s)$	Points
1.	DT Correlation	30
2.	LTI Systems (Causal):	30
	Properties, Frequency Response	
	Interconnection, Pole-Zero Diagram	
3.	Digital Upsampling	40

Problem 1. [30 points]

Consider a very simplistic CDMA system with only two users assigned the following length 4 *orthogonal* complex-value codes, respectively, which are two rows of a 4-point DFT matrix:

User 1's code: $c_1[n] = \{1, -j, -1, j\}$ User 2's code: $c_2[n] = \{1, j, -1, -j\}$

Consider transmitting a block of two QAM symbols for each of the two users,

User 1's two info. symbols: $b_1[n] = \{b_1[0], b_1[1]\}$

User 2's two info. symbols: $b_2[n] = \{b_2[0], b_2[1], \}$

where $b_k[n]$ can take on one of four different complex values (for each value of k and n):

- 1. 1+j representing the bit pair $\{1,1\}$;
- 2. -1+j representing the bit pair $\{0,1\}$;
- 3. -1-j representing the bit pair $\{0,0\}$;
- 4. 1-j representing the bit pair $\{1,0\}$;

The transmitted code-division multiplexed block may be mathematically expressed as

$$x[n] = \sum_{k=1}^{2} \sum_{m=0}^{1} b_k[m]c_k[n-4m], \qquad n = 0, 1, ..., 7$$

Given that the received block has the following numerical values

$$x[n] = \{\underbrace{2j}_{\uparrow}, -2j, -2j, 2j, -2j, 2j, 2j, -2j\}$$

where the first entry above is the value of x[0], determine the numerical values of $b_1[n]$, n = 0, 1 and $b_2[n]$, n = 0, 1. Your answer should consist of 4 numerical values all together. Show all work in arriving at your answer. Note that code 1 is orthogonal to code 2 and that the two users are synchronized.

EE538 Digital Signal Processing I

Exam 1

Problem 2. [30 points]

Consider the causal, second-order difference equation below where it is noted that $.9025 = .95^2$.

 $y[n] = -0.95 \ y[n-1] - 0.9025 \ y[n-2] + x[n] + \ x[n-1] + \ x[n-2]$

Consider implementing this second-order difference equation as two first-order systems in parallel (one pole each) as shown in the diagram.

(a) Determine and write the first-order difference equation for each of the two first-order systems in parallel. The upper first-order system has impulse response $h_1[n]$ and is described by the difference equation

$$y_1[n] = a_1^{(1)} y_1[n-1] + b_0^{(1)} x[n] + b_1^{(1)} x[n-1]$$

The lower first-order system has impulse response $h_2[n]$ and is described by the difference equation

$$y_2[n] = a_1^{(2)} y_2[n-1] + b_0^{(2)} x[n] + b_1^{(2)} x[n-1]$$

Determine the numerical values of $a_1^{(i)}$, $b_0^{(i)}$, and $b_1^{(i)}$, i = 1, 2 – six values total.

- (b) For EACH of the two first-order systems, i = 1, 2, do the following:
 - (i) Plot the pole-zero diagram.
 - (ii) State and plot the region of convergence for $H_i(z)$.
 - (iii) Determine the DTFT of $h_i[n]$ and plot the magnitude $|H_i(\omega)|$ over the interval $-\pi < \omega < \pi$ showing as much detail as possible. In particular, explicitly point out if there are any values of ω for which $|H_i(\omega)|$ is exactly zero.

Problem 3. [40 points]

The analog signal $x_a(t)$ with CTFT $X_a(F)$ shown above is input to the system above, where $x[n] = x_a(n/F_s)$ with $F_s = 4W$, and

$$h_{LP}[n] = rac{\sin(rac{\pi}{2}n)}{rac{\pi}{2}n} rac{\cos(rac{\pi}{4}n)}{1 - rac{n^2}{4}}, \qquad -\infty < n < \infty,$$

such that $H_{LP}(\omega) = 2$ for $|\omega| \leq \frac{\pi}{4}$, $H_{LP}(\omega) = 0$ for $\frac{3\pi}{4} \leq |\omega| \leq \pi$, and $H_{LP}(\omega)$ has a cosine roll-off from 1 at $\omega_p = \frac{\pi}{4}$ to 0 at $\omega_s = \frac{3\pi}{4}$. Finally, the zero inserts may be mathematically described as

$$w[n] = \begin{cases} x(\frac{n}{2}), & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

- (a) Plot the magnitude of the DTFT of the output y[n], $Y(\omega)$, over $-\pi < \omega < \pi$.
- (b) Given that

$$x[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n} \qquad -\infty < n < \infty,$$

provide an analytical expression for y[n] for $-\infty < n < \infty$ (similar to the expression for either x[n] or $h_{LP}[n]$ above, for example.)

THIS PROBLEM IS CONTINUED ON THE NEXT PAGE.

- (c) The up-sampling by a factor of 2 in Figure 1 can be efficiently done via the block diagram in Figure 2 below.
 - (i) Provide an analytical expression for $h_0[n] = h_{LP}[2n]$ for $-\infty < n < \infty$. Simplify as much as possible.
 - (ii) Plot the magnitude of the DTFT of $h_0[n]$, $|H_0(\omega)|$, over $-\pi < \omega < \pi$.
 - (iii) Provide an analytical expression for the output $y_0[n]$ for $-\infty < n < \infty$.
 - (iv) Plot the magnitude of the DTFT of $h_1[n]$, $|H_1(\omega)|$, over $-\pi < \omega < \pi$.
 - (v) Plot the phase of the DTFT of $h_1[n]$, $\angle H_1(\omega)$, over $-\pi < \omega < \pi$.
 - (vi) Provide an analytical expression for the output $y_1[n]$ for $-\infty < n < \infty$.

