Discrete-Time LTI Systems

- DT Convolution

- Define impulse response of DT System that is both Linear and Time-Invariant (LTI)

\[\delta[n] \xrightarrow{\text{LTI}} h[n] \]

- To easily derive DT convolution formula, we view \(x[n] \) (input) as a sum of amplitude-scaled and time-shifted (Kronecker) delta functions \(\Rightarrow \) See Fig. 2.1 on pg. 76

\[x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \]
Time-Invariance dictates:

\[\delta[n-k] \xrightarrow{\text{LTI}} h[n-k] \]

Homogeneity aspect of linearity dictates:

\[x[k] \delta[n-k] \xrightarrow{\text{LTI}} x[k] h[n-k] \]

Superposition aspect of linearity dictates:

\[\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \xrightarrow{\text{LTI}} \sum_{k=-\infty}^{\infty} x[k] h[n-k] \]

\[= x[n] \]

\[= x[n] * h[n] \]

See Fig. 2.2 on pg. 79
Summarizing:

\[x[n] \rightarrow h[n] \rightarrow y[n] = x[n] * h[n] \]

\[= \sum_{k=-\infty}^{\infty} x[k] h[n-k] \]

- There are at least 3 ways to compute DT convolution:
- Method 1: collectively sum

Example: \(y[n] = x[n] + x[n-1] + x[n-2] \)

Find output when: \(x[n] = \delta(n) + 2\delta(n-1) + 3\delta(n-2) \)

Impulse response of system?

\(y[n] = h[n] \) when \(x[n] = \delta(n) \)

\(h[n] = \delta(n) + \delta(n-1) + \delta(n-2) \)
Since \(x[n] = f[n] + 2 \delta[n-1] + 3 \delta[n-2] \)

\[
y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]
\]

\[
= x[0] h[n] = h[n]
\]

\[
+ x[1] h[n-1] = 2 h[n-1]
\]

\[
+ x[2] h[n-2] = 3 h[n-2]
\]
Answer is sum: $y(n)$

$x(n)$ of "length" 3
$h(n)$ of "length" 3

$X(n) * H(n)$ of length $3 + 3 - 1 = 5$

$X(n) * H(n)$ of "length" $N_1

h[n]$ of "length" N_2

Generally: $x(n)$ of "length" N_1

$h[n]$ of "length" N_2

$N_1 + N_2 - 1$
Note: not concerned with initial conditions in this course => unless stated otherwise assume system is initially at rest => all initial conditions = 0

Method 2: "run" input signal thru difference equation (Note: all DT LTI systems may be expressed as a difference equation)

• In the previous example: \(x[n] = 0\) for \(n < 0\)
 \(x[0] = 1, x[1] = 2, x[2] = 3, x[n] = 0\) for \(n > 2\)

- \(n = 0\)
 \(y[0] = x[0] + x[1] + x[-2] = 1 + 0 + 0 = 1\)
- \(y[1] = x[1] + x[0] + x[-1] = 2 + 1 + 0 = 3\)
- \(y[n] = 0\) for \(n > 4\)
Method 3

Graphical Method similar to that for CT convolution:

\[y(n) = \sum_{k=-\infty}^{\infty} x[k] h[n-k] \]

1. View \(x[k] \) and \(h[-(k-n)] \) as functions of \(k \)
2. Flip \(h[k] \) about \(k=0 \) to form \(h[-k] \)
3. Time-shift \(h[-k] \) to the right by \(n \) to form \(h[-(k-n)] \)
4. Pointwise-multiply to form product \(x[k]h[-(k-n)] \)
5. Sum the values of the product \(x[k]h[-(k-n)] \) over all \(k \)
6. Ostensibly repeat for each value of \(n \)

See Example 2.3 in text on pg. 83
More generally:

\[x[n] = \alpha^n u[n] \]

\[h[n] = \beta^n u[n] \]

Problem \(\alpha + \beta \)

\(y[n] = 0 \) for \(n < 0 \).

For \(n > 0 \):

\[x[k] = \alpha^k u[k] \]

\[h[-(k-n)] = \beta^{-(k-n)} u[-(k-n)] \]

\[y[n] = \sum_{k=0}^{n} \alpha^k \beta^{n-k} = \beta^n \sum_{k=0}^{n} \left(\frac{\alpha}{\beta} \right)^k \]
\[y[n] = \beta^n \frac{1 - (\frac{\alpha}{\beta})^{n+1}}{1 - \frac{\alpha}{\beta}} = \beta^n \frac{\beta - \frac{\alpha^n}{\beta^n}}{\beta - \alpha} \]

\[= \left\{ \begin{array}{ll}
\frac{\beta}{\beta - \alpha} \beta^n - \frac{\alpha}{\beta - \alpha} \alpha^n \\
\end{array} \right\} u[n] \]

since starts at \(n = 0 \)

Example 2.4 in text on pg. 85

\[x[n] = u[n] - u[n-5] = \begin{cases}
1 & 0 \leq n \leq 4 \\
0 & \text{otherwise}
\end{cases} \]

\[h[n] = \alpha^n \{ u[n] - u[n-7] \} \]

In contrast to text approach (Method 2), this is short enough to do by Method 1
\[x(0) = x(1) = x(2) = x(3) = x(4) = 1 \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x(0) h(n))</td>
<td>1</td>
<td>2</td>
<td>2^2</td>
<td>2^3</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(1) h(n-1))</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2^2</td>
<td>2^3</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(2) h(n-2))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2^2</td>
<td>2^3</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(3) h(n-3))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2^2</td>
<td>2^3</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x(4) h(n-4))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2^2</td>
<td>2^3</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>0</td>
</tr>
<tr>
<td>(y(n))</td>
<td>1</td>
<td>1+2x</td>
<td>1+2x^2</td>
<td>(\frac{1-x^4}{1-x})</td>
<td>(\frac{1-x^5}{1-x})</td>
<td>(\frac{2^4(1-x^5)}{1-x})</td>
<td>(\frac{2^3(1-x^4)}{1-x})</td>
<td>(\frac{2^2(1-x^5)}{1-x})</td>
<td>(\frac{2^2(1-x^3)}{1-x})</td>
<td>(\frac{2^x}{1-x})</td>
<td>(\frac{2^x}{1-x})</td>
<td></td>
</tr>
</tbody>
</table>
DT convolution satisfies:

1. Commutativity: \(x_1[n] * x_2[n] = x_2[n] * x_1[n] \)

2. Associativity:
\[
(x_1[n] * x_2[n]) * x_3[n] = x_1[n] * (x_2[n] * x_3[n])
\]

3. Distributive Property:
\[
x_1[n] * (x_2[n] + x_3[n]) = x_1[n] * x_2[n] + x_1[n] * x_3[n]
\]
Supplemental Notes on Properties of Convolution which follow from the fact that the Fourier Transform converts convolution in time to multiplication in the frequency domain. (Fourier Transform is 1 to 1 linear operator)
Convolution satisfies distributive property:

\[x[n] * (h_1[n] + h_2[n]) \]

\[= x[n] * h_1[n] + x[n] * h_2[n] \]

\[\xrightarrow{DFT} X(\omega) \left\{ H_1(\omega) + H_2(\omega) \right\} \]

\[= X(\omega) H_1(\omega) + X(\omega) H_2(\omega) \]

\[\rightarrow \text{because multiplication satisfies distributive property} \]
Convolution is a commutative operator because multiplication is!

\[x[n] * h[n] = h[n] * x[n] \]

\[\sum_{k=-\infty}^{\infty} x[k] h[n-k] = \sum_{k=-\infty}^{\infty} h[k] x[n-k] \]

\[X(w) \leftrightarrow \text{DTFT} \quad x[n] \]

\[H(w) \leftrightarrow \text{DTFT} \quad h[n] \]

\[h[n] * x[n] \leftrightarrow \text{DTFT} \quad H(w) X(w) \]
Convolution satisfies associativity:

\[x[n] * h_1[n] * h_2[n] \]

\[= (x[n] * h_1[n]) * h_2[n] \]

\[= x[n] * (h_1[n] * h_2[n]) \]

\[\xrightarrow{\text{DFT}} X(\omega) H_1(\omega) H_2(\omega) \]

\[= X(\omega) H_2(\omega) H_1(\omega) \]

\[= (x[n] * h_2[n]) * h_1[n] \]