EE538 Digital Signal Processing I 20 September 2001

 Exam 1
Cover Sheet

Test Duration: 75 minutes.

Open Book but Closed Notes.
Calculators not allowed.
This test contains three problems.
All work should be done in the blue books provided.
You must show all work for each problem to receive full credit.
Do not return this test sheet, just return the blue books.

Prob. No.	Topic(s)	Points
1.	Convolution and LTI Systems	30
2.	Z-Transform (ZT); Relationship between ZT and DTFT	40
5.	Digital Upsampling	30

Problem 1. [30 points]

Consider the system above where the causal signal $x(n)$ is simultaneously input to two different causal FIR filters of length $M=2$ with respective impulses responses $h_{1}(n)$ and $h_{2}(n)$. That is, both $h_{1}(n)$ and $h_{2}(n)$ are only nonzero for $n=0$ and $n=1$. We don't know anything about the input signal $x(n)$ except that it is causal. Yet, it is possible to determine $h_{1}(n)$ and $h_{2}(n)$ (to within a scalar multiple) given the respective outputs $y_{1}(n)$ and $y_{2}(n)$.
(a) Show that $y_{1}(n) * h_{2}(n)=y_{2}(n) * h_{1}(n)$, which may be alternatively expressed as

$$
y_{1}(n) * h_{2}(n)-y_{2}(n) * h_{1}(n)=0
$$

(b) Exploiting this relationship and arbitrarily assigning $h_{1}(0)=1$ without loss of generality, determine the numerical values of $h_{1}(1), h_{2}(0)$, and $h_{2}(1)$ given the following output values.

$$
\begin{array}{llll}
y_{1}(0)=1 & y_{1}(1)=4 & y_{1}(2)=7 & y_{1}(3)=10 \\
y_{2}(0)=3 & y_{2}(1)=5 & y_{2}(2)=7 & y_{2}(3)=9
\end{array}
$$

Note: This is not all of the output values for both $y_{1}(n)$ and $y_{2}(n)$. However, it is enough information to determine both $h_{1}(n)$ and $h_{2}(n)$ which, again, are only nonzero for $n=0$ and $n=1$. Again, you are given $h_{1}(0)=1$. SHOW ALL WORK.

Problem 2. [40 points]

Consider that we wish to filter a long stream of data with a filter having the following impulse response

$$
h[n]=e^{j \frac{2 \pi}{N} \ell n}\{u[n]-u[n-N]\}
$$

where ℓ is an integer between 0 and $N-1$. Convolution with this impulse response may be effected via the following difference equation

$$
y[n]=\sum_{k=0}^{N-1} e^{j \frac{2 \pi}{N} \ell k} x[n-k]
$$

This implementation is seen to require N multiplications and $N-1$ additions per output point.
(a) It can be shown that we can achieve exactly the same input-output (I/O) relationship via the following difference equation which requires only 1 multiplication and two additions per output point.

$$
y[n]=a_{1} y[n-1]+x[n]-x[n-D]
$$

Determine the values of a_{1} and D in terms of ℓ and N so that this IIR system has exactly the same I/O relationship as the FIR filter above. SHOW ALL WORK - NO CREDIT FOR ANSWERS THAT ARE NOT SUBSTANTIATED BY WORK.
(b) Consider the specific case of $\ell=2$ and $N=4$:
(i) State the numerical values of a_{1} and D for this case so that the FIR filter and the IIR filter have the same I/O relationship.
(ii) Plot the pole-zero diagram for the system. Show the region of convergence.
(iii) Is this a lowpass, bandpass, or highpass filter? Briefly explain why.
(iv) Plot the impulse response of the system (Stem plot).

Problem 3. [30 points]

The DT signal $x(n)$ is input to the system above to effect digital upsampling by a factor of two, where

$$
\begin{gathered}
w(n)= \begin{cases}x\left(\frac{n}{2}\right), & n \text { even } \\
0, & n \text { odd }\end{cases} \\
h(n)=\frac{\sin \left(\frac{\pi}{2} n\right)}{\frac{\pi}{2} n}, \quad-\infty<n<\infty,
\end{gathered}
$$

Instead of having to actually run zeroes through the filter, we know that we can compute the even and odd samples of the output signal $y(n)$ above as shown below.

(a) Let $H_{1}(\omega)$ and $H_{2}(\omega)$ denote the DTFT's of $h_{1}(n)$ and $h_{2}(n)$, respectively. Plot the magnitude and phase (separate plots) of $H_{1}(\omega)$ over $-\pi<\omega<\pi$. Also plot the magnitude and phase (separate plots) of $H_{2}(\omega)$ over $-\pi<\omega<\pi$. Your answer to this part of the question should be four plots.
(b) Repeat part (a) for a nonideal lowpass filter with impulse response

$$
h_{L P}[n]=\frac{\sin \left(\frac{\pi}{2} n\right)}{\frac{\pi}{2} n} \frac{\cos \left(\frac{\pi}{4} n\right)}{1-\frac{n^{2}}{4}}, \quad-\infty<n<\infty
$$

having the raised-cosine spectrum plotted below for which $H_{L P}(\omega)=2$ for $|\omega| \leq \frac{\pi}{4}$, $H_{L P}(\omega)=0$ for $\frac{3 \pi}{4} \leq|\omega| \leq \pi$, and $H_{L P}(\omega)$ has a cosine roll-off from 2 at $\omega_{p}=\frac{\pi}{4}$ to 0 at $\omega_{s}=\frac{3 \pi}{4}$. Let $H_{1}(\omega)$ and $H_{2}(\omega)$ denote the DTFT's of $h_{1}(n)=h_{L P}[2 n]$ and $h_{2}(n)=h_{L P}[1+2 n]$, respectively. Plot the magnitude and phase (separate plots) of $H_{1}(\omega)$ over $-\pi<\omega<\pi$. Also plot the magnitude and phase (separate plots) of $H_{2}(\omega)$ over $-\pi<\omega<\pi$. Your answer to this part of the question should also be four plots.

