Discrete-Time Signals (DT signals)

- typically obtained by sampling an analog signal at equi-spaced instants in time

\[x[n] = x(t) \bigg|_{t=nT_s} = x(nT_s) \quad -\infty < n < \infty \]

\[\vdots \]

\[x[-1] = x(-T_s) \]
\[x[0] = x(0) \]
\[x[1] = x(T_s) \]
\[x[2] = x(2T_s) \]
\[x[3] = x(3T_s) \]

The samples of the CT signal are stored in an array.

Thus:

\[x[n] \]

\(n \) must be an integer (an index location)
- $X[n + \frac{1}{2}]$ is meaningless \Rightarrow doesn't make sense

- Corresponds to $X((n+\frac{1}{2})T_s) = X(nT_s + \frac{T_s}{2})$

- We have a sample at nT_s and $(n+1)T_s$ but not at halfway in between

Also, how can you have an index location for an array (vector) that is not an integer?

$\frac{1}{T_s} = \text{sampling rate} = \text{no. of samples per sec.}$
DT sinewaves:

\[
x[n] = e^{j \omega_0 n} \quad \forall \ n \text{ integer}
\]

- Suppose DT sinewave was obtained by sampling a CT sinewave.

\[
x[n] = e^{j \frac{2\pi f_0}{T_s} t} \bigg|_{t=nT_s} = e^{j(2\pi f_0 T_s)n}
\]

- Because \(n \) is an integer, DT sinewaves are very different from CT sinewaves. Two major differences.
1. CT sinus waves are unique as long as frequencies are different
 \[\Rightarrow \text{not true for DT sinus waves} \]
 \[e^{j(\omega_0 + l2\pi)n} \]
 • consider: \(e^{j\theta} \)
 • where \(l \) is an integer
 • recall: \(e^{j\theta} = \cos \theta + j \sin \theta \)
 \[e^{j2\pi} = \cos (2\pi) + j \sin (2\pi) = 1 \]
 \[\frac{1}{1} \]
 • thus:
 \[e^{j(\omega_0 + l2\pi)n} = e^{j\omega_0 n} e^{j2\pi ln} = e^{j\omega_0 n} (e^{j\pi})^l n = e^{j\omega_0 n} \]
Any two DT sinewaves whose frequencies are separated by an integer multiple of 2π are the SAME sinewave.

2. CT sinewaves are always periodic

\Rightarrow not true for DT sinewaves always

- the period for a DT sinewave has to be an integer $N \Rightarrow x[n] = x[n+N]$

$$e^{j\omega_0(n+N)} = e^{j\omega_0 n} e^{j\omega_0 N} \quad + n$$

$$= e^{j\omega_0 n} e^{j m 2\pi} \Rightarrow \omega_0 N = m 2\pi$$

$\Rightarrow \frac{\omega_0}{2\pi} = \frac{m}{N}$ \quad $\{ \text{must be rational for DT sinewave to be periodic} \}$
If this condition holds:

\[e^{jωon} = e^{j \frac{2π}{N} (n+N)} = e^{j \frac{2π}{N} mn} \]

- Divide out any common divisor between \(m \) and \(N \) \(\Rightarrow \) resulting period is called the fundamental period \(N_0 = \frac{N}{\gcd(m,N)} \)

- Table 1.1 in text summarizes differences between \(e^{jωt} \) and \(e^{jωon} \)

- See also Hmwk. Prob. 1.36

- See Fig. 1.27 on pg. 27
• Basic DT signals
 • unit step
 \[x[n] = u[n] = \begin{cases}
 1, & n \geq 0 \\
 0, & n < 0
 \end{cases} \]
 • Kronecker Delta Function (DT impulse)
 \[x[n] = \delta[n] = \begin{cases}
 1, & n = 0 \\
 0, & n \neq 0
 \end{cases} \]
 • DT rectangle
 \[x[n] = u[n] - u[n-N] \]
 "turned on" for N units of DT from \(h=0 \) to \(h=N-1 \)
CT Exponential Signals and
DT Geometric Signals/Sequences

CT: \(x(t) = e^{-at} u(t) \)
where \(a \) can be complex-valued, in general.

• If \(a \) is real-valued and \(a > 0 \)

Consider sampling \(x(t) \) at equi-spaced instants in time \(\Rightarrow \) every \(T_s \) seconds
\(\Rightarrow \) replace \(t \) by \(nT_s \), where \(n = \text{integer} \)
\[x[n] = x(t) \bigg|_{t = nT_s} = x(nT_s) = e^{-anT_s} u(nT_s) = (e^{-aT_s})^n u[n] \]

\[\Rightarrow x[n] = \alpha^n u[n] \]

where \(\alpha = e^{-aT_s} \)

- Sampling a CT exponential signal yields a DT geometric signal/sequence.