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Preface

This book was developed based on our teaching of undergraduate and gradu-
ate level courses in digital signal processing over the past several vears. In this
book we present the fundamentals of discrete-time signals, systems, and modern
digital processing algorithms and applications for students in electrical engineer-
ing. computer engineering, and computer science. The book is suitable for either
a one-semester or a two-semester undergraduate level course in discrete systems
and digital signal processing. It is also intended for use in a one-semester first-year
graduate-level course in digital signal processing.

It is assumed that the student in electrical and computer engineering has had
undergraduate courses in advanced calculus (including ordinary differential equa-
tions). and linear systems for continuous-time signals, including an introduction
to the Laplace transform. Although the Fourier series and Fourier transforms of
periodic and aperiodic signals are described in Chapter 4, we expect that many
students may have had this material in a prior course.

A balanced coverage is provided of both theory and practical applications.
A large number of well designed problems are provided to help the student in
mastering the subject matter. A solutions manual is available for the benefit of
the instructor and can be obtained from the publisher.

The third edition of the book covers basically the same material as the sec-
ond edition, but is organized differently. The major difference is in the order in
which the DFT and FFT algorithms are covered. Based on suggestions made by
several reviewers, we now introduce the DFT and describe its efficient computa-
tion immediately following our treatment of Fourier analysis. This reorganization
has also allowed us to eliminate repetition of some topics concerning the DFT and
its applications.

In Chapter 1 we describe the operations involved in the analog-to-digital
conversion of analog signals. The process of sampling a sinusoid ts described in
some detail and the problem of aliasing is explained. Signal quantization and
digital-to-analog conversion are also described in general terms, but the analysis
is presented in subsequent chapters.

Chapter 2 is devoted entirely to the characterization and analysis of linear
time-invariant (shift-invariant) discrete-time systems and discrete-time signais in
the time domain. The convolution sum is derived and systems are categorized
according to the duration of their impulse response as a finite-duration impulse

xiii



xiv Preface

response (FIR) and as an infinite-duration impulse response (IIR). Linear time-
invariant svstems characterized by difference equations are presented and the so-
lution of difference equations with initial conditions is obtained. The chapter
concludes with a treatment of discrete-time correlation.

The :-transform is introduced in Chapter 3. Both the bilateral and the
unilateral z-transforms are presented, and methods for determining the inverse
z-transform are described. Use of the z-transform in the analysis of linear time-
invariant systems is illustrated, and important properties of systems. such as causal-
ity and stability. are related to z-domain characteristics.

Chapter 4 treats the analysis of signals and systems in the frequency domain.
Fourier series and the Fourier transform are presented for both continuous-time
and discrete-time signals. Linear time-invariant (LTI) discrete systems are char-
acterized in the frequency domain by their frequency response function and their
response to periodic and aperiodic signals is determined. A number of important
types of discrete-time systems are described, including resonators, notch filters,
comb filters, all-pass filters, and osciliators. The design of a number of simple
FIR and IIR filters ts also considered. In addition, the student is introduced to
the concepts of minimum-phase, mixed-phase, and maximum-phase systems and
to the problem of deconvolution.

The DFT. its properties and its applications. are the topics covered in Chap-
ter 5. Two methods are described for using the DFT to perform linear fiitering.
The use of the DFT to perform frequency analysis of signals is aiso described.

Chapter 6 covers the efficient computation of the DFT. Included in this chap-
ter are descriptions of radix-2, radix-4, and sphit-radix fast Fourier transform (FFT)
algorithms, and applications of the FFT algorithms to the computation of convo-
lution and correlation. The Goertzel algorithm and the chirp-z transform are
introduced as two methods for computing the DFT using linear filtering.

Chapter 7 treats the realization of IIR and FIR systems. This treatment
includes direct-form. cascade, parallel, lattice, and lattice-ladder realizations. The
chapter includes a treatment of state-space analysis and structures for discrete-time
systems. and examines quantization effects in a digital implementation of FIR and
IIR systems.

Techniques for design of digital FIR and IIR filters are presented in Chap-
ter 8. The design techniques include both direct design methods in discrete time
and methods involving the conversion of analog filters into digital filters by various
transformations. Also treated in this chapter is the design of FIR and IIR filters
by least-squares methods.

Chapter 9 focuses on the sampling of continuous-time signais and the re-
construction of such signais from their samples. In this chapter. we derive the
sampling theorem for bandpass continuous-time-signals and then cover the A/D
and D/A conversion techniques, including oversampling A/D and D/A converters.

Chapter 10 provides an indepth treatment of sampling-rate conversion and
its applications to multirate digital signal processing. In addition to describing dec-
imation and interpolation by integer factors, we present a method of sampling-rate
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conversion by an arbitrary factor. Several applications to multirate signal process-
ing are presented, including the implementation of digital filters, subband coding
of speech signals, transmultiplexing. and oversampling A/D and D/A converters.

Linear prediction and optimum linear {Wiener) filters are treated in Chap-
ter 11. Also included in this chapter are descriptions of the Levinson-Durbin
algorithm and Schiir algorithm for solving the normal equations, as well as the
AR lattice and ARMA lattice-ladder filters.

Power spectrum estimation is the main topic of Chapter 12. Our coverage
includes a description of nonparametric and model-based (parametric) methods.
Also described are eigen-decomposition-based methods, including MUSIC and
ESPRIT.

At Northeastern University, we have used the first six chapters of this book
for a one-semester (junior level) course in discrete systems and digital signal pro-
cessing.

A one-semester senior level course for students who have had prior exposure
to discrete systems can use the material in Chapters 1 through 4 for a quick review
and then proceed to cover Chapter 5 through 8.

In a first-vear graduate level course in digital signal processing, the first five
chapters provide the student with a good review of discrete-time systems. The
instructor can move quickly through most of this material and then cover Chapters
6 through 9. foliowed by either Chapters 10 and 11 or by Chapters 11 and 12.

We have included many examples throughout the book and approximately
500 homework problems. Many of the homework problems can be solved numer-
ically on a computer, using a software package such as MATLAB(®©. These prob-
lems are identified by an asterisk. Appendix D contains a list of MATLAB func-
tions that the student can use in solving these problems. The instructor may also
wish to consider the use of a supplementary book that contains computer based
exercises, such as the books Digital Signal Processing Using MATLAB (P.W.S.
Kent, 1996) by V. K. Ingle and J. G. Proakis and Computer-Based Exercises for
Signal Processing Using MATLAB (Prentice Hall, 1994) by C. S. Burrus et al.

The authors are indebted 1o their many faculty colleagues who have provided
valuable suggestions through reviews of the first and second editions of this book.
These include Drs. W. E. Alexander, Y. Bresler, I. Deller, V. Ingle, C. Keller,
H. Lev-Ari, L. Merakos, W. Mikhael, P. Monticciolo, C. Nikias, M. Schetzen,
H. Trussell, S. Wilson, and M. Zoltowski. We are also indebted to Dr. R, Price for
recommending the inclusion of split-radix FFT algorithms and related suggestions.
Finally, we wish to acknowledge the suggestions and comments of many former
graduate students, and especially those by A. L. Kok, J. Lin and §. Srinidhi who
assisted in the preparation of several illustrations and the solutions manual.

John G. Proakis
Dimitris G. Manolakis






Introduction

Digital signal processing is an area of science and engineering that has developed
rapidly over the past 30 years. This rapid development is a result of the signif-
icant advances in digital computer technology and integrated-circuit fabrication.
The digital computers and associated digital hardware of three decades ago were
relatively large and expensive and, as a consequence. their use was limited to
general-purpose non-real-time (off-line) scientific computations and business ap-
plications. The rapid developments in integrated-circuit technology, starting with
medium-scale integration (MSI) and progressing to large-scale integration (LSI).
and now, verv-large-scale integration (VLSI) of electronic circuits has spurred
the development of powerful. smaller. faster, and cheaper digital computers and
special-purpose digital hardware. These inexpensive and relatively fast digital cir-
cuits have made it possible to construct highly sophisticated digital systems capable
of performing complex digital signal processing functions and tasks, which are usu-
ally too difficult and/or too expensive to be performed by analog circuitry or analog
signal processing systems. Hence many of the signal processing tasks that were
conventionally performed by analog means are realized today by less expensive
and often more reliable digital hardware.

We do not wish to imply that digital signal processing is the proper solu-
tion for all signal processing problems. Indeed, for many signals with extremely
wide bandwidths, real-time processing is a requirement. For such signals, ana-
log or, perhaps, optical signal processing is the only possible solution. However,
where digital circuits are available and have sufficient speed to perform the signal
processing, they are usually preferable.

Not only do digital circuits yield cheaper and more reliable systems for signal
processing, they have other advantages as well. In particular. digital processing
hardware allows programmable operations. Through software. one can more easily
modify the signal processing functions to be performed by the hardware. Thus
digital hardware and associated software provide a greater degree of flexibility in
system design. Also, there is often a higher order of precision achievable with
digital hardware and software compared with analog circuits and analog signal
processing systems. For all these reasons, there has been an explosive growth in
digital signal processing theory and applications over the past three decades.
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In this book our objective is to present an introduction of the basic analysis
tools and techniques for digital processing of signals. We begin by introducing
some of the necessary terminology and by describing the important operations
associated with the process of converting an analog signal to digital form suitable
for digital processing. As we shall see, digital processing of analog signals has
some drawbacks. First, and foremost. conversion of an analog signal to digital
form. accomplished by sampling the signal and quantizing the samples, results in a
distortion that prevents us from reconstructing the original analog signal from the
quantized samples. Control of the amount of this distortion is achieved by proper
choice of the sampling rate and the precision in the quantization process. Second,
there are finite precision effects that must be considered in the digital processing
of the quantized samples. While these important issues are considered in some
detail in this book, the emphasis is on the analysis and design of digital signal
processing systems and computational techniques.

1.1 SIGNALS, SYSTEMS, AND SIGNAL PROCESSING

A signal is defined as any physical quantity that varies with time. space. or any
other independent variable or variables. Mathematically, we describe a signal as
a function of one or more independent variables. For example. the functions
s1(1) = 5t
sa(1) = 2072
describe two signals. one that varies linearly with the independent variable r (time)

and a second that varies quadratically with 1. As another example, consider the
function

(1.1.1)

s(x,y) = 3x +2X_\'+10)‘2 (1.1.2)

This function describes a signal of two independent variables x and y that could
represent the two spatial coordinates in a plane.

The signals described by (1.1.1) and (1.1.2) belong to a class of signals that
are precisely defined by specifying the functional dependence on the independent
variable. However, there are cases where such a functional relationship is unknown
or too highly complicated to be of any practical use.

For example, a speech signal (see Fig. 1.1) cannot be described functionally
by expressions such as (1.1.1). In general, a segment of speech may be represented
to a high degree of accuracy as a sum of several sinusoids of different amplitudes
and frequencies, that is, as

N

> Al sin[27 (o) + 6;(1)) (1.1.3)

i=1
where (A; (1)}, {F; (1)}, and {8;(r)} are the sets of (possibly time-varying) amplitudes,
frequencies, and phases, respectively, of the sinusoids. In fact, one way to interpret
the information content or message conveyed by any short time segment of the
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I I I “I I Figure 1.1 Example of a speech signal.

speech signal is to measure the amplitudes, frequencies, and phases contained in
the short time segment of the signal.

Another example of a natural signal is an electrocardiogram (ECG). Such a
signal provides a doctor with information about the condition of the patient’s heart.
Similarly, an electroencephalogram (EEG) signal provides information about the
activity of the brain.

Speech, electrocardiogram. and electroencephalogram signals are examples
of information-bearing signals that evolve as functions of a single independent
variable. namely, time. An example of a signal that is a function of two inde-
pendent variables is an image signal. The independent variables in this case are
the spatial coordinates. These are but a few examples of the countiess number of
natural signals encountered in practice.

Associated with natural signals are the means by which such signals are gen-
erated. For example, speech signals are generated by forcing air through the vocal
cords. Images are obtained by exposing a photographic film to a scene or an ob-
ject. Thus signal generation is usually associated with a system that responds to a
stimulus or force. In a speech signal. the system consists of the vocal cords and
the vocal tract, also called the vocal cavity. The stimulus in combination with the
system is called a signal source. Thus we have speech sources, images sources. and
various other types of signal sources.

A system may also be defined as a physical device that performs an opera-
tion on a signal. For example, a filter used to reduce the noise and interference
corrupting a desired information-bearing signal is called a system. In this case the
filter performs some operation(s) on the signal, which has the effect of reducing
(filtering) the noise and interference from the desired information-bearing signal.

When we pass a signal through a system, as in filtering. we say that we have
processed the signal. In this case the processing of the signal involves filtering the
noise and interference from the desired signal. In general, the system is charac-
terized by the type of operation that it performs on the signal. For example, if
the operation is linear, the system is called linear. If the operation on the signal
is nonlinear, the system is said to be nonlinear, and so forth. Such operations are
usually referred to as signal processing.
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For our purposes. it is convenient to broaden the definition of a system to
include not oniv phvsical devices, but also software realizations of operations on
a signal. In digital processing of signals on a digital computer. the operations per-
formed on a signal consist of a number of mathematical operations as specified by
a software program. In this case, the program represents an implementation of the
system in software. Thus we have a system that is realized on a digital computer
by means of a sequence of mathematical operations; that is, we have a digital
signal processing system realized in software. For example, a digital computer can
be programmed to perform digital filtering. Alternatively, the digital processing
on the signal may be performed by digital hardware (logic circuits) configured to
perform the desired specified operations. In such a realization, we have a physical
device that performs the specified operations. In a broader sense. a digital system
can be implemented as a combination of digital hardware and software. each of
which performs its own set of specified operations.

This book deals with the processing of signals by digital means. either in soft-
ware or in hardware. Since many of the signals encountered in practice are analog,
we will also consider the problem of converting an analog signal into a digital sig-
nal for processing. Thus we will be dealing primarily with digital systems. The
operations performed by such a system can usually be specified mathematically.
The method or set of rules for implementing the system by a program that per-
forms the corresponding mathematical operations is called an algorithm. Usually.
there are many ways or algorithms by which a system can be implemented, either
in software or in hardware. to perform the desired operations and computations.
In practice, we have an interest in devising algorithms that are computationally
efficient, fast, and easily implemented. Thus a major topic in our study of digi-
tal signal processing is the discussion of efficient algorithms for performing such
operations as filtering. correlation, and spectral analysis.

1.1.1 Basic Elements of a Digital Signal Processing
System

Most of the signals encountered in science and engineering are analog in nature.
That is. the signals are functions of a continuous variable. such as time or space.
and usually take on values in a continuous range. Such signals may be processed
directly by appropriate analog systems (such as filters or frequency analyzers) or
frequency multipliers for the purpose of changing their characteristics or extracting
some desired information. In such a case we say that the signal has been processed
directly in its analog form, as illustrated in Fig. 1.2. Both the input signal and the
output signal are in analog form.

Analog Analog Analog

input ———+  signal |————— output
signal processor signal

Figure 1.2 Analog signal processing.
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Figure 1.3 Block diagram of a digital signal processing system.

Digital signal processing provides an alternative method for processing the
analog signal, as illustrated in Fig. 1.3. To perform the processing digitally, there
is a need for an interface between the analog signal and the digital processor.
This interface is called an analog-ro-digital (A/D) converter. The output of the
A/D converter is a digital signal that is appropriate as an input to the digital
processor.

The digital signal processor may be a large programmable digital computer
or a small microprocessor programmed to perform the desired operations on the
input signal. It may also be a hardwired digital processor configured to perform
a specified set of operations on the input signal. Programmable machines pro-
vide the flexibility to change the signal processing operations through a change
in the software. whereas hardwired machines are difficult to reconfigure. Conse-
quently, programmable signal processors are in very common use. On the other
hand, when signal processing operations are well defined. a hardwired implemen-
tation of the operations can be optimized, resulting in a cheaper signal processor
and, usually, one that runs faster than its programmable counterpart. In appli-
cations where the digital output from the digital signal processor is to be given
to the user in analog form. such as in speech communications, we must pro-
vide another interface from the digital domain to the analog domain. Such an
interface is called a digital-to-analog (D/A) converter. Thus the signal is pro-
vided to the user in analog form, as illustrated in the block diagram of Fig. 1.3.
However, there are other practical applications involving signal analysis, where
the desired information is conveyed in digital form and no D/A converter is
required. For example, in the digital processing of radar signals, the informa-
tion extracted from the radar signal, such as the position of the aircraft and its
speed, may simply be printed on paper. There is no need for a D/A converter in
this case.

1.1.2 Advantages of Digital over Analog Signal
Processing

There are many reasons why digital signal processing of an analog signal may be
preferable to processing the signal directly in the analog domain, as mentioned
briefly earlier. First, a digital programmable system allows flexibility in recon-
figuring the digital signal processing operations simply by changing the program.
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Reconfiguration of an analog system usually implies a redesign of the hardware
followed by testing and verification to see that it operates properly.

Accuracy considerations also play an important role in determining the form
of the signal processor. Tolerances in analog circuit components make it extremely
difficult for the system designer to control the accuracy of an analog signal pro-
cessing system. On the other hand, a digital system provides much better control
of accuracy requirements. Such requirements, in turn, result in specifying the ac-
curacy requirements in the A/D converter and the digital signal processor, in terms
of word length, floating-point versus fixed-point arithmetic, and similar factors.

Dugital signals are easily stored on magnetic media (tape or disk) without de-
terioration or loss of signal fidelity beyond that introduced in the A/D conversion.
As a consequence, the signals become transportable and can be processed off-line
in a remote Jaboratory. The digital signal processing method also allows for the im-
plementation of more sophisticated signal processing algorithms. It is usually very
difficult to perform precise mathematical operations on signals in analog form but
these same operations can be routinely implemented on a digital computer using
software.

In some cases a digital implementation of the signal processing system is
cheaper than its analog counterpart. The lower cost may be due to the fact that
the digital hardware is cheaper. or perhaps it is a result of the flexibility for mod-
ifications provided by the digital implementation.

As a consequence of these advantages, digital signal processing has been
applied in practical systems covering a broad range of disciplines. We cite, for ex-
ample, the application of digital signal processing techniques in speech processing
and signal transmission on telephone channels, in image processing and transmis-
sion, in seismology and geophysics. in oil exploration, in the detection of nuclear
explosions, in the processing of signals received from outer space. and in a vast
variety of other applications. Some of these applications are cited in subsequent
chapters.

As already indicated, however, digital implementation has its limitations.
One practical limitation is the speed of operation of A/D converters and digital
signal processors. We shall see that signals having extremely wide bandwidths re-
quire fast-sampling-rate A/D converters and fast digital signal processors. Hence
there are analog signals with large bandwidths for which a digital processing ap-
proach is beyond the state of the art of digital hardware.

1.2 CLASSIFICATION OF SIGNALS

The methods we use in processing a signal or in analyzing the response of a system
to a signal depend heavily on the characteristic attributes of the specific signal.
There are techniques that apply only to specific families of signals. Consequently,
any investigation in signal processing should start with a classification of the signals
involved in the specific application.
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1.2.1 Multichannel and Multidimensional Signals

As explained in Section 1.1, a signal is described by a function of one or more
independent variables. The value of the function (i.e., the dependent variable) can
be a real-valued scalar quantity, a complex-valued quantity, or perhaps a vector.
For example. the signal
51(r) = Asin3mt

is a real-valued signal. However, the signal

$3(1) = A’ = Acos3mr + jAsin3mt
is complex valued.

In some applications, signals are generated by multiple sources or multiple
sensors. Such signals, in turn. can be represented in vector form. Figure 1.4 shows
the three components of a vector signal that represents the ground acceleration
due to an earthquake. This acceleration is the result of three basic types of elastic
waves. The primary (P) waves and the secondary (S) waves propagate within the
body of rock and are longitudinal and transversal, respectively. The third type
of elastic wave is called the surface wave. because it propagates near the ground
surface. If s,(r). k = 1. 2, 3. denotes the electrical signal from the kth sensor as a
function of time. the set of p = 3 signals can be represented by a vector Sa(r). where

s1(1)
Si(r) = | 52(1)
53(1)

We refer to such a vector of signals as a multichannel signal. In electrocardiogra-
phy. for example, 3-lead and 12-lead electrocardiograms (ECG) are often used in
practice. which result in 3-channel and 12-channel signals.

Let us now turn our attention to the independent variable(s). If the signal is
a function of a single independent variable, the signal is called a one-dimensional
signal. On the other hand. a signal is called M-dimensional if its value is a function
of M independent variables.

The picture shown in Fig. 1.5 is an example of a two-dimensional signal. since
the intensity or brightness /(x. y} at each point is a function of two independent
variables. On the other hand. a black-and-white television picture may be rep-
resented as /(x, y,t) since the brightness is a function of time. Hence the TV
picture may be treated as a three-dimensional signal. In contrast, a color TV pic-
ture may be described by three intensity functions of the form 7, (x, y. 1), [(x. y. 1),
and [y(x. y.1), corresponding to the brightness of the three principal colors (red.
green, blue) as functions of time. Hence the color TV picture is a three-channel.
three-dimensional signal, which can be represented by the vector

I(x,y.1)
Ix. y. 1) = [!g(x‘ A r):l
Ip(x, y. 1)

In this book we deal mainly with single-channel, one-dimensional real- or
complex-valued signals and we refer to them simply as signals. In mathematical
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Figure 1.4 Three components of ground acceleration measured a few kilometers

from the epicenter of an earthquake. (From Earthquakes. by B. A. Bold. ©1988
by W. H. Freeman and Company. Reprinted with permission of the publisher.)

terms these signals are described by a function of a single independent variable.
Although the independent variable need not be time, it is common practice to use
1 as the independent variable. In many cases the signal processing operations and
algorithms developed in this text for one-dimensional, single-channel signals can
be extended to multichannel and multidimensional signals.

1.2.2 Continuous-Time Versus Discrete-Time Signals

Signals can be further classified into four different categories depending on the
characteristics of the time (independent) variable and the values they take.
Continuous-time signals or analog signals are defined for every value of time and
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Figure 1.5 Example of a two-dimensional signal.

they take on values in the continuous interval (a.5). where a can be —oc and b
can be oc. Mathematically. these signals can be described by functions of a con-
tinuous variable. The speech waveform in Fig. 1.1 and the signals x;(¢) = cos ¢,
x2(t) = 7" —oc < 1 < oc are examples of analog signals. Discrete-time signals
are defined only at certain specific values of time. These time instants need not be
equidistant, but in practice they are usually taken at equally spaced intervals for
computational convenience and mathematical tractability. The signal x(z,) = ™"/,
n =0, &1, £2, ... provides an example of a discrete-time signal. If we use the
index n of the discrete-time instants as the independent variable, the signal value
becomes a function of an integer variable (i.e., a sequence of numbers). Thus a
discrete-time signal can be represented mathematically by a sequence of real or
complex numbers. To emphasize the discrete-time nature of a signal, we shall
denote such a signal as x(n) instead of x(¢). If the time instants ¢, are equally
spaced (i.e., t, = nT), the notation x(nT) is also used. For example, the sequence

08" ifn=0

x(n) = 0. otherwise .21

is a discrete-time signal, which is represented graphically as in Fig. 1.6.
In applications, discrete-time signals may arise in two ways:

1. By selecting values of an analog signal at discrete-time instants. This process
is called sampling and is discussed in more detail in Section 1.4. All measur-
ing instruments that take measurements at a regular interval of time provide
discrete-time signals. For example, the signal x(n) in Fig. 1.6 can be obtained
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x(n)

- ]J}JIE;

-1 0 1 2 4 5 n

Figure 1.6 Graphical representation of the discrete time signal x(n) = 0.8" for
n>0and x(n)=0forn < 0.

by sampling the analog signal x(r) = 0.8', ¢t > 0 and x(r) = 0.1 < 0 once
every second.

2. By accumulating a variable over a period of time. For example. counting the
number of cars using a given street every hour. or recording the value of gold
every day, results in discrete-time signals. Figure 1.7 shows a graph of the
Wolfer sunspot numbers. Each sample of this discrete-time signal provides
the number of sunspots observed during an interval of 1 year.

1.2.3 Continuous-Valued Versus Discrete-Valued Signals

The values of a continuous-time or discrete-time signal can be continuous or dis-
crete. If a signal takes on all possible values on a finite or an infinite range. it
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Figure 1.7 Wolfer annual sunspot numbers (1770-1869).
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is said to be continuous-valued signal. Alternatively, if the signal takes on values
from a finite set of possible values. it is said to be a discrete-valued signal. Usually,
these values are equidistant and hence can be expressed as an integer multiple of
the distance between two successive values. A discrete-time signal having a set of
discrete values is called a digital signal. Figure 1.8 shows a digital signal that takes
on one of four possible values.

In order for a signal to be processed digitally, it must be discrete in time
and its values must be discrete (i.e., it must be a digital signal). If the signal to
be processed is in analog form, it is converted to a digital signal by sampling the
analog signal at discrete instants in time, obtaining a discrete-time signal, and then
by quantizing its values to a set of discrete values, as described later in the chapter.
The process of converting a continuous-valued signal into a discrete-valued signal,
called quanitization. is basically an approximation process. It may be accomplished
simply by rounding or truncation. For example. if the allowable signal values
in the digital signal are integers, say O through 15, the continuous-value signal is
quantized into these integer values. Thus the signal value 8.58 will be approximated
by the value 8 if the quantization process is performed by truncation or by 9 if
the quantization process is performed by rounding to the nearest integer. An
explanation of the analog-to-digital conversion process is given later in the chapter.

Figure 1.8 Digital signal with four different amplitude values.

1.2.4 Deterministic Versus Random Signals

The mathematical analysis and processing of signals requires the availability of a
mathematical description for the signal itself. This mathematical description, often
referred to as the signal model. leads to another important classification of signals.
Any signal that can be uniquely described by an explicit mathematical expression,
a table of data, or a well-defined rule is called deterministic. This term is used to
emphasize the fact that all past, present. and future values of the signal are known
precisely, without any uncertainty.

In many practical applications, however, there are signals that either cannot
be described to any reasonable degree of accuracy by explicit mathematical for-
mulas, or such a description is too complicated to be of any practical use. The lack
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of such a relationship implies that such signals evolve in time in an unpredictable
manner. We refer to these signals as random. The output of a noise generator,
the seismic signal of Fig. 1.4, and the speech signal in Fig. 1.1 are examples of
random signals.

Figure 1.9 shows two signals obtained from the same noise generator and
their associated histograms. Although the two signals do not resemble each other
visually, their histograms reveal some similarities. This provides motivation for

(@)

-3 -2 -1 0 1 2 3
®)

Figure 1.9 Two random signals from the same signal generator and their his-
tograms.
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Figure 1.9 Continued

the analysis and description of random signals using stauistical techniques instead
of explicit formulas. The mathematical framework for the theoretical analvsis of
random signals is provided by the theory of probability and stochastic processes.
Some basic elements of this approach, adapted to the needs of this book. are
presented in Appendix A.

It should be emphasized at this point that the classification of a real-world
signal as deterministic or random is not always clear. Sometimes, both approaches
lead to meaningful results that provide more insight into signal behavior. At other
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times. the wrong classification may lead to erroneous results. since some mathe-
matical tools may apply only to deterministic signals while others may apply only
to random signals. This will become clearer as we examine specific mathematical
tools.

1.3 THE CONCEPT OF FREQUENCY IN CONTINUOUS-TIME AND
DISCRETE-TIME SIGNALS

The concept of frequency is familiar to students in engineering and the sciences.
This concept is basic in. for example, the design of a radio receiver, a high-fidelity
system, or a spectral filter for color photography. From physics we know that
frequency is closely related to a specific type of periodic motion called harmonic
oscillation. which is described by sinusoidal functions. The concept of frequency
is directly related to the concept of time. Actually, it has the dimension of inverse
time. Thus we should expect that the nature of time (continuous or discrete) would
affect the nature of the frequency accordingly.

1.3.1 Continuous-Time Sinusoidal Signals

A simple harmonic oscillation is mathematically described by the following
continuous-time sinusoidal signal:

X,(1) = Acos(2t +6). —oc <t < oC (1.3.1)

shown in Fig. 1.10. The subscript @ used with x(r) denotes an analog signal. This
signal is completely characterized by three parameters: A is the amplitude of the
sinusoid. € 1s the frequency in radians per second (rad/s), and 6 is the phase in
radians. Instead of Q, we often use the frequency F in cycles per second or hertz

(Hz). where
Q=2nF (1.3.2)
In terms of F. (1.3.1) can be written as
Xo(t) = AcosQrFr+6), —0 <t <o (1.3.3)

We will use both forms, (1.3.1) and (1.3.3), in representing sinusoidal signals.

x,{t)= A cos(2mFt + 6)

T, = UF
FA
/\ Acos é
v 0 v \ |
Figure 1.L10 Example of an analog

sinusoidal signal.
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The analog sinusoidal signal in (1.3.3) is characterized by the following prop-
erties:

Al. For every fixed value of the frequency F, x,(r) is periodic. Indeed. it can
easily be shown, using elementary trigonometry, that

Xt + 1)) = xa(1)

where T, = 1/F is the fundamental period of the sinusoidal signal.

A2. Continuous-time sinusoidal signals with distinct (different) frequencies are
themselves distinct.

A3. Increasing the frequency F results In an increase in the rate of oscillation
of the signal, in the sense that more periods are included in a given time
interval.

We observe that for F = 0. the value 7, = oc is consistent with the fun-
damental relation F = 1/7,. Due to continuity of the time variable , we can
increase the frequency F. without limit, with a corresponding increase in the rate
of oscillation.

The relationships we have described for sinusoidal signals carry over to the
class of complex exponential signals

x (1) = Ap? 1+ (1.3.4)

This can easily be seen by expressing these signals in terms of sinusoids using the
Euler identity

/% = cos¢ £ jsing (1.3.5)

By definition, frequency is an inherently positive physical quantity. This
is obvious if we interpret frequency as the number of cycles per unit time in a
periodic signal. However. in many cases, only for mathematical convenience, we
need to introduce negative frequencies. To see this we recall that the sinusoidal
signal (1.3.1) may be expressed as

A j(Qu+6) A (S +6)
xg(1) = Acos(Q2t +6) = 7 e’ + 5 e’ (1.3.6)

which follows from (1.3.5). Note that a sinusoidal signal can be obtained by adding
two equal-amplitude complex-conjugate exponential signals, sometimes called pha-
sors, illustrated in Fig. 1.11. As time progresses the phasors rotate in opposite
directions with angular frequencies £ radians per second. Since a positive fre-
quency corresponds to counterclockwise uniform angular motion, a negative fre-
quency simply corresponds to clockwise angular motion.

For mathematical convenience, we use both negative and positive frequencies
throughout this book. Hence the frequency range for analog sinusoids is —co <
F < oo,
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a Figure 1.11 Representation of a cosine
function by a pair of complex-conjugate

exponentials (phasors).

1.3.2 Discrete-Time Sinusoidal Signals

A discrete-time sinusoidal signal may be expressed as
x(n) = Acos(wn +8). —oc < n < ¢ (1.3.71

where n s an integer variable. called the sample number. 4 is the amplinude of the
sinusoid, w ts the frequency in radians per sample, and ¢ is the phase in radians.
If instead of w we use the frequency variable f defined by

w=2nf (1.3.8)
the relation (1.3.7) becomes
x(n) = Acosrfn+6).—x <n <oc (1.3.9

The frequency f has dimensions of cycles per sample. In Section 1.4. where
we consider the sampling of analog sinusoids, we relate the frequency variable
f of a discrete-time sinusoid to the frequency F in cycles per second for the
analog sinusoid. For the moment we consider the discrete-time sinusoid in (1.3.7}
independently of the continuous-time sinusoid given in (1.3.1). Figure 1.12 shows
a sinusoid with frequency w = n/6 radians per sample (f = T]i cycles per sample)
and phase 6 = n/3.

x(n) = A cos{wn + 8)

Figure 1.12 Example of a discrete-time
-A sinusoidal signal (w = /6 and & = n/3).
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In contrast to continuous-time sinusoids. the discrete-time sinusoids are char-
acterized by the following properties:

B1. A discrete-time sinusoid is periodic only if its frequency fis a rational number.

By definition, a discrete-time signal x(n) is periodic with period N(N > 0) if
and only if
x(n+ N)y=x(n) for all n (1.3.10)

The smallest value of N for which (1.3.10) is true is called the fundamental period.
The proof of the periodicity property is simple. For a sinusoid with frequency
fo to be periodic, we should have

cos{2m fot N + n) + 8} = cos(2x fon + 6)
This relation s true if and only if there exists an integer k& such that
2t fuN = 2km

or, equivalently.
k :
flv—fﬁ (1.3.11)
According to (1.3.11). a discrete-time sinusoidal signal is periodic only if its fre-
quency fy can be expressed as the ratio of two integers (i.e.. fy is rational).

To determine the fundamental period N of a periodic sinusoid. we express its
frequency fy asin (1.3.11) and cancel common factors so that k and N are relatively
prime. Then the fundamental period of the sinusoid is equal to N. Observe that a
small change in frequency can result in a large change in the period. For example.
note that fi = 31/60 implies that Ny = 60, whereas f> = 30/60 results in N> = 2.

B2. Discrete-time sinusoids whose frequencies are separated by an integer multiple
of 2r are identical.

To prove this assertion, let us consider the sinusoid cos(wyr + 8). It easily
follows that

cos[(wp + 27 )n + 8] = cos(won + 21rn + ) = cos(won + 8) (1.3.12)
As a result, all sinusoidal sequences
xp(n) = Acos(win + 6), k=0.1.2,... (1.3.13)
where
wy = wy + 2k, -T<wy<m

are indistinguishable (i.e., idenrical). On the other hand, the sequences of any two
sinusoids with frequencies in the range —m < @ < m or —} < f < are distinct.
Consequently, discrete-time sinusoidal signals with frequencies |w| < 7 or || < %
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are unique. Any sequence resulting from a sinusoid with a frequency |w| > 7, or
[fl> % is identical to a sequence obtained from a sinusoidal signal with frequency
lw| < 7. Because of this similarity, we call the sinusoid having the frequency |w| >
7 an alias of a corresponding sinusoid with frequency |w{ < 7. Thus we regard
frequencies in the range —7 < w < 7, or —1 < f < } as unique and all frequencies
|w| > 7, or |f| > 1, as aliases. The reader shouid notice the difference between
discrete-time sinusoids and continuous-time sinusoids, where the latter result in
distinct signals for Q or F in the entire range —oc < Q < oc or —o¢ < F < o<,

B3. The highest rate of oscillation in a discrete time sinusoid is artained when
w=7n {or = —m) or, equivalently, f = (or = ——)

To illustrate this property, let us investigate the characteristics of the sinu-
soidal signal sequence

x{(n) = COSwon

when the frequency varies from 0 to x. To simplify the argument we take values
of wy =0, n/8, m/4. 7/2, 7 corresponding to f = 0. a % . which result in
periodic sequences having periods N = oc. 16, 8, 4, 2. as depu:ted in Fig. 1.13. We
note that the period of the sinusoid decreases as the frequency increases. In fact,

we can see that the rate of oscillation increases as the frequency increases.

x(n)
wy=0

LD I

L]
COEEEEEE TR

Figure 1.13  Signal x(n) = cos wgn for various values of the frequency wy.



Sec. 1.3 Freguency Concepts in Continuous-Discrete-Time Signals 19

To see what happens for m < wg < 2. we consider the sinusoids with
frequencies w; = wy and w2 = 27 — wp. Note that as w; varies from 7 10 27, w:
varies from 7 to 0. It can be easily seen that

x1(n) = Acoswin = A COSwon
x2(n) = AcOSwan = Acos(2m — wyin (1.3.14)
= Acos(—won) = x1(n)

Hence w- is an alias of w;. If we had used a sine function instead of a cosine func-
tion, the result would basically be the same. except for a 180" phase difference
between the sinusoids xj(n) and xz2(n). In any case. as we increase the relative
frequency wy of a discrete-time sinusoid from n to 2x. its rate of oscillation de-
creases. For wy = 27 the result is a constant signal. as in the case for «, = 0.
Obviously. for wy =7 (or [ = l:) we have the highest rate of oscillation.

As for the casc of continuous-time signals. negative frequencies can be in-
troduced as well for discrete-time signals. For this purpose we use the identity

A A " 4 oa s
x(n) = Acos(wn +0) = 5 pltent L 2 itenty (1.3.1%)

Since discrete-time sinusoidal signals with frequencies that are separated by
an integer multiple of 27 are identical, it follows that the frequencies in any interval
w) < w < w + 27 constitute all the existing discrete-time sinusoids or complex
exponentials. Hence the frequency range for discrete-time sinusoids 1s finite with
duration 2x. Usually, we choose the range 0 < w <27 or —7 <w <70 < f < 1.
~1 < f =1, which we call the fundamental range.

1.3.3 Harmonically Related Complex Exponentials

Sinusoidal signals and complex exponentials play a major role in the analysis of
signals and svstems. In some cases we deal with sets of harmonically related com-
plex exponentials (or sinusoids). These are sets of periodic complex exponentials
with fundamental frequencies that are multiples of a single positive frequency.
Although we confine our discussion to complex exponentials, the same proper-
ties clearly hold for sinusoidal signals. We consider harmonically related complex
exponentials in both continuous time and discrete time.

Continuous-time exponentials. The basic signals for continuous-time.
harmonically related exponentials are

silr) = ¥ = /T f= 0 2], £2. (1.3.16)
We note that for each value of k., si(r) is periodic with fundamental period
1/(kFy)y = T,/k or fundamental frequency kFy. Since a signal that is periodic
with period 7,/k is also periodic with period k(7,/k) = T, for any positive integer
k, we see that all of the s () have a common period of 7,,. Furthermore, according
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to Section 1.3.1. Fy is allowed to take any value and all members of the set are
distinct. in the sense that if k; # k;. then sp1(1) # sp2().

From the basic signals in (1.3.16) we can construct a linear combination of
harmonically related complex exponentials of the form

x =
XD= ) asty= Yy o/t (1.3.17)
k=~oc k=—o0C
where ¢, ¥ = 0, £1, £2.... are arbitrary complex constants. The signal x,(r)

is periodic with fundamental period T, = 1/F;, and its representation in terms
of {1.3.17) is called the Fourier series expansion for x,(¢). The complex-valued
constants are the Fourier series coefficients and the signal s5,(r) 1s called the kth
harmonic of x,(r).

Discrete-time exponentials. Since a discrete-time complex exponential is
periodic if its relative frequency is a rational number, we choose f, = 1/N and we
define the sets of harmonically related complex exponentials by

sp(n) = ef2mkim k=0 £1.£2 ... (1.3.18)

In contrast to the continuous-time case. we note that

j (+Ni/N 7 .
Sk+N(”) — (,JZnnlk+M,A — 6/27”&(11) = s5p(n)

This means that, consistent with (1.3.10), there are only N distinct periodic complex
exponentials in the set described by (1.3.18). Furthermore. all members of the set
have a common period of N samples. Clearly, we can choose any consecutive N
complex exponentials, say from & = ng to k = ng + N — 1 to form a harmonically
related set with fundamental frequency fy = 1/N¥. Most often. for convenience.
we choose the set that corresponds to ng = 0, that is, the set

seln) = @2mkIN k=0.1.2..... N-1 (1.3.19)

As in the case of continuous-time signals. it is obvious that the linear com-
bination

N-1 N-1
x(n) =Y cusiln) =y cpelFh (1.320)
k=0 k=0

results in a periodic signal with fundamental period N. As we shall see later,
this is the Fourier series representation for a periodic discrete-time sequence with
Fourier coefficients {c;}. The sequence s;(n) is called the kth harmonic of x{n).

Example 1.3.1
Stored in the memory of a digital signal processor is one cycle of the sinusoidal signal

2mn
=si — 46
x(n) sm( N + )

where @ = 27q/N, where ¢ and N are integers.
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(a) Determine how this table of values can be used to obtain values of harmonically
related sinusoids having the same phase.

(b) Determine how this table can be used to obtain sinusoids of the same frequency
but different phase.

Solution
(a) Let x;(n) denote the sinusoidal signal sequence

. [ 2nnk °
Xifn) = sin — + 8
N

This is a sinusoid with frequency fi = k/N. which 1s harmonically related to
x(n). But x;(n) may be expressed as

.| 2m(km)
xi{n) = sin A +6

x(kn)
Thus we observe that x, (0 = x(0). x; (1) = x(k). x:(2) = x(2k). and so on.
Hence the sinusoidal sequence x;(n) can be obtained from the table of values
of x(n) by taking every kth value of x(n). beginning with x(0). In this manner we
can gencrate the vatues of all harmonically related sinusoids with frequencies
fi=k/Nfork=01..... N -1

(b) We can control the phase ¢ of the sinusoid with frequency f; = k/N by taking
the first value of the sequence from memory location ¢ = 6N/2x ., where ¢ is
an integer. Thus the iniual phase € controls the starting location in the table
and we wrap around the table each time the index (kn) exceeds N.

1.4 ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION

Most signals of practical interest. such as speech. biological signals, seismic signals,
radar signals, sonar signals, and various communications signals such as audio and
video signals, are analog. To process analog signals by digital means, it is first
necessary to convert them into digital form. that is, to convert them to a sequence
of numbers having finite precision. This procedure is called analog-to-digital (A/D)
conversion, and the corresponding devices are called A/D converters (ADCs).

Conceptually, we view A/D conversion as a three-step process. This process
is illustrated in Fig. 1.14.

1. Sampling. This is the conversion of a continuous-time signal into a discrete-
time signal obtained by taking “samples” of the continuous-time signal at
discrete-time instants. Thus. if x,(s) is the input to the sampler, the output
is x,(nT) = x(n), where T is called the sampling interval.

2. Quantization. This is the conversion of a discrete-time continuous-valued
signal into a discrete-time, discrete-valued (digital) signal. The value of each
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A/D converter

o x(n) ) T . 01011...
- Sampler T Quantizer i Coder ; T
[ i | .
' ! : I
| ! | P
g G SR |
| ! | i
Analog Discrete-time Quantized Digital
signal signal signal signal

Figure 1.14 Basic parts of an analog-to-digital {A/D) converter.

signal sample is represented by a value selected from a finite set of possi-
ble values. The difference between the unquantized sample x(n) and the
quantized output x,(n) is called the quantization error.

3. Coding. In the coding process. each discrete value x,(n) is represented by a
b-bit binary sequence.

Although we model the A/D converter as a sampler followed by a quantizer
and coder. in practice the A/D conversion is performed by a single device that
takes x,(r) and produces a binary-coded number. The operations of sampling and
quantization can be performed in either order but, in practice. sampling is always
performed before quantization.

In many cases of practical interest (e.g.. speech processing) it is desirable
to convert the processed digital signals into analog form. (Obviously, we cannot
listen 1o the sequence of samples representing a speech signal or see the num-
bers corresponding to a TV signal.) The process of converting a digital signal
into an analog signal is known as digital-to-analog (D/A) conversion. All D/A
converters “connect the dots™ in a digital signal by performing some kind of inter-
polation, whose accuracy depends on the quality of the D/A conversion process.
Figure 1.15 illustrates a simple form of D/A conversion. called a zero-order hold
or a staircase approximation. Other approximations are possible. such as linearly
connecting a pair of successive samples (linear interpolation). fitting a quadratic
through three successive samples (quadratic interpolation), and so on. Is there an
optimum (ideal) interpolator? For signals having a limited frequency content (finite
bandwidth), the sampling theorem introduced in the following section specifies the
optimum form of interpolation.

Sampling and quantization are treated in this section. In particular, we
demonstrate that sampling does not result in a loss of information, nor does it
introduce distortion in the signal if the signal bandwidth is finite. In principle, the
analog signal can be reconstructed from the samples, provided that the sampling
rate is sufficiently high to avoid the problem commonly called aliasing. On the
other hand, quantization is a noninvertible or irreversible process that results in
signal distortion. We shall show that the amount of distortion is dependent on
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Amplitude

Figure 1.15  Zero-order hold digital-to-analog (D/A) conversion.

the accuracy. as measured by the number of bits. in the A/D conversion process.
The factors affecting the choice of the desired accuracy of the A/D converter are
cost and sampling rate. In general. the cost increases with an increase in accuracy
and/or sampling rate.

1.4.1 Sampling of Analog Signals

There are many ways to sample an analog signal. We limit our discussion to
periodic or uniform sampling, which is the type of sampling used most often in
practice. This is described by the relation

x(n) = x,(nT). —oxc < hn <oC (14.1)

where x(n) is the discrete-time signal obtained by “taking samples™ of the analog
signal x,(t) every T seconds. This procedure is illustrated in Fig. 1.16. The time
interval 7 between successive samples is called the sampling period or sample
interval and its reciprocal 1/7 = F; is called the sampling rate (samples per second)
or the sampling frequency (hertz).

Periodic sampling establishes a relationship between the time variables ¢ and
n of continuous-time and discrete-time signals, respectively. Indeed, these vari-
ables are linearly related through the sampling period T or, equivalently, through
the sampling rate F, = 1/T, as

t=nT = F, (1.4.2)

As a consequence of (1.4.2), there exists a relationship between the frequency
variable F (or Q) for analog signals and the frequency variable f (or w) for
discrete-time signals. To establish this relationship, consider an analog sinusoidal
signal of the form

x,(t) = Acos(2n Fr+8) (1.4.3)
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Analog Xalt) Pa) x(n) = x,(nT) Discrete-time

signal F=UT signal
s
Sampier
X0 x(n) X1
T~
R pvd x(n) = x,{nT)
‘] TT/
0 7 0/ 1234567879 ”n
T2T 5T 9T t=nT

Figure 1.16 Pernodic sampling of an analog signal.

which, when sampled periodically at a rate F;, = 1/T samples per second. yields

xonT)=x{ny = AcosRr FnT + )
2nnF (1.4.4)
= Acos 7 + 6

5

If we compare (1.4.4) with (1.3.9). we note that the frequency variables F
and f are linearly related as

(1.4.5)

~
l
BT

Fs=sampling frequency
F=frequency of analoa
f=frequency of digital signal
@=QT  _elative or normalized freqdén"(:@

The relation in (1.4.5) justifies the name relative or normalized frequency, which is
sometimes used to describe the frequency variable f. As(1.4.5) implies, we can use
f to determine the frequency F in hertz only if the sampling frequency F; is known.

We recall from Section 1.3.1 that the range of the frequency variable F or 2
for continuous-time sinusoids are

or, equivalentiy, as

—oc < F <0
(1.4.7)

—oCc < 2 < 0
However, the situation is different for discrete-time sinusoids. From Section 1.3.2
we recall that
1 1
“lef<l
: 2 (1.4.8)

~T <WwW<7TT

By substituting from (1.4.5) and (1.4.6) into (1.4.8), we find that the frequency
of the continuous-time sinusoid when sampled at a rate F, = 1/7 must fall in
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the range
k. F,
__:__‘SFE._:—L (1.4.9)
27 2 2 2r
or, equivalently.
~ e F, - L (14.10)
T T

These relations are summarized in Table 1.1.

TABLE 1.1 RELATIONS AMONG FREQUENCY VARIABLES

Continuous-time signals Discrete-time signats
Q=2rF w=21[
radians Hz radians cvcles
sec

sample  sampic

w=QT.f=F/F,

CR=w/TF=f"F

AN

Sws
R

- < 2 <X
—x < Fax

From these relations we observe that the fundamental difference between
continuous-time and discrete-time signals s in their range of values of the fre-
quency variables F and f. or @ and w. Periodic sampling of a continuous-time
signal implies a mapping of the infinite frequency range for the variable F (or $2)
into a finite frequency range for the variable f {or w). Since the highest frequency
in a discrete-time signal is w = 7 or f = % it follows that. with a sampling rate
F,. the corresponding highest values of F and Q are

F £ 1
max = K = 45

2 e (1.4.11)
Qmax =FF:=F

Therefore. sampling introduces an ambiguity. since the highest frequency in a
continuous-time signal that can be uniquely distinguished when such a signal is
sampled at a rate F, = 1/T 1S Frax = F, /2. of Quax = 7 F,. To see what happens
to frequencies above F,/2, let us consider the following example.

Example 1.4.1

The implications of these frequency relations can be fully appreciated by considering
the two analog sinusoidal signals

x1(1) = cos2r(10)
(1.4.12)
x2(1) = cos2r(50):
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which are sampled at a rate F, = 40 Hz. The corresponding discrete-time signals or
sequences are

x1(n) = cos 2m n = Cos —n

i 4 2
2(n) = = 5

xa(n) = cos2n n = Cos n

However. cos 5mn/2 = cos(2an + nn/2) = cosan/2. Hence x2(n) = x;(n). Thus the
sinusoidal signals are identical and, consequently, indistinguishable. If we are given
the sampled values generated by cos(xr/2)n, there is some ambiguity as to whether
these sampled values correspond 1o x;{r) or x2{r). Since x»(r) vields exactly the same
values as x;{r} when the two are sampled at F, = 40 sampies per second. we say that
the frequency F» = 50 Hz is an alias of the frequency £, = 10 Hz at the sampling
rate of 40 samples per second.

[t 1s important to note that F; is not the only alias of F. In fact at the sampling
rate of 40 samples per second. the frequency F; = 90 Hz is also an alias of Fj, as is
the frequency Fy = 130 Hz, and so on. All of the sinusoids cos2x(F) + 40k)r. k = 1.
2. 3. 4.... sampled at 40 samples per second. vield identical values. Consequently.
they are all aliases of F, = 10 Hz.

In general. the sampling of a continuous-time sinusoidal signal
X{1) = Acos(2m For + 8) (1.4.14)
with a sampling rate F, = 1/T results in a discrete-time signal
x(n) = Acos(2r fon + 6) (1.4.15)
where f, = Fy/F, is the relative frequency of the sinusoid. lf we assume that

—F./2 < Fy < F,/2. the frequency fy of x(n) is in the range —! < #, < 4. which is

the frequency range for discrete-time signals. In this case, the relationshfp between
Fy and f; is one-to-one, and hence it is possible to identify (or reconstruct) the
analog signal x,(7) from the samples x(n).

On the other hand. if the sinusoids

x,(1) = AcosRr Fy1 + 6) (1.4.16)

where
Fi. = Fo+kF,. k=%1.£2, ... (1.417)
are sampled at a rate F, it is clear that the frequency F; is outside the fundamental

frequency range —~F,/2 < F < F, /2. Consequently, the sampled signal is

'F‘
x(n)=x,(nT) = Acos (ano—_;k-én +6)

5

i

Acos2anFy/F, +6 +2mkn)
Acos(2m fon + 6)

il
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which is identical to the discrete-time signal in (1.4.15) obtained by sampling.
(1.4.14). Thus an infinite number of continuous-time sinusoids is represented by
sampling the same discrete-time signal (i.e.. by the same set of samples). Con-
sequently, if we are given the sequence x(n). an ambiguity exists as to which
continuous-time signal x,(¢) these values represent. Equivalently, we can say that
the frequencies Fy = Fo+kF;, —00 < k < oo {k integer) are indistinguishable from
the frequency Fy after sampling and hence they are aliases of Fy. The relationship
between the frequency variables of the continuous-time and discrete-time signals
is illustrated in Fig. 1.17.

An example of aliasing is illustrated in Fig. 1.18, where two sinusoids with
frequencies Fy = % Hz and F; = —% Hz yield identical samples when a sampling
rate of F; = 1 Hz is used. From (1.4.17) it easily follows that for ¥ = ~1, Fy =
Fi+ Fo=(—3+1) Hz={ Hz.

rat—
g

|
-
n

1o

I
to)—
T
|
B

Figure 1.17 Relationship between the continuous-time and discrete-time fre-
quency variables in the case of periodic sampling.

Figure 1.18 Illustration of aliasing.
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Since F; /2. which corresponds to w = 7, is the highest frequency that can be
represented uniquely with a sampling rate F;. it is a simple matter to determine
the mapping of any (alias) frequency above F,/2 (w = 7) into the equivalent
frequency below F /2. We can use F;/2 or w = & as the pivotal point and reflect
or “fold” the alias frequency to the range 0 < w < . Since the point of reflection
is F;/2 (w = n), the frequency F,/2 (w = n) 1s called the folding frequency.
Example 1.4.2

Consider the analog signal

x,(1) = 3cos100xr

(a) Determine the minimum sampling rate required to avoid aliasing.

(b) Suppose that the signal is sampled at the rate F, = 200 Hz. What is the
discrete-time signal obtained after sampling?

(c) Suppose that the signal is sampled at the rate £, =75 Hz. What is the discrete-
time signal obtained after sampling”

(d) What is the frequency 0 < F < F,/2 of a sinusoid that vields samples identical
1o those obtained in part (c)?

-~

Solution
(a) The frequency of the anaiog signal is £ = 50 Hz. Hence the minimum sampling
rate required to avoid aliasing is £, = 100 Hz.
(b} If the signal is sampled at F, = 200 Hz, the discrete-time signal is

L 100~ .
x(n) = 3cos 00" = 3cos 5N
{¢) If the signal is sampled at £, = 75 Hz. the discrete-1ime signal is
100, 4
x(ny = 3cos 75”n = 3¢cos -;n
2
= 3cos (271 - T”)n
2
2:
= 3cos —;—n

(d) For the sampling rate of £, = 75 Hz, we have
F=fF =175f
The frequency of the sinusoid in part (c) is f = 3. Hence
F=25Hz
Clearly. the sinusoidal signal
¥4(t) = 3cos2n Fr
3cos 50t

sampled at F; = 75 samples/s yields identical samples. Hence F = 50 Hz is an
alias of F = 25 Hz for the sampling rate F, = 75 Hz.

il


ANURAG
Highlight

ANURAG
Underline


Sec. 1.4 Analog-to-Digital and Digital-to-Analog Conversion 29
1.4.2 The Sampling Theorem

Given any anaiog signal. how should we select the sampling period T or, equiv-
alently, the sampling rate F;? To answer this question, we must have some in-
formation about the characteristics of the signal to be sampled. In particular, we
must have some general information concerning the frequency content of the sig-
nal. Such information is generally available to us. For example, we know generally
that the major frequency components of a speech signal fail below 3000 Hz. On
the other hand, television signals, in general, contain important frequency com-
ponents up to 5 MHz. The information content of such signals is contained in
the amplitudes, frequencies, and phases of the various frequency components, but
detailed knowledge of the characteristics of such signals is not available to us prior
to obtaining the signals. In fact, the purpose of processing the signals is usually to
extract this detailed information. However, if we know the maximum frequency
content of the general class of signals (e.g.. the class of speech signals, the class
of video signals, etc.). we can specify the sampling rate necessary to convert the
analog signals to digital signals.

Let us suppose that any analog signal can be represented as a sum of sinusoids
of different amplitudes. frequencies, and phases. that is.

N
Xo (1) = ZA, cos(2n Fit + ;) (1.4.18)
i=1
where N denotes the number of frequency components. All signals. such as speech
and video, lend themselves to such a representation over any short time segment.
The amplitudes, frequencies, and phases usually change slowly with time from one
time segment to another. However, suppose that the frequencies do not exceed
some known frequency. say Fnax. For example, Fp.x = 3000 Hz for the class
of speech signals and Fmax = 5 MHz for television signals. Since the maximum
frequency may vary slightly from different realizations among signals of any given
class (e.g., it may vary slightly from speaker to speaker), we may wish to ensure
that Fpmay does not exceed some predetermined value by passing the analog signal
through a filter that severely attenuates frequency components above Fuax. Thus
we are certain that no signal in the class contains frequency components (having
significant amplitude or power) above Fp.x. In practice, such filtering is commonly
used prior to sampling.
From our knowledge of Fnax. We can select the appropriate sampling rate.
We know that the highest frequency in an analog signal that can be unambigu-
ously reconstructed when the signal is sampled at a rate F, = 1/7T is F;/2. Any
frequency above F,/2 or below —F,/2 results in samples that are identical with a
corresponding frequency in the range — £, /2 < F < F;/2. To avoid the ambiguities
resulting from aliasing, we must select the sampling rate to be sufficiently high.
That is, we must select F;/2 to be greater than Fp,x. Thus to avoid the problem
of aliasing, F; is selected so that

Fs > 2Fmax (1.4.19)
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where Fpnay is the largest frequency component in the analog signal. With the
sampling rate selected in this manner, any frequency component. say |F;| < Fmax.
in the analog signal is mapped into a discrete-time sinusoid with a frequency

1 F o1
——<fi=—<= 1.4.20
2~ . £ 72 ( )
or, equivalently,
—rZw=21fi<nw (1.4.21)

Since, {f} = 1 or |w| =  is the highest (unique) frequency in a discrete-time signal,
the choice of sampling rate according to (1.4.19) avoids the problem of aliasing.
In other words, the condition F; > 2Fp.x ensures that all the sinusoidal compo-
nents in the analog signal are mapped into corresponding discrete-time frequency
components with frequencies in the fundamental interval. Thus all the frequency
components of the analog signal are represented in sampled form without ambi-
guity, and hence the analog signal can be reconstructed without distortion from
the sample values using an “appropriate” interpolation (digital-to-analog conver-
sion) method. The “appropriate™ or ideal interpolation formula is specified by the
sampling theorem.

Sampling Theorem. If the highest frequency contained in an analog signal
X4(t) IS Fnax = B and the signal is sampled at a rate F, > 2Fn,, = 2B. then x,(r)
can be exactly recovered from its sample vatues using the interpolation function

sin 2m Bt

—_— 1.4.22
27 Bt ( )

glt) =

Thus x,(r) may be expressed as

=3 x (%)g (, - ;—) (1.4.23)

n=—0G

where x,(n/F;) = x,(nT) = x(n) are the samples of x,(r).

When the sampling of x,(r) is performed at the minimum sampling rate
F; = 2B, the reconstruction formula in (1.4.23) becomes

_ x n\ sin2rB(t — n/2B)
wn=Y x (2—3) T TESY- YT (1.4.24)

n=-=0oc

The sampling rate Fy = 2B = 2Fnay is called the Nyquist rate. Figure 1.19 illus-
trates the ideal D/A conversion process using the interpolation function in (1.4.22).

As can be observed from either (1.4.23) or (1.4.24), the reconstruction of x,(r)
from the sequence x(n) is a complicated process, involving a weighted sum of the
interpolation function g(r) and its time-shifted versions g(t—nT) for —co < n < 00,
where the weighting factors are the samples x(n). Because of the complexity and
the infinite number of samples required in (1.4.23) or (1.4.24), these reconstruction
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AN sample of x (1

!
W Figure 1.19 Ideal D/A conversion
(n-2T n—-DT T in+ DT

n {interpolation).

formulas are primarily of theoretical interest. Practical interpolation methods are
given in Chapter 9.

Example 1.4.3

Consider the analog signal

x,0) = 3¢cos 5071 + 105in 30051 — cos 10071
What is the Nvquist rate for this signal?
Solution The frequencies present in the signal above are

Fy = 25 Hz. Fr = 150 Hz. F. =50 Hz
Thus Fh. = 150 Hz and according to (1.4.19).

F. > 2Fma = 300 Hz
The Nyquist rate is Fy = 2F,,,. Hence
Fy = 300 Hz

Discussion It should be observed that the signal component 10sin 30077, sampled at
the Nvquist rate Fx = 300. results in the samples 10sin 7 n. which are identically zero.
In other words. we are sampling the analog sinusoid at its zero-crossing points, and
hence we miss this signal component completely. This situation would not occur if the
sinusoid is offset in phase by some amount 6. In such a case we have 10sin(300r: +6)
sampled at the Nyquist rate £y = 300 samples per second. which vields the samples

10sin(rn + 6) = 10(sinrncose + cosmnsind)
= 10sinécosmn

(—=1)"10siné

It

Thus if 6 # 0 or =, the samples of the sinusoid taken at the Nvquist rate are not all
zero. However, we still cannot obtain the correct amplitude from the samples when
the phase 6 is unknown. A simple remedy that avoids this potentially troublesome
situation is to sample the analog signal at a rate higher than the Nyquist rate.

Example 1.4.4

Consider the analog signal
X, (1) = 3¢o0s2000x¢t + 5sin 6000n ¢ + 10cos 12,0007 ¢
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(a) What is the Nyquist rate for this signal?
(b) Assume now that we sample this signal using a sampling rate F, = 5000

samples/s. What js the discrete-time signal obtained after sampling?

(¢) What is the analog signal y,(r) we can reconstruct from the samples if we use

ideal interpolation?

Solution

(a) The frequencies existing in the analog signal are

(b

-

Fy =1 kHz. F> =3 kHz. Fy=6kHz
Thus Fray = 6 kHz. and according to the sampling theorem.
Fe > 2Fn = 12 kHz
The Nvquist rate is
Fy =12 kHz
Since we have chosen F, =5 kHz, the folding frequency is

F
7“ =25kHz

and this is the maximum frequency that can be represented uniquely by the
sampled signal. By making use of (1.4.2) we obtain

(n) (nT) "
xtn) = x,(nT)=x, | —
F,

3cos 27 (3)n + Ssin2x(3)n + 10cos 2 ($)n

= 3cos2n(in + 5sin2x (1 — £)n +10cos 27 (1 + )n
= 3cos2n(t)n + 5sin 2w (—$)n + 10cos 27 (L)n
Finally. we obtain
x(n) = 13cos 2x(H)n = Ssin2n(3)n

The same result can be obtained using Fig. 1.17. Indeed. since F, = 5 kHz.
the folding frequency is F;/2 = 2.5 kHz. This is the maximum frequency that
can be represented uniguelv by the sampled signal. From (1.4.17) we have
Fy = F, — kF,. Thus F, can be obtained by subtracting from F; an integer
multiple of F; such that —F,/2 < F;, < F,/2. The frequency F; is less than F,/2
and thus it is not affected by aliasing. However, the other two frequencies are
above the folding frequency and they will be changed by the aliasing effect.
Indeed.

F, = R~ F,=-2kHz
F, = F,— F,=1kHz

From (1.4.5) it follows that f; = 1, f; = =, and £, = 1, which are in agreement
with the result above.
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(¢) Since only the frequency components at 1 kHz and 2 kHz are present in the
sampled signal. the analog signal we can recover is

V(1) = 13¢0s 2000t — 5sin 40007 ¢

which is obviously different from the original signal x,(r). This distortion of the
original analog signal was caused by the aliasing effect. due to the low sampling
rate used.

Although aliasing is a pitfall to be avoided. there are two useful practical
applications based on the exploitation of the aliasing effect. These applications
are the stroboscope and the sampling oscilloscope. Both instruments are designed
to operate as aliasing devices in order to represent high frequencies as low fre-

gquencies.
To elaborate. consider a signal with high-frequency components confined to
a given frequency band By < F < B,. where B — By = B is defined as the

bandwidth of the signal. We assume that B << B; < B,;. This condition means
that the frequency components in the signal are much larger than the bandwidth
B of the signal. Such signals are usually called passband or narrowband signals.
Now. if this signal 1s sampled at a rate F, > 2B, but F. << Bj. then all the fre-
quency components contained in the signal will be aliases of frequencies in the
range 0 < F < F,/2. Conscquently. if we observe the frequency content of the
signal in the fundamental range (0 < F < F,/2. we know precisely the frequency
content of the analog signal since we know the frequency band B, < F < B: under
consideration. Consequently. if the signal is a narrowband (passband) signal. we
can reconstruct the original signal from the samples. provided that the signal is
sampled at a rate F, > 2B. where B is the bandwidth. This statement constitutes
another form of the sampling theorem. which we call the passband form in order
to distinguish it from the previous form of the sampling theorem. which applies in
general to all types of signals. The latter is sometimes called the baseband form.
The passband form of the sampling theorem is described in detail in Section 9.1.2.

1.4.3 Quantization of Continuous-Amplitude Signals

As we have seen. a digital signal is a sequence of numbers (samples) tn which each
number is represented by a finite number of digits (finite precision).

The process of converting a discrete-time continuous-amplitude signal into a
digital signal by expressing each sample value as a finite (instead of an infinite)
number of digits, is called quantization. The error introduced in representing the
continuous-valued signal by a finite set of discrete value levels is called quantization
error or quantization noise.

We denote the quantizer operation on the sampies x(n) as Q[x(n)] and let
x,(n) denote the sequence of quantized samples at the output of the quantizer.
Hence

xg(n) = Q[x(n)]
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Then the quantization error is a sequence e, (n) defined as the difference between
the quantized value and the actual sample vatlue. Thus

eq(n) = x,(n) — x{n) (1.4.25)

We illustrate the quantization process with an example. Let us consider the
discrete-time signal

09", n=>0

Xln)= 0, n<0

obtained by sampling the analog exponential signal x,(r) = 0.9', r > 0 with a
sampling frequency F, = 1 Hz (see Fig. 1.20(a}). Observation of Table 1.2, which
shows the values of the first 10 samples of x(n), reveals that the description of the
sample value x(n) requires » significant digits. It is obvious that this signal cannot

104
\ x(n) = 09"

0.8 4
0.6
0.4

0.2 4

oy T
T=1sec

x (=09 i)

T 1.0 Levels of

09 izati
quantization

08 e

Range of 0.6 e i Quantization
the 0.5 _— = step
quantizer (.4 ——r ?

0.3
0.2
Q.1

o) 1 2 3 4 5 6 7 8 .. n
(b)

Figure 1.20 Illustration of quantization.
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TABLE 1.2 NUMERICAL ILLUSTRATION OF QUANTIZATION WITH ONE
SIGNIFICANT DIGIT USING TRUNCATION OR ROUNDING

xin) x,,lni Xgtnl <z;lrr)=,x,|,[n)—,\'(m
n  Discrete-time signal  (Truncation) (Rounding) (Rounding)
0 1 1.0 1.0 0.0
1 0.9 0.9 0.9 0.0
2 0.81 0.8 0.8 ~0.01
3 0.729 0.7 0.7 ~0.029
4 0.6561 0.6 0.7 0.0439
N 0.58049 0.5 0.6 0.00951
6 0.53144! 0.5 0.5 —0.031441
7 0.4782969 0.4 0.5 (102170631
8 0.43046721 04 0.4 —(.03046721
9 (.387420489 0.3 0.4 0.012579511

be processed by using a calculator or a digital computer since only the first few
samples can be stored and manipulated. For example. most calculators process
numbers with only eight significant digits.

However, let us assume that we want to use only one significant digit. To
eliminatc the excess digits. we can either simply discard them (truncation) or dis-
card them by rounding the resulting number (rounding). The resulting quantized
signals x,(n) are shown in Table 1.2. We discuss only quantization by rounding,
although it is just as easy to treat truncation. The rounding process is graphically
illustrated in Fig. 1.20b. The values allowed in the digital signal are called the
quanrization levels. whereas the distance A between two successive quantization
levels is called the guantization step size or resolution. The rounding quantizer
assigns each sample of x(#) to the nearest quantization level. In contrast, a quan-
tizer that performs truncation would have assigned each sample of x(n) to the
quantization level below it. The quantization error e,(n) in rounding is limited to
the range of —A /2 to A/2, that is,

(1.4.26)

) >
0] >

< e, (n) <

In other words, the instantaneous quantization error cannot exceed half of the
quantization step (see Table 1.2).

If Xmip and xpax represent the minimum and maximum value of x(n) and L
is the number of quantization levels, then

Xmax — ¥min
A= 71 (1.4.27)
We define the dynamic range of the signal as xmax — Xmin. In our example we
have xmax = 1, xmin = 0, and L = 11, which leads to A = 0.1. Note that if the
dynamic range is fixed, increasing the number of quantization levels, L results in a
decrease of the quantization step size. Thus the quantization error decreases and
the accuracy of the quantizer increases. In practice we can reduce the quantization
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error to an insignificant amount by choosing a sufficient number of quantization
levels.

Theoretically, quantization of analog signals always results in a loss of in-
formation. This is a result of the ambiguity introduced by quantization. Indeed,
quantization is an irreversible or noninvertible process (i.e., a many-to-one map-
ping) since all samples in a distance A/2 about a certain quantization level are
assigned the same value. This ambiguity makes the exact quantitative analysis of
quantization extremely difficult. This subject is discussed further in Chapter 9,
where we use statistical analysis.

1.4.4 Quantization of Sinusoidal Signals

Figure 1.21 illustrates the sampling and quantization of an analog sinusoidal signal
x,(1) = AcosQot using a rectangular grid. Horizontal lines within the range of the
quantizer indicate the allowed levels of quantization. Vertical lines indicate the
sampling times. Thus, from the original analog signal x,(r) we obtain a discrete-
time signal x(n) = x,(nT) by sampling and a discrete-time, discrete-amplitude
signal x,(nT) after quantization. In practice, the staircase signal x,(r) can be
obtained by using a zero-order hold. This analysis is useful because sinusoids are
used as test signals in A/D converters.

If the sampling rate F; satisfies the sampling theorem, quantization is the only
error in the A/D conversion process. Thus we can evaluate the quantization error

Ti Amplitude
e Discretization
Discretization
Quantization
Level
| I
Original Analog Signal N

44 x
3A A - /
4 L vnpuanisasamis | /| )1 4

24 / x,(n) 5 Quantization
A . } — - Step
Quantized \ Output of Zero-Order / {

-1
2
2 p p
0 Hold D/A Converter
5 xgnT) ~ xA1) A Range of the
-A / Quantizer

-2A /

-3 \K 4

—44

t
0 T 2T kYg 4T 5T 6T m 8T 9T

Time

Figore 121 Sampling and quantization of a sinusoidal signal.
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by quantizing the analog signal x, (s} instead of the discrete-time signal x(n) =
x,(nT). Inspection of Fig. 1.21 indicates that the signal x,(¢) is almost linear
between quantization levels (see Fig. 1.22). The corresponding quantization error
e (1) = x,(1) — x,(1) is shown in Fig. 1.22. In Fig. 1.22. v denotes the time that
xg(1) stays within the quantization levels. The mean-square error power 7, is

S [
P“ZE/_ c;(z)dr:;A e ridr (1.4.28)

Since e, (1) = (A/27)t. —1 <1 < 7. we have
1 [T(aY -, A
P == — | 1"dr = — 1.4.29
¢ /;, (21) 12 ( )
If the quantizer has b bits of accuracy and the quantizer covers the entire range
2A. the quantization step is A = 24/2". Hence

= /:-5:,) (1.4.30)
The average power of the signal x,(7) is
Po= —1~ ' (A cos Qut Vdt = i‘—: (1.4.31)
Ty Ju 2

The quality of the output of the A/D converter is usually measured by the signal-
to-quantization noise ratio (SQNR). which provides the ratio of the signal power
to the noise power:

SONR = il =

¢
Expressed in decibels (dB}. the SQONR is
SQNR(dB) = 10log;, SONR = 1.76 + 6.02b (1.4.32)

This implies that the SONR increases approximately 6 dB for every bit added to
the word length. that is, for each doubling of the quantization levels.

Although formula (1.4.32) was derived for sinusoidal signals, we shall see in
Chapter 9 that a similar result holds for every signal whose dynamic range spans the
range of the quantizer. This relationship is extremely important because it dictates

t ~ (N
A2
s S I

L2

[ £} IOV

Figure 122 The quantization error e, (1) = x,(1) — x4 {1).
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the number of bits required by a specific application to assure a given signal-to-
noise ratio. For example. most compact disc plavers use a sampling frequency
of 44.1 kHz and 16-bit sample resolution, which implies a SONR of more than
96 dB.

1.4.5 Coding of Quantized Samples

The coding process in an A/D converter assigns a unique binary number to each
quantization level. If we have L levels we need at least L different binary numbers.
With a word length of b bits we can create 2 different binary numbers. Hence we
have 2* > L. or equivalently, b > log, L. Thus the number of bits required in the
coder is the smallest integer greater than or equal to log, L. In our example it can
easily be seen that we need a coder with b = 4 bits. Commercially available A/D
converters may be obtained with finite precision of b = 16 or less. Generally, the
higher the sampling speed and the finer the quantization. the more expensive the
device becomes.

1.4.6 Digital-to-Analog Conversion

To convert a digital signal into an analog signal we can use a digital-to-analog
(D/A) converter. As stated previously. the task of a D/A converter is to interpolate
between samples.

The sampling theorem specifies the optimum interpolation for a bandlim-
ited signal. However, this type of interpolation is too complicated and. hence
impractical, as indicated previously. From a practical viewpoint, the simplest D/A
converter is the zero-order hold shown in Fig. 1.15. which simply holds constant
the value of one sample until the next one is received. Additional improvement
can be obtained by using linear interpolation as shown in Fig. 1.23 to connect
successive samples with straight-line segments. The zero-order hold and linear
interpolator are analyzed in Section 9.3. Better interpolation can be achieved by
using more sophisticated higher-order interpolation techniques.

In general. suboptimum interpolation techniques result in passing frequencies
above the folding frequency. Such frequency components are undesirable and are
usually removed by passing the output of the interpolator through a proper analog

Original signal

il 1 1

L + Figure 1.23 Linear point connector

i L
O T 2T 3T 4T ST 6T 7T (with T-second delay).
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filter. which is called a postfilier or smoothing filter. Thus D/A conversion usually
involves a suboptimum interpolator followed by a postfilter. D/A converters are
treated in more detail in Section 9.3.

1.4.7 Analysis of Digital Signals and Systems Versus
Discrete-Time Signals and Systems

We have seen that a digital signal is defined as a function of an integer independent
variable and its values are taken from a finite set of possible values. The usefulness
of such signals is a consequence of the possibilities offered by digital computers.
Computers operate on numbers, which are represented by a string of 0's and 1's.
The length of this string (word length) is fixed and finite and usually is 8. 12. 16, or
32 bits. The effects of finite word length in computations cause complications in
the analysis of digital signal processing svstems. To avoid these complications. we
neglect the quantized nature of digital signals and svstems in much of our analysis
and consider them as discrete-time signals and svstems.

In Chapters 6. 7. and 9 we investigate the consequences of using a finite word
length. This is an important topic. since many digital signal processing problems are
solved with small computers or microprocessors that employ fixed-point arithmetic.
Consequently, one must Jook carefully at the problem of finite-precision arithmetic
and account for it in the design of software and hardware that performs the desired
signal processing tasks.

1.5 SUMMARY AND REFERENCES

In this introductory chapter we have attempted to provide the motivation for digital
signal processing as an alternative to analog signal processing. We presented the
basic elements of a digital signal processing system and defined the operations
needed to convert an anajog signal into a digital signal ready for processing. Of
particular importance is the sampling theorem. which was introduced by Nvquist
(1928) and later popularized in the classic paper by Shannon (1949). The sampling
theorem as described in Section 1.4.2 is derived in Chapter 4. Sinusoidal signais
were introduced primarily for the purpose of itlustrating the aliasing phenomenon
and for the subsequent development of the sampling theorem.

Quantization effects that are inherent in the A/D conversion of a signal were
also introduced in this chapter. Signal quantization is best treated in statistical
terms. as described in Chapters 6, 7. and 9.

Finally. the topic of signal reconstruction. or D/A conversion, was described
briefly. Signal reconstruction based on staircase or linear interpolation methods is
treated in Section 9.3.

There are numerous practical applications of digital signal processing. The
book edited by Oppenheim (1978) treats applications to speech processing, image
processing, radar signal processing, sonar signal processing, and geophysical signal
processing.
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PROBLEMS

Classify the following signals according to whether they are (1) one- or multi-

dimensional; (2) single or multichannel, (3) continuous time or discrete time, and

(4) analog or digital {in amplitude). Give a brief explanation.

(8} Closing prices of utility stocks on the New York Stock Exchange.

{b) A color movie.

(¢} Position of the steering wheel of a car in motion relative to car’s reference frame.

(d) Position of the steering wheel of a car in motion relative to ground reference
frame.

(e) Weight and height measurements of a child taken every month.

Determine which of the following sinusoids are periodic and compute their funda-
mental period.

(») cosO.0Lzn () cos (ﬂ%gf) (©cos3mn  (d)sindn  (e)sin (ﬁ%‘)

Determine whether or not each of the following signals is periodic. In case a signal
is periodic, specify its fundamental period.

(8) x,(1) = 3cos(5r + n/6)

(b) x(n) =3cos(5n + 7 /6)

(¢) x(n) =2exp[j(n/6 — )]

(d) x(n) = cos(n/B) cos(rn/8)

(e) x(n) = cos(rn/2) —sin(mn/8) + 3cos(mn/4 + 7/3)

(a) Show that the fundamental period N, of the signals

‘y‘,(n)zejz”k”/”, k=0.1.2,...

is given by N, = N/GC D(k. N), where GCD is the greatest common divisor of k
and N.

(b) What is the fundamental period of this set for N = 7?

{c) What is it for N = 167

Consider the following analog sinusoidal signal:

x,(1) = 3sin(100m1)

(a) Sketch the signal x,(r) for 0 <r < 30 ms.

(b) The signal x,(r) is sampled with a sampling rate F; = 300 samples/s. Determine
the frequency of the discrete-time signal x(n) = x,(nT), T = 1/F;. and show that
it is periodic.

(¢) Compute the sample values in one period of x(n). Sketch x{n) on the same
diagram with x,(r). What is the period of the discrete-time signal in milliseconds?

(d) Can you find a sampling rate F, such that the signal x(r) reaches its peak value
of 37 What is the minimum £, suitable for this task?

A continuous-time sinusoid x,(r) with fundamental period T, = 1/F; is sampled at a

rate F, = 1/T to produce a discrete-time sinusoid x(n) = x,(nT).

(n) Show that x(r) is periodic if T/T, = k/N (i.e., T/T, is a rational number).

(b) If x(n) is periodic, what is its fundamental period T, in seconds?
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L7

1.8

19

110

112

Explain the statement: x(n) is periodic if its fundamental period 7. in seconds.
ts equal 10 an integer number of periods of x, (7).

(c

An analog signal contains frequencies up to 10 kHz.
(a) What range of sampling frequencies allows exact reconstruction of this signal
from its samples?

(b) Suppose that we sample this signal with a sampling frequency F, = 8 kHz. Ex-
amine what happens to the frequency F; = 5 kHz.

(¢) Repeat part (b) for a frequency /> = 9 kHz.

An analog electrocardiogram (ECG) signal contains usefu] frequencies up to 100 Hz.

(a) What is the Nvquist rate for this signal?

(b) Suppose that we sample this signal at a rate of 250 samples/s. What is the highest
frequency that can be represented uniquely at this sampling rate?

An analog signal x, (1} = sin(480x7) + 3 sin(720xr) is sampled 600 times per second.

(a) Determine the Nyquist sampling rate for x,(r).

(b) Determine the folding frequency.

(¢) What are the frequencies. in radians. in the resulting discrete time signal x(n)?

(d) If x(n) is passed through an ideal D/A converter. what is the reconstructed signal
Ya(D)?

A digital communication link carries binary-coded words representing samples of an

input signal

X, (1) = 3¢0s 60071 + 2cos 18001

The hink is operated at 10,000 bits/s and cach input sample is quantized into 1024
different voltage levels.

(a) What is the sampling frequency and the folding frequency?

(b} What is the Nvquist rate for the signal x,(1)?

(c) What are the frequencies in the resuiting discrete-time signal x(n)?

(d) What is the resolution A7

Consider the simple signal processing system shown in Fig. P1.11. The sampling
periods of the A/D and D/A converters are 7 = 5 ms and 7' = 1 ms. respectively.
Determine the output v,(s) of the system. if the input is

X, (1) = 3¢c08 100t ~ 2sin 25071 (r in seconds)

The postfilter removes any frequency component above £ /2.

Postfilter

x A8 A/D x(n) D/A yar)
T

Figure P1.11

(a) Derive the expression for the discrete-time signal x(n) in Example 1.4.2 using the
periodicity properties of sinusoidal functions.

(b) What is the analog signal we can obtain from x{(n) if in the reconstruction process
we assume that F, = 10 kHz?
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The discrete-time signal x (n) = 6.35 cos(x/10)n ts quantized with a resolution (a) A =
0.1 or (b) A =0.02. How many bits are required in the A/D converter in each case?
Determine the bit rate and the resolution in the sampling of a seismic signal with
dynamic range of 1 volt if the sampling rate is F; = 20 samples/s and we use an 8-bit
A/D converter? What is the maximum frequency that can be present in the resulting
digital seismic signal?

Sampling of sinusoidal signals: aliasing Consider the following continuous-time si-
nusoidal signal

x,(1) = sin 2 Fyt, —00 <1 < 00

Since x,(t) is described mathematically, its sampled version can be described by values
every T seconds. The sampled signal is described by the formuia

. F
x{n) = x,(nT) = sin2nw an. —00 €< n < oC

where F, = 1/T is the sampling frequency.
(a) Plot the signal x(n), 0 <n <99 for F, =5 kHz and F, = 0.5, 2. 3, and 4.5 kHz.
Explain the similarities and differences among the various plots.
(b) Suppose that Fy =2 kHz and F, = 50 kHz.
(1) Plot the signal x(n). What is the frequency f; of the signal x(n)?
(2) Plot the signal v(n) created by taking the even-numbered samples of x(n).
Is this a sinusoidal signal? Why? If so, what is its frequency?
Quantization error in A/D conversion of a sinuoidal signal Let x,(n) be the signal
obtained by quantizing the signal x{n) = sin2x fyn. The quantization error power P,
is defined by

1 N1 1 Nl
P, = = Z,ﬂ(n) == Z[x,,(n) - x(m}

n=l) n=0

The “quaiity” of the quantized signal can be measured by the signal-to-quantization
noise ratio (SQNR) defined by

Py
SONR =10 logm F
q

where P, is the power of the unquantized signal x(n).

(a) For fy = 1/50 and N = 200, write a program to quantize the signal x(n), using
truncation, to 64, 128, and 256 quantization levels. In each case plot the signals
x(n), xo(n), and e(n) and compute the corresponding SQNR.

(b) Repeat part (a) by using rounding instead of truncation.

(¢) Comment on the results obtained in parts (a) and (b).

(d) Compare the experimentally measured SONR with the theoretical SQNR pre-
dicted by formula (1.4.32) and comment on the differences and similarities.



Discrete-Time Signals and
Systems

In Chapter 1 we introduced the reader to a number of important types of signals
and described the sampling process by which an analog signal is converted 10 a
discrete-time signal. In addition. we presented in some detail the characteristics
of discrete-time sinusoidal signals. The sinusoid is an important elementary signal
that serves as a basic building block in more complex signals. However. there are
other clementary signals that are important in our treatment of signal processing.
These discrete-time signals are introduced in this chapter and are used as basis
functions or building blocks to describe more complex signals.

The major emphasis in this chapter is the characterization of discrete-time
svstems in general and the class of linear time-invariant (LTI) systems in particular.
A number of important time-domain properties of LTI systems are defined and
developed. and an important formula. called the convolution formula. is derived
which allows us to determine the output of an LTI system to any given arbitrary
input signal. In addition to the convolution formula. difference equations are in-
troduced as an alternative method for describing the input-output relationship of
an LTI system, and in addition. recursive and nonrecursive realizations of LTI
systems are treated.

Our motivation for the emphasis on the study of LTI svstems is twofold. First.
there is a large collection of mathematical techniques that can be applied to the
analysis of LTI systems. Second. many practical systems are either LTI svstems
or can be approximated by LTI svstems. Because of its importance in digital
signal processing applications and its close resemblance to the convolution formula,
we also introduce the correlation between two signals. The autocorrelation and
crosscorrelation of signals are defined and their properties are presented.

2.1 DISCRETE-TIME SIGNALS

As we discussed in Chapter 1, a discrete-time signal x(n) is a function of an inde-
pendent variable that is an integer. It is graphically represented as in Fig. 2.1. It
is important to note that a discrete-time signal is not defined at instants between

43
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x(n)

-0.8 -0.8

Figure 2.1 Graphical representation of a discrete-time signal.

two successive samples. Also, it is incorrect to think that x(n) is equal to zero if n
is not an integer. Simply, the signal x(n) is not defined for noninteger values of n.

In the sequel we will assume that a discrete-time signal is defined for every
integer value n for —oo < n < oc. By tradition, we refer to x(n) as the “nth sample”
of the signal even if the signal x(n) is inherently discrete time (i.e., not obtained
by sampling an analog signal). If, indeed, x(n) was obtained from sampling an
analog signal x,(r), then x(n) = x,(nT), where T is the sampling period (i.e., the
time between successive samples).

Besides the graphical representation of a discrete-time signal or sequence as
illustrated in Fig. 2.1. there are some alternative representations that are often
more convenient to use. These are:

1. Functional representation, such as

1, forn=13
x{n) = l4. forn=2 (2.1.1)
0, elsewhere
2. Tabular representation, such as
-2 -1 01 2 3
0 001 41

3. Sequence representation

n

x(n)

An infinite-duration signal or sequence with the time origin (n = 0) indicated
by the symbol 1 is represented as

x(n)=1{...0.0.1.4,1.0,0,.. .} (2.1.2)
t
A sequence x(n), which is zero for n < 0, can be represented as
x(n)=1{0,1.4.1.0.0....) (2.1.3)
il

The time origin for a sequence x(n), which is zero for n < 0, is understood to be
the first (leftmost) point in the sequence.
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A finite-duration sequence can be represented as
xnmi={3. -1.-2.5.0.4. -1} (2.1.4)
T
whereas a finite-duration sequence that satisfies the condition x(n) = 0 forn < 0
can be represented as
x(n)=1{0.1.4.1) (2.1.5)
1

The signal in (2.1.4) consists of seven samples or points (in time). so it is called or
identified as a seven-point sequence. Similarly. the sequence given by (2.1.5) is a
four-point sequence.

2.1.1 Some Elementary Discrete-Time Signals

In our study of discrete-time signals and systems there are a number of basic signals
that appear often and play an important role. These signals are defined below.

1. The unit sample sequence is denoted as §(n) and is defined as

1. forn=20

2
0. forn#0 (2.1.6)

Sy =
In words, the unit sample sequence Is a signal that is zero evervwhere. except
at n = 0 where its value is unity. This signal is sometimes referred 10 as a
unit impulse. In contrast to the analog signal §(r). which is also called a
unit impulse and is defined to be zero evervwhere except 1 = 0. and has unit
area. the unit sample sequence is much less mathematically complicated. The
graphical representation of §(n) 1s shown in Fig. 2.2.

2. The unit step signal is denoted as u(n) and is defined as

_J1. forn=0 ”
uiny = ,(J. forn <0 (2.1.7)
Figure 2.3 illustrates the unit step signal.
3. The unirt ramp signal is denoted as u,(n} and is defined as
_Jn forn>=0 s
Urln) = {O. forn <0 (2.1.8)

This signal is illustrated in Fig. 2.4.

&(n)

1

Figure 2.2 Graphical representation of

~2-10 1 234 .. n  the unit sample signal.
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u(n)

[ { l { [ Figure 23 Graphical representation of
343567

1
012 n  the unit step signal.

u,(n)

T I i Figure 2.4 Graphical representation of
n the unit ramp signal.

4. The exponential signal is a sequence of the form
x(n)=d" for all n 2.1.9)

If the parameter a is real. then x(n) is a real signal. Figure 2.5 illustrates x(n)
for various values of the parameter a.

When the parameter a is complex valued, it can be expressed as
a = rejg
where r and ¢ are now the parameters. Hence we can express x(n) as

x(n) = rheltn
= r"(cosfn + jsin6én)

”“ 0<a<1 a>1 x(n)
n

2 <-1

(2.1.10)

Figure 2.5 Graphical representation of exponential signals.
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Since x(n) is now complex valued. it can be represented graphically by plotting
the real part
xpin) = r"costn (2.1.11)

as a function of n. and separatelv plotting the imaginary part
xp{n) =r"sinbn (2.1.12)

as a function of n. Figure 2.6 illustrates the graphs of xg(n) and x,;(n) for r = 0.9
and 6 = 7/10. We observe that the signals xg(n) and x;(n) are a damped (decaying
exponential) cosine function and a damped sine function. The angle variable 6
is simply the frequency of the sinusoid. previously denoted by the (normalized)
frequency variable w. Clearly, if r = 1. the damping disappears and xg{n). x;(n),
and x(n) have a fixed amplitude. which is unity.

Alternatively, the signal x(n) given by (2.1.10) can be represented graphically
by the amplitude function

jx(n)| = Ain) = r" 2.1.13

and the phase function
cx(n) = ¢(n) =6n (2.1.14)

Figure 2.7 illustrates A(n) and ¢n) for r = 0.9 and ¢ = 7/10. We observe that
the phase function is linear with n. However. the phase is defined only over the
interval — < ¢ < & or. equivalently. over the interval 0 < @ < 2. Consequently,
by convention ¢ (1) is plotted over the finite interval —r < f <7 or 0 <6 < 27.
In other words, we subtract multiplies of 27 from ¢(n) before plotting. In one
case. ¢(n) is constrained to the range —7 < @ <  and in the other case ¢(n) is
constrained to the range ( < 6 < 2. The subtraction of multiples of 2 from ¢(n)
is equivalent to interpreting the function ¢(n) as ¢(n), modulo 2x. The graph for
¢(n). modulo 2x. is shown in Fig. 2.7b.

2.1.2 Classification of Discrete-Time Signals

The mathematical methods employed in the analysis of discrete-time signals and
systems depend on the characteristics of the signals. In this section we classify
discrete-time signals according to a number of different characteristics.

Energy signals and power signals. The energy E of a signal x(n) is
defined as

E= _Zx Ix(n)}? (2.1.15)

We have used the magnitude-squared values of x(n), so that our definition applies
to complex-valued signals as well as real-valued signals. The energy of a signal can
be finite or infinite. If E is finite (i.e., 0 < E < 00), then x(n) is called an energy
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Figure 2.6 Graph of the real and imaginary components of a complex-valued exponential
signal.
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Figure 2.7 Graph of amplitude and phase function of a complex-valued exponen-
tial signal: {a) graph of Ay = r". 4 = 0.9: (b) graph of ¢ = (/10 moduio
27 ploted in the range (—x. 7]

signal. Sometimes we add a subscript x to £ and write E, to emphasize that E, is
the energy of the signal x(n).

Many signals that possess infinite energy. have a finite average power. The
average power of a discrete-time signal x(n) is defined as

= i 2.1.16
P = lim e Nn Z x(n)? (2.1.16)

n=-N

If we define the signal energy of x(n) over the finite interval —=N <n < N as

id ~
= }: Ix(m)|? 2.1.17)

n=—N
then we can express the signal energy £ as

E= lim Ey (2.1.18)

N—ox

and the average power of the signal x(n) as

1
fi N 2.1.19)
P=lmoNtit (
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Clearly, if £ is finite. P = 0. On the other hand. if E is infinite., the average
power P may be either finite or infinite. If P is finite (and nonzero), the signal is
called a power signal. The following example illustrates such a signal.

Example 2.1.1

Determine the power and energy of the unit step sequence. The average power of
the unit step signal is

1 5
P =1 “(
NTZCZNHZO:“ o
. N+1 1+ 1/N 1
= lim im = -

Nex 2N 41 N2+ 1/N 2

Consequently. the unit step sequence is a power signal. Its energy is infinite.

Similarly, it can be shown that the complex exponential sequence x(n) =
Ael™” has average power A’, so it is a power signal. On the other hand, the unit
ramp sequence is neither a power signal nor an energy signal.

Periodic signals and aperiodic signals. As defined on Section 1.3, a
signal x(n) is periodic with period N(N > 0) if and only if
x(n+ N)=x(n)for all n (2.1.20)

The smallest value of N for which (2.1.20) holds is called the (fundamental) period.
If there is no value of N that satisfies (2.1.20), the signal is called nonperiodic or

aperiodic.
We have already observed that the sinusoidal signal of the form
x{n) = Asin2x fon (2.1.21)
is periodic when f is a rational number, that is, if f; can be expressed as
k
fo= ~ (2.1.22)

where & and N are integers.

The energy of a periodic signal x(n) over a single period. say. over the interval
0 < n < N—1.is finite if x(n) takes on finite values over the period. However, the
energy of the periodic signal for —oc < n < oo is infinite. On the other hand, the
average power of the periodic signal is finite and it is equal to the average power
over a single period. Thus if x(n) is a periodic signal with fundamental period N
and takes on finite values, its power is given by

l N-1
P=— 2 212
~ ; x(m)] (2.1.23)

Consequently, periodic signals are power signals,
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Symmetric (even) and antisymmetric (odd) signais. A real-valued sig-
nal x(n) is called symmetric (even) if

x(—n) = x(n) (2.1.24
On the other hand. a signal x(n) is called antisvmmetric (odd) if
x(—n) = —x(n) (2.1.25)
We note that if x(n) is odd. then x(0) = 0. Examples of signals with even and odd
symmetry are illustrated in Fig. 2.8.
We wish to illustrate that any arbitrary signal can be expressed as the sum of

two signal components. one of which 1s even and the other odd. The even signal
component is formed by adding x(n) to x(—n) and dividing by 2. that 1s.

xon) = Haim) + x(—=m)) (2.1.26)

x(m)

x(n)

(b)

Figure 2.8 Example of even (a) and odd (b) signals.
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Clearly, x.(n) satisfies the symmetry condition (2.1.24). Similarly, we form an odd
signal component x,(n) according to the relation

xa(n) = 3[x(n) = x(=m)] (2.127)

Again, it is clear that x,(n) satisfies (2.1.25); hence it is indeed odd. Now, if we
add the two signal components, defined by (2.1.26) and (2.1.27), we obtain x(n),
that is,

x(n) = x.(n) + x,(n) (2.1.28)

Thus any arbitrary signal can be expressed as in (2.1.28).
2.1.3 Simple Manipulations of Discrete-Time Signals

In this section we consider some simple modifications or manipulations involving
the independent variable and the signal amplitude (dependent variable).

Transtormation of the independent variable (time). A signal x(n) may
be shifted in time by replacing the independent variable n by n — k. where & is an
integer. If k is a positive integer, the time shift results in a delay of the signal by
k units of time. If k is a negative integer, the time shift results in an advance of
the signal by |k| units in time.

Example 2.1.2

A signal x(n) is graphically illustrated in Fig. 2.9a. Show a graphical representation
of the signals x(n ~ 3) and x(n + 2).

Solution The signal x(n —3) is obtained by delaying x(n} by three units in time. The
result is illustrated in Fig. 2.9b. On the other hand, the signal x(n + 2) is obtained by
advancing x(n) by two units in time. The result is illustrated in Fig. 2.9c. Note that
delay corresponds to shifting a signal to the right, whereas advance implies shifting
the signal to the left on the time axis.

If the signal x(n) is stored on magnetic tape or on a disk or, perhaps, in the
memory of a computer, it is a relatively simple operation to modify the base by
introducing a delay or an advance. On the other hand, if the signal is not stored but
is being generated by some physical phenomenon in real time, it is not possible
to advance the signal in time, since such an operation involves signal samples
that have not yet been generated. Whereas it is always possible to insert a delay
into signal samples that have already been generated, it is physically impossible
to view the future signal samples. Consequently, in real-time signal processing
applications, the operation of advancing the time base of the signal is physically
unrealizable.

Another useful modification of the time base is to replace the independent
variable n by —n. The result of this operation is a folding or a reflection of the
signal about the time origin n = 0.
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Example 2.1.3

53

Figure 2.9 Graphical representation of
a signal, and its dclaved and advanced
VETSIons.

Show the graphical representation of the signal x(—n) and x(—n + 2). where x(n) is

the signal illustrated in Fig. 2.10a.

Solution The new signal v(n) = x(—n) 1s shown in Fig. 2.10b. Note that y(0) = x(0).
¥{1) = x(=1). »(2) = x(=2), and so on. Also. v(—=1) = x(1). ¥y(-2) = x(2), and so on.
Therefore. v(m) is simply x(n) reflected or folded about the time origin n = 0. The
signal v(n) = x(—n -+ 2) is simply x(—n) delayed by two units in time. The resulting
signal 1s illustrated in Fig. 2.10c. A simple way to verify that the result in Fig. 2.10c
is correct is to compute samples, such as v(0) = x(2), ¥(1) = x(1}, »(2) = x(0),

¥(—1) = x(3). and so on.

It is important to note that the operations of folding and time delaying (or
advancing) a signal are not commutative. If we denote the time-delay operation
by TD and the folding operation by FD. we can write

TDu{x(n)] = x(n —k)
FD[x(n)] = x(—n)

Now

k>0
(2.1.29)

TD(FD[x(n)]} = TD[x{(—n)] = x(—n + k) (2.1.30)



54 Discrete-Time Signats and Systerns Chap. 2

”rd”

=3-2-1 {0

®
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x(—n)

8

4 n

()

yn)=x(-n+2)

Figure 2.10 Graphical illustration of
O] the folding and shifting operations.

whereas
FD(TDi[x(n)]} = FD[x(n — k)] = x(~n — k) (2.1.31)

Note that because the signs of » and k in x(n—k) and x(—n+k) are different, the re-
sult is a shift of the signals x(n) and x(—n) to the right by & samples, corresponding
to a time delay.

A third modification of the independent variable involves replacing n by un,
where o is an integer. We refer to this time-base modification as time scaling or
down-sampling.

Example 2.1.4

Show the graphical representation of the signal y(n} = x(2n), where x(n) is the signal
illustrated in Fig. 2.11a.

Solution We note that the signal y(n) is obtained from x(n) by taking every other
sample from x(n), starting with x(0). Thus y(0) = x(0), y(1) = x(2), y(2) = x(4), ..-
and y(-1) = x(~2), ¥(-2) = x(—4), and so on. In other words, we have skipped
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Figure 2,11 Graphical illustration of down-sampling operation.

the odd-numbered samples in x(n) and retained the even-numbered samples. The
resulting signal is illustrated in Fig. 2.11b.

If the signal x(n) was originally obtained by sampling an analog signal x,(r).
then x(n) = x,(nT). where T is the sampling interval. Now. y(n) = x(2n) =
x,(2Tn}. Hence the time-scaling operation described in Example 2.1.4 is equivalent
to changing the sampling rate from 1/7 to 1/27T. that is, to decreasing the rate by
a factor of 2. This is a downsampling operation.

Addition, multiplication, and scaling of sequences. Amplitude modifi-
cations include addition, multiplication, and scaling of discrete-time signals.

Amplitude scaling of a signal by a constant A is accomplished by multiplying
the value of every signal sample by A. Consequently, we obtain

v = Axtn) —xX <n <X

) The sum of two signals x;(n) and x2(n) is a signal y(n), whose valtue at any
mstant is equal to the sum of the values of these two signals at that instant. that is.

v(n) = x1(n) + xa(n) — 50 < H <5
The product of two signals is similarly defined on a sample-to-sample basis as

y(n)=x(nmxxn) ~oo<n <X
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2.2 DISCRETE-TIME SYSTEMS

In many applications of digital signal processing we wish to design a device or
an algorithm that performs some prescribed operation on a discrete-time signal,
Such a device or algorithm is called a discrete-time system. More specifically, a
discrete-time system is a device or algorithm that operates on a discrete-time signal,
called the input or excitation, according to some well-defined rule, to produce an-
other discrete-time signal called the output or response of the system. In general,
we view a system as an operation or a set of operations performed on the input
signal x(n) to produce the output signal v(n). We say that the input signal x(n) is
transformed by the system into a signal y(n), and express the general relationship
between x(n) and v(n) as

v(n) = T[x(n)] (2.2.1)

where the symbol 7 denotes the transformation (also called an operator), or pro-
cessing performed by the system on x(n) to produce y(n). The mathematical
relationship in (2.2.1) is depicted graphically in Fig. 2.12.

There are various ways to describe the characteristics of the system and the
operation it performs on x(n) to produce x(n). In this chapter we shall be con-
cerned with the time-domain characterization of systems. We shall begin with
an input-output description of the system. The input-output description focuses
on the behavior at the terminals of the system and ignores the detailed internal
construction or realization of the system. Later, in Section 7.5, we introduce the
state-space description of a system. In this description we develop mathemati-
cal equations that not only describe the input—output behavior of the system but
specify its internal behavior and structure.

2.2.1 Input—Output Description of Systems

The input-output description of a discrete-time system consists of a mathematical
expression or a rule, which explicitly defines the relation between the input and
output signals (input-output relationship). The exact internal structure of the sys-
tem is either unknown or ignored. Thus the only way to interact with the system is
by using its input and output terminals (i.e., the system is assumed to be a “black
box™ to the user). To reflect this philosophy, we use the graphical representa-

Ll 1IRNE

xn . . 9
{n) Discrete-time ¥

. System .
Input signal Output signal
or excitation or response

Figure 212 Block diagram representation of a discrete-time system.
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tion depicted in Fig. 2.12, and the general input—output relationship in (2.2.1) or,
alternatively, the notation
x(m) - y(n) 22.2)

which simply means that v(n) is the response of the system 7 to the excitation
x(n). The following examples illustrate several different systems.

Example 2.2.1
Determine the response of the following sytems to the input signal
fnl, —3<n=3

Tm) = 0, otherwise

(a) v(n) = x(n)

(b) y(n)=x(n—1)

() y(m)y=x(n+1)

@) y(n) = i[x(n+1) + x(n) + x(n - 1)]

() v(n) =max{x(n+ 1), x(n). x(n - 1)}

My =3, sk =xim)+xtn-D+xa—-2)+ - (2.2.3)

Solution First. we determine explicitly the sample values of the input signal

x(my=1{...0321.01.230...}
T

Next. we determine the output of each system using its input~output relationship.

(a) In this case the output is exactly the same as the input signal. Such a system is
known as the identity system.
(b) This system simply delays the input by one sample. Thus its output is given by

x(n)=1(..,03.2.1.0,1,2.3,0,...)
»T\

In this case the system “advances” the input one sample into the future. For
example, the value of the output at time n = 0is ¥(0) = x(1). The response of
this system to the given input is

x(n)=1{..,0,3.2.1.0.1.2.3,0....}
t

{c

—

(d

~—

The output of this system at any time is the mean value of the present, the
immediate past, and the immediate future samples. For example, the output at
time n =0 is

¥(0) = Hx(-1) + 50 +x(D] = §{1 + 0+ 1] = }
Repeating this computation for every value of n, we obtain the output signal

yim)=1{...0.1,£.2.1.£.1.2.£,1.0,.. )
t
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(e) This system selects as its output at time » the maximum value of the three input
samples x(n — 1), x(n). and x(n + 1). Thus the response of this system to the
input signal x(n) is

vin)=140.3.3.3.2.1.2.3.3.3.0... )
1

(f) This system is basically an accumulaior that computes the running sum of all
the past input values up to present time. The response of this system 10 the
given input is

v(m)=4{...0.3.56.6.7.9.12.0.. ..}
i

We observe that for several of the systems considered in Example 2.2.1 the
output at time # = ny depends not only on the value of the input at n = ng [ie.,
x(ng)]. but also on the values of the input applied to the system before and after
n = nq. Consider. for instance, the accumulator in the example. We see that the
output at time n = ny depends not only on the input at time n = ny. but also on
x(n) at times n = ny — 1. ng ~ 2, and so on. By a simple algebraic manipulation
the input-output relation of the accumulator can be written as

n n—1
yin) = A_Z:ﬁ,y(k):k_z x(k) + xn) 224
=— ==

= y(n—1)+x)

which justifies the term accumulator. Indeed. the system computes the current
value of the output by adding (accumulating) the current value of the input to the
previous output value.

There are some interesting conclusions that can be drawn by taking a close
look into this apparently simple system. Suppose that we are given the input signal
x(n) for n > ny. and we wish to determine the output v(n) of this system for n > nq.
Forn=ng.np+1..... (2.2.4) gives

ving — 1)+ x(ng)

ving)
ving+ 1) = y{ng) +xlng + 1)

and so on. Note that we have a problem in computing v(ng). since it depends on
y(ng — 1). However.

ne—1

ving—1) = Z x(k)

h=—nc

that is. y(ro — 1) “summarizes” the effect on the system from all the inputs which
had been apptlied to the system before time ng. Thus the response of the system
for n > ny to the input x(n) that is applied at time n, is the combined result of this
input and all inputs that had been applied previously to the system. Consequentty,
y(n}, n > ng is not uniquely determined by the input x(r) for n > ng.
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The additional information required to determine y(rn) for n > nyg is the initial
condition y(np — 1). This value summarizes the effect of all previous inputs to the.
system. Thus the initial condition y(ng — 1) together with the input sequence x(n)
for n > ng uniquely determine the output sequence y(n) for n > no.

If the accumulator had no excitation prior to ng, the initial condition is y(ng—~
1) = 0. In such a case we say that the system is initially relaxed. Since y(ng—1) =0,
the output sequence y(n) depends only on the input sequence x(r) for n > n.

It is customary to assume that every system is relaxed at n = —oo. In this

case, if an input x(n) is applied at n = —oc0, the corresponding output y(n) is solely
and uniguely determined by the given input.
Example 2.2.2

The accumulator described by (2.2.3} is excited by the sequence x(n) = nu(n). De-
termine its output under the condition that:

(8) It is initially relaxed [i.e.. ¥(~1) = 0].
(b) Initially, y(-1) = 1.

Solution The output of the system is defined as

n -1

Z x(k) = Z x(k)+Z":x(k)

k=—oc k=—-0C k=

Y=+ Y xth)
k=0

vin)

"

But

Zx(k)z nln +1)

2
=0

() If the system is initially relaxed. y(—1) = 0 and hence
. oan+1)
¥(n} = — n>{
(b) On the other hand, if the initial condition is y(—1) = 1, then
nn+1) nP4n+2

YW =1+ —5— =~ 220

2.2.2 Biock Diagram Representation of Discrete-Time
Systems

It is useful at this point to introduce a block diagram representation of discrete-
time systems. For this purpose we need to define some basic building blocks that
can be interconnected to form complex systems.

An adder. Figure 2.13 illustrates a system (adder) that performs the addi-
tion of two signal sequences to form another (the sum) sequence, which we denote



60 Discrete-Time Signats and Systems Chap. 2

xn)

vin) =x(r) + x53(n)

Figure 2.13 Graphical representation
xalm of an adder.

as y(n). Note that it is not necessary to store either one of the sequences in order
to perform the addition. In other words, the addition operation is memoryless.

A constant multiplier. This operation is depicted by Fig. 2.14, and simply
represents applying a scale factor on the input x(n). Note that this operation is
also memoryless.

x{n) a vin) = ax(n) Figure 2.14 Graphical representation
of a constant multiplier.

A signal multiplier. Figure 2.15 illustrates the multiplication of two sig-
nal sequences to form another (the product) sequence, denoted in the figure as
v{n). As in the preceding two cases, we can view the multiplication operation as
memoryless.

xyin) /-\ yn)y=x(n}jxy(n)
N

Figure 2.15 Graphical representation
xa(n) of a signal muluplier.

A unit delay element. The unit delay is a special system that simply delays
the signal passing through it by one sample. Figure 2.16 illustraies such a system.
If the input signal is x(n}. the output is x(n — 1). In fact, the sample x(n — 1) 1s
stored in memory at time » — 1 and it is recalled from memory at time n to form

y(ny=x(n—-1)

Thus this basic building block requires memory. The use of the symbol 7! to
denote the unit of deiay will become apparent when we discuss the z-transform in
Chapter 3.

x(n) yln)y=x(n—1)
2! Figure 2.16 Graphical representation

of the unit delay element.

A unit advance element. In contrast to the unit delay, a unit advance
moves the input x(n) ahead by one sample in time to yield x(n + 1). Figure 2.17
illustrates this operation, with the operator : being used to denote the unit advance.
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x(n) ymy=x(n+1)
z Figure 2.17 Graphical representation

of the unit advance element.

We observe that any such advance is physically impossible in real time, since. in
fact, it involves looking into the future of the signal. On the other hand. if we store
the signal in the memory of the computer, we can recall any sample at anv time.
In such a nonreal-time application, it is possible to advance the signal x(x) in time.

Example 2.2.3
Using basic building blocks introduced above. sketch the block diagram representa-
tion of the discrete-time system described by the input-output relation.
yin) = ivin = 1)+ dxtn) + dxtn - 1 (2.2.5)
where x(n) is the input and v(n) is the output of the system.

Solution According to (2.2.5), the output y(a) is obtained by multiplving the input
x(n) by 0.5, muttiplying the previous input x(n~1) by 0.5. adding the two products. and
then adding the previous cutput v{n — 1) multiplied by !. Figurc 2.18a illustrates this
block diagram realization of the system. A simple rearrangement of (2.2.5). namely,

yiny = Svin— 1)+ Hxtn) + x(n = 1)) (2.2.6)

leads to the block diagram realization shown in Fig. 2.18h. Note that if we treat “the
system” from the “viewpoint™ of an input-output or an external description. we are
not concerned about how the system is realized. On the other hand. if we adopt an

Black box
'; 0.5 5
x(n) , Y .
— ] + \:/ : vint
E 05 7 I
: 0.25 :
(a}
Black box
3 - ;
xn) | 0.5 ;
I H . vin)
E o) .
0.25 k
(b)

Figure 2.18 Block diagram realizations of the system y(n) = 0.25y(n ~ 1) +
05x(n) +05x(n - 1).
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internal description of the system. we know exactly how the system building blocks
are configured. In terms of such a realization. we can see that a svstem is relaxed at
time n = ng if the outputs of all the delays existing in the system are zero at n = ng
(i.e.. all memory is filled with zeros).

2.2.3 Classification of Discrete-Time Systems

In the analysis as well as in the design of systems, it is desirable to classify the
systems according to the general properties that they satisfy. In fact, the mathe-
matical techniques that we develop in this and in subsequent chapters for analyzing
and designing discrete-time systems depend heavily on the general characteristics
of the systems that are being considered. For this reason it is necessary for us
to develop a number of properties or categories that can be used to describe the
general characteristics of systems.

We stress the point that for a system to possess a given property, the property
must hold for every possible input signal to the system. If a property holds for
some input signals but not for others, the syvstem does not possess that property.
Thus a counterexample is sufficient to prove that a system does not possess a
property. However, tc prove that the system has some propertv. we must prove
that this property hoids for every possible input signal.

Static versus dynamic systems. A discrete-time system is called static
or memoryless if its output at any instant n depends at most on the input sample
at the same time. but not on past or future sampies of the input. In any other case.
the system is said to be dynamic or to have memory, If the output of a system at
time n is completely determined by the input samples in the interval from n — N
to n(N > 0), the system is said to have memory of duration N. If N = 0. the
system is static. If 0 < N < o0, the system is said to have finite memory, whereas
if N = oc, the system is said to have infinite memory.

The systems described by the following input—output equations

y(n) = ax(n) (2.2.7)
v(n) = nx(n) + bx>(n) (2.2.8)

are both static or memoryless. Note that there is no need to store any of the past
inputs or outputs in order to compute the present output. On the other hand. the
systems described by the following input—output reiations

y(im) = x(m+3x(n—-1) (22.9)

y(n) =Y xin—k) {2.2.10)
k=0

yimy = xtn—k (2.2.11)
k=0

are dynamic systems or systems with memory. The systems described by (2.2.9)
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and (2.2.10) have finite memory, whereas the system described by (2.2.11) has
infinite memory.

We observe that static or memoryless systems are described in general by
input—output equations of the form

y(n) = T[x(n), n) (2.2.12)

and they do not include delay elements (memory).

Time-invariant versus time-variant systems. We can subdivide the gen-
eral class of systems into the two broad categories, time-invariant systems and
time-variant systems. A system is called time-invariant if its input—output charac-
teristics do not change with time. To elaborate, suppose that we have a system 7
in a relaxed state which, when excited by an input signal x(n), produces an output
signal y(n). Thus we write

y(n) = Tx(m)] (2.2.13)

Now suppose that the same input signal is delayed by k units of time to yield
x(n—k), and again applied to the same system. If the characteristics of the system
do not change with time, the output of the relaxed system will be y(n —k). That is,
the output will be the same as the response to x{(n). except that it will be delayed
by the same k units in time that the input was delayed. This leads us to define a
time-invariant or shift-invariant system as follows.

Definition. A relaxed system 7 is time invariant or shift invariant if and
only if
xin) > y(m)
implies that
x(n—k) == y(n = k) (2.2.14)

for every input signal x(n) and every time shift k.

To determine if any given system is time invariant, we need to perform the
test specified by the preceding definition. Basically, we excite the system with an
arbitrary input sequence x(n), which produces an output denoted as y(n). Next
we delay the input sequence by same amount k and recompute the output. In
general, we can write the output as

v(n, k) = T[x(n - k)]

Now if this output y(n, k) = »(n — k), for all possible values of k, the system is
time invariant. On the other hand, if the output y(n, k) # y(n — k), even for one
value of k, the system is time variant.
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xtn} viny=xtm—vin Iy
f o)

—
o/
-

|

“Difterentiator”

{a)

x(n) /—\ viny=nxim
x

=/ “Time” multiplier

I

(b)

xin) vinl=xi-nl
T { “Folder”

[

()

xtn) V()= XU cos wyh
@ N Modulator

I COs wn Figure 2.19 Examples of a

time-invariant {a) and some time-variant
(d} svstems (h)-(d).

Example 2.2.4
Determine if the systems shown in Fig. 2.19 are time invariant or time variant.
Solution
(a) This svstem is described by the input—output equations
vy = Tlxm)]=xtni—xn-1) (2.2.15)

Now if the input is delayed by & units in time and applied to the system, il is
clear from the block diagram that the cutput will be

vinky=xtn-ky—xin—-k-1 (2.2.16)

On the other hand. from (2.2.14) we note that if we delay v(r) by & units in
time. we obtain

Vin—k)=x(n—k)—x(n =k -1 (2.2.17)

Since the right-hand sides of (2.2.16) and (2.2.17) are identical, it follows that
y(n. k) = y(n — k). Therefore, the system is time invariant.
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(&) The input-output equation for this system is
y(n} = T{x(n)] = nx{(n) (2.2.18)
The response of this system to x{(n ~ k) is
y(n, k) =nx(n—k) (2.2.19)
Now if we delay y(r) in (2.2.18) by k units in time, we obtain

yn—k) = (n~k)x(n — &)

(2.2.20)
= nx{n — k) — kx(n — k)
This system is time variant, since y(n, k) # y(r — k).
(c) This system is described by the input-output relation
y(m) = T[x(n)} = x{—n) (2.2.21)
The response of this system to x(n — k) is
y(n k)= T[x(n — k) = x(~n — k) (2.2.22)

Now, if we delay the output y(n), as given by (2.2.21), by k units in time, the
result will be
y(n—k)=x(—n+k) (2.2.23)

Since y{(n, k) # v{n —~ k), the system is rime variant.

(d) The input-output equation for this system is

—

v(n) = x(n) coswyn (2.2.24)
The response of this system to x(n — k) is
v(n, k) = x(n — k) cos wyn (2.2.25

If the expression in (2.2.24) is delayed by k units and the result is compared to
(2.2.25), it is evident that the system is time variant.

Linear versus nonlinear systems. The general class of systems can also
be subdivided into linear systems and nonlinear systems. A linear system is one
that satisfies the superposition principle. Simply stated, the principle of superposi-
tion requires that the response of the system to a weighted sum of signals be equal
to the corresponding weighted sum of the responses (outputs) of the system to each
of the individual input signals. Hence we have the following definition of linearity.

Definition. A relaxed 7 system is linear if and only if
Tlaix1(n) + @2x2(n)] = ay T[x1(n)] + a2 T [x2(n)] (2.2.26)
for any arbitrary input sequences x1(n) and x;(z), and any arbitrary constants a;
and a;.

Figure 2.20 gives a pictorial illustration of the superposition principie.
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xy(n)

x(n) a;

¥in)

T
S
xy(n) [—’T_] a2 /
L

Figure 2.20 Graphical representation of the superposition principle. 7 is linear
if and onty if v{n) = v'(n)

The superposition principle embodied in the relation (2.2.26) can be scpa-

rated into two parts. First, suppose that a> = 0. Then (2.2.26) reduces to
Tlaixy(m)] = ayT[x1(n)] = arvi(n) (2.2.27)
where
yi(n) = Tlxi(n)]

The relation (2.2.27) demonstrates the multiplicative or scaling property of a linear
system. That is, if the response of the system to the input x;(n) is y;{(n). the
response to ajxi{n) is simply a;y1(n). Thus any scaling of the input results in an
identical scaling of the corresponding output.

Second, suppose that a1 = 4, = 1 in (2.2.26). Then

Tlxai(m) + x2(m)] = Tlxi(m)] + T{xi(n)]

yi(n) + va(n}

This relation demonstrates the additivity property of a linear system. The additivity
and multiplicative properties constitute the superposition principle as it applies to
linear systems.

The linearity condition embodied in (2.2.26) can be extended arbitrarily to
any weighted linear combination of signals by induction. In general, we have

(2.2.28)

M-1 M-1
x(n) = Z ayx;(n) N y(n) = Z a;yr(n) (2.2.29)
=1 k=1

where
Yieln) = Tlx(n)] k=1,2,....M—-1 (2.2.30)
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We observe from (2.2.27) that if a; = 0, then y(n) = 0. In other words. a re-
laxed, linear system with zero input produces a zero output. If a system produces
a nonzero output with a zero input, the system may be either nonrelaxed or non-
linear. If a relaxed system does not satisfy the superposition principle as given by
the definition above, it is called nonlinear.

Example 2.2.5

Determine if the systems described by the following input-output equations arc lincar
or nonlinear.

(@) vin)=nxin)  (b) ¥in) =x(n?) () ¥(m) = x7(n)
{d) v{n)=Ax(n)+ B (€} v(n) = e

Solution
(a) For two input sequences x;(n) and x;(n). the corresponding outputs are

i) = nxtm

(2.2.31)
wa{n) = nxa(n)
A iinear combination of the two input sequences results in the output
vim) = T{aixy(m) + axxa(m)} = nfayx, (n) + aaxztn)]
(2.2.32)
= aqnx(n) + anxz(n)
On the other hand. a linear combination of the 1wo outputs in (2.2.31) results
in the output
aivi(n) + axya(n) = aynxy (0} 4+ axnxain) (2.2.33)

Since the right-hand sides of (2.2.32) and (2.2.33) are identical. the system is
finear.

(b) As in part (a). we find the response of the system to two separate input signals
x1(n) and x;(n). The result is

vi(m = x(n%)

) (2.2.34)
v2(n) = x(n”)
The output of the system to a linear combination of x,(n) and xa(n) is
wi(n) = Tlawx (1) + azxa(n)] = ayx; (n*) + azxa(n®) (2.2.35)
Finally. a linear combination of the two outputs in (2.2.36) viclds
ayyi(n) + azy2(n) = ax, () + apxz(n®) (2.2.36)

By comparing (2.2.35) with (2.2.36). we conclude that the system is linear.

(¢) The output of the system is the square of the input. (Electronic devices that
have such an input-output characteristic and are called square-law devices.)
From our previous discussion it is clear that such a system is memoryless. We
now illustrate that this system is nonlinear.
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The responses of the system to two separate input signals are

yiln) = xfin)
(2.2

7)

L]

yaln) = x3(n)
The response of the system to a linear combination of these two input signals is
yitn) = Tlawx(n) + axxa(n))]

{arx (1) + apxaim) {2.2.38)

a?xf(n) + 2ayarxp(n)xa(n) + ag,r::(n)

On the other hand, if the system is linear. it would produce a linear combination
of the two outputs in (2.2.37). namely.

ay v {n) + azva(n) = a.xf(n) + a:.rg(n) (2.2.39)
Since the actual outpul of the system. as given by (2.2.38). is not equai (o
(2.2.39), the system is nonlinear.

Assuming that the system is excited by x;(n) and xz(n) separately. we obtain
the corresponding outputs

(d

vi(n) = Axj(n}+ B
(2.2.40)
y2tn) = Axa(ny+ B
A linear combination of x;{n) and x;(n) produces the output
yaln} = Tlajx(n) + azxa(ny]
= Alayxi(n) + azxain)f + B (2.241)
= Aax;(n)+ aAx:in)+ B
Or the other hand. if the system were linear, its output o the linear combina-
ton of x(n} and x2(n) would be a linear combination of v,(n) and va(n). that is.
a vi(n) +axv(n) =ajAxy(n) + a1 B + axAxa(n) +a: B (2.2.42)
Clearly. (2.2.41} and (2.2.42) are different and hence the system fails to satisfv
the linearity test.

The reason that this system fails to sausfy the linearity test is not that the
system is nonlinear (in fact. the system i1s described by a linear equation} but
the presence of the constant B. Consequently. the output depends on both the
input excitation and on the parameter B # 0. Hence. for B # 0. the system is
not relaxed. If we set B = 0. the system is now relaxed and the linearity test is
satisfied.

Note that the system described by the input—output equation

¥in) =" (2.2.43}
is relaxed. If x(n) = 0, we find that v(n) = 1. This is an indication that the
system is nonlinear. This, in fact. is the conclusion reached when the linearity
test. is appled.

(e

—

Causal versus noncausal systems. We begin with the definition of causal
discrete-time systems.
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Definition. A system is said to be causal if the output of the system at any
time n [ie.. ¥(n)] depends oniy on present and past inputs [i.e., x(n), x(n — 1),
x(n—2),...]. but does not depend on future inputs {i.e, x(n+ 1), x(n+2),...]. In
mathematical terms, the output of a causal system satisfies an equation of the form

v(n) = Flx(n), xtn—=1),x(n = 2),.. ] (2.2.44)
where F[-] is some arbitrary function.

If a system does not satisfy this definition, it is called noncausal. Such a
system has an output that depends not only on present and past inputs but also
on future inputs.

It is apparent that in real-time signal processing applications we cannot ob-
serve future values of the signal, and hence a noncausal system is physically unreal-
izable (i.e., it cannot be implemented). On the other hand, if the signal is recorded
so that the processing is done off-line (nonreal time), it is possible to implement
a noncausal system, since all vaiues of the signal are availabie at the time of pro-
cessing. This is often the case in the processing of geophysical signals and images.

Example 2.2.6

Determine if the systems described by the following input-output equations are causal
or noncausal.

@ ym=xm-xtn-1 () xm =3, __xk) (o) y(n) =ax(n)
(d) v(n)=x(n)+3x(n+4) (e) y(n) = x(n?) D y(n) = x(2n)
(g) y(n) = x(—n)

Solution The systems described in parts (a). (b). and (c) are clearly causal, since the
output depends only on the present and past inputs. On the other hand, the systems
in parts (d). (e), and (f) are clearly noncausal, since the output depends on future
values of the input. The system in (g} is also noncausal, as we note by selecting, for
example, n = —1, which yields y(—~1) = x(1). Thus the output at n = —1 depends on
the input at n = 1, which is two units of time into the future.

Stable versus unstable systems. Stability is an important property that
must be considered in any practical application of a system. Unstable systems
usually exhibit erratic and extreme behavior and cause overflow in any practical
implementation. Here, we define mathematically what we mean by a stable system,
and later, in Section 2.3.6, we explore the implications of this definition for linear,
time-invariant systems.

Definition.  An arbitrary relaxed system is said to be bounded input-bounded
output (BIBO) stable if and only if every bounded input produces a bounded
output.

The conditions that the input sequence x(r) and the output sequence y(n) are
bounded is translated mathematically to mean that there exist some finite numbers,
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say M, and M. such that
fx(m) = M, < x ivinh < M, < (2.2.45)

for all n. If. for some bounded input sequence x(n). the output is unbounded
(infinite), the system is classified as unstable.

Example 2.2.7
Consider the nonlinear system described by the input—output equation
v = vin = 1+ xin)

As an input sequence we select the bounded signal

xtny = Céun)
where C is a constant. We also assume that v{—1) = 0. Then the output seguence is
v =C v =C. y2)y=C' ... vm=C"

Clearly. the output is unbounded when 1 < |C] < ac. Therefore, the system is BIBO
unstable, since a bounded input sequence has resulted in an unbounded output.

2.2.4 Interconnection of Discrete-Time Systems

Discrete-time systems can be interconnected to form larger svstems. There are
two basic ways in which systems can be interconnected: in cascade (serics) or in
parallel. These interconnections are illustrated in Fig. 2.21. Note that the two
interconnected systems are different.

In the cascade interconnection the output of the first system is

vitn) = Ti[xim] (2.2.46)

x(n) | : “/\ Lovatn)

Figure 2.21 Cascade (a) and paraliel
(b) (b) interconnections of systems.
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and the output of the second system is
¥(n) = Ty (n)]
= L(Ti[x(n}])

We observe that systems 7; and 7; can be combined or consolidated into a single
overall system

(2.2.47)

T. =TT (2.2.48)
Consequently, we can express the output of the combined system as
¥(m) = T{x(n)]

In general, the order in which the operations 7; and 7, are performed is
important. That is,

LT #TT

for arbitrary systems. However, if the systems 7; and 7; are linear and time
invariant, then (a) 7; is time invariant and (b) 2Ty = 717, that is, the order in
which the systems process the signal is not important. 7,7, and 7,7, yield identical
output sequences.

The proof of (a) follows. The proof of (b} is given in Section 2.3.4. To prove
time invariance, suppose that 7; and T; are time invariant; then

x(n—k) I, vi(n—k)
and
T
n—k)— yn -k
Thus
x{n—k) L=En y(n —k)

and therefore, 7; is time invariant.
In the parallel interconnection, the output of the system 7, is y;(n) and the
output of the system 7; is y2(n). Hence the output of the parallel interconnection is

¥3(n) = y1(n) + y2(n)
= Ti[x(m)] + T[x(n)]
= (Ti + T)[x()]
= T[x(m)]

where 7, =T1 + T2.

In general, we can use parallel and cascade interconnection of systems to
construct larger, more complex systems. Conversely, we can take a larger system
and break it down into smaller subsystems for purposes of analysis and imple-
mentation. We shall use these notions later, in the design and implementation of
digital filters.
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2.3 ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT
SYSTEMS

In Section 2.2 we classified systems in accordance with a number of characteristic
properties or categories, namely: linearity. causality. stability, and time invariance.
Having done so. we now turn our attention to the analysis of the important class
of linear. time-invariant (LTI} systems. In particular. we shall demonstrate that
such systems are characterized in the time domain simply by their response to a
unit sample sequence. We shall also demonstrate that any arbitrary input signal
can be decomposed and represented as a weighted sum of unit sample sequences.
As a consequence of the linearity and time-invariance properties of the system,
the response of the svstem to any arbitrary input signal can be expressed in terms
of the unit sample response of the system. The general form of the expression
that relates the unit sample response of the system and the arbitrary input signal
to the output signal. called the convolution sum or the convolution formula. is also
derived. Thus we are able to determine the output of any linear. time-invariant
system to any arbitrary input signal.

2.3.1 Techniques for the Analysis of Linear Systems

There are two basic methods for analyzing the behavior or response of a linear
system to a given input signal. One method is based on the direct solution of the
input-output equation for the system. which, in general, has the form

v(n) = Flvin =1}, y(n = 2)..... yn—N).x(n).x(n="1),.... x(n — M)]

where F[-] denotes some function of the quantities in brackets. Specifically. for
an LTI system, we shall see later that the general form of the input-output rela-
tionship is

N M
Yoy ==Y ayin—k+ Y bx(n k) 231

k=1 k=0

where {ax} and {b;} are constant parameters that specify the system and are in-
dependent of x(n) and ¥(n). The input-output relationship in (2.3.1) is called
a difference equation and represents one way to characterize the behavior of a
discrete-time LTI system. The solution of (2.3.1) is the subject of Section 2.4.

The second method for analyzing the behavior of a linear system to a given
input signal is first to decompose or resolve the input signal into a sum of ele-
mentary signals. The elementary signals are selected so that the response of the
system to each signal component is easily determined. Then. using the linearity
property of the system, the responses of the system to the elementary signals are
added to obtain the total response of the system to the given input signal. This
second method is the one described in this section.
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To elaborate. suppose that the input signal x(n} is resolved into a weighted
sum of elementary signal components {x;(n)} so that

x(m) =Y cixe(n) (2.3.2)
k

where the {c,} are the set of amplitudes (weighting ceefficients) in the decom-
position of the signal x{(n). Now suppose that the response of the system to the
elementary signal component x;{n) is y.(n). Thus.

vie(n) = Tlx(n)] (2.3.3)

assuming that the system is relaxed and that the response to cyxi(n) is ¢ yeln). as
a consequence of the scaling property of the linear system.
Finally, the total response to the input x(n) is

Tixm)]=T [Z c‘xk(n)]
[

> aTlam)] (2.3.4)

k

= Z cpvetn)

k

y{(m}

I

In (2.3.4) we used the additivity property of the lincar system.

Although to a large extent, the choice of the elementary signals appears to
be arbitrary, our selection is heavily dependent on the class of input signals that
we wish to consider. If we place no restriction on the characteristics of the input
signals, its resolution into a weighted sum of unit sample (impulse) sequences
proves to be mathematically convenient and completely general. On the other
hand, if we restrict our attention to a subclass of input signais. there may be
another set of elementary signals that is more convenient mathematically in the
determination of the output. For example, if the input signal x(x) ts periodic
with period N, we have already observed in Section 1.3.5 that a mathematically
convenient set of elementary signals is the set of exponentials

xip(n) = /" k=0.1,....N-1 (2.3.5)

where the frequencies {w,} are harmonically related, that is,
wk=(2§)k k=0.1.....N -1 (2.3.6)

The frequency 27 /N is called the fundamental frequency, and all higher-frequency
components are multiples of the fundamental frequency component. This subciass
of input signals is considered in more detail later.

For the resolution of the input signal into a weighted sum of unit sample
sequences, we must first determine the response of the system to a unit sam-
ple sequence and then use the scaling and multiplicative properties of the linear
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svstem to determine the formuia for the ocutput given any arbitrary input. This
development is described in detail as follows.

2.3.2 Resolution of a Discrete-Time Signal into Impulses

Suppose we have an arbitrary signal x(n) that we wish to resolve into a sum of unit
sample sequences. To utilize the notation established in the preceding section. we
select the elementary signals x;(n) to be

xp(n)y=8n—-Kk) (2.3.7)

where k represents the delay of the unit sample sequence. To handle an arbitrary
signal x(n) that may have nonzero values over an infinite duration. the set of unit
impulses must also be infinite. to encompass the infinite number of delays.

Now suppose that we multiply the two sequences x(n) and §(n — k). Since
d(n — k) is zero everywhere except at n = k. where its value is unity. the result
of this multiplication is another sequence that is zero everywhere except at n = k.
where its value is x (k). as illustrated in Fig. 2.22. Thus

x(m)é(n — k) = x(k)d(n — k) (2.3.8)

x(n)

(b}

x(k) d(n—k)

k

0 l n

(c) (k)

Figure 2.22 Multiplication of a signal x(n) with a shified unit sample sequence.
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is a sequence that is zero everywhere except at n = k. where its value is x(k}. If we
were to repeat the multiplication of x(n} with 8(n — m), where m is another delay
(m # k), the result will be a sequence that is zero everywhere except at n = m,

where its value is x(m). Hence
x(n)§(n —m) = x(m)&(n — m) 2.3.9)

In other words, each multiplication of the signal x(n) by a unit impulse at some
delay &, [i.e., §(n — k). in essence picks out the single value x(k) of the signal x(n)
at the delay where the unit impulse is nonzero. Consequently, if we repeat this
muitiplication over all possible delays, —oc < k < oo, and sum all the product
sequences, the result will be a sequence equal to the sequence x(n), that is,
oC
x(m) =) x(k)s(n —k) (2.3.10)
k=—oc
We emphasize that the right-hand side of (2.3.10) is the summation of an
infinite number of unit sample sequences where the unit sample sequence 8(n — k)
has an amplitude value of x(k). Thus the right-hand side of (2.3.10) gives the
resolution of or decomposition of any arbitrary signal x(n) into a weighted (scaled)
surn of shifted unit sample sequences.

Example 2.3.1
Consider the special case of a finite-duration sequence given as
x(n)y=1{2.4,0,3)
T
Resolve the sequence x{n) into a sum of weighted impulse sequences.

Solution Since the sequence x(n) is nonzero for the time instants n = -1, 0. 2, we
need three impulses at delays k = —1. G, 2. Following {2.3.10) we find that

x{n) = 28(n + 1)+ 48(n) + 38(n — 2)

2.3.3 Response of LTl Systems to Arbitrary inputs: The
Convolution Sum

Having resolved an arbitrary input signal x(n) into a weighted sum of impulses,
we are now ready to determine the response of any relaxed linear system to any
input signal. First, we denote the response ¥(n, k) of the system to the input unit
sample sequence at n = k by the spectal symbol h(n, k), ~o0 < k < cc. That is,

yin, ky=hin k) = T[5(n — k)] (2.3.11)

In (2.3.11) we note that n is the time index and k is a parameter showing the
location of the input impuise. If the impulse at the input is scaled by an amount
cx = x(k), the response of the system is the correspondingly scaled output, that is,

ceh(n, k) = x(k)h(n, k) (2.3.12)
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Finally, if the input is the arbitrary signal x(n) that is expressed as a sum of
weighted impulses. that is.

x(n) = Z x(k)d(n — k) (2.3.13)
k==
then the response of the system to x(n) is the corresponding sum of weighted
outputs. that is,

vy = Tlxn] = 'f[ Z xtkyéin —k]-J

k= —
xX
= Y xBT[stn—k) (2.3.14)
k=—n
= Z xi{kyhin. k)
k=-x

Clearly, (2.3.14} follows from the superposition property of linear svstems, and is
known as the superposition summation.

We note that (2.3.14) is an expression for the response of a lincar system to
any arbitrary input sequence x(n). This expression is a function of both x(n) and
the responses /i(n. k) of the system 1o the unit impuises §(n — k) for —x < k < =¢.
In deriving (2.3.14) we used the linearity property of the system but not its time-
invariance property. Thus the expression in (2.3.14) applies to anv relaxed linear
(time-variant) system.

If. in addition. the system is time invariant. the formula in (2.3.14) simplifies
considerably. In fact. if the response of the LTI system to the unit sample sequence
&(n) is denoted as h(n). that 1s,

hin) = T[é(m)] (2.3.15)

then by the time-invariance property. the response of the system to the delaved
unit sample sequence §tn — k) is

hin — k) :T[&(n - k)] (2.3.16)

Consequently. the formula in (2.3.14) reduces to

X
vy =y xkyh(n — k) (2.3.17)
==
Now we observe that the relaxed LTI system is completely characterized by a
single function h(x), namely. its response to the unit sample sequence §(n). In
contrast, the general characterization of the output of a time-variant. linear sys-
tem requires an infinite number of unit sample response functions, 4(n, k). one for
each possible delay.
The formula in (2.3.17) that gives the response y(n) of the LTI system as a
function of the input signal x(n) and the unit sample (impulse) response h(n) is
called a conolution sum. We say that the input x(n) is convolved with the impulse
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response h(n) to yield the output y(n), We shall now explain the procedure for
computing the response y(n). both mathematically and graphicaily, given the input
x(n) and the impulse response h(n) of the system.

Suppose that we wish to compute the output of the system at some time
instant, say n = no. According to (2.3.17), the response at n = ny is given as

oc
y(ng) = ): x(k)h(ng — k) (2.3.18)
k=--oc

QOur first observation is that the index in the summation is k, and hence both the
input signal x(k) and the impulse response h(ny — k) are functions of k. Second,
we observe that the sequences x(k) and h(ng — k) are multiplied together to form
a product sequence. The output y(ng) is simply the sum over all values of the
product sequence. The sequence #(ng — k) is obtained from h(k) by, first, folding
h{k) about k = @ (the time origin), which results in the sequence h(—k). The
folded sequence is then shifted by ng to yield h(np — k). To summarize, the process
of computing the convolution between x(k) and h(k) involves the following four
steps.

1. Folding. Fold h(k) about k = 0 to obtain h(~k).

2, Shifting. Shift h(—k) by ng to the right (left) if no is positive (negative), to
obtain A(ng — k).

3. Muliiplication. Multiply x(k) by k(ngp — k) to obtain the product sequence
Uno (k) = x(k)Yh(ng — k).

4. Summation. Sum all the values of the product sequence v,,(k) to obtain the
value of the output at time n = no.

We note that this procedure results in the response of the system at a sin-
gle time instant, say n = no. In general, we are interested in evaluating the
response of the system over all time instants —oc < n < oo. Consequently,
steps 2 through 4 in the summary must be repeated, for all possible time shifts
—00 < n < 00.

In order to gain a better understanding of the procedure for evaluating the
convolution sum, we shall demonstrate the process graphically. The graphs will
aid us in explaining the four steps involved in the computation of the convolution
sum.

Example 2.3.2
The impulse response of a linear time-invariant system is
hin) = (1.2,1, -1} (2.3.19)
t

Determine the response of the system to the input signal
x(n)=1{1,2.3,1} (2.3.20)
T
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Solution We shall compute the convolution according to the formula (2.3.17). but
we shall use graphs of the sequences to0 aid us in the computation. In Fig. 2.23a we
illustrate the input signal sequence x(%) and the :mpulse response /{k) of the system,
using & as the time index in order to be consistent with (2.3.17).

The first step in the computation of the convolution sum is to fold h(k). The
folded sequence h(—k) is illustrated in Fig. 2.23b. Now we can compute the output
at n = 0. according to (2.3.17), which is

o

¥(0) = Z x(k)h(=k) (2.3.21)

k=—o

Since the shift n = (), we use h(—k) directly without shifting it. The product sequence

uy(k) = x(kYh(—k) (2.3.22)
hik) x(k)
3{
el
ik i
~
1ot )3 ko “1or sk
A
@ Q0
Fold %
otk Product
h{—k) ‘ 0 sequence
2
2 : 2
= RANEI |
-1012 k -1012 k
@ (b}
Shifi vy (k) Product
=k ' sequence
2 I
oy : :
012 k o1z k
(c)
lk{—l—k] v (k) Product
sequence
I 2
- 1
ee 11t
S0 k 012 k
(d)

Figure 2.23 Graphical computation of convolution.



Sec. 2.3 Analysis of Discrete-Time Linear Time-Invariant Systems 79

is also shown in Fig. 2.23b. Finally, the sum of all the terms in the product sequence
yields
S
YO =3 ik =4
h=—o
We continue the computation by evaluating the response of the system atn = 1.
According to (2.3.17),
o0
() = Z TR = k) (2.3.23)
h=—oc
The sequence /(1 —k) is simply the folded sequence h(—k) shifted to the right by one
unit in time. This sequence is illustrated in Fig. 2.23c. The product sequence

vy (k) = x(kYh(1 = k) (2.3.24)

is also illustrated in Fig. 2.23c. Finally. the sum of all the values in the produc
sequence vields
o

) = Z v(k) =8

=00

In a similar manner. we obtain y(2) by shifting #(—k) two units to the right,
forming the product sequence va(k) = x(k)a(2 — k) and then summing all the terms
in the product sequence obtaining y(2) = 8. By shifting h(—k) farther to the right.
multiplving the corresponding sequence. and summing over all the valucs of the re-
sulting product sequences. we obtain ¥(3) = 3, v(4) = -2, v(5) = —1. For n > 5. we
find that v(n) = 0 because the product sequences contain all zeros. Thus we have
obtained the response y(n) for n > 0.

Next we wish to evaluate v(n) for n < 0. We begin with n = —1. Then
vl = Y xbh-1-k) (23.25)
k=—nc

Now the sequence h(—1 — k) is simply the folded sequence h(—#) shifted one time
unit to the left. The resulting sequence is illustrated in Fig. 2.23d. The corresponding
product sequence is also shown in Fig. 2.23d. Finally, summing over the values of the
product sequence. we obtain

-1 =1
From observation of the graphs of Fig. 2.23, it is clear that any further shifts of
h(—1 - k) to the left always results in an all-zero product sequence. and hence
y(n)y=0 forn < -2
Now we have the entire response of the system for —o¢ < n < oc. which we

summarize below as

yim)={....0.0,1,4.8.8,3,-2.-1.0.0... ) (2.3.26)
t
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In Example 2.3.2 we illustrated the computation of the convolution sum,
using graphs of the sequences to aid us in visualizing the steps involved in the
computation procedure,

Before working out another example, we wish to show that the convolu-
tion operation is commutative in the sense that it is irrelevant which of the two
sequences is folded and shifted. Indeed. if we begin with (2.3.17) and make a
change in the variable of the summation, from & to m, by defining a new index
m=n —k.then k =n —m and (2.3.17) becomes

v{n) = Z x(n —m)h(m) (2.3.27)

m=-—o0

Since m is a dummy index, we may simply replace m by k so that

oC
ym =y xtn = k) (2.3.28)

k=—oc

The expression in (2.3.28) involves leaving the impulse response h(k) unaltered.
while the input sequence is folded and shifted. Although the output y(n) in (2.3.28)
is identical to (2.3.17). the product sequences in the two forms of the convolution
formula are not identical. In fact, if we define the two product sequences as

v (k) = x(kYhin — k)
wy (k) = x(n — k)hk)
it can be easily shown that
Un (k) = wn(n — k)

and therefore,

o oc

yin) = Z v (k) = Z w,(n — k)

k=—oc k==—oc
since both sequences contain the same sample values in a different arrangement.

Example 2.3.3

Determine the output y(n) of a relaxed linear time-invariant system with impulse
response

hiny=a"u(n), la] <1
when the input is a unit step sequence, that is,
x(n) = u{n)

Solution In this case both h(n) and x(n) are infinite-duration sequences. We use
the form of the convolution formula given by (2.3.28) in which x(k) is folded. The
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Figure 2.24 Graphical computation of convolution in Example 2.3.3,

sequences h(k), x(k). and x(—k) are shown in Fig. 2.24. The product sequences vo(k).
vi(k), and v (k) corresponding to x(—k)a(k), x(1 — k)h(k). and x(2 — k)h(k) are illus-
trated in Fig. 2.24c, d. and e. respectively. Thus we obtain the outputs

v =1

y()

¥(2)

1+a

1+a+a

It
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Clearly, for n > 0, the output is
vin) = l4+a+a*+-.-+a

1-— an+l (2329)

l-a
On the other hand. for n < 0, the product sequences consist of all zeros. Hence
y(n) =10 n<(Q
A graph of the output y(n) is illustrated in Fig. 2.24f for the case 0 < a < L.

Note the exponential rise in the output as a function of n. Since {a} < 1, the final
value of the output as n approaches infinity is

(2.3.30)

v(oc) = lim y(n) =
n—oc 1-a

To summarize, the convolution formuta provides us with a means for com-
puting the response of a relaxed, linear time-invariant system to any arbitrary input
signal x(n). It takes one of two equivalent forms, either (2.3.17) or (2.3.28), where
x(n) is the input signal to the system. h(n) is the impulse response of the system,
and y(n) is the output of the system in response to the input signal x(n). The
evaluation of the convolution formula involves four operations, namely: folding
cither the impulse response as specified by (2.3.17) or the input sequence as spec-
ified by (2.3.28) to yield either h(—k) or x(—k). respectively, shifting the folded
sequence by » units in time to yield either h(n — k) or x(n — k). multiplying the
two sequences to yield the product sequence, either x(k)a(n — k) or x(n — k)h(k),
and finally summing all the values in the product sequence to vield the output v(n)
of the system at time n. The folding operation is done only once. However, the
other three operations are repeated for all possible shifts —o¢ < n < oo in order
to obtain y(r) for —oo < n < cc.

2.3.4 Properties of Convolution and the Interconnection
of LT! Systems

In this section we investigate some important properties of convotution and in-
terpret these properties in terms of interconnecting linear time-invariant systems.
We should stress that these properties hold for every input signal.

It is convenient to simplify the notation by using an asterisk to denote the

convolution operation. Thus
oC

ym =xmxhm = Y x(Ohin—k) (2.3.31)
k=—0C
In this notation the sequence following the asterisk [i.e., the impulse response a(n)]
is folded and shifted. The input to the system is x(n). On the other hand, we also
showed that

y()y=hmxx(my= Y hk)x(n —k) (23.32)

k=—0c
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xin) () h(n) ¥

Figure 2.25 Interpretation of the commutative property of convolution.

In this form of the convolution formula. it is the input signal that is folded. Alter-
natively. we may interpret this form of the convolution formula as resulting from
an interchange of the roles of x(n) and h(n). In other words, we may regard x(n)
as the impulse response of the system and h(n) as the excitation or input signal.
Figure 2.25 illustrates this interpretation.

We can view convolution more abstractly as a mathematical operation be-
tween two signal sequences. say x(n) and h(n), that satisfies a number of properties.
The property embodied in (2.3.31) and (2.3.32) is called the commutative law.

Commutative law
x(n) * h(n) = h(n) % x(n) (2.3.33)
Viewed mathematically, the convolution operation also satisfies the associa-
tive law, which can be stated as follows.
Associative law
[y = b)) = hatn) = x () * [y (n) % ha(n)] (2.3.34)

From a physical point of view. we can interpret x(n) as the input signal to
a linear time-invariant system with impulse response h(n). The output of this
system, denoted as ¥ (n}. becomes the input to a second linear time-invariant
system with impulse response %42(n). Then the output is

v{n) = yi(n})* hain)

[x(n) % hy(n)] * ha(n)

which is precisely the left-hand side of (2.3.34). Thus the left-hand side of (2.3.34)
corresponds to having two linear time-invariant systems in cascade. Now the right-
hand side of (2.3.34) indicates that the input x(n) is applied to an equivalent system
having an impulse response. say h(n). which is equal to the convolution of the two
impulse responses. That is,

h(n) = hi(n) * ha(n)
and

v(n) = x(n) x h(n)
Furthermore, since the convolution operation satisfies the commutative property,
one can interchange the order of the two systems with responses h;(r) and h2(n)

without altering the overall input-output relationship. Figure 2.26 graphically il-
lustrates the associative property.
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x(n)

<> -

hin) =
hy(n) * ha(m)

yn)

| .

(a)

x(n) ¥n) x(n) ¥n)
hy(m) hatm) <> —ﬂ ha(n) H ky(n) )———»

(b}

Figure 2.26 Implications of the associative (a) and the associative and commuta-

tive (b) properties of convolution.

Example 2.3.4

Determine the impulse response for the cascade of two linear time-invariant systems

having impulse responses
h
and

h2

(n) = (3)"un)

(n) = ({)"uln)

Solution To determine the overall impulse response of the two systems in cascade,

we simply convolve hy(n) with >

hin) =

{n}. Hence

> mhan k)

k=—tc

where h,(n) is folded and shifted. We define the product sequence

v, (k)

= m(kYha(n — &)

Grgyt

which is nonzero for k > 0and n —k > 0 or n > k > 0. On the other hand, for n <0,
we have v, (k) = 0 for all &, and hence

hin)=0,n <0

For n > k > 0. the sum of the values of the product sequence v, (k) over all k yields

h(n) =

Db
k=0

G Tio?
Gret -1
Ar2-drlaz0
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The generalization of the associative law to more than two systems in cascade '
follows easily from the discussion given above. Thus if we have L linear time-
invariant systems in cascade with impulse responses hy(n). hz(n). ... . hyin). there
is an equivalent linear time-invariant system having an impulse response that is
equal to the (L — 1)-fold convolution of the impulse responses. That is.

Ary=hi(ny = haln)y* - xhp(n) (2.3.35)

The commutative law implies that the order in which the convolutions are per-
formed is immaterial. Conversely, any linear time-invariant system can be decom-
posed into a cascade interconnection of subsystems. A method for accomplishing
the decomposition will be described later.

A third property that is satisfied by the convotution operation is the distribu-
tive law, which may be stated as follows.

Distributive law
x(my = [hi(m) + hatm)] = x(n) = hy(n) + x(n) « hain) (2.3.36)

interpreted physicallv. this law implies that if we have two linear time-
invariant systems with impulse responses hi(n) and ha{n) excited by the same
tnput signal x(n), the sum of the two responses is identical to the response of an
overall system with impulse response

hiny = hy(n) + hatn)

Thus the overall svstem is viewed as a paraliel combination of the two hnear
time-invariant systems as illustrated in Fig. 2.27,

The generalization of (2.3.36) to more than two linear time-invariant svs-
tems in parallel follows easily by mathematical induction. Thus the interconnec-
tion of L linear time-invariant svstems in parallel with impulse responses /1;(n).
Ra(m). ... /i (n) and excited by the same input x () is equivalent to one overall
system with impulse response

37)

[#%]

L
hin)y = Zhj(n) (2.
=1

Conversely. any linear time-invariant system can be decomposed into a parallel
interconnection of subsvstems.

xin) xim) x(n} hin) = V)
> — —
hyin} + ksl

Figure 2.27 Interpretation of the distributive property of convolution: two LTI
systems connected in paralle]l can be replaced by a single system with h(n) =
hi(n) + ha(n).
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2.3.5 Causal Linear Time-Invariant Systems

In Section 2.2.3 we defined a causal system as one whose output at time n depends
only on present and past inputs but does not depend on future inputs. In other
words, the output of the system at some time instant n, say n = ng, depends only
on values of x(n) for n < ng.

In the case of a linear time-invariant system, causality can be translated
to a condition on the impulse response. To determine this reiationship, let us
consider a linear time-invariant system having an output at time »n = ny given by
the convolution formula

o
¥ng) = Y htk)xing — k)
A==
Suppose that we subdivide the sum into two sets of terms. one set involving present
and past values of the input {i.e.. x(n) for n < ng] and one set involving future
values of the input [i.e., x(n), n > ny}. Thus we obtain

x —1
Yom) = 3 hRxtng —ky+ Y h(k)x(ng — k)

k=0 k=—
= {h((]),r(n“) +h(Dx(ng— 1)+ h(2yx(ng—2) + -- ]
+ [A(=Dx(ng+ 1)+ h(=Dx(ng +2) + -]

We observe that the terms in the first sum involve x(ng), x(ng — 1)...., which are
the present and past values of the input signal. On the other hand, the terms in
the second sum involve the input signal components x(no+ 1), x(np+2), .. .. Now,
if the output at time n = ny is to depend only on the present and past inputs, then,
clearly, the impulse response of the system must satisfy the condition

h(n) =0 n<0 (2.3.38)

Since h(n) is the response of the relaxed linear time-invariant system to a unit
impulse applied at n = 0, it follows that h(n) = 0 for n < 0 is both a necessary
and a sufficient condition for causality. Hence an LT7 system is causal if and only
if its impulse response is zero for negative values of n.

Since for a causal system, h(n) = 0 for n < 0, the limits on the summation of
the convolution formula may be modified to reflect this restriction. Thus we have
the two equivalent forms

Yy =Y h(k)xtn —k) (2.3.39)
k=0
= 3 x(hin -k (2.3.40)
k=

As indicated previously, causality is required in any real-time signal process-
ing application, since at any given time n we have no access to future values of the
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input signal. Only the present and past values of the input signal are available in
computing the present output.

It is sometimes convenient to call a sequence that is zero for n < 0. a causal
sequence, and one that is nonzero for n < 0 and n > 0. a noncausal sequence. This
terminotogy means that such a sequence could be the unit sample response of a
causal or a noncausal svstem. respectively.

If the input to a causal linear time-invariant system is a causal sequence [i.e..
if x(n) = 0 for n < 0]. the limits on the convolution formula are further restricted.
In this case the two equivalent forms of the convolution formula become

v(n) = Zh(k)x(n — k) (2.3.41)
k=0
=Y x(bhn — k) (2.3.42)

k=0
We observe that in this case, the limits on the summations for the two alternative
forms are identical. and the upper limit is growing with time. Clearly. the response
of a causal system to a causal input sequence is causal. since y(n) =0 for n < 0.

Example 2.3.5
Determine the unit step response of the lincar time-invariant system with impulse
response
hin) = a"uin} lat <1

Selution  Sincc the input signal is 2 unit step. which is a causal signal. and the system
1s also causal. we can usc one of the special forms of the convolution formula, ¢ither
(2.3.41) or (2.3.42). Since x(n) = 1 forn = 0. (2.3.41) is stmpler 1o use. Because of the
simplicity of this problem. one can skip the steps involved with sketching the folded
and shifted sequences. Instead. we use direct substitution of the signals sequences in
(2.3.41) and obtain

v(n) = Za‘

1 —a™!

1-a
and v(n) = 0 for n < 0. We note that this result is identical to that obtained in Ex-
ample 2.3.3. In this simple case. however. we computed the convolution algebraically
without resorting to the detailed procedure outlined previousty.

2.3.6 Stability of Linear Time-Invariant Systems

As indicated previously, stability is an important property that must be considered
in any practical implementation of a system. We defined an arbitrary relaxed
systemn as BIBO stable if and only if its output sequence y(n) is bounded for every
bounded input x{n).
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If x(n) is bounded, there exists a constant M, such that
[x(n)] £ My <oc
Similarly, if the output is bounded, there exists a constant M, such that
ly(n)] <« M, < o0
for all n.
Now, given such a bounded input sequence x(n) to a linear time-invariant
system, let us investigate the implications of the definition of stability on the char-
acteristics of the system. Toward this end, we work again with the convolution

formula
00

ymy= Y h(k)x(n — k)
k=—co
If we take the absolute value of both sides of this equation, we obtain
oC
Iyl =| Y htk)x(n —k)
k=-o0C

Now, the absolute value of the sum of terms is always less than or equal to the
sum of the absolute values of the terms. Hence

) s 3 1hk)lx(n — k)|
k==oc
If the input is bounded, there exists a finite number M, such that |x(n)] < M,. By
substituting this upper bound for x(n) in the equation above, we obtain

o~

Iy < M, Y 1h(K))

k=—oc
From this expression we observe that the output is bounded if the impulse response
of the system satisfies the condition
=]
Sh= Y hikj < o0 (2.3.43)
k=-cc

That is, a linear time-invariant system is stable if its impulse response is absolutely
summable. This condition is not only sufficient but it is also necessary to ensure the
stability of the system. Indeed, we shall show that if S, = oo, there is a bounded
input for which the output is not bounded. We choose the bounded input

h*(-n)

— h
x(m) = { [he(om) n)#0

a, hin) =0

where h*(n) is the complex conjugate of h(n). It is sufficient to show that there is
one value of » for which y(n) is unbounded. For n = 0 we have

00 X h(k)]?
YO = Y xi-bap = 3 BB g

e W= Tkl

Thus, if S, = oo, a bounded input produces an unbounded output since y(0) = oc.
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The condition in (2.3.43) implies that the impulse response h(n) goes to zero '
as n approaches infinity. As a consequence, the output of the system goes to zero
as n approaches infinity if the input is set to zero beyond n > ny. To prove this,
suppose that |x(n){ < M, for n < ng and x(n) =0 for n > ng. Then, at n = ng+ N,
the system output is

N1 oc
(g + N) = }: h(k)x(ng + N — k) + }: h(k)x(ng + N — k)
=—x k=N

But the first sum is zero since x(n) = 0 for n > ng. For the remaining part, we
take the absolute value of the output, which is

| 2
¥(ng+ Nyt = | Mt + N =B < S k)i = N~k
th k=N

=N

<
< MY Jhik)]
k=N

Now, as N approaches infinity,

™
Nll_l:nx ;;: |hn)i =0

and hence
lim ving + N}l = 0
N
This result implies that any excitation at the input to the system. which is of a finite
duration. produces an output that is “transient™ in nature: that is. its amplitude
decays with time and dies out eventually. when the system is stable.
Example 2.3.6
Determine the range of values of the parameter a for which the linear time-invariant
system with impulse response
iy = auin)
is stable.

Solution First, we note that the system is causal. Conseguently, the lower index on
the summation in (2.3.43) begins with & = 0. Hence

Zm |—Z|a! =1+ jal + gl + .-

k=0 k=]

Clearly. this geometric series converges to

Zt aft —1_|a|

k=0
provided that |a| < 1. Otherwise. it diverges. Therefore, the system is stable if || < 1.
Otherwise. it is unstable. In effect, h(n) must decay exponentially toward zero as
approaches infinity for the system to be stable.
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Example 2.3.7

Determine the range of values of @ and b for which the linear time-invariant system
with impulse response
a, n>0
wy={5 "2
) b, n<0
is stable.

Solution This system is noncasual. The condition on stability given by (2.3.43) yields

Z |h(n);—2|a|"+ Z Ibr"

n=—0c n=—0g

From Example 2.3.6 we have already determined that the first sum converges for
la] < 1. The second sum can be manipulated as follows:

1 1 1
bt = =— 14—+ —4...
Z;' ' }: B~ Tl ( T TR T )

£

1-p

where g = 1/ib| must be less than unity for the geometric series to converge. Conse-
quently, the system is stable if both |a! < 1 and |b| > 1 are satisfied.

=pA+p+p+ )=

2.3.7 Systems with Finite-Duration and Infinite-Duration
Impulse Response

Up to this point we have characterized a linear time-invariant system in terms of
its impulse response h(n). It is also convenient, however, to subdivide the class
of linear time-invariant systems into two types, those that have a finite-duration
impulse response (FIR) and those that have an infinite-duration impulse response
(IIR). Thus an FIR system has an impulse response that is zero outside of some
finite time interval. Without loss of generality, we focus our attention on causal
FIR systems, so that

hin) =0 n<Qandn>M

The convolution formula for such a system reduces to

M—1
yn) =3 h(k)x(n — k)
k=0

A useful interpretation of this expression is obtained by observing that the output
at any time n is simply a weighted linear combination of the input signal samples
x(n), x(n —1),...,x(n — M + 1). In other words, the system simply weights, by
the values of the impulse response A(k), k = 0, 1,. — 1, the most recent
M signal samples and sums the resulting M products. In effecl, the system acts
as a window that views only the most recent M input signal samples in forming
the output. It neglects or simply “forgets” all prior input samples [i.e., x(n — M),
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x(n—M—=1)....]. Thus we say that an FIR svstem has a finite memory of length-M -
samples.

In contrast. an IIR linear time-invariant system has an infinite-duration im-
pulse response. Its output, based on the convolution formula. is

x
Yy =Y htk)x(n — k)

k=0
where causality has been assumed, although this assumption is not necessary. Now.
the system output is a weighted [by the impulse response #(k)] linear combination
of the input signal samples x(n), x(n — D. x(n ~2), .. .. Since this weighted sum
involves the present and all the past input samples, we say that the system has an
infinite memory.

We investigate the characteristics of FIR and IIR systems in more detail in

subsequent chapters.

2.4 DISCRETE-TIME SYSTEMS DESCRIBED BY DIFFERENCE
EQUATIONS

Up to this point we have treated linear and time-invariant systems that are char-
acterized by their unit sample response #2(n). In turn. h(n) allows us to determine
the output v(n) of the system for any given input sequence x(n) by means of the
convolution summation.

™
yin) = Z hik)xor — k) (24.1)
==~

In general. then. we have shown that any linear time-invariant system is char-
acterized by the input-output relationship in (2.4.1). Moreover. the convolution
summation formula in (2.4.1) suggests a means for the realization of the sysiem.
In the case of FIR systems. such a realization involves additions. multiplications.
and a finite number of memory locations. Consequently. an FIR system is readily
implemented directly. as implied by the convolution summation.

If the system is IIR, however, its practical implementation as implied by
convolution is clearly impossible. since it requires an infinite number of mem-
ory locations, multiplications, and additions. A question that naturally arises,
then, is whether or not it is possible to realize IIR systems other than in the
form suggested by the convolution summation. Fortunately. the answer is ves.
there is a practical and computationally efficient means for implementing a
family of IIR systems, as will be demonstrated in this section. Within the gen-
eral class of IIR systems. this family of discrete-time systems is more con-
veniently described by difference equations. This family or subclass of IIR
systems is very useful in a variety of practical applications, including the imple-
mentation of digital filters, and the modeling of physical phenomena and physical
systems.
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2.4.1 Recursive and Nonrecursive Discrete-Time Systems

As indicated above, the convolution summation formula expresses the output of
the linear time-invariant system explicitly and only in terms of the input signal,
However, this need not be the case, as is shown here. There are many systems
where it is either necessary or desirable to express the output of the system not
only in terms of the present and past values of the input, but also in terms of the
already available past output values. The following problem illustrates this point.

Suppose that we wish to compute the cumulative average of a signal x(n) in
the interval 0 < k < n, defined as

1 n
yin) = — g;x(k) n=0.1,... (2.4.2)

As implied by (2.4.2). the computation of v(n) requires the storage of all the input
samples x(k) for 0 < k < n. Since n is increasing, our memory requirements grow
linearly with time.

Our intuition suggests, however, that y(n) can be computed more efficiently
by utilizing the previous output value v(n — 1). Indeed, by a simple aigebraic
rearrangement of (2.4.2), we obtain

n—1

(n+ Hvin) = Zx(k) + x(n}
k=0
= ny(n — 1) + x(n)
and hence
n 1
y(n)=n+1,\(n—l)+n+1x(n) (2.4.3)

Now, the cumulative average v(n) can be computed recursively by multiplying the
previous output value y(n ~ 1) by n/(n + 1), multiplying the present input x(n) by
1/(n + 1), and adding the two products. Thus the computation of y(n) by means
of (2.4.3) requires two multiplications, one addition, and one memory location, as
illustrated in Fig. 2.28. This is an example of a recursive system. In general, a
system whose output y(n) at time n depends on any number of past output values
y(n—1), ¥(n —2), ... is called a recursive system.

e
>

¥n)

o8

’ |
n+1

H

Figure 2.28 Realization of a recursive cumulative averaging system.
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To determine the computation of the recursive system in (2.4.3) in more
detail. suppose that we begin the process with n = 0 and proceed forward in time.
Thus. according to (2.4.3). we obtain

F0) = x ()
v(1) = §3(0) + 1x(D)
v2) = (D + 1x(@)

and so on. If one grows fatigued with this computation and wishes 10 pass the
problem to someone else at some time, say n = nq. the only information that one
needs to provide his or her successor is the past value y(nq — 1) and the new input
samples x(n), x(n +1)..... Thus the successor begins with

. no ; 1) 4 1 )

yving) = ;(;:—_l'\ (ng )+ — x(ng)
and proceeds forward in time until some time. say » = n;. when he or she be-
comes fatigued and passes the computational burden to someone else with the
information on the value v(n; — 1), and so on.

The point we wish to make in this discussion is that if one wishes to compute
the response (in this case. the cumulative average) of the system (2.4.3) to an mput
signal x(n) applied at n = n,. we need the value v(ny, — 1} and the input samples
x(n) for = ny. The term y(ay — 1) is called the initial condition for the svsiem in
(2.4.3) and contains all the information needed to determine the response of the
system for #n > ny to the input signal x(n). independent of what has occurred in
the past.

The following example illustrates the use of a (nonlinear) recursive system
to compute the square root of a number.

Example 2.4.1 Square-Root Algorithm

Many computers and calculators compute the square root of a positive number A.
using the iterative algorithm

1 A
.Y,,ZE(J,,_]'FS"‘]) n=0.1....

where s_; is an initial guess (estimate) of VA. As the iteration converges we have
s, 7 5,_1. Then it easily follows that s, = VA.
Consider now the recursive system

o 1 x{n) -
¥y = 3 [y(n 1)+ Yoo 1)} (2.4.4)

which is realized as in Fig. 2.29. If we excite this system with a step of amplitude
A [ie., x(n) = Au(n)] and use as an initial condition ¥(-1) an estimate of +/A. the
response y(n} of the system will tend toward +/A as » increases. Note that in contrast
to the system (2.4.3), we do not need to specify exactly the initial condition. A rough
estimate is sufficient for the proper performance of the system. For example. if we
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ra|—

7 o o
a
1
vin =1}
yn—1)

Figure 229 Realization of the square-root system,

let A =2 and y(—1) = 1, we obtain y(0) = % y(1) = 1.4166667, »(2) = 1.4142157.
Similarly, for y(—1) = 1.5, we have y(0) = 1.416667, v(1) = 1.4142157. Compare
these values with the +/2. which is approximately 1.4142136,

We have now introduced two simple recursive systems, where the output v(n)
depends on the previous output value y(n — 1) and the current input x(n). Both
systems are causal. In general, we can formulate more complex causal recursive
systems, in which the output y(n) is a function of several past output values and
present and past inputs, The system should have a finite number of delays or,
equivalently, should require a finite number of storage locations to be practically
implemented. Thus the output of a causal and practically realizable recursive
system can be expressed in general as

yin) = Flytn=1),y(n =2), ..., y(n = N), x(n), x(n = 1), ..., x(n = M)] (24.5)

where F|[-] denotes some function of its arguments. This is a recursive equation
specifying a procedure for computing the system output in terms of previous values
of the output and present and past inputs.

In contrast, if y(n) depends only on the present and past inputs, then

y(n) = Flx(n),x(n—=1),....x(n — M)) 2.4.6)

Such a system is called nonrecursive. We hasten to add that the causal FIR systems
described in Section 2.3.7 in terms of the convolution sum formula have the form
of (2.4.6). Indeed, the convolution summation for a causal FIR system is

M
) =3 hk)x(n = k)

k=0
h(Ox(ny + h(Dx(n =D +--- + h(M)x(n — M)
Flx(n),x(n = 1), ....x{(n — M)]

where the function F{-] is simply a linear weighted sum of present and past inputs
and the impulse response values h{(n), 0 < n < M, constitute the weighting coef-
ficients. Consequently, the causal linear time-invariant FIR systems described by
the convolution formula in Section 2.3.7, are nonrecursive. The basic differences
between nonrecursive and recursive systems are illustrated in Fig. 2.30. A simple
inspection of this figure reveals that the fundamental difference between these two
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X Flxtn. xtn — 1), )
Lxin = M)
tad
|
xm) Flyvtn = 1) ....xtn = Ny,
xn). ... x(n = M)
i
—t
1
!
Figure 2,30 Basic form for a causal
and reahzable {a) nonrecursive and
(b) (b) recursive svstem

systems is the feedback loop in the recursive system. which feeds back the output
of the system into the input. This feedback loop contains a delay element. The
presence of this delay 1s crucial for the realizability of the system. since the absence
of this delay would force the system to compute v(n) in terms of y(n}. which is
not possible for discrete-time svstems.

The presence of the feedback loop or. equivalently. the recursive nature of
(2.4.5) creates another important difference between recursive and nonrecursive
systems. For example. suppose that we wish to compute the output vny) of a
svstem when 1t is excited by an input applied at time n = 0. If the svstem is
recursive, to compute v(ng). we first need to compute all the previous values »(0),
y(1)...., ¥(no — 1). In contrast. if the system is nonrecursive. we can compute the
output v(ng) immediately without having v(no — 1), ¥(np — 2)..... In conclusion,
the output of a recursive system should be computed in order fi.e.. ¥(0). ¥(1).
¥(2)....]. whereas for a nonrecursive system. the output can be computed in any
order {i.e., v(200). v(15). ¥(3). »(300). etc.]. This feature is desirable in some
practical applications.

2.4.2 Linear Time-Invariant Systems Characterized by
Constant-Coefficient Difference Equations

In Section 2.3 we treated linear time-invariant systems and characterized them
in terms of their impulse responses. In this subsection we focus our attention
on a family of linear time-invariant systems described by an input-output rela-
tion called a difference equation with constant coeffficients. Systems described
by constant-coefficient linear difference equations are a subclass of the recursive
and nonrecursive systems introduced in the preceding subsection. To bring out
the important ideas, we begin by treating a simple recursive system described by
a first-order difference equation.
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Figure 2.31 Block diagram realization

a . .
of a simple recursive system.

Suppose that we have a recursive system with an input—output equation
y(n) =ayin — 1)+ x(n) (2.4.7)

where a is a constant. Figure 2.31 shows a block diagram realization of the system.
In comparing this system with the cumulative averaging system described by the
input—output equation (2.4.3), we observe that the system in (2.4.7) has a constant
coefficient (independent of time), whereas the system described in (2.4.3) has time-
variant coefficients. As we will show, (2.4.7) is an input-output equation for a
linear time-invariant system, whereas (2.4.3) describes a linear time-variant system.

Now, suppose that we apply an input signal x(n) to the system for n > 0.
We make no assumptions about the input signal for n < 0, but we do assume
the existence of the initial condition v{—1). Since (2.4.7) describes the system
output implicitly, we must solve this equation to obtain an explicit expression for
the system output. Suppose that we compute successive values of y(n) for n > 0,
beginning with y(0). Thus

y(0) = ay(-1) + x(0)
(1) = av(® + x(1) = a’y(~1) + ax(0) + x(1)
¥(2) = ay(1) 4 x(2) = @’ v(—=1) + a’x(0) + ax(1) + x{2)

[l

y{n) = ay(n — 1) +x(n)

= a"“y(—l) +a"x(0) +a" x4+ +ax(n~ 1) + x(n)

or, more compactly,

n
y(n) = a”“y(—l) + Za"x(n —k) n=0 (2.4.8)
k=0

The response y(n) of the system as given by the right-hand side of (2.4.8)
consists of two parts. The first part, which contains the term y(—1), is a result of
the initial condition y(—1) of the system. The second part is the response of the
system to the input signal x(n).

If the system is initially relaxed at time n = 0, then its memory (i.e., the
output of the delay) should be zero. Hence y(—1) = 0. Thus a recursive system is
relaxed if it starts with zero initial conditions. Because the memory of the system
describes, in some sense, its “state,” we say that the system is at zero state and
its corresponding output is called the zero-state response or forced response, and



Sec. 2.4 Discrete-Time Systems Described by Difference Equations 97

is denoted by v(n). Obviously. the zero-state response or forced response of the
system (2.4.7) is given by

n
Vosn) = Zakx(n — k) n>0 (2.4.9
k=0
It is interesting to note that {2.4.9) 1s a convolution summation involving the
input signal convolved with the impulse response

hny = a"un) (2.4.10)

We also observe that the system described by the first-order difference equation
in (2.4.7) is causal. As a result. the lower limit on the convohution summation in
(2.4.9) is k = (. Furthermore, the condition y(—1) = 0 implies that the input signal
can be assumed causal and hence the upper limit on the convolution summation
in (2.4.9) is n, since x(n — k) = 0 for k > n. In effect, we have obtained the result
that the relaxed recursive system described by the first-order difference equation
in (2.4.7). is a linear time-invariant IIR svstem with impulse response given by
(2.4.10).

Now. suppose that the system described by (2.4.7) is initially nonrelaxed [i.c..
v(~1) # 0] and the input x(n) = 0 for all n. Then the output of the system with
zero input is called the zero-input response or natural response and is denoted by
Vilm). From (2.4.7). with x(n) = 0 for —>x < n < o, we obtain

Vi) = a" M v=1) n=0 241D

We observe that a recursive system with nonzero initial condition is nonrelaxed
in the sense that it can produce an output without being excited. Note that the
zero-input response is due to the memoryv of the system.

To summarize. the zero-input response is obtained by setting the input signal
to zero, making it independent of the input. It depends only on the nature of the
system and the initial condition. Thus the zero-input response is a characteristic of
the svstem itself, and it is also known as the natural or free response of the svstem.
On the other hand. the zero-state response depends on the nature of the sysiem
and the input signal. Since this output is a response forced upon it by the input
signal, it is usuallv called the forced response of the system. In general. the total
response of the system can be expressed as v(n) = v;i(n) + vasin).

The system described by the first-order difference equation in (2.4.7) is the
simplest possible recursive svstem in the general class of recursive systems de-
scribed by linear constant-coefficient difference equations. The general form for
such an equation is

N M
yin)=— Za‘_v(n — k) + Zbkx(n — k) (2.4.12)
k=1 =0
or, equivalently,

N M
Zaky(n —k) = Zbkx(n —k) a =1 (2.4.13)
k=0 =0
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The integer N is called the order of the difference equation or the order of the
system. The negative sign on the right-hand side of (2.4.12) is introduced as a
matter of convenience to allow us to express the difference equation in (2.4.13)
without any negative signs.

Equation (2.4.12) expresses the output of the system at time n directly as
a weighted sum of past outputs v(n — 1), ¥(n — 2),.... y(n — N) as well as past
and present input signals samples. We observe that in order to determine y(n)
for n > 0, we need the input x(r) for all n > 0, and the initial conditions v(-1),
y(=2)..... ¥(=N). In other words, the initial conditions summarize all that we
need to know about the past history of the response of the system to compute
the present and future outputs. The general solution of the N-order constant-
coefficient difference equation is considered in the following subsection.

At this point we restate the properties of linearity, time invariance, and
stability in the context of recursive systems described by linear constant-coefficient
difference equations. As we have observed. a recursive system may be relaxed or
nonrelaxed, depending on the initial conditions. Hence the definitions of these
properties must take into account the presence of the initial conditions.

We begin with the definition of linearity. A system is linear if it satisfies the
following three requirements:

1. The total response is equal to the sum of the zero-input and zero-state re-
sponses [i.e.. y(n) = v;(n) + vau(m)).

2. The principle of superposition applies to the zero-state response (zero-siate
linear).

3. The principle of superposition applies to the zero-input response (zero-input
linear).

A system that does not satisfy all three separate requirements is by definition
nonlinear. Obviously, for a relaxed svstem, y;(r) = 0, and thus requirement 2,
which is the definition of linearity given in Section 2.2.4, is sufficient.

We illustrate the application of these requirements by a simple example.

Example 2.4.2

Determine if the recursive system defined by the difference equation
v(ny =avin — 1) + x(n)
is linear.

Solution By combining (2.4.9) and (2.4.11), we obtain (2.4.8). which can be expressed
as

¥(n) = yai(n) + yus(n)

Thus the first requirement for linearity is satisfied.
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To check for the second requirement. let us assume that x(n) = ¢ x;(n) +
cavatn}. Then (2.4.9) gives
Yult) = Z(Ik[ClA'l(ll — k) +cxan — k)]
k=i
" n
= ¢ Za‘x,(n —k)+cn Za‘.x:(n —k)
k=0 k=0

NI
o

, Rl
= Oy, () ey, (n)

Hence y,.(n) satisfies the principle of superposition. and thus the system is zero-state
linear.
Now let us assume that ¥(=1) = ¢;y (=1} + cava(—=1). From (2.4.11) we obtain

vatn) = @ Hemi=1) + caxa(=1)

= ca™ (=1 a" =T

= ('\_\‘,‘“'(nj + z':)':f"{n)

Hence the system is zero-input linear.
Since the system satisfies all three conditions for linearity. it is lincar.

Although it is somewhat tedious, the procedure used in Example 2.4.2 to
demonstrate linearity for the system described by the first-order difference equa-
tion, carries over directly to the general recursive systems described by the constant-
coefficient difference equation given in (2.4.13). Hence. a recursive system
described by the linear difference equation in {2.4.13) also satisfies all three con-
ditions in the definition of linearity, and therefore it is linear.

The next question that arises is whether or not the causal linear system
described by the linear constant-coefficient difference equation in (2.4.13) is time
invariant. This is fairly easy, when dealing with systems described by explicit
input—-output mathematical relationships. Clearly. the system described by (2.4.13)
is time invariant because the coefficients q; and b, are constants. On the other
hand. if one or more of these coefficients depends on time. the svstem is time
variant, since its properties change as a function of time. Thus we conclude that
the recursive system described by a linear constant-coefficient difference equation is
linear and time invariant.

The final issue is the stability of the recursive system described by the linear,
constant-coefficient difference equation in (2.4.13). In Section 2.3.6 we introduced
the concept of bounded input-bounded output (BIBO) stability for relaxed sys-
tems. For nonrelaxed systems that may be nonlinear, BIBO stability should be
viewed with some care. However, in the case of a linear time-invariant recursive
system described by the linear constant-coefficient difference equation in (2.4.13),
it suffices to state that such a system is BIBO stable if and only if for every
bounded input and every bounded initial condition, the total system response is
bounded.
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Example 2.4.3

Determine if the linear time-invariant recursive system described by the difference
equation given in (2.4.7) is stable.

Solution Let us assume that the input signal x{(r) is bounded in amplitude, that is,
jx(n)] < M, < oc for all n > 0. From (2.4.8) we have

)] < @™ y(=Dl+ | Y a'xtn -k, 20
[ k=0
< laI™y(=DI+ M, Y lal', n20
1
< la D1+ M=y om0
1—|a|

If n is finite, the bound M, is finite and the output is bounded independently of the
value of a. However, as n — oo, the bound M, remains finite only if jaj < 1 because
la|” - Casn — o. Then M, = M, /(1 — |al).

Thus the system is stable only if ja| < 1.

For the simple first-order system in Example 2.4.3, we were able to express
the condition for BIBO stability in terms of the system parameter a. namely |a| < 1.
We should stress, however, that this task becomes more difficult for higher-order
systems. Fortunately, as we shall see in subsequent chapters, other simple and
more efficient techniques exist for investigating the stability of recursive systems.

2.4.3 Solution of Linear Constant-Coefficient Difference
Equations

Given a linear constant-coefficient difference equation as the input—output rela-
tionship describing a linear time-invariant system, our objective in this subsection
is to determine an explicit expression for the output y(n). The method that is
developed is termed the direct method. An alternative method based on the z-
transform is described in Chapter 3. For reasons that will become apparent later,
the z-transform approach is called the indirect method.

Basically, the goal is to determine the output y(n), n > 0, of the system given
a specific input x(n), n > 0, and a set of initial conditions. The direct solution
method assumes that the total solution is the sum of two parts:

y(n) = yu(n) + yp(n)

The part y4(n) is known as the homogeneous or complementary solution, whereas
yp(n) is called the particular solution.

The homogeneous solution of a difference equation. We begin the
problem of solving the linear constant-coefficient difference equation given by
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(2.4.13) by assuming that the input x(n) = 0. Thus we will first obtain the solution
to the homogeneous difference equation

N
Y axtn—k =0 (2.4.14)

A=}

The procedure for solving a linear constant-coefficient difference equation
directly is very similar to the procedure for solving a linear constant-coefficient
differential equation. Basically, we assume that the solution is in the form of an
exponential, that is.

Yaln) = A" (2.4.15)

where the subscript # on y(n) is used to denote the solution to the homogeneous
difference equation. If we substitute this assumed solution in {2.4.14), we obtain
the polynomial equation

N
Z flk;\nmA =0

k=0

or
NG AT d i T4 ravaktay) =0 (2.4.16)

The polynomial in parentheses is called the characteristic polynomial of the
system. In general, it has N roots, which we denote as A;. A2.....Ay. The roots
can be real or complex valued. In practice the coefficients a1. a;. .. ., an are usually

real. Complex-valued roots occur as complex-conjugate pairs. Some of the N roots
may be identical. in which case we have multiple-order roots.

For the moment, let us assume that the roots are distinct, that is, there are
no multiple-order roots. Then the most general solution to the homogeneous
difference equation in (2.4.14} is

Vln) = €37+ Coaly 4 - + Ch Al (2.4.17)

where C1. Ca. ... Cy are weighting coefficients.

These coefficients are determined from the initial conditions specified for the
system. Since the input x(n} = 0. (2.4.17) can be used to obtain the zero-inpur
response of the system. The following examples illustrate the procedure.

Example 2.4.4

Determine the homogeneous solution of the system described by the first-order dif-
ference equation

v(m) +avin—1)=x(n) (2.4.18)
Solution The assumed solution obtained by setting x(n) =0 is

w(n) = A"
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When we substitute this solution in (2.4.18), we obtain [with x(n) = 0]
g =0

o+ a) =0

it

A= —a
Therefore, the solution to the homogeneous difference equation is
yu(n) = CA" = C(~ay)" (2.4.19)

The zero-input response of the system can be determined from (2.4.18) and
(2.4.19). With x(n) =0, (2.4.18) yields

¥(0) = —ay¥(-1)
On the other hand, from (2.4.19) we have
w0 =C
and hence the zero-input response of the system is
yaln) = (=a)"'y(-1)  nz0 (2.4.20)

With a = —ay, this result is consistent with (2.4.11) for the first-order system, which
was obtained earlier by iteration of the difference equation.

Example 2.4.5

Determine the zero-input response of the system described by the homogeneous
second-order difference equation

¥(n) =3y(n—-1)—4y(n-2)=0 (24.21)

Solution First we determine the solution to the homogeneous equation. We assume
the solution to be the exponential

wl(n)=2"
Upon substitution of this solution into (2.4.21), we obtain the characteristic equation
st —4t =0
M- =0

Therefore, the roots are A = —1, 4, and the general form of the solution to the
homogeneous equation is

C]Nl' + Czl;

(n)
y” 2422)

G(=D"+ G@r"

The zerc-input response of the system can be obtained from the homogenous
solution by evaluating the constants in (2.4.22), given the initial conditions y(—1) and
y{~2). From the difference equation in (2.4.21) we have

¥(0) = 3y(~1) +4y(-2)

y(1) = 3y(0) + 4y(-1)
= 3[3y(-1) + 4y(-2)} + 4y(-1)
= 13y(=1) + 12y(-2)
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On the other hand. from (2.4.22) we obtain
v = G+ G
vy = =C +4C;
By equating these two sets of relations. we have
C +C: = 3v(-D+4v-2)
—C1 440 = 13v(—D + 12v(=2)
The solution of these two equations 1s
1= —iv(=D+iv=2)
Cyo= Evi—l+ Lyvi-2y

Thercfore, the zero-input response of the svstem is

Vanl = [=ivi=1i= iv(=21= 1)
. ' (2.4.23)
HEv=T+ Be=2))dy 220
For example, if ¥(=2) =0 and v¢(-1) =35 then C; = —1. > = 16, and hence

Vit = (= 1V £ (@)t n=0

Thesc examples iflustrate the method for obtaining the homogeneous solution
and the zero-input response of the system when the characteristic equation contains
distinct roots. On the other hand. il the characteristic equation conlains multiple
roots. the form of the solution given in (2.4.17) must be modified. For example. if
#1 is a root of multiplicity m, then (2.4.17) becomes

yilny = CiAY + Cond + Cam™ill + -+ + Cpur™ A7

(2.4.24)
+ Cm+];",',,,+1 R P

The particular solution of the difference equation. The particular so-
lution v,(n) is required to satisfy the difference equation (2.4.13) for the specific
input signal x(n). n > 0. In other words, v,(n) is any solution satisfying

N M
Zak)',,(n —L) =Zbkx(n-k) ap = 1 (2425)
=0 k=l

To solve (2.4.25). we assume for y,(n), a form that depends on the form of the
input x(n). The following example illustrates the procedure.

Example 2.4.6
Determine the particular solution of the first-order difference equation
¥ +ayin — 1) = x(n). iay| <1 (2.4.26)
when the input x{(r) is a unit step sequence, that is.

x(n) = u(n)
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Solution  Since the input sequence x(n) is a constant for n > 0. the form of the solu-
tion that we assume is also a constant. Hence the assumed solution of the difference
equation to the foreing function x(n). called the particular solution of the difference
equation, is

ypln) = Ku(n)

where K is a scale factor determined so that (2.4.26) is satisfied. Upon substitution
of this assumed solution into (2.4.26). we obtain

Kuin)y+a Kuln — 1) = u(n)

To determine K. we must evaluate this equation for any n > 1. where none of the
terms vanish. Thus

It

K+a K
1
- 1+ a

Therefore, the particular solution to the difference equation is

uin) (2427)

ypln) =

1+a

In this example, the input x(n). n > 0. is 2 constant and the form assumed
for the particular solution is also a constant. If x(n) is an exponential, we would
assume that the particuiar soiution is also an exponential. If x{n) were a sinusoid,
then v, (n) would also be a sinusoid. Thus our assumed form for the particular
solution takes the basic form of the signal x(n). Table 2.1 provides the general
form of the particular solution for several types of excitation.

Example 2.4.7
Determine the particular solution of the difference equation
¥y =ivin—1)— iv(n —2) + x(n)

when the forcing function x(n) = 2”. n > 0 and zero elsewhere.

TABLE 2.1 GENERAL FORM OF THE PARTICULAR
SOLUTION FOR SEVERAL TYPES OF INPUT

SIGNALS

Input Signal. Particular Solution,
x{n) ypln)

A (constant) K
AM" KM
AnM Kon™ + Kin™=! . + Ky
AnM AM(Kon™ + Kin*™! 4+ Ky

A cos wpn .
{ A sin won l K, coswgn + K3 sinwon
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Solution The form of the particular solution is
ypln) = K2" n>0
Upon substitution of v,(n) into the difference equation, we obtain
K2u(n) = 3K 'u(n — 1) = LK2%2u(n ~ 2) + 27u(n)

To determine the vatue of K, we can evaluate this equation for any n > 2. where
nene of the terms vanish. Thus we obtain

5 ]
4K = (;(ZK)— EK + 4
and hence K = '<—‘ Therefore. the particular solution is

ypm =42 an=0

We have now demonstrated how to determine the two components of the
solution to a difference equation with constant coefficients. These two components
are the homogeneous solution and the particutar solution. From these two com-
ponents, we construct the total solution from which we can obtain the zero-state
response.

The total solution of the difference equation. The linearity property of
the linear constant-coefficient difference equation allows us to add the homoge-
neous solution and the particular solution in order to obtain the total solution. Thus

¥(n) = yp(n) + yp(n)

The resultant sum v(n) contains the constant parameters {C;} embodied in the
homogeneous solution component y,(n). These constants can be determined to
satisfy the initial conditions. The following example illustrates the procedure,

Example 2.4.8
Determine the total solution y(n), n > 0. 1o the difference equation
() +ayy(n —1) =x(n) (2.4.28)
when x(n) is a unit step sequence [i.e., x(n) = u(n)) and y(—1) is the initial condition.
Solution From (2.4.19) of Exampie 2.4.4, the homogeneous solution is
() = Cl—ay)'
and from (2.4.26) of Example 2.4.6, the particular solution is

=TTy

Consequently, the total solution is

yin) = C(=a1)" + n>0 (2.4.29)

1+a

where the constant C is determined to satisfy the initial condition y(—1).
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In particular. suppose that we wish to obtain the zero-siate response of the
system described by the first-order difference equation in (2.4.28). Then we set
v(—=1) = 0. To evaluate C. we evaluate (2.4.28) at n = 0 obtaining

VO +ayv(—=1) = 1
»0) =1
On the other hand. (2.4.29) evaluated at n = 0 vields

1
) =C+
1+a
Consequently.
1
C+ =1
I+
. al
1 +a

Substitution for C inte (2.4.29) yields the zero-state response of the system
1= (—ayy™!
Vuln) = ———r n={
I +a

If we evaluate the parameter C in (2.4.29) under the condition that v(—1) # 0. the
total solution will include the zero-input response as well as the zero-state response
of the svstem. In this case (2.4.28) yicelds

v +avi=1) =1
¥ = —apvi—=1+1
On the other hand. (2.4.29) vields

1
yhy=C+ ]

+ a;
By equating these two relations. we obtain
1

+ = 4(11_\’(—1)4'1
1+a
C = -au’(—])—k—ﬂ—
1 +a

Finally, if we substitute this value of C into (2.4.29). we obtain

1_(_0”"*1
3 —_— —_— n+l O - —_—
yin) = (—ap™ (=D + 1+a nz0 (2.4.30)

yaln} + yu(n)

We observe that the system response as given by (2.4.30) is consistent with
the response v(n) given in (2.4.8) for the first-order system (with a = —ay). which
was obtained by solving the difference equation iteratively. Furthermore, we note
that the value of the constant C depends both on the imtial condition v(—1) and
on the excitation function. Consequently, the value of C influences both the zero-
input response and the zero-state response. On the other hand, if we wish to



Sec. 2.4 Discrete-Time Systems Described by Difference Equations 107

obtain the zero-state response only, we simply solve for C under the condition
that y(—1} = 0, as demonstrated in Example 2.4.8.

We further observe that the particular sotution to the difference equation can
be obtained from the zero-state response of the system. Indeed, if |a;| < 1, which
is the condition for stability of the system, as will be shown in Section 2.4.4, the
limiting value of y,s(n) as n approaches infinity, is the particular solution, that is,

. 1
Ypin) = nlif{.lo)u(n) =T7a

Since this component of the system response does not go to zero as n approaches
infinity, it is usually called the steady-state response of the system. This response
persists as long as the input persists. The component that dies out as n approaches
infinity is called the transient response of the system.

Example 2.4.9

Determine the response v(n), n > 0. of the system described by the second-order
difference equation

vin) ~3v(n—1)—4yv(n—2) = x(n) + 2x(n = 1) (2.4.31)
when the input sequence is
x{n) = 4"u(n)

Solution We have already determined the solution to the homogeneous difference
equation for this system in Example 2.4.5. From (2.4.22} we have

win) = G(=1)" + G4 (2.432)

The particular solution to (2.4.31}) is assumed to be an exponential sequence of the
same form as x(n). Normally, we could assume a solution of the form

¥p(n) = K(4)"u(n)

However, we observe that y,(n) is already contained in the homogeneous solution,
so that this particular solution is redundant. Instead, we select the particular solution
to be linearly independent of the terms contained in the homogeneous solution. In
fact, we treat this situation in the same manner as we have already treated multiple
roots in the characteristic equation. Thus we assume that

yp(n) = Kn{4)u(n) (2.4.33)
Upon substitution of (2.4.33) into (2.4.31), we obtain
Kn(@)"u(n) - 3K(n — 1)(4)" 'u(n - 1) — 4K (n — 2)(4)"2uin — 2)
= @)"u(n) + 204" u(n — 1)

To determine K, we evaluate this equation for any n > 2, where none of the
unit step terms vanish. To simplify the arithmetic, we select » = 2, from which we
6

obtain K = 2. Therefore,

Yoln} = $n(d) u(n) (2.4.34)
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The total selution to the difference equation is obtained by adding (2.4.32) to
(2.4.34). Thus
¥ = CH=1" + G + 2n@@" nz0 (2.4.35)

where the constants C; and C- are determined such that the initial conditions are
satisfied. To accomplish this. we return to (2.4.31). from which we obtain

W(0) = 3y(=1) +4y(=2) + 1

v(l) = 3p(0) +4y(-1)+ 6

By(=1) +12y(=2) + 9

On the other hand, (2.4.35) evaluated at » = 0 and n = 1 vields
y0) = C+ G

I

]

¥(l) = —C)+4C; + %
We can now equate these two sets of retations to obtain C; and .. In so doing. we
have the response due to initial conditions y(~1} and ¥(—2) (the zero-input response).
and the zero-state or forced response.
Since we have already sotved for the zero-input respense in Example 2.4.5. we
can simplify the computations above by setting v(—=1) = v(—2) = 0. Then we have
C+C =1
-0 +4C+ ¥ =9

Hence € = —5z and C; = % Finally. we have the zero-state response to the forcing
function x(n) = (4)"u(n) in the form
Yult) = = (1 + B4 + End) az0 {2.4.36)

The total response of the system. which includes the response to arbitrary initial
conditions. is the sum of (2.4.23) and (2.4.36).

2.4.4 The Impulse Response of a Linear Time-Invariant
Recursive System

The impulse response of a linear time-invariant system was previously defined as
the response of the system to a unit sample excitation [i.e., x(n} = 8(n)]. In the
case of a recursive system, h{n) is simply equal to the zero-state response of the
system when the input x{n) = §(n) and the system is initially relaxed.

For example, in the simpie first-order recursive system given in (2.4.7), the
zero-state response given in (2.4.8), is

Yulny =Y dxin—k) (2.437)
k=0

With x(n) = §(n) is substituted into (2.4.37), we obtain

Yasln) = 3 a*8(n — k)
k=0

" n>0

1
8



Sec. 2.4 Discrete-Time Systems Described by Ditference Equations 109

Hence the impulse response of the first-order recursive system described by
24Ty is

h(n) = a"uin) (2.4.38)
as indicated in Section 2.4.2.

In the general case of an arbitrary, linear time-invariant recursive system. the
zero-state response expressed in terms of the convolution summation is

Yes(n) = Zh(k)x(n —k) n=>0 (2.4.39
k=0
When the input is an impulse [i.e.. x(n) = §(n)]. (2.4.39) reduces to
Yos(n) = h(n) (2.4.40)

Now, let us consider the problem of determining the impulse response /(n) given a
linear constant-coefficient difference equation description of the svstem. In terms
of our discussion in the preceding subsection, we have established the fact that the
total response of the system to any excitation function consists of the sum of two
solutions of the difference equation: the solution to the homogeneous eguation
plus the particular solution to the excitation function. In the case where the exci-
tation is an impulse, the particular solution is zero. since x(n) = { for n > (. that is,

yp(n) = 0
Consequently, the response of the system to an impulse consists only of the solu-
tion to the homogeneous equation, with the (C,} parameters evaluated to satisly

the initial conditions dictated by the impulse. The following example illustrates
the procedure for obtaining h(n) given the difference equation for the system.

Example 2.4.10

Determine the impulse response h(n) for the system described by the second-order
difference equation

v(n) —3y(n-1)—dy(n - =x(n)+2x(n - 1) (2.4.41)

Solution We have already determined in Example 2.4.5 that the solution to the
homogeneous difference equation for this system 1s

win) = C(=1)" + C2(4)" n>0 (2.4.42)

Since the particular solution is zero when x(n) = (n). the impulse response of the svs-
tem is simply given by (2.4.42), where C; and C; must be evaluated to satisfy (2.4.41).
For n =0 and n =1, (2.4.41) yields

¥0) =1
¥y =3y®+2=35

where we have imposed the conditions y(—1) = y{-2} = 0, since the system must be
relaxed. On the other hand, (2.4.42) evaluated at n = 0 and n = 1 yields

yO) =Ci+G
y() = -C, +4C,
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By solving these two sets of equations for C; and C,, we obtain

— 1 — 6
C=-i G=¢

Therefore, the impulse response of the system is
Riny = [=1(=1)" + £y Juin)

We make the observation that both the simple first-order recursive system
and the second-order recursive system have impulse responses that are infinite in
duration. In other words, both of these recursive systems are IIR systems. In
fact, due to the recursive nature of the system, any recursive system described by
a linear constant-coefficient difference equation is an IIR system. The converse
is not true, however. That is, not every linear time-invariant IIR system can be
described by a linear constant-coefficient difference equation. In other words,
recursive systems described by linear constant-coefficient difference equations are
a subclass of linear time-invariant IIR systems.

The extension of the approach that we have demonstrated for determin-
ing the impulse response of the first- and second-order systems. generalizes in a
straightforward manner. When the system is described by an Nth-order linear
difference equation of the type given in (2.4.13). the solution of the homogeneous
equation is

.
yuln) =y Ceny
k=1

when the roots {4} of the characteristic potynomial are distinct. Hence the impulse
response of the system is identicai in form. that is,

¥
hin) =y Cir (2.4.43)

k=1
where the parameters {C;} are determined by setting the initial conditions y(-1) =

c=y(=N) =0,

This form of h(n) allows us to easily relate the stability of a system. described
by an Nth-order difference equation, to the values of the roots of the characteristic
polynomial. Indeed, since BIBO stability requires that the impulse response be
absoluteiy summable, then, for a causal system, we have

oc oc N N o0
Yo=Y (3 g < G Y Ikl
n=0 k=1 k=1 n=0

n=0

Now if |i:| < 1 for all &, then

il}q‘[" < o
=0

and hence

Y lh(n)] < oo

n=0
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On the other hand, if one or more of the | > 1, h(n) is no longer absolutely
summable, and consequently, the system is unstable. Therefore, a necessary and
sufficient condition for the stability of a causal IIR system described by a linear
constant-coefficient difference equation, is that all roots of the characteristic poly-
nomial be less than unity in magnitude. The reader may verify that this condition
carries over to the case where the system has roots of multiplicity m.

2.5 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS

Our treatment of discrete-time systems has been focused on the time-domain char-
acterization and analysis of linear time-invariant systems described by constant-
coefficient linear difference equations. Additional analytical methods are devel-
oped in the next two chapters, where we characterize and analyze LTI systems in
the frequency domain. Two other important topics that will be treated later are
the design and implementation of these systems.

In practice, system design and implementation are usually treated jointly
rather than separately. Often, the system design is driven by the method of
implementation and by implementation constraints, such as cost, hardware lim-
itations, size limitations, and power requirements. At this point, we have not
as yet developed the necessary analysis and design tools to treat such complex
issues. However, we have developed sufficient background to consider some ba-
sic implementation methods for realizations of LTI systems described by linear
constant-coefficient difference equations.

2.5.1 Structures for the Realization of Linear
Time-Invariant Systems

In this subsection we describe structures for the realization of systems described
by linear constant-coefficient difference equations. Additional structures for these
systems are introduced in Chapter 7.

As a beginning, let us consider the first-order system

y(n) = —a;y{n — 1) + box(n) + byx(n — 1) 2.5.1)

which is realized as in Fig. 2.32a. This realization uses separate delays (memory)
for both the input and output signal samples and it is called a direct form I structure.
Note that this system can be viewed as two linear time-invariant systems in cascade.
The first is 2 nonrecursive, system described by the equation

v(n) = box(n) + byx(n — 1) (25.2)
whereas the second is a recursive system described by the equation
y(n) = —ayy(n — 1) + v(n) (2.5.3)

However, as we have seen in Section 2.3.4, if we interchange the order of the
cascaded linear time-invariant systems, the overall system response remains the
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same. Thus if we interchange the order of the recursive and nonrecursive systems,
we obtain an alternative structure for the realization of the svstem described by
(2.5.1). The resulting system is shown in Fig. 2.32b. From this figure we obtain
the two difference equations

12
L

win) = —aqqwin—1)+x(n (2.54)
5

)
which provide an alternative algorithm for computing the output of the system
described by the single difference equation given in (2.5.1). In other words. the
two difference equations (2.5.4) and (2.5.5) are equivalent to the single difference
equation (2.5.1).

A close observation of Fig. 2.32 reveals that the two delay elements contain
the same input w(n) and hence the same output w(n — 1). Consequently. these
two elements can be merged into one delay, as shown in Fig. 2.32c. In contrast

h

o8]

y(n) = bywn) + bywn — 1) (

x(n) by /‘\\ vin) f‘\ Ny
+ +
I
' i

i —ay

(a)

x{n) /‘*\ win} by win
+ - +
o/ | i < )

i

—ay by
wn — 1) win—1)
(b)
x{n) /—\ win) /‘\ vin)

+ +

o by N
—a by
win — 1)

{c)

Figure 2.32 Steps in converting from the direct form I realization in (a) to the
direct form I realization in (¢).
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to the direct form I structure, this new realization requires only one delay for
the auxiliary quantity w(n), and hence it is more efficient in terms of memory
requirements. It is called the direct form II structure and it is used extensively in
practical applications.

These structures can readily be generalized for the general linear time-
invariant recursive system described by the difference equation

N M
Y ==Y aytn—k)+ Y bx(n —k) (2.5.6)
k=1 k=0
Figure 2.33 illustrates the direct form I structure for this system. This structure
requires M + N delays and N + M + 1 multiplications. It can be viewed as the
cascade of a nonrecursive system

M
) =Y byxin = k) 2.5.7)
k=0
and a recursive system
N
Y ==Y avn -k + vn) 2.5.8)

k=1

By reversing the order of these two systems as was previously done for the
first-order system, we obtain the direct form I structure shown in Fig. 2.34 for

x(m) by N TN
o >

by —a

Figure 2.33 Direct form I structure of the system described by (2.5.6).
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bo
x(n) /,—\ /:\ Mn)
O o/
+ { +
+ +
1
! ot ‘
i |
/J\ —dy win-3) by
+ +
N
? ! ?
- a n—M) b
G\ fp o w(n Y I
J M=N-2)
]
l/;\ —ay -\
AN
—ay
Figure 234 Direct form II structure for the system described by (2.5.6).
N > M. This structure is the cascade of a recursive system
N
win) = — Zakw(n — k) 4+ x(n) 2.5.9)
k=1
followed by a nonrecursive system
M
Yo =Y baw(n — k) (2.5.10)
k=0

We observe that if N > M. this structure requires a number of delays equal to
the order N of the system. However, if M > N, the required memory is specified
by M. Figure 2.34 can easily by modified to handle this case. Thus the direct form
II structure requires M + N + 1 multiplications and max{M, N} delays. Because it
requires the minimum number of delays for the realization of the system described
by (2.5.6), it is sometimes called a canonic form.
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A special case of (2.5.6) occurs if we set the system parameters q; = 0.

k=1,..., N. Then the input—output relationship for the system reduces to
M
¥y =3 bex(n—k) (2.5.11)
=0

which is a nonrecursive linear time-invariant system. This system views onlv the
most recent M + 1 input signal samples and, prior to addition, weights each sample
by the appropriate coefficient b; from the set {;}. In other words. the system
output is basically a weighted moving average of the input signal. For this reason
it is sometimes called a moving average (MA) system. Such a system is an FIR
system with an impulse response h(k) equal to the coefficients &;. that is.

by, O0<k=sM

hik) = {0, otherwise

If we return to (2.5.6) and set M = 0, the general linear time-invariant system
reduces to a “purely recursive”™ system described by the difference equation

(2.5.12)

N
y(n} = —Za;y(n—k)—‘rb;;x(ﬁ) (2.5.13%

k=1
In this case the system output is a weighted linear combination of A past outputs

and the present input.

Linear time-invariant systems described by a second-order difference equa-
tion are an important subclass of the more general systems described by (2.5.6)
or (2.5.10) or (2.5.13). The reason for their importance will be explaincd later
when we discuss quantization effects. Suffice to say at this point that second-order
systems are usually used as basic building blocks for realizing higher-order systems.
The most general second-order system is described by the difference equation

y(n) = —ayy(n—1) —azv(n —2) + byx(n)
+ byx(n ~ 1)+ byx(n —2)

which is obtained from (2.5.6) by setting N = 2 and M = 2. The direct form Il
structure for realizing this system is shown in Fig. 2.35a. If we set a1 = a; = 0.
then (2.5.14) reduces to

y(n) = box(r) + bix(n — 1) + bax(n = 2) (2.5.15)

which is a special case of the FIR systemn described by (2.5.11). The structure
for realizing this system is shown in Fig. 2.35b. Finally, if we set b, = b2 = 0
in (2.5.14), we obtain the purely recursive second-order system described by the
difference equation

(2.5.14)

y(n) = —ary{n — 1) — ayy(n — 2) + box(n) (2.5.16)

which is a special case of (2.5.13). The structure for realizing this system is shown
in Fig. 2.35c¢.
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Figure 2.35 Structures for the realization of second-order systems: (a) general
second-order system; (b) FIR system: (c) “purely recursive system”

2.5.2 Recursive and Nonrecursive Realizations of FIR
Systems

We have already made the distinction between FIR and IIR systems, based on
whether the impulse response h(n) of the system has a finite duration, or an infi-
nite duration. We have also made the distinction between recursive and nonrecur-
sive systems. Basically, a causal recursive system is described by an input-output
equation of the form

yin) = Flytn=1),....y(n = N). x(n), ... x(n — M)] (2.5.17)

and for a linear time-invariant system specifically, by the difference equation

N M
Yim == aymn -k + Y bixin — k) 2.5.18)
k=0

k=1
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On the other hand, causal nonrecursive systems do not depend on past values of
the output and hence are described by an input-output equation of the form

¥(n) = Fix(n), x(n — 1), ..., x(n — M)] 2.5.19)

and for linear time-invariant systems specifically, by the difference equation in
(25.18) witha, =0fork=1,2,..., N.

In the case of FIR systems, we have already observed that it is always possible
to realize such systems nonrecursively. In fact, witha; = 0, k =1, 2,..., N, in
(2.5.18), we have a system with an input-output equation

M
y(m) =Y bix(n k) (2.5.20)
k=0

This is a nonrecursive and FIR system. As indicated in (2.5.12), the impulse
response of the system is simply equal to the coefficients {5,}. Hence every FIR
system can be realized nonrecursively. On the other hand, any FIR system can
also be realized recursively. Although the general proof of this statement is given
later, we shall give a simple exampie to illustrate the point.

Suppose that we have an FIR system of the form

] M
v(n) = a1 Z"‘" —k) (2.5.21)

k=0
for computing the moving average of a signal x(n). Clearly, this system is FIR with
impulse response

1
hin) = —— O<n<M
(n} M1 =n=

Figure 2.36 illustrates the structure of the nonrecursive realization of the system.
Now, suppose that we express (2.5.21) as

1 M
y(n) = méx(n—l—k}

1
M+1

+ [x(n) —x(n = 1- M)]

:_ 1[x(n) —x(n~1-M) (2.5.22)

yn — 1)+

M

ato]

L
M+1

Figure 2.36 Nonrecursive realization of an FIR moving average system.



118 Discrete-Time Signals and Systems Chap. 2

Now. (2.5.22) represents a recursive realization of the FIR svstem. The structure
of this recursive realization of the moving average svstem is illustrated in Fig. 2.37.

In summary, we can think of the terms FIR and IIR as general characteristics
that distinguish a type of linear time-invariant svstem. and of the terms recursive
and nonrecursive as descriptions of the structures for realizing or implementing
the system.

xtn—-M—-1

M- 1)

Figure 2.37  Recursive realization of an FIR moving average svstem,

2.6 CORRELATION OF DISCRETE-TIME SIGNALS

A mathematical operation that closelv resembles convolution is correlation. Just
as in the case of convolution. two signal sequences are involved in correlation.
In contrast to convolution, however. our objective in computing the correlation
between the two signals is to measure the degree to which the two signals are
similar and thus to extract some information that depends to a large extent on
the application. Correlation of signats ts often encountered in radar. sonar. digital
communications, geology, and other areas in science and engineering.

To be specific. let us suppose that we have two signal sequences x(n} and
v(n) that we wish to compare. In radar and active sonar applications. x(n) can
represent the sampled version of the transmitted signal and v(n) can represent the
sampled version of the received signal at the output of the analog-to-digital (A/D)
converter. If a target is present in the space being searched by the radar or sonar.
the received signal v(n} consists of a delaved version of the transmitted signal.
reflected from the target. and corrupted by additive noise. Figure 2.38 depicts the
radar signal reception problem.

We can represent the received signal sequence as

y(n) = ax(n — D) + w(n) (2.6.1)

where o is some attenuation factor representing the signal loss involved in the
round-trip transmission of the signal x(n), D is the round-trip delay, which is
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Figure 2.38 Radar target detection.

assumed to be an integer multiple of the sampling interval, and w(n) represents
the additive noise that is picked up by the antenna and any noise generated by the
electronic components and amplifiers contained in the front end of the receiver.
On the other hand, if there is no target in the space searched by the radar and
sonar, the received signal y(n) consists of noise alone.

Having the two signal sequences, x(n), which is called the reference signal or
transmitted signal, and y(n), the received signal, the problem in radar and sonar
detection is to compare y(n) and x(n) to determine if a target is present and, if
50, to determine the time delay D and compute the distance to the target. In
practice, the signal x(n — D) is heavily corrupted by the additive noise to the point
where a visual inspection of y(n) does not reveal the presence or absence of the
desired signal reflected from the target. Correlation provides us with a means for
extracting this important information from y(n).

Digital communications is another area where correlation is often used. In
digital communications the information to be transmitted from one point to an-
other is usually converted to binary from, that is, a sequence of zeros and ones,
which are then transmitted to the intended receiver. To transmit a 0 we can trans-
mit the signal sequence xo(n) for 0 < n < L—1, and to transmit a 1 we can transmit
the signal sequence x;(n) for 0 <n < L — 1, where L is some integer that denotes
the number of samples in each of the two sequences. Very often, x,(n) is selected
to be the negative of xyp(n). The signal received by the intended receiver may be
represented as

y(n) = x;(n) + w(n) i=0,1 0<n=<xlL-1 (2.6.2)
where now the uncertainty is whether xo(n) or x;(n) is the signal component in
y(n), and w(n) represents the additive noise and other interference inherent in
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any communication system. Again. such noise has its origin in the electronic
components contained in the front end of the receiver. In any case, the receiver
knows the possible transmitted sequences xo(n) and x;(n) and is faced with the task
of comparing the received signal v(rn) with both x¢(n) and x;(n) to determine which
of the two signals better matches y(n). This comparison process is performed by
means of the correlation operation described in the following subsection.

2.6.1 Crosscorrelation and Autocorrelation Sequences

Suppose that we have two real signal sequences x(n) and y(n)} each of which has
finite energy. The crosscorrelation of x(n) and y(n) is a sequence r.,(/), which is
defined as

o

reh= > xmyn—1)  1=0.%1£2, .. (2.6.3)
n=-oc
or, equivalently. as
o
Py =Y x(n+Dwny  I=0£1.%2, .. 2.6.4)
n=—0oC

The index ! is the (time) shift (or lag) parameter and the subscripts xy on the cross-
correlation sequence r,, (/) indicate the sequences being correlated. The order of
the subscripts. with x preceding y. indicates the direction in which one sequence
is shifted. relative to the other. To elaborate, in (2.6.3), the sequence x(n) is left
unshifted and v(n) is shifted by / units in time, to the right for / positive and to
the left for / negative. Equivalently, in (2.6.4), the sequence v(n) is left unshifted
and x(n) is shifted by / units in time. to the left for / positive and to the right for
! negative. But shifting x(n) to the left by / units relative to v(n) is equivalent
to shifting ¥(r) to the right by / units relative to x(n). Hence the computations
(2.6.3) and (2.6.4) yield identtcal crosscorrelation sequences.

1f we reverse the roles of x(n) and »(n) in (2.6.3) and (2.6.4) and therefore
reverse the order of the indices xy. we obtain the crosscorrelation sequence

rall) = i y(mx(n—=1) (2.6.5)
or, equivalently, -
re(l) = i y(r + Dx(n) (2.6.6)
By comparing {2.6.3) with (2.6.6) or (_27:4) with (2.6.5), we conclude that
rey (D = rye(=1) (2.6.7)

Therefore, r,,(!) is simply the folded version of r,,(I), where the foiding is done
with respect to ! = 0. Hence, ry, (/) provides exactly the same information as r,,(!),
with respect to the similarity of x(n) to y(n).
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Example 2.6.1

Determine the crosscorrelation sequence r,, (/) of the sequences

x(n) ={...0.0.2.-1.3.7.1.2. -3.0.0. .. .}

+
¥y =1{...0,0.1.-1.2.-2.4.1.-2.5.0.0...}
i
Solution Let us use the definition in {2.6.3) to compute r,,(/}. For / = 0 we have
ro(0) = Z x(n)y(n)

The product sequence vy(n) = x(n)y(n) is

vo(n) = {...,0.0.2.1.6.-14.4,2.6.0.0... }
t

and hence the sum over all values of n is
re(0) =7
For | > 0. we simply shift y(n) to the right relative to x(n) by / units. compute

the product sequence v(n) = x{n)y(n — ). and finally. sum over all values of the
product sequence. Thus we obtain

ro(l) =13, ro(2) = -18. ra(3) = 16. rotd) = -7
riy(5) =5, rev(6) = =3, ro =0 1=7
For! < 0, we shift y(n) to the left relative to x(n) by units. compute the product

sequence v;(n) = x(n)y(n —!). and sum over all values of the product sequence. Thus
we obtain the values of the crosscorrelation sequence

rev(=1) =0, re(—=2) =33, r,).(—3) = —14. ree(—4) =36
ry(=5) =19, ro(—6) = =9, re(=7) = 10, re(y=0 1< -8
Therefore, the crosscorrelation sequence of x(n) and v{n) is

reo{l) = {10, -9,19, 36, —14.33,0,7, 13, -18,16. ~7. 5, ~3)
t

The similarities between the computation of the crosscorrelation of two se-
quences and the convolution of two sequences is apparent. In the computation of
convolution, one of the sequences is folded, then shifted, then multiplied by the
other sequence to form the product sequence for that shift, and finally, the values
of the product sequence are summed. Except for the folding operation. the com-
putation of the crosscorrelation sequence involves the same operations: shifting
one of the sequences, multiplication of the two sequences, and summing over all
values of the product sequence. Consequently, if we have a computer program
that performs convolution, we can use it to perform crosscorrelation by providing
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as inputs to the program, the sequence x(») and the folded sequence y(—n). Then
the convolution of x(r) with v(—n) yields the crosscorrelation r..(/). that is,
rx)'(!) = x([) * )’(_1) (268)

In the special case where y(n) = x(n), we have the autocorrelation of x(n),
which is defined as the sequence

oC

res(l) = Z x(m)x(n —1) (26.9)
or, equivalently, as
o0
rea =3 x(n+Dx(n) (2.6.10)

In dealing with finite-duration sequences, it is customary to express the auto-
correlation and crosscorrelation in terms of the finite limits on the summation. In
particular, if x (n) and v(n) are causal sequences of length N [i.e.. x(n) = y(n) =0
for n < 0 and n > NJ, the crosscorrelation and autocorrelation sequences may be
expressed as

N—lk|-1
rely= Y xmyn—1) Q26.11)
and
N=lkj—1
ra@= 3" xmxtn-0h 2.6.12)

n=i

where i =1 k=0for/>0,andi=0,k=1for/ <0.

2.6.2 Properties of the Autocorrelation and
Crosscorrelation Sequences

The autocorrelation and crosscorrelation sequences have a number of important
properties that we now present. To develop these properties, et us assume that
we have two sequences x(n) and y(n) with finite energy from which we form the
linear combination,

ax(n) + by(n —1}

where a and b are arbitrary constants and [ is some time shift. The energy in this
signal is

X oc oc
z lax(n) + by(n — [)]2 = a* Z x2(n) + b* Z yz(n -1

n=— n=—oc n=—oc

+ 2ab z x(n)y(n = 1) (2.6.13)

n=—00

= a%r;x(0) + b2ry,(0) + 2abr,, (1)
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First, we note that r,,(0) = E, and r,,(0) = E,, which are the energies of -
x{n) and ¥(n), respectively. It is obvious that

are (0) + b°r (0) 4 2abr, (1) > 0 (2.6.14)
Now, assuming that b # 0, we can divide (2.6.14) by b? to obtain

e (5) 4200 (5) 410 20

We view this equation as a quadratic with coefficients r..(0), 2r,,(/), and r,(0).
Since the quadratic is nonnegative, it follows that the discriminant of this quadratic
must be nonpositive, that is,

42 () = rer(O)ryy (@] < 0

Therefore, the crosscorrelation sequence satisfies the condition that

frox (M < Jree Oy (0) = VEE, (2.6.15)

In the special case where y(n) = x(n), (2.6.15) reduces to
Iree (1)[ = rXI(O) =E, (26‘16)

This means that the autocorrelation sequence of a signal attains its maximum value
at zero lag. This result is consistent with the notion that a signal matches perfectly
with itself at zero shift. In the case of the crosscorrelation sequence, the upper
bound on its values is given in (2.6.15).

Note that if any one or both of the signals involved in the crosscorrelation
are scaled, the shape of the crosscorrelation sequence does not change, only the
amplitudes of the crosscorrelation sequence are scaled accordingly. Since scaling
is unimportant, it is often desirable, in practice, to normalize the autocorrelation
and crosscorrelation sequences to the range from —1 to 1. In the case of the
autocorrelation sequence, we can simply divide by r.,(0). Thus the normalized
autocorrelation sequence is defined as

rec(D)
() = 2.6.17
Pex(l) ) ( )
Similarly, we define the normalized crosscorrelation sequence
xry l
£l (2.6.18)

() = —m——e=
o O )

Now |p:: (/)] <1 and |p,,(/}] < 1, and hence these sequences are independent of
signal scaling.

Finally, as we have already demonstrated, the crosscorrelation sequence sat-
isfies the property

rn'(l) = ryx(_I)
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With y(n) = x(n), this relation results in the following important property for the
autocorrelation sequence

Tax ) = rx.l(—“ (26419)
Hence the autccorrelation function is an even function. Conseguently, it suffices
to compute r. (/) for { > Q.
Example 2.6.2

Compute the autocorrelation of the signal

x(n)y=a"un},0<a <1

Solution Since x(n) is an infinite-duration signal. its autocorrelation also has infinite
duration. We distinguish two cases.
1f I = 0. from Fig. 2.39 we observe that
x x ~
ra () = Zx(n)x(n ~-1)= Zu"u"’/ =q! Z(a:)"

n=l n=/ n=l

Since @ < 1. the infinite series con erges and we obtain
T

re )y = ~a (>0
1 —a-

For | < O we have

)= Zzlnmn -h=u erz )= s a’ <0

n=0 n=0
But when / is negative. @' = "', Thus the two relations for r, (7} can be combined
into the following expression:

re ) = ] ! :um -x <! <x (2.6.20)

The sequence r. (/) is shown in Fig. 2.42(d). We observe that
rax (=) = re (D)

and
o (0) = ——
Fas 1-a-
Therefore, the normalized autocorrelation sequence is
o .
Peclly = Fael =d" —oc <l <o (2.6.21)
Fex ()

2.6.3 Correlation of Periodic Sequences

In Section 2.6.1 we defined the crosscorrelation and autocorrelation sequences of
energy signals. In this section we consider the correlation sequences of power
signals and, in particular, periodic signals.

Let x{n) and y(n) be two power signals. Their crosscorrelation sequence is
defined as

1
ro() = lim S ): x(myyn =1) (2.6.22)
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x(n)
¥
- A
(a)
xn—1)
| e
(b)
x(n~1)
IR
! )] n
{c)
rull = ] _laz"m
e
wm2-10 1 2 !
Figare 239 Compuation of the aut(:c)orrelalion of the signal x(n) = a”,

O<a<l

If x(n) = y(n), we have the definition of the autocorrelation sequence of a

power signal as
M

1
m E x(n)x(n - 1) (2.623)
n=—M

In particular, if x(n) and y(n) are two periodic sequences, each with period N,
the averages indicated in (2.6.22) and (2.6.23) over the infinite interval, are identical

r:l(l) = Jl_r.nm



126 Discrete-Time Signals and Systems Chap. 2

to the averages over a single period, so that (2.6.22) and (2.6.23) reduce to
Nl

1
e =5 2;0 x(my(n = 1) (2.6.24)
and
1 N-1
rec{l) = v ,.z;o x(n)x(n —1) (2.6.25)

It is clear that r. (/) and r,.(I) are periodic correlation sequences with period N.
The factor 1/N can be viewed as a normalization scale factor.

In some practical applications, correlation is used to identify periodicities in
an observed physical signal which may be corrupted by random interference. For
example, consider a signal sequence v(n) of the form

v(n) = x(n) + win) (2.6.26)
where x(n) is a periodic sequence of some unknown period N and w(n) represents
an additive random interference. Suppose that we observe M samples of v(n). say
0<n<M-1 where M >> N. For all practical purposes, we can assume that
v(n) =0 forn < 0 and » > M. Now the autocorrelation sequence of v(n). using
the normalization factor of 1/M, is

1 M=l
ro() = ¥ Z y{n)vin — 1) (2.6.27)

n=(}

If we substitute for y(n) from (2.6.26) into {2.6.27) we obtain

1 M--1
Pl =+ 3 fxi) +win]x(n = O +win = 1)

n=(

1 M2
i Zx(n)x(n -1

n=0

I

1 M=l
ol - - 2.6.28
+ o ;[x(n)w(n D+ wn)x(n —1)] (2.6.28)

] M-l
+Rf_ ;w(n)w(n )

= () 4 P {l) + Py (D) + 1y (D

The first factor on the right-hand side of (2.6.28) is the autocorrelation se-
quence of x(n). Since x(n) is periodic, its autocorrelation sequence exhibits the
same periodicity, thus containing relatively large peaks at / = 0, N, 2N, and so
on. However. as the shift | approaches M, the peaks are reduced in amplitude
due to the fact that we have a finite data record of M samples so that many of the
products x(n)x(n — {) are zero. Consequently, we should avoid computing r,,(/)
for large lags, say, | > M /2. h



Sec. 2.6 Correlation of Discrete-Time Signals 127

The crosscorrelations r.,. (/) and r,, (/) between the signal x(n) and the ad-
ditive random interference are expected to be relatively small as a result of the
expectation that x(n) and w(n) will be totally unrelated. Finally. the last term on
the right-hand side of (2.6.28) is the autocorrelation sequence of the random se-
quence w(n). This correlation sequence will certainly contain a peak at / = 0, but
because of its random characteristics, ry., (/) is expected to decay rapidly toward
zero. Consequently, only r,, (/) is expected to have large peaks for / > 0. This
behavior allows us to detect the presence of the periodic signal x(n) buried in the
interference w(n) and to identify its period.

An example that illustrates the use of autocorrelation to identify a hidden
periodicity in an observed physical signal is shown in Fig. 2.40. This figure illus-
trates the autocorrelation (normalized) sequence for the Wolfer sunspot numbers
for 0 <1 < 20, where any value of / corresponds to one year. These numbers are
given in Table 2.2 for the 100-year period 1770-1869. There is clear evidence in
this figure that a periodic trend exists, with a period of 10 to 11 years.

Example 2.6.3

Suppose that a signal sequence x(n) = sin(z/S)n, for 0 < n < 99 is corrupted by
an additive noise sequence w(n). where the values of the additive noise are selected
independently from sample to sample, from a uniform distribution over the range

TABLE 2.2 YEARLY WOLFER SUNSPOT NUMBERS

1770 101 1795 21 1820 16 1845 4
1771 82 1796 16 1821 7 1846 62
1772 66 1797 6 1822 4 1847 98
1773 35 1798 4 1823 2 1848 124
1774 31 1799 7 1824 8 1849 96
1775 7 1800 14 1825 17 1850 66
1776 20 1801 34 1826 36 1851 64
1777 92 1802 45 1827 50 1852 54
1778 154 1803 43 1828 62 1853 39
1779 125 1804 48 1829 67 1854 Al
1780 85 1805 42 1830 71 1855 7
1781 68 1806 28 1831 48 1856 4
1782 38 1807 10 1832 28 1857 23
1783 23 1808 8 1833 8 1858 55
1784 10 1809 2 1834 13 1859 94
1785 24 1810 0 1835 57 1860 96
1786 83 1811 1 1836 122 1861 77
1787 132 1812 5 1837 138 1862 59
1788 131 1813 12 1838 103 1863 44
1789 118 1814 14 1839 86 1864 47
1790 90 1815 35 1840 63 1865 30
1791 67 1816 46 1841 37 1866 16
1792 60 1817 41 1842 24 1867 7
1793 47 1818 3¢ 1843 11 1868 37

1794 41 1819 24 1844 15 1869 74
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Figure 2.40 Identification of periodicity in the Wolfer sunspot numbers: {a) an-

nual Wolfer sunspot numbers: (b) autocorrelation sequence.

(~A/2, AJ2), where A is a parameter of the distribution. The observed sequence is
¥(n) = x(n)+w(n). Determine the autocorrelation sequence r,,(n) and thus determine
the period of the signal x(n).

Solution The assumption is that the signal sequence x(n) has some unknown period
that we are attempting to determine from the noise-corrupted observations {y(n)}.
Although x(r) is periodic with period 10, we have only a finite-duration sequence of
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length M = 100 [i.e.. 10 periods of x(n)]. The noise power level P, in the sequence
w(n) is determined by the parameter A. We simply state that P, = A°/12. The signal
power level is P, = % Therefore. the signal-lo-noise ratio (SNR) is defined as

P i

Usually. the SNR is expressed on a logarithmic scale in decibels (dB) as 10log,
(P /P

Figure 2.41 illustrates a sample of a noise sequence w(n). and the observed
sequence ¥(n) = x(n) + win) when the SNR = 1 dB. The autocorrelation sequence

" ﬂ | T'.., ?T.r.hﬂhh.:'ﬂﬂ i m T...[r 1 JLH 1] TUT
DI T M TR

.

SNR=1dB

[ JUT I &
TT T

Figure 2.41 Use of autocorrelation to detect the presence of a periodic signal corrupted by
noise.
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Figure 242 Use of autocorrelation to detect the presence of a periodic signal
corrupted by noise.

ryy(1) is illustrated in Fig. 2.41c. We abserve that the periodic signal x(n), embedded
in y(n), results in a periodic autocorrelation function r,, (/) with period N = 10. The
effect of the additive noise is to add to the peak value at / = 0. but for [ # 0, the
correlation sequence r,,,(!) =~ 0 as a result of the fact that values of w(n) were gen-
erated independently. Such noise is usually called white noise. The presence of this
noise explains the reason for the large peak at / = 0. The smaller, nearly equal peaks
at | = +10, £20, ... are due the periodic characteristics of x(n).

Figure 2.42 illustrates the noise sequence w(n), the noise-corrupted signal y(n),
and the autocorrelation sequence r,,(!) for the same signal, within which is embedded
a signal at a smaller noise level. In this case, the SNR = 5 dB. Even with this relatively
small noise level, the periodicity of the signal is not easily determined from observa-
tion of y(n). However, it is clearly evident from observation of the autocorrelation
sequence ry,(n)-

2.6.4 Computation of Correlation Sequences

As indicated on Section 2.6.1, the procedure for computing the crosscorrelation
sequence between x(n) and y(n) involves shifting one of the sequences, say x(n),
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to obtain x(n — /). multiplying the shified sequence by v(n) to obtain the prod-
uct sequence y(n)x(n —I), and then summing all the values of the product se-
quence to obtain r, (/). This procedure is repeated for different values of the
lag I. Except for the folding operation that is involved in convolution, these ba-
sic operations for computing the correlation sequence are identical to those in
convolution.

The procedure for computing the convolution s directly applicable to com-
puting the correlation of two sequences. Specifically, if we fold v(n) to obtain
y(—n), then the convolution of x(#) with v(—n) is identical to the crosscorrelation
of x(n) with y(n). That is.

() = x(n) * ¥(—1)|p=t (2.6.29)

As a consequence, the computational procedure described for convolution can be
applied directly to the computation of the correlation sequence.

We now describe an algorithm that can be easily programmed to compute
the crosscorrelation sequence of two finite-duration signals x(n). 0 < n < N — 1,
and v(n),0<n < M-1.

The algorithm computes r,, (/) for positive lags. According to the relation
roy(=1) = r. (1), the values of r,. (/) for negative iags can be obtained by using the
same algorithm for positive lags. and interchanging the roles of x(n) and y(n). We
observe that if M < N, r,,(/) can be computed by the relations

M—=14i
Z xtmyyin -1, O0<I<N-M

ro{l) = N’j[ (2.6.30)
Zx(n)y(n-t). N-M<l<N-1

n={
On the other hand. if M > N, the formula for the crosscorrelation becomes
N-]
I =) xmy@n—=1) 0<I<N-1 (2.6.31)
n=l
The formulas in (2.6.30) and (2.6.31) can be combined and computed by means
of the following simple algorithm illustrated in the fiowchart in Fig. 2.43. By
interchanging the roles of x(n} and y(n) and recomputing the crosscorrelation
sequence, we obtain the values of r,(I) corresponding to negative shifts 1.
If we wish to compute the autocorrelation sequence r,, (1), we set y(r) = x(n)
and M = N in (2.6.31). The computation of r.. (/) can be done by means of the
same algorithm for positive shifts only.

2.6.5 lnput-Output Correlation Sequences
In this section we derive two input-output relationships for LTI systems in the

“correlation domain.” Let us assume that a signal x(n) with known autocorrela-
tion r,.(/) is applied to an LTI system with impulse response k(n), producing the
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fe=1+1

el = 1oy +xtm)yin = D

Store rx_v(l}, =01,

ol — 1

Figure 243 Flowchart for software
implementation of crosscorrelation.
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output signal
a0
v{n) = h(n) *xx(n) = Z hkyx(n — k)

k=—sc
The crosscorrelation between the output and the input signal is
rocll) = vy x(=1)y = k() = [x(1) * x(=1)]
or
roc(l)y = h(I) * rectl) (2.6.32)

where we have used (2.6.8) and the properties of convolution. Hence the crosscor-
relation between the input and the output of the system is the convolution of the
impulse response with the autocorrelation of the input sequence. Alternatively.
re (/) may be viewed as the output of the LTI system when the input sequence is
rec (1. This is illustrated in Fig. 2.44. If we replace ! by —/ in (2.6.32), we obtain

ro(l) = h(=D xro ()

The autocorrelation of the output signal can be obtained by using (2.6.8) with
x(n) = v(n) and the properties of convolution. Thus we have

rodly = v() = x(=)

= [i(y % x (D] * [h(=1) % x(=1)]
(AW * 1(=D] * [x (1) x x(=1)]
T (1) % rec (1)

The autocorrelation ry; (/) of the impulse response h(n) exists if the system is stable.
Furthermore, the stability insures that the system does not change the type (energy
or power) of the input signal. By evaluating (2.6.33) for / = 0 we obtain

(2.6.33)

I

x
re(0) = 3 run(Kyrec (k) (2.6.34)

k=-oc

which provides the energy {or power) of the output signal in terms of autocorre-
lations. These relationships hold for both energy and power signals. The direct
derivation of these relationships for energy and power signals, and their extensions
to complex signals, are left as exercises for the student.

Input LTl Output
SYSTEM "
ryln) hin) ry(n)

Figure 2.44 Input-output relation for
crosscorrelation 7y (n).
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2.7 SUMMARY AND REFERENCES

The major theme of this chapter is the characterization of discrete-time signals and
systems in the time domain. Of particular importance is the class of linear time-
invariant (LTI) systems which are widely used in the design and implementation
of digital signal processing systems. We characterized LTI systems by their unit
sample response h(n) and derived the convolution summation, which is a formula
for determining the response y(n) of the system characterized by h(n) to any given
input sequence x(n).

The class of LTI systems characterized by linear difference equations with
constant coefficients is by far the most important of the LTI systems in the theory
and application of digital signal processing. The general solution of a linear dif-
ference equation with constant coefficients was derived in this chapter and shown
to consist of two components: the solution of the homogeneous equation which
represents the natural response of the system when the input is zero, and the par-
ticular solution, which represents the response of the system to the input signal.
From the difference equation, we also demonstrated how to derive the unit sample
response of the LTI system.

Linear time-invariant systems were generally subdivided into FIR (finite-
duration impulse response) and IIR (infinite-duration impulse response) depend-
ing on whether h(n) has finite duration or infinite duration, respectively. The
realizations of such systems were briefly described. Furthermore, in the realiza-
tion of FIR systems, we made the distinction between recursive and nonrecursive
realizations. On the other hand, we observed that [IR systems can be implemented
recursively, only.

There are a number of texts on discrete-time signals and systems. We men-
tion as examples the books by McGillem and Cooper (1984), Oppenheim and Will-
sky (1983), and Siebert (1986). Linear constant-coefficient difference equations are
treated in depth in the books by Hildebrand (1952) and Levy and Lessman (1961).

The last topic in this chapter, on correlation of discrete-time signals, plays an
important role in digital signal processing, especially in applications dealing with
digital communications, radar detection and estimation, sonar, and geophysics. In
our treatment of correlation sequences, we avoided the use of statistical concepts.
Correlation is simply defined as a mathematical operation between two sequences,
which produces another sequence, called either the crosscorrelation sequence when
the two sequences are different. or the autocorrelation sequence when the two se-
quences are identical.

In practical applications in which correlation is used, one (or both) of the
sequences is (are} contaminated by noise and, perhaps, by other forms of interfer-
ence. In such a case, the noisy sequence is called a random sequence and is char-
acterized in statistical terms. The corresponding correlation sequence becomes a
function of the statistical characteristics of the noise and any other interference.

The statistical characterization of sequences and their correlation is treated in
Appendix A. Supplementary reading on probabilistic and statistical concepts deal-
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ing with correlation can be found in the books by Davenport (1970). Helstrom
(1990). Papoulis (1984). and Peebles (1987).

PROBLEMS

2.1 A discrete-time signal x(n) is defined as

1+ 2. -3=n<-1
xn) =11, O0=<n=3
0, elsewhere

(a) Determine its values and sketch the signal x(n).

(b) Sketch the signals that result if we:
(1) First fold x{n) and then delay the resulting signal by four samples.
(2) First delay x(m) by four samples and then fold the resulting signal.

(¢) Sketch the signal x(—n + 4).

(d) Compare the results in parts (b) and (c) and derive a rule for obtaining the signal
x(—n 4+ k) from x(n).

(e) Can vou cxpress the signal x(a} in terms of signals 8(n) and w(n)?

2.2 A discrete-time signal x(a) 1s shown in Fig. P2.2. Sketch and label carefully each of
the following signals.

xin}

F———e

——e
e
W et —
& —et0|—

n  Figure P2.2

{a) xn=2) Mxd—-n) (©x(n+2) (D xmu-n)
(e) x(n—1)8tn ~3) (I) x(n?) (g) even part of x(n)
(h) odd part of x(n)
2.3 Show that
(a) 8(ny=u(n) —un-1)
by uim =3, sky=3 1 sn—k)
2.4 Show that any signal can be decomposed into an even and an odd component. Is the
decomposition unique? Illustrate your arguments using the signal
x(n) =1{2.3,4.5.6}
t

2.5 Show that the energy (power) of a real-valued energy (power) signal 1s equal to the
sum of the energies {powers) of its even and odd components.

2.6 Consider the system
¥y = Tlx(m)] = x(n?)

(8) Determine if the system is time invariant.
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(b) To clarify the result in part (a) assume that the signal

(c

-

)

_ { 1, 0<n<3
x(n) = 0, elsewhere
ts applied into the system.
(1) Sketch the signal x(n).
(2) Determine and sketch the signal y(n) = T[x(n)].
(3) Sketch the signal v;(n) = y(n — 2).
(4) Determine and sketch the signal x;(n) = x(n — 2).
(5) Determine and sketch the signal v,(n) = T[x;(1}).
(6) Compare the signals y;{(r) and y(r — 2). What is your conclusion?
Repeat part (b) for the system

y(n)y=x(n) —x(n—1)
Can you use this result to make any statement about the time invariance of this
system? Why?
Repeat parts (b) and (c) for the system

y(n)y =T[x(n)] = nxn)

2.7 A discrete-time system can be

{1) Static or dynamic

(2) Linear or nonlinear

(3) Time invariant or time varying
(4) Causal or noncausal

(5) Stable or unstable

Examine the following systems with respect to the properties above.

(a)
(b)
()
(@)
(e)

0

y(n) = cosfx(n)]

¥ = Yot xth)

y(n) = x(n}) cos{awon)

y(n) =x(-n+2)

¥(n) = Trun[x(n)}, where Trun[x(n)] denotes the integer part of x(n), obtained
by truncation

¥{n) = Round[x(n)], where Round[x(n)] denotes the integer part of x(n) obtained

by rounding

Remark: The systems in parts (e) and (f) are quantizers that perform truncation and
rounding, respectively.

(@
(h)
()
)]
(k)

®
(m)
(n)

v{n) = |x(n)]

v{n) = x(n)uin)

y(n) = x(n) + nx{n + 1)
y(n) = x(2n)

x(m), ifx(m) =0
0. if x(n) <0

y(n) = x(—n)

y(n) = sign[x(n)]

The ideal sampling system with input x,{1) and output x(n) = x,(nT), —o0 <
n < oo

y(n) =

2.8 Two discrete-time systems 7; and T are connected in cascade to form a new system
T as shown in Fig. P2.8. Prove or disprove the following statements.
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T7=TT, Figure P2.3

(a) If 7; and 7; are linear, then 7 is linear (i.e.. the cascade connection of two linear
systems is linear).
(b) If 7, and 7; are time invariant, then 7 1s time invariant.
(¢} If 7, and 7; are causal. then 7 is causal.
(d) If 7; and 7; are linear and time invariant, the same holds for 7.
(e) 1f 7, and 7; are linear and time invariant. then interchanging their order does not
change the system 7.
(f) As in part (e) except that 7;. 7> are now time varying. (Hinz: Use an exampie.)
(g) If 7, and T: are nonlinear, then 7 is nonlinear.
(h) If 7, and 7, are stable, then 7T is stable.
(i) Show by an example that the inverse of parts (c) and (h) do not hold in general.
2.9 Let 7 be an LTI, relaxed. and BIBO stable system with input x{n) and output v(n).
Show that:
(a) If x(n} is periodic with period N [i.e.. x(n) = x(n + N) for all n > 0], the output
v(n) tends to a periodic signal with the same period.
(b) If x(n) is bounded and tends 10 a constant, the output will also tend to a constant.
(¢) If x{n) is an energy signal. the output y(x) will also be an energy signal.
2.10 The following input~output pairs have been observed during the operation of a time-
invariant system:

) = 11.0.2) < vy = {0, 1.2)
1 1

12ln) = {0.0.3) < valn) = (0,1.0,2)
1 1

xn) = {0.0,0.1}) <= yatm) = {1.2.1)
1 h
Can you draw any conclusions regarding the linearity of the system. What is the
impulse response of the system?
2.11 The following input—output pairs have been observed during the operation of a linear
system:

1) = {=1.2.1) <= ) = {1.2.=1.0.1)
1 1
xa(n) = {1 =1, =1} ~> v} = (-1.1.0.2}
1 1
5(m) = {0.1.1) < vin) = {1.2.1)
t b

Can you draw any conclusions about the time invariance of this system?

2.12 The only available information about a system consists of N input-output pairs, of
signals y,(n) = T{x:(n).i=1,2..... N.
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(m) What is the class of input signals for which we can determine the output, using
the information above, if the system is known to be linear?
(b} The same as above, if the system is known to be time invariant.
2.13 Show that the necessary and sufficient condition for a relaxed LTI system to be BIBO
stable is

> 1 < My < oo

for some constant M,.

2.14 Show that:
(a) A relaxed linear system is causal if and only if for any input x(n) such that

x(n)=0forn <ng= yn)=0 forn < ng
(b) A relaxed LTI system is causal if and only if
h(n) =0 forn <0

2.15 (a) Show that for any real or complex constant a, and any finite integer numbers M
and N, we have

" a¥ — gt
o= T2 ifas#1
n=M N-M+1, ffa=1
(b) Show that if |a| < 1, then
oc
Y=
a =
1-a
n=t)

2.16 (8) If y(n) = x(m) # h(r). show that 3~ =3 3 where 3" =Y xtn)
(b) Compute the convolution y(n) = x(n) « h(n) of the following signals and check
the correciness of the results by using the test in (a).
(1) x(n) = (1,2,4),h(n) = {1,1,1,1,1}
(2) x(n) = (1,2, =1}, k(n) = x(n)
(3) x(n) = {0.1.-2,3, ~4L. him) = 3. 4. 1. )
4) x(m) =1{1,2,3,4,5). h(n) = {1}
(5) x(n) = {1, ~2.3},h(n) = {0,0.1.1,1, 1}
t

-7

(6) x(n) =1{0,0,1,1,1, 1), h(n) = {1, 2.3}
t 1

(7) x(n) ={0.1,4, =3} h(n) = {1.0, -1, =1}
1

=

(8) x(n) =(1.1.2), h(n) = u(n)
1
%) x(n) =(1.1.0,1.1), hin) = {1, -2, -3,4}
t 1
(10) x(n) = (1.2,0.2. 1}h(n) = x(n)
t
(11) x(n) = (})"u(n), hin) = (3)"u(n)

2,17 Compute and plot the convolutions x(n) » h(n) and h(n) * x(n) for the pairs of signals
shown in Fig. P2.17.
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6

T,
'.T ‘ | ?’
i .
123 n 0123436 n
x(n} fu) Atn)
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1580 122
123 n —3-2-10123 n

{by

(cy
xin) hin)

(d Figure P2.17

2.18 Deitermine and sketeh the convolution vin) of the signals

1
) = 3. U<n=<é
0.  elsewhere
1, =2<ngx2
T s
o 0. elsewhere

(a) Graphically
(b) Analytically
2.19 Compuie the convolution y(r) of the signals

x(n)—{a"' —3=<n=<5

10, elsewhere
1, 0<n<4

hin) = IO. elsewhere

2.20 Consider the following three operations.
(a) Multiply the integer numbers: 131 and 122.
(b) Compute the convolution of signals: {1,3.1) = {1,2.2}.
(c) Multiply the polynomials: 143z 4+ % and 1 + 2z 4+ 2%
(d) Repeat part (a) for the numbers 1.31 and 12.2.
(e) Comment on your results.
2.21 Compute the convolution v(n) = x(n) = hin) of the following pairs of signals.
(a) x(n) = a"u(n). h(n) = b"u(n) when a # b and whena = b
1. n=-2,0.1
(b} x(n)=12, n=-1
0, elsewhere
h(n) =48(n)—8n—1)+8(n—4) +&n -5}
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©) x(iM=un+1) —u@n -4y —456(n-5)
h(n) = utn +2) —u(n —3)]- (3 - (n])
(d) x(n) =u(n)—un-5)
h(n) =u(n —2) —u(n —8) +u(n —11) —u(n —17)
2.22 Let x(n) be the input signal to a discrete-time filter with impulse response h;(n) and
let yi(n) be the corresponding output.
(a) Compute and sketch x(n) and y;(n) in the following cases. using the same scale
in all figures.
x(n) = {1.4.2.3,5,3.3.4,5.7.6.9}

hi(n) = (1.1}
ha(n) = (1,2.1}
Inin) = (1. 3)
ham) = {114
hsin) = {3.—1. 1)

Sketch x(n), yi(n), v2(n) on one graph and x(n). vs(n), va(n). vs(n} on another
graph
(b) What is the difference between yi(r) and v.(n). and between y;(n) and y4(n)?
(¢) Comment on the smoothness of y.(n) and y4(n). Which factors affect the smooth-
ness?
(d) Compare ys{n) with ys(m). What is the difference? Can you explain it?
(e) Let hg(n) = {%v —%}. Compute vg(n). Sketch x(n), v2(n). and v4(n) on the same
figure and comment on the results.
2.23 The discrete-time system
y(ny=nv(in—D+x(n) n=0
is at rest [i.e., y(=1) = 0]. Check if the system is linear time invariant and BIBO stable.
2.24 Consider the signal y(n) = a"u(n),0 <a < 1.

(a) Show that any sequence x(n) can be decomposed as
x(n) = Z cy(n —k)
nm—oc
and express ¢ in terms of x(n).

(b) Use the properties of linearity and time invariance to express the output y(n) =
T{x(n)] in terms of the input x(n) and the signal g(n) = T[y(n)]. where 7[-] is
an LTI system.

(c) Express the impulse response h(n) = T[8(n)] in terms of g(n).

2.25 Determine the zero-input response of the system described by the second-order dif-
ference equation
x(n)—=3y(n—1)—4y(n-2)=0
2.26 Determine the particular solution of the difference equation
y(n) = Zvin —1) = tv(n —2) + x(n)

when the forcing function is x(n) = 2"u{n).
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2.27 Determine the response y(n). n > 0. of the svstem described by the second-order
difference equation

vin)—3vtn =1 —4xyin — 2y =x(n} + 2xin — 1}
to the input x(n) = 4"u(n).
2.28 Determine the impulse response of the following causal system:
yn)y=3vin—D —4y(n—D=x(n)+2x(n~ 1)

2.29 Let x(n). Ny <n < N> and h(n). M), < n < M, be two finite-duration signals.
(a) Determine the range L, < n < L, of their convolution. in terms of Ny, N2, M,
and M,.
(b) Determine the limits of the cases of partial overlap from the left, full overlap,
and partial overlap from the right. For convenience, assume that A(n) has shorter
duration than x(n).
(c) Illustrate the validity of your results by computing the convolution of the signals
. —2<n<4
= l(} elsewhere

1
. 2. -l<nx2
= {O. elsewhere

230 Determine the impulse response and the unit step response of the systems described
by the difference equation
(a) yvin)=06xtn — 1) — 0.08y(n - 2) + xtn)
() vy =0T7vin — L —01lvin =2y +2xtm) —xin = 2)
2.31 Consider a system with impulse response
B = [ (41, G=n<d4
0. elsewhere

Determine the input x(n} for 0 < r < 8 that will generate the output sequence

¥(n)=(1.2.25.3.3.3.2.1.0... }
t

2.32 Consider the interconnection of LTI systems as shown in Fig. P2.32.
(a) Express the overall impulse response in terms of h(n), h2(n), h3(n), and hs(n).

(b) Determine h(n) when
hi(n) = {

rabes

15
©37
ha(n) = hy(n) = (n + Lu(n)
hy(n) = 8(n -2

hatn)

x(m) 1 »n)
—  hym ®—’
hsln) ha(n} —T

Figure P2.32
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(c) Determine the response of the system in part (b) if
x(m)=8n+2)+35(n—1)—45(n-3)
233 Consider the system in Fig. P2.33 with h(r) = a"u(n), ~1 < a < 1. Determine the
response y(n} of the system to the excitation
x(n) = u(n +35) ~ u(n — 10)

h(n)

x(m} »(n}

m h(n) ——T

Figure P2.33

2.34 Compute and sketch the step response of the system
M-

1
vin) = i Zx(n ~ k)

k=

2.35 Determine the range of values of the parameter a for which the linear time-invariant
system with impuise response
a", n =0, neven
him) = { 0. otl:erwise
Is stable.
236 Determine the response of the system with impulse response
hn) = a"uin)
to the input signal
x(n) = u(n) — u(n — 10)
(Hine: The solution can be obtained easily and quickly by applying the linearity and
time-invariance properties to the result in Example 2.3.5.)
2.37 Determine the response of the (relaxed) system characterized by the impuise response
h(n) = (3)"u(n)
to the input signal
x(n)={1' 05n<'10
0, otherwise
2.38 Determine the response of the (relaxed) system characterized by the impulse response
h(ny = (3)"u(n)
to the input signals
@) x(n) =2"u(n)
(b) x(n) = u(—n)



Chap. 2 Probiems 143

2.39 Three systems with impulse responses Ay(n) = &(n) — &(n ~ 1), ha(n) = hn). and
h3(nm) = u(n), are connected in cascade.
(a) What is the impulse response. h.(n). of the overall system?
(b) Does the order of the interconnection affect the overall system?

2.40 (a) Prove and explain graphically the difference between the relations
x{n)d(n — ny) = x(ny¥d(n — ng) and x(n) x&(n — ng) = x{n — ng)

(b) Show that a discrete-time system, which is described by a convolution summation.
is LTI and relaxed,
(c) What is the impulse response of the system described by y(r) = x(n — ng)?

2.41 Two signals s(n) and v(r) are related through the following difference equations
sty +aystn—1}+ - +ays(n — N} = byu(n)

Design the block diagram realization of:
(a) The system that generates s(n) when excited by v(n).
(b) The system that generates v(n) when excited by s(n).
(¢) What is the impulse response of the cascade interconnection of systems in parts
(a) and (b)?
2.42 Compute the zero-state response of the system described by the difference equation

v+ ivin = 1y = x(n) + 2x(n = 2)
to the input

xiny=1{1.2.3.4.2. 1)
il

by solving the difterence equation recursively.

2.43 Determine the direct form 1I realization for each of the following LTI systems.
@) 2vim+yin~1) —4dvin=3)=x(n) +3x(n -5
(b) y(n)=x(n)—x(n-=D+2x(n-2)=3x(n -4

2.44 Consider the discrete-time system shown in Fig. P2.44.

xin) C\ m ¥in}
S N

ro|—

Figure P2.44

(a) Compute the 10 first samples of its impulse response.

(b) Find the input—output relation.

(c) Apply the input x{n) = {1.1.1....} and compute the first 10 samples of the output.
T
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(d) Compute the first 10 samples of the output for the input given in part (c) by using
convolution.
(e) Is the system causal? Is it stable?

2.45 Consider the system described by the difference equation
y(n} = ay(n — 1) + bx(n)
(a) Determine 4 in terms of a so that

i hin) =1

r=—co
(b) Compute the zero-state step response s(n) of the system and choose b so that
s(o0) = 1.
{c) Compare the values of b obtained in parts (a) and (b). What did you notice?
246 A discrete-time system is realized by the structure shown in Fig. P2.46.
(2) Determine the impulse response.
(b) Determine a realization for its inverse system, that is, the system which produces
x{(n) as an output when v(r) is used as an input.

x(n} 2
O\ A o
T |
0.8

2.47 Consider the discrete-time system shown in Fig. P2.47.

Figure P2.46

¥n)

Figure P2.47

(a) Compute the first six values of the impulse response of the system.
(b) Compute the first six values of the zero-state step response of the system.
(¢) Determine an analytical expression for the impuise response of the system.
2.48 Determine and sketch the impulse response of the following systems for n = 0,
1,....9.
(a) Fig. P2.48(a).
(b) Fig. P2.48(b).
(c) Fig. P2.48(c).
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Figure P2.48

(d) Classify the svstems above as FIR or IIR.
(e) Find an explicit expression for the impulse response of the system in part (c).

2.49 Consider the systems shown in Fig. P2.49.
(a) Determine and sketch their impulse responses hj(n). hy(n), and Ax(n).
(b) Is it possible to choose the coefficients of these systems in such a way that

hy(n) = ha(n) = h3(n)

2.5¢ Consider the system shown in Fig. P2.50.
(a) Delermine its impulse response h(n).
(b) Show that #(n) is equal 10 the convolution of the following signals.

hi(m) = 6(m)+én—-1)

hy(n) = ($)"uln)
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x(n)

¥n)

X{n)

¥r)

x(n)
! * ¥in)

Figure P2.49

x(#)

Mn)

Figure P2.50

251 Compute the sketch the convolution ¥;(r) and correiation r;(n) sequences for the
following pair of signals and comment on the results obtained.
(a) x;(m =(1.2.4) hymy=1{1,1.1.1.1}
t i

) xm={0.1.-2.3. -4 hm=1{}1.2.1.1}
1 1

(©) x3(n)=1{1.2.3.4) hi(n) = {4.3.2,1})
1 1

(d) x4(m) =1{1.2.3.4]  ho(n) = {1.2,3.4)
t 1

2.52 The zero-state response of a causal LTI system to the input x(n) = {1,3,3,1} is
y(n) = {1,4, 6,4, 1). Determine its impulse response.
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2.53 Prove by direct substitution the equivalence of equations (2.5.9) and (2.5.10). which
describe the direct form II structure. to the relation (2.5.6). which describes the direct
form I structure.

2.54 Determine the response yin). n > 0 of the system described by the second-order
difference equation

vin) —dyin— D +4y(n —2)=x(n) —xin -1}
when the input is
x{n) = (-1)"u(n)
and the initial conditions are v(—1) = ¥(-2) =0.

2.55 Determine the impulse response h(n) for the system described by the second-order

difference equation
vimy—dyin = +dvin -2y =x(m) —xin - b

2.56 Show that any discrete-time signal x(r) can be expressed as

vmy= Y v ) —xtk = Du(n = &)
k=0
where w(n — k) is a unit step delayed by & units in time. that is,
I on=k
-k = =
utn ) | 0. otherwise
2.57 Show that the output of an LTI system can be expressed in terms of its unit step
response s(n) as follows,

-~
yin} = Z |s(k) — stk — xn — k)
f—

o

D [xtk) = xtk = Dstn — k)

k=—oc

2.58 Compute the corrclation sequences r, (/) and r, (/) for the following signal sequences.
ng—N=n=n+N

1.
= | ,
xn) 0. otherwise
vin) { 1. =N<n<N
in) = .
’ 0. otherwise

2.59 Determine the autocorrelation sequences of the following signals.
(@) x(n)=1{1.2.1.1}
il

(b) v(n)=11.1.2.1}
t

What is your conclusion?
2.60 What is the normalized autocorrelation sequence of the signal x(n) given by
x(n):{l —Nsr.zsN
0. otherwise
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2.61 An audio signal s{t) generated by a loudspeaker is reflected at two different walls

2.62*

with reflection coefficients r; and r,. The signal x(1) recorded by a microphone close
to the loudspeaker, after sampling, is

x(n) = s(n) +ris(n = k) + ras(n — ky)

where k; and & are the delays of the two echoes.

(a) Determine the autocorrelation r., (/) of the signal x(n).

(b) Can we obtain ry, ry, ki, and k, by observing r,, ({)?

(¢) What happens if r; = 0?

Time-delay estimation in radar Let x,(t) be the transmitied signal and y,(r) be the
received signal in a radar system, where

Yoll) = ax,(t — 1g) + v,(2)

and v,(s) is additive random noise. The signals x,(t) and y,(r) are sampled in the
receiver, according to the sampling theorem. and are processed digitally to deter-
mine the time delay and hence the distance of the object. The resulting discrete-time
signals are

x(n) = x,(nT)
y(n) = y,(nT) = ax,(nT — DT} + v,(nT)
£ axin — D)+ vin)

(a) Explain how we can measure the delay D by computing the crosscorrelation r,, (/).
(b) Let x(n) be the 13-point Barker sequence

x(ny=(+1, 41, +1, 41,41, =1, =1, +1. +1, -1, 41, =1, 41}

and v(n) be a Gaussian random sequence with zero mean and variance o? = 0.01.
Write a program that generates the sequence v(n), 0 < n < 199 for 2 = 0.9 and
D = 20. Plot the signals x(n), y(n),0 <n < 199.

Compute and plot the crosscorrelation r,, (/). 0 </ = 59. Use the plot to estimate
the value of the delay D.

(d) Repeat parts (b) and (c) for > = 0.1 and 02 = 1.

(e) Repeat parts (b) and {c) for the signal sequence

-
n
~

x(n) = {-1,-1,-1,+1,+1,+1. +1, -1,
+1, -1, +1. 41, -1, -1, +1}

which is obtained from the four-stage feedback shift register shown in Fig. P2.62.

Output
0——1

1= +1

° Modulc-2 adder

Figure P2.61 Linear feedback shift
register.
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Note that x(n) is just one period of the periodic sequence obtained from the
feedback shift register.

() Repeat parts (b) and (c) for a sequence of period N =27 — 1, which is obtained
from a seven-stage feedback shift register. Table 2.3 gives the stages connected
to the modulo-2 adder for (maximal-length) shift-register sequences of length
N=2"—-1.

TABLE 2.3 SHIFT-REGISTER
CONNECTIONS FOR GENERATING
MAXIMAL-LENGTH SEQUENCES

m  Stages Connected to Modulo-2 Adder

1 1

2 1.2

3 1.3

4 1.4

5 1.4

6 16

7 1.7

8 1.5,6,7
9 1.6

10 1.8

1l 1. 10
12 1.7.9.12
13 110, 11,13
14 1.5.9.14
15 1,15
16 1.5, 14, 16
17 1. 15

2.63* Implementation of LTI systems Consider the recursive discrete-time system described
by the difference equation

vin) = —a,v(n = 1) —aav(n — 2) + byx(n)

where a) = ~0.8, a; = 0.64. and b, = 0.866.

(a) Write a program to compute and plot the impulse response h(n) of the system
for 0 < n < 49,

(b) Write a program to compute and plot the zero-state step response s(n) of the
system for 0 < n < 100.

(¢) Define an FIR system with impulse response hgir(n) given by

h(n), 0=n=19

h =
FIR () { 0. elsewhere

where h(n) is the impulse response computed in part (a). Write a program to
compute and plot its step response.

(d) Compare the results obtained in parts (b) and (c¢) and explain their similarities
and differences.
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2.64* Write 2 computer program that computes the overall impulse response A(n) of the sys.
tem shown in Fig. P2.64 for 0 < n < 99. The systems 7;, T, T3, and 7, are specified by

Ttk = (L4514 5% =
1
T hn) = {1,1,1,1,1)
t
Tty = jx(r) + 3x(n - D+ 3x(n - 2)

Ti:yn) = 099(n—1)—08ly(n =D+ viny +vin—-1)
Plot h{n) for 0 < n < 99,

—

x(n) o
+ 1 % ¥n)
y3(n)
L5 ]

Figure P2.64



The Z -Transform and Its
Application to the Analysis of
LTI Systems

Transform techniques are an important tool in the analysis of signals and lin-
ear time-invariant (LTI) systems. In this chapter we introduce the --transform.
develop its properties. and demonstrate its importance in the analysis and charac-
terization of linear time-invariant systems.

The z-transform plays the same role in the analysis of discrete-time signals
and LTI systems as the Laplace transform does in the analysis of continuous-time
signals and LTI svstems. For example. we shal! see that in the z-domain (complex
z-plane) the convolution of two time-domain signals is equivalent to multiplication
of their corresponding z-transforms. This property greatiy simplifies the analysis
of the response of an LTI system to various signals. In addition, the z-transform
provides us with a means of characterizing an LTI system, and its response to
various signals, by its pole-zero locations.

We begin this chapter by defining the :-transform. Its important properties
are presented in Section 3.2. In Section 3.3 the transform is used to characterize
signals in terms of their pole-zero patterns. Section 3.4 describes methods for
inverting the z-transform of a signal so as to obtain the time-domain representa-
tion of the signal. The one-sided :-transform is treated in Section 3.5 and used
to solve linear difference equations with nonzero initial conditions. The chapter
concludes with a discussion on the use of the z-transform in the analysis of LTI
systems.

3.1 THE Z-TRANSFORM

In this section we introduce the z-transform of a discrete-time signal, investigate
its convergence properties, and briefly discuss the inverse z-transform.

151
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3.1.1 The Direct z-Transform

The z-transform of a discrete-time signal x(n) is defined as the power series
o
X(z) = Z x(n)z™" (3.1.1)
n=-—0C
where z is a complex variable. The relation (3.1.1) is sometimes called the direct
z-transform because it transforms the time-domain signal x(n) into its complex-
plane representation X{(z). The inverse procedure [i.e., obtaining x(n} from X (2)]
is called the inverse z-transform and is examined briefly in Section 3.1.2 and in
more detail in Section 3.4.
For convenience, the z-transform of a signal x(n) is denoted by

X(2) = Z{x(n)) (3.1.2)
whereas the relationship between x(») and X(c} is indicated by
x(n) < X(2) (3.1.3)

Since the z-transform is an infinite power series, it exists only for those values of
z for which this series converges. The region of convergence (ROC) of X (2) is the
set of all values of z for which X(z) attains a finite value. Thus any time we cite
a z-transform we should also indicate its ROC.

We illustrate these concepts by some simpie examples.

Example 3.1.1

Determine the :-transforms of the following finite-duration signals.

@ xm=1{1.2.57.01)
() xa(m) =[1.2.5.7.0.1}
*

(d) x4(n)=1{2.4.5.7.0.1}
+

(e} xs(n) = 8(n)
) x(m) =8(n—k). k>0
(@ x:(my=8n+k), k>0

Solution From definition (3.1.1). we have

(8) X(z) =1+ 2:71+5:724 7273+ =%, ROC: entire z-plane except z =

(b) X3(z) = 22 +2z 4+ 5+ 77 + z7%, ROC: entire z-plane except z =0 and z = oo
(€} X3(z) =z72+2z72 4 5:74 4+ 7:77 + 77, ROC: entire z-plane except z = 0

(d) X4(z) =222 +4z+5+ 727" + 273, ROC: entire z-plane except z = ¢ and z = oo
(e) Xs(z) = 1fie.. 5(n) «— 1]. ROC: entire z-plane

() Xe(2) = z7*[i.e., 8(n — k) <= z7*].k > 0, ROC: entire z-plane except z = 0
@®) X7(2) = M[ie., 8(n + k) <> ],k > 0, ROC: entire z-plane except z = oo
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From this example it is easily seen that the ROC of a finite-duration signal
is the entire z-plane, except possibly the points z = ( and/or z = cc. These points
are excluded, because :*(k > 0) becomes unbounded for z = oo and z7%(k > 0)
becomes unbounded for z = 0.

From a mathematical point of view the z-transform is simply an alternative
representation of a signal. This is nicely illustrated in Example 3.1.1, where we
see that the coefficient of :™", in a given transform, is the value of the signal at
time n. In other words, the exponent of z contains the time information we need
to identify the samples of the signal.

In many cases we can express the sum of the finite or infinite series for the
z-transform in a closed-form expression. In such cases the z-transform offers a
compact alternative representation of the signal.

Example 3.1.2

Determine the z-transform of the signal
x(ny = ()uln)
Solution The signal x(n) consists of an infinite number of nonzero values
xm = (LiH AP p
The z-transform of x{(n) is the infinite power series
X@ =14+ dr 2+ drem+

i(%)":-" = i(gz-w"

n=( n=l)

1

This is an infinite geometric series. We recall that

s 1 .
]+A+A‘+A3+~-=ﬁ it |Al < 1

Consequently, for 13z7!| < 1. or equivalently, for |z| > }, X(z) converges to

= 1 . 1
X@=—-—  ROCi 2>}

<

P

We see that in this case. the z-transform provides a compact alternative representation
of the signal x(n).

Let us express the complex variable z in polar form as
z = rel? (3.1.4)

where r = [z[ and 6 = xz. Then X(z) can be expressed as

o<
X(Z)lz=ref" = Z x(n)r—"e'”"

n=-=0oC
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In the ROC of X (z). |X ()| < o¢. But

X = | Y xtmrmeT "
= (3.1.5)
o oC
< > rTe = Y Qe
n=-=oC n=-~2C

Hence | X (z)| is finite if the sequence x(n)r~" is absolutely summable.

The problem of finding the ROC for X(z) is equivalent to determining the
range of values of r for which the sequence x(n)r™" is absolutely summable. To
elaborate, let us express (3.1.5) as

X)) < Z Ix(n)r_"l+z pm ;

n=—oC n={( (3]6)

” 1()1).
< ZLX(—H)I \+Z -

n=t)

x(n}*

1f X (z) converges in some region of the complex plane. both summations in (3.1.6)
must be finite in that region. If the first sum in (3.1.6) converges. there must exist
values of r small enough such that the product sequence x(—n)r". 1 < n < o<, is
absolutely summable. Therefore. the ROC for the first sum consists of all points
in a circle of some radius r;. where r; < o, as illustrated in Fig. 3.1a. On the
other hand, if the second sum in (3.1.6) converges, there must exist values of r
large enough such that the product sequence x{n)/r". 0 < n < oc, is absolutely
summable. Hence the ROC for the second sum in (3.1.6) consists of all points
outside a circle of radius » > r;. as illustrated in Fig. 3.1b.

Since the convergence of X (2) requires that both sums in (3.1.6) be finite. it
follows that the ROC of X(z) is generally specified as the annular region in the
z-plane, r; < r < ry. which is the common region where both sums are finite. This
region is iliustrated in Fig. 3.1c. On the other hand. if r» > ry. there is no common
region of convergence for the two sums and hence X(z) does not exist.

The following examples illustrate these important concepts.

Example 3.1.3
Determine the c-transform of the signal

nz

" _fem. [¢]
”m‘““m_{a <0

Solution From the definition (3.1.1) we have

X()= ia":’" = i(a:‘l)”
a=0 n=0

If laz™!| < 1 or equivalently, |z| > |e|, this power series converges to 1/(1 — az™').
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Im(z)

Re(z)

Region of convergence for

2 x(—n) rml|

n=1

(a)

Im(z)

)

z planc

Re(z)

/// chmn of convergence for
2

Z IX(")

N\

(b)

Im(z)

z-plane
f)

Re(2)

nt

FN

Region of convergence for IX(2)l
rp<r<rn
Figure 3.1 Region of convergence for
X (z) and its corresponding causal and
(©) anticausal components.
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Im(z)

Figure 3.2 The exponential signal x(n) = e¢"u(z) (a). and the ROC of its :-
transform (b).

Thus we have the :-transform pair

x(n) =a"uin) < X)) = o= ROC: iz| > |aj 3.1.7)

The ROC is the exterior of a circle having radius ja|. Figure 3.2 shows a graph of the
signal x(n) and its corresponding ROC. Note thal. in general. a need not be real.
If we set o = 1 in (3.1.7). we obtain the z-transform of the unit step signal

x{n) = u(n) PIEEN X)) = 1—]: ROC: |z] > 1 3.1.8)

Example 3.1.4
Determine the z-transform of the signal

0 n>0
= —q"u(~n—-1) = ' -
x(n) a"u(—n—1) [—or", -_1
Solution From the definition (3.1.1) we have
-1 o
X@= Y (- ==Y @2
A=~ i=}
where { = —n. Using the formula
. 5 A
A+ AT+ A+ = A(1+A+A‘+---)=]——A
when |A} < 1 gives
a”lz 1
X(@) = —— =
) l—a-lz 1—~az!
provided that [«~'z| < 1 or, equivalently, |z{ < ja}. Thus
x(n) = —a"u(—n — 1) < X(2) = — ROC: {z] < la] (3.1.9)

1-az!
The ROC is now the interior of a circle having radius jaj. This is shown in Fig. 3.3.
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Im(z}

x{n}
.. =5-4-3-2-1{0
Re(z)
ST l n
O<e<]
(a)
Figure 3.3 Anticausal signal x(n) = —a"u(—n — 1) (a), and the ROC of its z-

transform (b).

Examples 3.1.3 and 3.1.4 illustrate two very important issues. The first con-
cerns the uniqueness of the :-transform. From (3.1.7) and (3.1.9) we see that
the causal signal «"u(n) and the anticausal signal —a"u(—n — 1) have identical
closed-form expressions for the z-transform, that is.

Zle"u(n)) = Z{—a"u(—n - 1)} = —1-

1-eoz!
This implies that a closed-form expression for the z-transform does not uniquely
specify the signal in the time domain. The ambiguity can be resolved only if
in addition to the closed-form expression, the ROC is specified. In summary. a
discrete-time signal x(n) is uniquely determined by its z-transform X (2) and the
region of convergence of X(z). In this text the term “z-transform™ is used to refer
to both the closed-form expression and the corresponding ROC. Example 3.1.3
also illustrates the point that the ROC of a causal signal is the exterior of a circle
of some radius ry while the ROC of an anticausal signal is the interior of a circle of
some radius r;. The following example considers a sequence that is nonzero for
~00 < n < o0.

Example 3.1.5
Determine the z-transform of the signal
x(m) =a"u(n) + b"u(-n-1)
Sohlution From definition (3.1.1) we have
o -1 x o
X@=y a7+ Y = @)+ Y 07
=0 n=—oc n=0 =1

The first power series converges if |az™!| < 1 or |z} > |e|. The second power series
converges if [b7'z] < 1 or [z} < |b].
In determining the convergence of X (z), we consider two different cases.
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Case 1 jb| < jaf: In this case the two ROC above do not overlap. as shown
in Fig. 3.4(a). Consequently, we cannot find values of z for which both power series
converge simultaneously. Clearly, in this case, X () does not exist.

Case 2 |b] > |«x|:  In this case there is a ring in the z-plane where both power
series converge simultaneously, as shown in Fig. 3.4(b). Then we obtain

1 1
X(3) = —
1-a@z? 1-bz!
. (3.1.10)

= a+b—c—ab!
The ROC of X(2) is |e] < |z] < IB].

This example shows that if there is a ROC for an infinite duration two-sided
signal, it is a ring (annular region) in the z-plane. From Examples 3.1.1, 3.1.3. 3.1.4,
and 3.1.5, we see that the ROC of a signal depends on both its duration {finite
or infinite) and on whether it is causal, anticausal, or two-sided. These facts are
summarized in Table 3.1

One special case of a two-sided signal is a signal that has infinite duration
on the right side but not on the left [ie, x(n} = 0 forn < ny < 0). A sec-
ond case is a signal that has infinite duration on the left side but not on the

im(z)
z-plane
1bi
] — Re(2)
icr]
1bl < farf
X(z) does not exist
| %
Im(c)

Re(2)

ROC for X(2)
Figure 3.4 ROC for z-transform in
Example 3.1.5.
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TABLE 3.1 CHARACTERISTIC FAMILIES OF SIGNALS WITH THEIR
CORRESPONDING ROC

Signal ROC
Finite-Duration Signals
Causal
7
T T ' Eatire z-plane
e except £ =
0 n 7
Anticausal
nlicausal . %
Entire z-plane
b I except 7= oo
0 " 7
Two-sided
7
T Entire z-plane
TTT TT?Q except z=0
0 n / and 7= oo
Infinite-Duration Signals
Causal

(I <. P

o

Aniicausal
- o1 T 1
0

Two-sided

T11. -

0 n

a1

159

right [i.e., x{n) = 0 for n > n; > 0]. A third special case is a signal that has
finite duration on both the left and right sides [ie., x(n) = 0 forn < ng < 0
and n > n; > 0]. These types of signals are sometimes called right-sided, left-
sided, and finite-duration two-sided, signals, respectively. The determination of the
ROC for these three types of signals is left as an exercise for the reader (Prob-

lem 3.5).

Finally, we note that the z-transform defined by (3.1.1) is sometimes referred
to as the two-sided or bilateral z-transform, to distinguish it from the one-sided or
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unilateral z-transform given by

x

X7y = ximz (3.1.11)

=0
The one-sided z-transform is examined in Section 3.5. In this text we use the
expression z-transform exclusively to mean the two-sided :-transform defined by
(3.1.1). The term “two-sided™ will be used only in cases where we want to resolve
any ambiguities. Clearly, if x(n) is causal [i.e., x(n) = 0 for n < 0]. the one-sided
and two-sided z-transforms are equivalent. In any other case. they are different.

3.1.2 The Inverse z-Transform

Often, we have the z-transform X (z) of a signal and we must determine the signal
sequence. The procedure for transforming from the z-domain to the time domain
is called the inverse z-transform. An inversion formula for obtaining x(n) from
X(z) can be derived by using the Cauchy integral theorem, which is an important

theorem in the theory of complex variables.

To begin, we have the z-transform defined by (3.1.1) as
X

Nioy= Y xthi™ (3.1.12)

k==

Suppose that we multiply both sides of (3.1.12} by z*~! and integrate both sides

over a closed contour within the ROC of X(:} which encloses the origin. Such a
contour is illustrated in Fig. 3.5. Thus we have

e o
s = e (ky=" kg 1.13
Séxu d 9/;}:40\) d (3.1.13)

k=—2c
where C denotes the closed contour in the ROC of X (2). taken in a counterclock-

wise direction. Since the series converges on this contour. we can interchange
the order of integration and summation on the right-hand side of (3.1.13). Thus

im(z)

Figure 3.5 Contour C for integral in
(3.1.13).
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{3.1.13) becomes

SliiX(z)z"”dz = Z x(k)géz"“-"d: (3.1.14)

k=-oc

Now we can invoke the Cauchy integral theorem, which states that

1 1k 1. k=n
— dz = 3.1.15

27 a Z [ 0. k#n ¢ )
where C is any contour that encloses the origin. By applying (3.1.15), the right-
hand side of (3.1.14) reduces to 2z jx(n) and hence the desired inversion formula

x(n) = —lfséxmz"“ dz (3.1.16)
2nj

Although the contour integral in (3.1.16) provides the desired inversion for-
mula for determining the sequence x(n) from the z-transform, we shall not use
(3.1.16) directly in our evaluation of inverse z-transforms. In our treatment we deal
with signals and systems in the z-domain which have rational z-transforms (i.e., z-
transforms that are a ratio of two polynomials). For such z-transforms we develop a
simpler method for inversion that stems from (3.1.16) and employs a table lookup.

3.2 PROPERTIES OF THE Z-TRANSFORM

The z-transform is a very powerful tool for the study of discrete-time signals and
systems. The power of this transform is a consequence of some very important
properties that the transform possesses. In this section we examine some of these
properties.

In the treatment that follows, it should be remembered that when we combine
several z-transforms, the ROC of the overall transform is, at least, the intersection
of the ROC of the individual transforms. This will become more apparent later,
when we discuss specific examples.

Linearity. If
x1(n) < X))
and
x2(n) < X2(2)
then
x(n) = axi(n) + apxp(n) «+— X(2) = a1X1(2) + a2X2(2) (3.2.1)
for any constants a; and a;. The proof of this property follows immediately from
the definition of linearity and is left as an exercise for the reader.

The linearity property can easily be generalized for an arbitrary number of
signals. Basically, it implies that the z-transform of a linear combination of signals
is the same linear combination of their z-transforms. Thus the linearity property
helps us to find the z-transform of a signal by expressing the signal as a sum of
elementary signals, for each of which, the z-transform is already known.
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Example 3.2.1
Determine the :-transform and the ROC of the signal

x(n) = [3(27) — 4(3") Ju(m)
Solution If we define the signals
xi{n) = 2"u(n)
and
x2{n) = 3"u(n)
then x(n) can be written as
x(n) = 3x1(n) — dxa(n)
According to (3.2.1}. its z-transform is
X(2)=3X,(z) - 4X2(2)

From {3.1.7) we recall that

a"u(n) «—

! -~ ROC: iz| > |e| (3.2.2)
1-az!

By setting o =2 and @ = 3 in (3.2.2}. we abtain

: 1
xitn) = 2'u(n) «— Xi(2) = T2 ROC: |21 » 2
- 1
x2(n) = 3"uin) «— X2(2) = T3 ROC: |z} » 3
The intersection of the ROC of X;(z) and Xz(z) is |z| > 3. Thus the overall transform
X(z)is
3 4
X{z _T:—Z—.:’.-W ROC: |z] > 3
Example 3.2.2

Determine the z-transform of the signals

(a) x(n) = (coswyn)uin)
(b) x(n) = (sinayn}iu(n)

Solution
(a) By using Euler’s identity, the signal x(n) can be expressed as
x(n) = (cosaymiu(n) = 1e/™"u(n) + Le~ /" uin)
Thus (3.2.1) implies that

X(2) = {Z{e/™u(n)} + L Z{e " u(n)}



Sec. 3.2 Properties of the z-Transform 163

If we set o = 2/ (ja| = [¢2/*| = 1) in (3.2.2). we obtain

: 1
e’“Vu(n) > ——— ROC: |z| > 1
1 —e/mzt
and
e My (n) PEIN -—-1—— ROC: |z] > 1
1 — e—jouo—1 o
Thus
1 1 1 1
X(@) = T emrT T 3T e ROC: (7] > 1

After some simple algebraic manipulations we obtain the desired result. namely.

: 1-=z"%cos . R
(cos wondu(n) «—— ————&——; ROC: iz > 1 (3.2.3)
1-2z"'cosawy + 277

(b) From Euler’s identity,

. 1, .
x(n) = (Sinworlu(n) = T{c’””“u(n) — ey )]
J

Thus
X = 1 1 ROC: o |
©= 2j \T—emmzl ] gmronz-l Sz
and finally,
i 2 o7 sinay . o
(sinwym)u{n) «—— m ROC: 7] > 1 (3.2.4)
Time shifting. If
x(n} PN X(2)
then
xX(n—k) <= 7X@ (32.5)

The ROC of z7¥X(z) is the same as that of X(z) except for ; = 0if k¥ > 0 and
z = oo if k < 0. The proof of this property follows immediately from the definition
of the z-transform given in (3.1.1)

The properties of linearity and time shifting are the key features that make
the z-transform extremely useful for the analysis of discrete-time LTI systems.

Example 3.2.3

By applying the time-shifting property, determine the z-transform of the signals x2(n)
and x3(r) in Example 3.1.1 from the z-transform of x,(n).

Solution It can easily be seen that

x3(n) = xy(n +2)
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and
xi(n) = xy(n —2)
Thus from (3.2.5) we obtain
X = X@ =422 4+5+ T 47
and
Xa@ =X (@)=t + 20 + 5 1 T
Note that because of the multiplication by z*, the ROC of X2(z) does not include the
point ; = oc, even if it is contatned in the ROC of X,{z).

Example 3.2.3 provides additional insight in understanding the meaning of
the shifting property. Indeed, if we recall that the coefficient of ™" is the sample
value at time n. it is immediately seen that delaying a signal by k{k > 0) samples
[i.e.. x(n) — x{n — k)] corresponds to multiplying all terms of the z-transform by
z7*. The coefficient of :~* becomes the coefficient of z=""+*.

Example 3.2.4

Determine the transform of the signal
1, 0<m=<sN-1

2.6
0. elsewhere 3-26)

x{n) ={

Solution We can determine the z-transform of this signal by using the definition
(3.1.1). Indeed,

Aif N, fz=1
X=» 1:cm=ldz" ™01V (B.27)
gt T ifz#1

Since x(n) bas finite duration, its ROC is the entire z-plane, except = = 0.
Let us also derive this transform by using the linearity and time shifting prop-
erties. Note that x(n) can be expressed in terms of two unit step signals

x(n) =u(n) —uin—N)
By using (3.2.1) and (3.2.5) we have
X2y = Z{um)} — Z{un — N)} = (1 — 27" Z{uim)} (3.2.8)

However. from (3.1.8) we have

Z{u(n)) = l_lﬁ ROC: |z] > 1

which. when combined with (3.2.8), leads to (3.2.7).

Example 3.2.4 helps to clarify a very important issue regarding the ROC
of the combination of several z-transforms. If the linear combination of several
signals has finite duration, the ROC of its z-transform is exclusively dictated by the
finite-duration nature of this signal, not by the ROC of the individual transforms.

Scaling in the z-domain. If

x(n) <> X{2) ROC:ri <zl <r2
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then )
a"x{n) — X(a '2) ROC: |alr < |z| < lalr; (3.2.9)

for any constant a, real or complex.
Proof. From the definition (3.1.1)

Zia"x(n)) = Z a"x(n)z7" = Z x(r)(a~tz)™"
= X(a'2)

Since the ROC of X(z) is r; < |z} < ro. the ROC of X(a~'z2) is
rn < |a_]z| <r
or
lalry < |z| < lalr:
To better understand the meaning and implications of the scaling property,
we express a and z in polar form as a = rge/*. z = re/*, and we introduce a new
complex variable w = ¢~'z. Thus Z{x(n)} = X(z) and Z{a"x(n)} = X (w). It can

easily be seen that
1
w=alz= (Mr gl o)
To

This change of variables results in either shrinking (if ro > 1) or expanding (if
ry < 1) the z-plane in combination with a rotation (if wy # 2k ) of the z-plane
(see Fig. 3.6). This explains why we have a change in the ROC of the new transform
where |a| < 1. The case |a| = 1, that is, a = e/ is of special interest because it
corresponds only to rotation of the z-plane.

Example 3.2.5
Determine the z-transforms of the signals

(8) x(n) = a"(cos wyn)u(n)
(b) x(n) = a"(sin wyndu(n)

z-plane w-plane
Im(z) Im(w})
) w=a"lz w
, —
w w—wy
0 Refz) i} Re(w)

Figure 3.6 Mapping of the z-plane to the w-plane via the transformation w =

a~ 'z, a = rge/=,



166 The z-Transform and Its Application to the Analysis of LTI Systems Chap. 3

Solution
(a) From (3.2.3) and (3.2.9) we casily obtain

1 —az"'coswy,

a”{cos wnniun) T v 120> |al (3.2.10)
(b) Similarly. (3.2.4) and (3.2.9) vield
. ~=lgi
g (sinwynuin) — ] — 2> al (3.2.11)
1 —2az"'coswy +a-17+
Time reversal. 1If
x(n) — X(2) ROC:. ry < izl <r
then
: 0 1 1
x(—n) «— X(z7) ROC: — < |z] <« — (3.2.12)
r n
Proof. From the definition (3.1.1). we have
x o~
Zix(—n)} = Z X{(—m)z7" = Z b= x0T
n=—o ==

where the change of variable / = —n is made. The ROC of X(z7'} is
. |
r < |:'1f < ry orequivalently — < |7l < —
ra ¥y
Note that the ROC for x(n) is the inverse of that for x(—n). This means that if z¢
belongs to the ROC of x(n), then 1/z; is in the ROC for x(—n).

An intuitive proof of (3.2.12) is the following. When we fold a signal. the
coefficient of =" becomes the coefficient of z". Thus, folding a signal is equivalent
to replacing z by 7! in the z-transform formula. In other words, reflection in the
time domain corresponds to inversion in the z-domain.

Example 3.2.6
Determine the z-transform of the signal
x(n) = u{~n)

Solution It is known from (3.1.8) that

: 1
u(n) «—— - ROC: |z] > 1
By using (3.2.12), we easily obtain

N
ui-n) <> —  ROC: [zl <1 (3.2.13)

Differentiation in the z-domain. If

x(n) <= X(2)
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then

nx(n) < ——= (3.2.14)
Proof. By differentiating both sides of (3.1.1), we have

dX(z) x - e n
Pl > xmm == Y nxm)e

nN==—0C nN=—0oc
—z"Z{nx(n)]
Note that both transforms have the same ROC.

I}

Example 3.2.7

Determine the z-transform of the signal
x(n) = na"u(n)

Solution The signal x(n) can be expressed as nx,(n), where x;(r) = a"u(n). From
(3.2.2) we have that

: 1
xiny =a"u(n) «— X,(2) = T ROC: [z] > [a]
Thus, by using (3.2.14). we obtain
: X (z Pt
naum) < Xy = 220 T ROC 2] > jal (3.2.15)

dz (1—az')?
If we set a =1 in (3.2.15), we find the z-transform of the unit ramp signal
-1

N Z -
nu(n) «— =T ROC: iz] > 1 (3.2.16)

a

Example 3.2.8

Determine the signal x(n) whose z-transform is given by
X =log +az?) |zt > la}

Solution By taking the first derivative of X(z), we obtain

dX(z) _ -az’?
dz  1+az!
Thus
dX@ _ 1
= az [1 — (—a)z"] lz| > la]

The inverse z-transform of the term in brackets is (—a)”. The multiplication by
z~! implies a time delay by one sample (time shifting property), which results in
(—a)"'u(n — 1). Finally, from the differentiation property we have

nx(n) = a(—a)"'utn — 1)
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or

x{n) = (-1)"! Z un ~ 1)
n

Convolution of two sequences. If
xi(n) <= Xi(2)
x2(n) «— X3(2)
then
x(n) = x1(n) * xa(n) < X(2) = X1(2)X2(2) (3.2.17)
The ROC of X (z) is, at least, the intersection of that for X;(z) and X»(2).

Proof. The convolution of x;(n) and x;(n) is defined as
Oc

xin) = 3 xikxin = k)

k=—oC

The z-transform of x(n) is

oL oc o

X@= Y xmz"= Y [Z xy(k)x2(n —k)] =
n=— n=—x | k=—-x

Upon interchanging the order of the summations and applying the time-shifting

property in (3.2.5). we obtain

X@ =y mk)[ i x2(n —k):-"}

k=—oc n=-—oc

I

"

X2(z2) Z x1 (k)™ = X2(2) X1(2)

k=—cc
Example 3.2.9

Compute the convolution x(r) of the signals

x{n) = {1.-2,1}
x(n)—-[l' 0=<n<5
? ~ 10, elsewhere

Solution From (3.1.1), we have
X2y = 1-2:"" 4272
Xoz) = 147" 422423 4274+
According to (3.2.17), we carry out the multiplication of X;(z) and X2(z). Thus
X =X1@X(y=1-z"~2"+77
Hence
x(n) = {#. -1,0,0,0,0,-12,1}
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The same result can also be obtained by noting that

X = a4 -7

11—zt
X22) = ITF
Then
X@=0-H-H=1-1-+7

The reader is encouraged to obtain the same result explicitly by using the convolution
summation formula (time-domain approach).

The convolution property is one of the most powerful properties of the z-

transform because it converts the convolution of two signals (time domain) to
multiplication of their transforms. Computation of the convolution of two signals.
using the z-transform, requires the following steps:

1. Compute the z-transforms of the signals to be convolved.
X1(2) = Z{xi(m)

(time domain — :-domain)

X2(2) = Z{xa(n))
2. Multiply the two z-transforms.
X(2) = Xj(2)Xa(2) (z-domain)

3. Find the inverse z-transform of X (z).

x(n) = Z7H{X(2)) (z-domain — time domain)

This procedure is, in many cases, computationally easier than the direct eval-
uation of the convolution summation.

Correlation of two sequences. If
x(n) «— X1(2)

x2(n) < X1(2)
then

oC

ran@) = Y ximxn =) <5 Ry = X1@X@ ) (3.2.18)

N=—0C

Proof. We recall that

Toxn (D) = x1(l) * x2(=D)
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Using the convolution and time-reversal properties, we easily obtain
Rua: () = ZIn D} Z{xa(=D) = X1(2) X2(z7H

The ROC of R,,,,(z) is at least the intersection of that for X;(z) and X(z™).

As in the case of convolution, the crosscorrelation of two signals is more
easily done via polynomial multiplication according to (3.2.18) and then inverse
transforming the result.

Example 3.2.10

Determine the autocorrelation sequence of the signal
x(mM=auin). -1 <a<1

Solution  Since the autocorrelation sequence of a signal is its correlation with itseif,
(3.2.18) gives

Ru( = Zir. D) = X (@)X ™

From (3.2.2) we have

X)) = —]—-]—I ROC: |7] » la| (causal signal)
—az-

and by using (3.2.15). we obtain

1 1
Xz = —— ROC: |z] < — (anticausal signal)
1-a:z la|
Thus
] 1 1 i
R (2) = ROC: jai < |z| <« —

l~a:“l—¢:::=]—a(:+:“)+a2 la!

Since the ROC of R,.(2) is a ring, r..{l} is a two-sided signal, even if x(n) is causal.
To obtain r.(I), we observe that the z-transform of the sequence in Exam-
ple 3.1.5 with # = 1/a is simply (1 — a?)R,,(z). Hence it follows that

T (D) = ]_10:0‘” —oc <l <o

The reader 1s encouraged to compare this approach with the time-domain solution of
the same probiem given in Section 2.6.

Multiplication of two sequences. If
xi(n) <= X1(2)
xa(n) < X2(2)

then

. 1
x(n) = x1(M)xz(n) <= X(2) = i?ﬁéxl(”)xz (%) vldy (3.2.19)

where C is a closed contour that encloses the origin and lies within the region of
convergence common to both X;(¥) and Xa(1/v).
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Proof. The z-transform of x3(n) is
ol o

X@= 3 xtmz" =3 xmxmz"

n=—0oC n=—0C
Let us substitute the inverse transform

x1( _._l_ n-1
1(n) = 3] C)ﬁ(v)v dv

&7

for x;(n) in the z-transform X(z) and interchange the order of summation and
integration. Thus we obtain

il Z\~h
X2 = ii—jéxl(u) L;xxz(n) (3) ] 1y

The sum in the brackets is simply the transform X,(z) evaluated at z/v. Therefore,

1 AN
Xu—z;fgéxm)xz(;)v dv

which is the desired result.
To obtain the ROC of X (z) we note that if X;(v) converges for ry; < |v] < ry,
and X,{z) converges for ry < |z| < ra,, then the ROC of Xa(z/v) is

V-
ray < J’::} < Tu

Hence the ROC for X (z) is at least
ryry < |zl < rr (3220)

Although this property will not be used immediately, it will prove useful later,
especially in our treatment of filter design based on the window technique, where
we multiply the impulse response of an IIR system by a finite-duration “window”
which serves to truncate the impulse response of the IIR system.

For complex-valued sequences x;(n) and x2(n) we can define the product
sequence as x(n) = x (n)x;(n). Then the corresponding complex convolution
integral becomes

x(n) = x(Mx3(n) <> X(2) = -1—,9§X1(U)X5 (Z—> vy (32.21)
2 j v*
The proof of (3.2.21) is left as an exercise for the reader.

Parseval’s refation. If x,(n) and x»(n) are complex-valued sequences, then

oC

1 1
Z x(mx3(n) = mﬁxﬂv)X; (v—_) vldv (3.2.22)

provided that ryry < 1 < ry,ry,. where ry < |z| < r, and ry < |z] < rpu are the
ROC of X;(z) and X2(z). The proof of (3.2.22) follows immediately by evaluating
X{()in (3.221) atz=1.
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The Initial Value Theorem. If x(n) is causal [i.e.. x(n) = 0 for n < 0]. then

223

(73

x{0y = lim X(z} (
=X

Proof. Since x(n) is causal. (3.1.1) gives
xX
X(z) = Z,\‘(n):_” =xO+xM: +x@:7 + -
n=0
Obviously, as z — oc. 27" — 0 since n > 0 and (3.2.23) follows.

All the properties of the z-transform presented in this section are summarized
in Table 3.2 for easy reference. They are listed in the same order as they have
been introduced in the text. The conjugation properties and Parseval’s relation
are left as exercises for the reader.

We have now derived most of the z-transforms that are encountered in many
practical applications. These z-transform pairs are summarized in Table 3.3 for
casy reference. A simple inspection of this table shows that these z-transforms
are all rational functions {i.e.. ratios of polynomials in z='). As will soon become
apparent, rational z-transforms are encountered not only as the :-transforms of
various important signals but also in the characterization of discrete-time linear
time-invariant systems described by constant-coefficient difference equations.

3.3 RATIONAL Z-TRANSFORMS

As indicated in Section 3.2, an important family of z-transforms are those for which
X(z) is a rational function. that is. a ratio of two polynomials in z~' (or z). In
this section we discuss some very important issues regarding the class of rational
z-transforms.

3.3.1 Poles and Zeros

The zeros of a z-transform X () are the values of z for which X () = 0. The poles
of a z-transform are the values of z for which X(z) = oc. If X(z) is a rational
function, then

M
bzt
X =M@ _boxbil 4o v b “; (3.3.1)
. _D(:)_ao+ﬂ1:‘1+-~+a~:""_i’ » -
ai:

=0

If ap # 0 and by # 0, we can avoid the negative powers of ; by factoring out the
terms boz™¥ and agz~V as follows:
N@@)  boz™ ™ + (by /o)™ + -+ bu/bo

X(z) = =
) D) aoz™ N 4+ (arfag)zV 1 + - +an/ag
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TABLE 3.2 PROPERTIES OF THE Z-TRANSFORM

Property Time Domain z-Domain ROC
Notation x(n) X(z2) ROC: r; < |zt <y
xi(n) X1(2) ROC,
x2(n) X2(2) ROCGC,
Linearity ayxy(n) + azxy(n) o X(2) +a: X(2) At least the intersection of ROC,

Time shifting

Scaling in the z-domain

Time reversal
Conjugation
Real part
Imaginary part

Differentiation in the
z-domain
Convolution
Correlation

Initial value theorem

Multiplication

Parseval’s relation

x{n — k)

a"x(n)

x(—n)
x*(n)
Re{x(n)}
Im{x(n)}

nx(n)

x1(n) * xp(n)

Fax ) = xi() * xa(~1)
If x(n) causal

Xy (n)xz(n)

oo

2nj

XD

X(a™'D)

X@™

X*(z")

HX@+ X ()]

{x@ - x*z9]
dX(z)

—z dz

X1 (2)X2(2)

Rey(z) = X1(2)X2(z™")

x(0) = ]im X(2)

1 - Z\ 1
mﬁ}(l(v)){z (;) v dy

1
th (Mx;(n) = —ﬁxl(v])q(l/u‘)v"du

and ROGC;

That of X(z), except z =0if k >0
and z=o0if k <0

lalry < |z < la|n
— <zl <« —

n 2
ROC

Includes ROC
Includes ROC

n<l|zl<n

At least, the intersection of ROC,
and ROGC,

At least, the intersection of ROC of
X1(2) and X5(z7")

At least ryry < |z| < ry,ra
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TABLE 3.3 SOME COMMON Z-TRANSFORM PAIRS

Signal. x(n) :-Transform, X(z) ROC
1 8(n) 1 All z
1
2 u(n} 1__::T Izl > 1
L l -
3 a"u(n) T:F |z] > lal
4 . az™!
na”"u(n) m iz > la|
1
5 —a"u(-n-1) PR Izl < lal
1—az!
az”!
6 ~na"u(-n-—1) m J2} < fal
1 -z coswp
7 (cos wyn)u(n) T2 cosan £ 27 2l > 1
. 27! sin ay
8 (sin awyr)uln) m M
. 1-—az"' cosawy
9 (a"cosayniuin) T 3ar cosem + a2o? 1z} > al
-=1 a3
10 (a" sinanmuin) 2 Snon It > lal

1 —2az"'cosay + a%z-2

Since N(z) and D(z) are polynomials in z, they can be expressed in factored form as

N@) by _yen (£ 20002 —22)-- (2 —zm)

X(@) = —=—12
D(z) a (z=pz—p2)-- (2= pN)
M
1_[(: — ) (3.3.2)
X() = GZN»MLE,I_.—
]_I(Z - P
k=1
where G = by/ap. Thus X(z) has M finite zeros at z = zj, z2, ..., zu (the roots of
the numerator polynomial), N finite poles at z = p;, p2,..., py (the roots of the

denominator polynomial), and |N — M| zeros (if N > M) or poles (if N < M) at
the origin z = 0. Poles or zeros may also occur at z = co. A zero exists at z = oo if
X (o0) = D and a pole exists at z = oo if X{c0) = oc. If we count the poles and zeros
at zero and infinity, we find that X (z) has exactly the same number of poles as zeros.

We can represent X (z) graphically by a pole-zero plor (or pattern) in the
complex plane, which shows the location of poles by crosses (x) and the location
of zeros by circles (o). The multiplicity of multiple-order poles or zeros is indicated
by a number close to the corresponding cross or circle. Obviously, by definition,
the ROC of a z-transform should not contain any poles.
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Example 3.3.1
Determine the pole-zero plot for the signal
x(n) = a"u(n) a>0

Solution From Table 3.3 we find that
1 z

X(:=——=~—; ROC: |zl > a

l—a:7! -
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Thus X(z) has one zero at z; = 0 and one pole at p; = a. The pole-zero plot is
shown in Fig. 3.7. Note that the pole p; = ¢ is not included in the ROC since the

z-transform does not converge at a pole.

Re(2)

7.

Example 3.3.2
Determine the pole-zero plot for the signal
a®, O<n<M-1

xln) = {0, elsewhere

where a > 0.

Selution From the definition (3.1.1) we obtain

Figure 3.7 Pole-zero plot for the
causal exponential signal x(#) = a"utn).

M-1
1—(azhM M —a¥
2) = Th = =
X() ;‘a i P S TP

Since a > 0, the equation z¥ = a* has M roots at
2 = ae/ M k=0,1,.... M~-1
The zero zg = a cancels the pole at ; = a. Thus

(—z)z2~22) (2 —2m-1)
ZM‘—l

X(@) =

which has M — 1 zeros and M — 1 poles, located as shown in Fig. 3.8 for M = 8. Note
that the ROC is the entire z-plane except z = 0 because of the M — 1 poles located

at the origin.
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Im(z}

M—ll%iezﬂ/4 lzi=a
\’;/J -

Clearly. if we are given a pole-zero plot, we can determine X (z), by using
(3.3.2). to within a scabing factor G, This is illustrated in the following example.
Example 3.3.3

Dectermine the c-transform and the signal that corresponds o the pole—zero plot of
Fig. 3.9.

Figure 3.8 Pole—zero pattern for
the finite-duration signal x(n) = a”,
O=n<M-—1a>0)for M=§

Solution  There are two zeros (M = 2) at 2; = (. 22 = 7 cos wy, and two poles (N =2)
al p; = re/™, p. = re”/*. By substitution of these relations into {3.3.2), we obtain
NERD I MRS} z{z —rcos
Xo=glemn) _,  Hi-rcosen ROC: iz} >

(2= poz—p) (2 —relv}z —re~/w)

After some simple algebraic manipulations, we obtain

1—rz"'cosay
X{z)=G ROC: |z
@ 1T —2rz'cosay + riz=2 Il >

From Table 3.3 we find that

x(n) = G(r" cos wyn)u(n)

From Example 3.3.3, we see that the product (z: — p))(z — p2) results in a
polynomial with real coefficients, when p; and p; are complex conjugates. In

Im(z)

Re(z)

Figure 3.9 Pole-zero pattern for
Exampie 3.3.3.
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general, if a polynomial has real coefficients, its roots are either real or occur in
complex-conjugate pairs.

As we have seen. the z-transform X (z) is a complex function of the complex
variable z = Re(z) + j lm(z). Obviously, |X(z)|, the magnitude of X(z). is a real
and positive function of z. Since z represents a point in the complex plane, |X(2)
is a two-dimensional function and describes a “surface.” This is illustrated in
Fig. 3.10(a) for the :-transform

-1 -2

S 333
1+12732:-1 7 081:-2 (3-3.3)

X)) =

Figure 3.10 Graph of |X (2)| for the
z-transform in (3.3.3). [Reproduced with
permission from Introduction 10 Systems
Analysis, by T. H. Glisson, © 1985 by
McGraw-Hill Book Company.]
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which has one zero at z; = 1 and two poles at p;, p» = 0.9¢2/*  Note the
high peaks near the singularities (poles) and the deep valley close to the zero,
Figure 3.10(b) illustrates the graph of | X (z)] for z = /.

3.3.2 Pole Location and Time-Domain Behavior for
Causal Signals

In this subsection we consider the relation between the z-plane location of a pole
pair and the form (shape) of the corresponding signal in the time domain. The dis-
cussion is based generally on the collection of z-transform pairs given in Table 3.3
and the results in the preceding subsection. We deal exclusively with real, causal
signals. In particular, we see that the characteristic behavior of causal signals de-
pends on whether the poles of the transform are contained in the region |z] < 1,
or in the region |z| > 1, or on the circle |z| = 1. Since the circle jz] = 1 has a
radius of 1, it is called the unir circle.

If a real signal has a z-transform with one pole, this pole has to be real. The
only such signal is the real exponential

1
1-az!
having one zero at z; = 0 and one pole at p; = a on the real axis. Figure 3.11

x(n) = a"u(n) <> X(z) = ROC: |z] > |a]

S e AS
o s T

z-plane i‘r (m) z-piane {‘")

L

1 0 n

T?9
T3

n

(I

0

AS Ll A5 Lol
le 0 p J] 01111 ;

Figure 3.11 Time-domain behavior of a single-real pole causal signal as a function
of the location of the pole with respect to the unit circle.

(4N
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illustrates the behavior of the signal with respect to the location of the pole rel-
ative to the unit circle. The signal is decaying if the pole is inside the unit
circle, fixed if the pole is on the unit circle, and growing if the pole is out-
side the unit circle. In addition, a negative pole results in a signal that alter-
nates in sign. Obviously, causal signals with poles outside the unit circle be-
come unbounded, cause overflow in digital systems, and in general, should be
avoided.
A causal real signal with a double real pole has the form

x(n) = na"u(n)

(see Table 3.3) and its behavior is illustrated in Fig. 3.12. Note that in contrast to
the single-pole signal, a double real pole on the unit circle results in an unbounded
signal.

Figure 3.13 illustrates the case of a pair of complex-conjugate poles. Accord-
ing to Table 3.3, this configuration of poles results in an exponentially weighted
sinusoidal signal. The distance r of the poles from the origin determines the enve-
lope of the sinusoidal signal and their angle with the real positive axis, its relative
frequency. Note that the amplitude of the signal is growing if r > 1, constant if
r =1 (sinusoidal signals). and decaying if r < 1.

xn) =-plane

5 Ll

-
-

z-plane x(n) z-plane
m=2 m =m o

Figure 3.12 Time-domain behavior of causal signals corresponding to a double (m = 2) real
pole, as a function of the pole location.
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2-plane x(rt)

z-plane xm) o
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Figure 313 A pair of complex-conjugate poles corresponds to causal signals with
oscillatory behavior.

Finally, Fig. 3.14 shows the behavior of a causal signal with a double pair of
poles on the unit circle. This reinforces the corresponding results in Fig. 3.12 and
illustrates that multiple poles on the unit circle should be treated with great care.

To summarize, causal real signals with simple real poles or simple complex-
conjugate pairs of poles, which are inside or on the unit circle are always bounded
in amplitude. Furthermore, a signal with a pole (or a complex-conjugate pair
of poles) near the origin decays more rapidly than one associated with a pole
near (but inside) the unit circle. Thus the time behavior of a signal depends
strongly on the location of its poles relative to the unit circle. Zeros also af-
fect the behavior of a signal but not as strongly as poles. For example, in the



Sec. 3.3 Rational z-Transforms 181

(=3
i
-
.
—
-3

Figure 3.14 Causal signal corresponding to a double pair of complex-conjugate
poles on the unit circle

case of sinusoidal signals, the presence and location of zeros affects only their
phase.

Al this point. it should be stressed that everything we have said about causal
signals applies as well to causal LTI systems, since their impulse response is a causal
signal. Hence if a pole of a system is outside the unit circle, the impulse response
of the system becomes unbounded and. consequently, the system is unstable.

3.3.3 The System Function of a Linear Time-Invariant
System

In Chapter 2 we demonstrated that the output of a (relaxed) linear time-invariant
system 10 an input sequence x(n) can be obtained by computing the convolution
of x(n) with the unit sample response of the system. The convolution property.
derived in Section 3.2, allows us 1o express this relationship in the z-domain as
Y(2)= H(X@) (3.3.4)

where Y(z) is the z-transform of the output sequence v(r). X (2} is the z-transform
of the input sequence x(n) and H(z) is the z-transform of the unit sample response
hin),

If we know A(n) and x(n), we can determine their corresponding z-transforms
H(zy and X (). muluply them 10 obtain Y(z), and therefore determine v(n) by
evaluating the inverse z-transform of Y (z). Alternatively, if we know x(n) and we
observe the output v(n) of the system. we can determine the unit sample response
by first solving for H () from the relation

Y{) .
H(z) X0 (3.3.5)
and then evaluating the inverse z-transform of H(z).
Since
o0
H@z= ) hm:™" (33.6)

n==2oC
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it is clear that H(z) represents the z-domain characterization of a system, whereas
h(n) is the corresponding time-domain characterization of the system. In other
words, H(z) and h(n) are equivalent descriptions of a system in the two domains.
The transform H(z) is called the system function.

The relation in (3.3.5) is particularly useful in obtaining H(z) when the system
is described by a linear constant-coefficient difference equation of the form

N M
Yy == aytn—k)+ Y bxtn—k) 337
k=1 k=0

In this case the system function can be determined directly from (3.3.7) by com-
puting the z-transform of both sides of (3.3.7). Thus, by applying the time-shifting
property, we obtain
N M
Y@ = =) a¥@z 4+ ) bX ()

k=1 k=0

~
o~
D
S
—

+
i
kal

-~
&)
i
-
Sa—
i

M

= X@ (me*)
k=0

M

Zb‘:_k

Y(2) x=0

X(2) N
1+ gzt
k=1
or, equivalently,
M
bz ™*
Hz=—+2% (338

N
1+ Z P
k=1

Therefore, a linear time-invariant system described by a constant-coefficient dif-
ference equation has a rational system function.

This is the general form for the system function of a system described by a
linear constant-coefficient difference equation. From this general form we obtain
two important special forms. First, if a, = 0 for 1 <k < N, (3.3.8) reduces to

M
H(z) =Y bzt
=0

1 M
M—k
L
k=0

In this case, H(z) contains M zeros, whose values are determined by the
system parameters (b}, and an Mth-order pole at the origin z = 0. Since the
system contains only trivial poles (at z = 0) and M nontrivial zeros, it is called

339
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an all-zero system. Clearly. such a system has a finite-duration impulse response
(FIR), and it is calied an FIR system or a moving average (MA) system.
On the other hand. if & = 0 for 1 < k < M. the system function reduces to

by
Ev—
1+ Z agz™*
=1

bo: N
N

i~k
E az”

k=0

H(z) =

(3.3.10)

In this case H(z) consists of N poles. whose values are determined by the system
parameters {a;) and an Nth-order zero at the origin z = 0. We usually do not
make reference to these trivial zeros. Consequently. the system function in (3.3.10)
contains only nontrivial poles and the corresponding system is calied an all-pole
system. Due 10 the presence of poles, the impulse response of such a system is
infinite in duration, and hence it is an 1IR system.

The general form of the system function given by (3.3.8) contains both poles
and zeros. and hence the corresponding system is called a pole-zero system, with
N poles and M zeros. Poles and/or zeros at - = 0 and z = oc are implied but are
not counted explicitly. Due to the presence of poles, a pole-zero system is an IIR
system.

The following example illustrates the procedure for determining the system
function and the unit sample response from the difference equation.

Example 3.3.4

Determine the system function and the unit sample response of the system described
by the difference equation

yin) = iv(n — 1) + 2x(n)
Solution By computing the z-transform of the difference equation. we obtain
Y(z)= 7Y@ + 2X ()

Hence the system funciion is

This system has a pole at z = § and a zero at the origin. Using Table 3.3 we obtain
the inverse transform

h(n) = 2(3)"u(n)

This is the unit sample response of the system.
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We have now demonstrated that rational z-transforms are encountered in
commonly used systems and in the characterization of linear time-invariant sys-
tems. In Section 3.4 we describe several methods for determining the inverse
z-transform of rational functions.

3.4 INVERSION OF THE Z-TRANSFORM
As we saw in Section 3.1.2, the inverse z-transform is formally given by
1 n—1
x(n) = iﬂ—jﬁx(z)z dz (3.4.1)

where the integral is a contour integral over a closed path C that encloses the
origin and lies within the region of convergence of X (z). For simplicity, C can be
taken as a circle in the ROC of X(z) in the z-plane.

There are three methods that are often used for the evaluation of the inverse
z-transform in practice:

1. Direct evaluation of (3.4.1), by contour integration.
2. Expansion into a series of terms, in the variables z, and Fai

3. Partial-fraction expansion and table lookup.
3.4.1 The Inverse z-Transform by Contour Integration

In this section we demonstrate the use of the Cauchy residue theorem to determine
the inverse z-transform directly from the contour integral.

Cauchy residue theorem. Let f(z) be a function of the complex variable
z and C be a closed path in the z-plane. If the derivative df (z)/dz exists on and
inside the contour € and if f(z) has no poles at z = zg, then

1 L f@ [ fzo), if o is inside C
2rjJcz~ ZOdZ B [ 0, if zg is outside C B42)

More generally, if the (k + 1)-order derivative of f(z) exists and f(z) has no poles
at z = zg, then

1 &7/ e
de={ ToD dp T |, if 2o is inside C (3.4.3)

0, if zg is outside C
The values on the right-hand side of (3.4.2) and (3.4.3) are called the residues of
the pole at z = z5. The results in (3.4.2) and (3.4.3) are two forms of the Cauchy
residue theorem.

We can apply (3.4.2) and (3.4.3) to obtain the values of more general contour
integrals. To be specific, suppose that the integrand of the contour integral is

1 f(2)

27 JE (z — zo)*
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P(z) = f(z)/g(z). where f(z) has no poles inside the contour C and g(z) is a

polynomial with distinct (simple)} roots 2y, 23,.... 2, inside C. Then
1 [ff(D 1 ¢  Ai{2)
——dz = — — idz
2wjJE g(z) 27 c[gz—zi]
= Z ,.1_. _A"_({ld: (3.4.4)
2rj i~z

where
A =GC-PE)=0z-u 1@ (3.4.5)
g(z)
The values {A,(z;)} are residues of the corresponding polesatz = z;.i = 1.2, ..., n.

Hence the value of the contour integral is equal to the sum of the residues of all
the poles inside the contour C.

We observe that (3.4.4) was obtained by performing a partial-fraction expan-
sion of the integrand and applying (3.4.2). When g(z) has multiple-order roots
as well as simple roots inside the contour, the partial-fraction expansion, with ap-
propriate modifications. and (3.4.3) can be used to evaluate the residues at the
corresponding poles.

In the case of the inverse z-transform, we have

1
x(n) = ——,31§X(:):"“d:
2nj

> [residue of X(2)z"! at z = 3] (3.4.6)
all poles [z} inside C

= Z(: - Zi)X(Z)Z"¥1}:z:.

provided that the poles {z;} are simple. If X (z)z""! has no poles inside the contour
C for one or more values of n, then x(n) = 0 for these values.

The following example illustrates the evaluation of the inverse z-transform
by use of the Cauchy residue theorem.

Example 3.4.1
Evaluate the inverse z-transform of
1
X(z) = T—ait jz| > laj
using the complex inversion integral.
Solution We have
1 ! 1 [ 7"dz
= — ) ——dz; = —
x(n) 2J'rjﬁ1-az“ Zﬂjﬁz—a

where C is a circle at radius greater than la|. We shall evaluate this integral using
(3.42) with f(z) = z". We distinguish two cases.
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1. If n > 0, f(z) has only zeros and hence no poles inside C. The only pole inside
C is z = a. Hence
x(n) = f(zo)=a" n=0

2. If n <0, f(z) = z" has an nth-order pole at z = 0, which is also inside C. Thus
there are contributions from both poles. For n = —1 we have

1 1
PR E
21j Jez(z —a) 278  Tlima
If n = -2, we have
1 1 d 1 1
-2) = — dz= — [ ~—— el =0
x(=2) 2njﬁzl(z—a) dz (Z‘”)z=o .2 i

By continuing in the same way we can show that x(n) = 0 for n < 0. Thus

x{(n) = a"u(n)

3.4.2 The Inverse z-Transform by Power Series
Expansion

The basic idea in this method is the following: Given a z-transform X (z) with its
corresponding ROC, we can expand X (z) into a power series of the form

o0
X@)= Y ez (3.4.7)
n=-~0oa
which converges in the given ROC. Then, by the uniqueness of the z-transform,
x(n) = c, for all n. When X (z) is rational, the expansion can be performed by
long division.
To illustrate this technique, we will invert some z-transforms involving the
same expression for X(z), but different ROC. This will also serve to emphasize
again the importance of the ROC in dealing with z-transforms.

Example 3.42

Determine the inverse z-transform of
Xy = !
T 1-15z71405:2

when
(a) ROC: |z] > 1
(b) ROC: Iz} < 0.5
Solution

(a) Since the ROC is the exterior of a circle, we expect x(n) to be a causal signal.
Thus we seek a power series expansion in negative powers of z. By dividing
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the numerator of X{z) by its denominater. we obtain the power series

By comparing this relation with (3.1.1), we conclude that

xmy=(1.3.3. 8.3 )

Note that in each step of the long-division process, we eliminate the lowest-
power term of z 7.

{b} 1n this case the ROC is the interior of a circle. Consequently. the signal x(n)
is anticausal. To obtain a power series expansion in positive powers of 2. we
perform the long division in the following way:

257+ 627 + 1420 + 3057 + 6220 + -

1-3:42

7 =212 + 1471

15:% — 142*
1523 — 45:% + 30°
3124 - 3077
Thus
1 .
X = e =20 + 627 + 1420+ 3027 +62:7 +
I L
In this case x(r} = O for » > 0. By comparing this result to (3.1.1), we conclude
that
x(n) ={--62.30.14.6.2.0.0}
+

We observe that in each step of the long-division process, the lowest-power
term of ; is eliminated. We emphasize that in the case of anticausal sig-
nals we simply carry out the long division by writing down the two poly-
nomials in “reverse” order (i.e.. starting with the most negative term on the
ieft).

From this example we note that. in general, the method of long division will
not provide answers for x(n) when n is large because the long division becomes
tedious. Although, the method provides a direct evaluation of x(n), a closed-form
solution is not possible, except if the resulting pattern is simple enough to infer
the general term x(n). Hence this method is used only if one wished to determine
the values of the first few samples of the signal.



188 The z-Transform and its Application to the Analysis of LTI Systems Chap. 3

Example 3.4.3
Determine the inverse z-transform of
X@=logl+az™ |z| > |a
Solution Using the power series expansion for log(1 + x). with |x| < 1, we have

o< —1)m+! L
X(z) = Z ED™ate™

n
n=}

Thus
S onen
n

n=<{

x(n) =
Expansion of irrational functions into power series can be obtained from tables.

3.4.3 The Inverse z-Transform by Partial-Fraction
Expansion

In the table lookup method, we attempt to express the function X (z) as a linear
combination

X@) =X +eaXa(D + - +ax Xk (2) (3.48)
where X(2),.... Xk (z) are expressions with inverse transforms x(n), ..., xx(n)
available in a table of z-transform pairs. If such a decomposition is possible,
then x(n), the inverse z-transform of X (z). can easily be found using the linearity
property as

x(n) = ajxi(n) + agxa(n) + - +axxx(n) (349
This approach is particularly useful if X (z) is a rational function, as in (3.3.1). With-
out loss of generality, we assume that gp = 1, so that (3.3.1) can be expressed as
_N@ _ btz 4 by

D(z) T4+az7t 4+ +ayzV

Note that if ay # 1. we can obtain (3.4.10) from (3.3.1) by dividing both numerator
and denominator by ay.

A rational function of the form (3.4.10) is called proper if ay # 0 and M < N.
From (3.3.2) it follows that this is equivalent to saying that the number of finite
zeros is less than the number of finite poles.

An improper rational function (M > ¥) can always be written as the sum of
a polynomial and a proper rational function. This procedure is illustrated by the
following example.

Example 3.4.4

Express the improper rational transform

14327+ Ro2 4 408
T+ 227+ 122
in terms of a polynomial and a proper function.

X() (3.4.10)

X@2) =
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Solution First. we note that we should reduce the numerator so that the terms :7°
and :7 are eliminated. Thus we should carry out the long division with these two
polynomials written in reverse order. We stop the division when the order of the

remainder becomes :~'. Then we obtain
-1

T4 21412

-

Xy =142+

In general, any improper rational function (M > N) can be expressed as

X(z) = %E:-—: =cy+ izl b koMM 4 % (3.4.11)
The inverse z-transform of the polynomial can easily be found by inspection.
We focus our attention on the inversion of proper rational transforms, since any
improper function can be transformed into a proper function by using (3.4.11).
We carry out the development in two steps. First, we perform a partial frac-
tion expansion of the proper rational function and then we invert each of the
terms.
Let X(z) be a proper rational function. that is,

N@ by+bz T+ by

- 3.4.12
D(2) T4+az 4+ +ay=N 3 )

X(z) =

where
ay #0 and M< N

To simplifv our discussion we eliminate negative powers of : by multiplying both
the numerator and denominator of (3.4.12) by z¥. This results in

boz + b VT byt

X(z) = 3413
(2) [ ( )
which contains only positive powers of z. Since N > M, the function
X(z LN 2 ST oN-M-1
(2) _ by + & + + by (3.4.14)

z A
is also always proper.

Our task in performing a partial-fraction expansion is to express (3.4.14)
or, equivalently, (3.4.12) as a sum of simple fractions. For this purpose we first
factor the denominator polynomial in (3.4.14} into factors that contain the poles
Pis p2.-- .. py of X(2). We distinguish two cases.

Distinct poles. Suppose that the poles py, p2, ..., py are all different (dis-
tinct). Then we seek an expansion of the form

X(z A A A
X _ A | A A (3.4.15)
4 I-n I-mP = PN
The problem is to determine the coefficients A, Az, ..., Ay. There are two ways
to solve this problem, as illustrated in the following example.
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Example 3.4.5

Determine the partial-fraction expansion of the proper function
S S
1-15:71+0.35:72

Solution First we eliminate the negative powers, by multiplying both numerator and
denominator by z2. Thus

X = (3.4.16)

22
22—-15:+05

The poles of X(z) are p; =1 and p; = 0.5. Consequently, the expansion of the form
(3.4.15) is

X(2) =

X(@) 2z Ay Az

(3417

7 T G-DE-05  :-177-05

A very simple method to determine A, and A; is to multiply the equation by the
denominator term (z — 1)(z — 0.5). Thus we obtain

=@ -05A +(z-1DA; (3.4.18)
Now if we set z = p; = 1 in (3.4.18), we eliminate the term involving A;. Hence
1=(1-054,

Thus we obtain the result A; = 2. Next we return to (3.4.18) and set z = p; = 0.5,
thus eliminating the term involving A,, so we have

0.5= (0.5~ 1A,

and hence A, = —1. Therefore, the result of the partial-fraction expansion is

—_— - (3.4.19)

The example given above suggests that we can determine the coefficients A,
Aa, ..., Ay, by multiplying both sides of (3.4.15) by each of the terms (z — pi),

k=1,2,..., N, and evaluating the resulting expressions at the corresponding pole
positions, pi1, pa. ..., py. Thus we have, in general,
- poX — kA - p)A
Z=—p)X@) _ = p) 1+_“+Ak+‘_‘+(z PAN (3.4.20)
4 i—-n 2= PN
Consequently, with z = p,, (3.4.20} yields the kth coefficient as
z— pi)X
A= (z— p)X(2) k=1,2.....N (3.421)
z =Py
Example 3.4.6

Determine the partial-fraction expansion of

142771
X(z)—1

—— 22
—z71 40522 (34.22)
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Solution To eliminate negative powers of : in (3.4.22), we multiply both numerator
and denominator by z*. Thus

X(2) z+1
I T FSz405
The poles of X(z) are complex conjugates
pi=1+/1
and
pr=5i-ii
Since p; # pz. we seek an expansion of the form (3.4.15). Thus
_@ o+1 A As

= = -+
z C=plz=p2) - I—-p
To obtain A; and Az, we use the formula (3.4.21). Thus we obtain

(z— pX(2) I+1 T+ji+1 .
Av= | TiTm| TTiioiegai T
e =p © < le=p; 2 I3 2 /3
{(z ~ p)X(2) c+1 i-jt+1
Ay = ———— =T =Sty =it
< =g TPy 3T J3TITE

The expansion (3.4.15) and the formula (3.4.21) hold for both real and com-
plex poles. The only constraint is that all poles be distinct. We also note that
A = A}. It can be easily seen that this is a consequence of the fact that p; = p}.
In other words, complex-conjugate poles result in complex-conjugate coefficients in
the partial-fraction expansion. This simple result will prove very useful later in our
discussion.

Multiple-order poles. If X(z) has a pole of multiplicity /, that is, it contains
in its denominator the factor (z — p;)'. then the expansion (3.4.15) is no longer
true. In this case a different expansion is needed. First, we investigate the case of
a double pole (i.e., ! = 2).

Example 3.4.7
Determine the partial-fraction expansion of
1
X0 = ————— 3.4.23
(2) T30 =) ( )
Solution First, we express (3.4.23) in terms of positive powers of z, in the form

X _ 2
T G@+LE-1)?

X (z) has a simple pole at py = —1 and a double pole p; = ps = 1. In such a case the
appropriate partial-fraction expansion is
X 2 A A A
e R . . . .
z Z+DE-1? z+41 z-1 (-1
The problem is to determine the coefficients A;, Az, and A;.

(3.4.24)
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We proceed as in the case of distinct poles. To determine A, we multiply both
sides of (3.4.24) by (z + 1) and evaluate the result at z = —1. Thus (3.4.24) becomes

(z+ DX(2) z+1 z+1

=A A —A
2 S R (A
which, when evaluated at z = —1, yields
1
A= Z+DX() =i
z ==1 4

Next, if we muitiply both sides of (3.4.24) by (z — 1), we obtain
@-1)X@ -1

= A +(z— I)Az + As (3425)
H4 z+1
Now, if we evaluate (3.4.25) at z = 1, we obtain A;. Thus
- — 132 - 1
A= (z = 1¥X{) _1
z mt 2

The remaining coefficient A; can be obtained by differentiating both sides of
(3.4.25) with respect to z and evaluating the result at z = 1. Note that it is not
necessary formally to carry out the differentiation of the right-hand side of (3.4.25),
since all terms except A, vanish when we set z = 1. Thus
d [(z - 1)2X(z)] _3

=1

Az (3.4.26)

=dz z 4

The generalization of the procedure in the example above to the case of an
ith-order pole (z — p)’ is straightforward. The partial-fraction expansion must
contain the terms

A Aw L Ak

=p (- p)? (z~ pe)
The coefficients {A;) can be evaluated through differentiation as illustrated in
Example 3.4.7 for | = 2.

Now that we have performed the partial-fraction expansion, we are ready to
take the final step in the inversion of X (z). First, let us consider the case in which
X (z) contains distinct poles. From the partial-fraction expansion (3.4.15), it easily
follows that

1 1
+A o Ay————— 3427
1= piz 1 1= paz) AN —pnz! ¢ )
The inverse z-transform, x(n) = Z~'{X(z)}, can be obtained by inverting each
term in (3.4.27) and taking the corresponding linear combination. From Table 3.3
it follows that these terms can be inverted using the formula

Xz} = A

) (pe)"u(n), if ROC: |z] > | px)
-1 _ (causal signals)
z [1 - pez! ] ) —(p)"u(=n - 1), if ROC: |z| < |pil (3.4.28)

(anticausal signals)
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If the signal x(n) is causal, the ROC 1s |z] > pmax, Where ppax = max{|pil.
ipals ... |pn 1l In this case all terms in (3.4.27) result in causal signal components
and the signal x(») is given by

x(n) = (A1 p] + Aaps + - + Anphrou(n) (3.4.29)

If all poles are real. (3.4.29) is the desired expression for the signal x(n). Thus a
causal signal, having a z-transform that contains real and distinct poles. is a linear
combination of real exponential signals.

Suppose now that all poles are distinct but some of them are complex. In
this case some of the terms in (3.4.27) result in complex exponential components.
However. if the signal x(n) is real, we should be able to reduce these terms into
real components. If x(n) is real, the polvnomials appearing in X (z) have real co-
efficients. In this case. as we have seen in Section 3.3, if p; is a pole, its complex
conjugate p; is also a pole. As was demonstrated in Example 3.4.6, the correspond-
ing coefficients in the partial-fraction expansion are also complex conjugates. Thus
the contribution of two complex-conjugate poles is of the form

xe(ny = [Ar(p)" + AL (pD)" |u(n) (3.4.30)

These two terms can be combined to form a real signal component. First,
we express A; and p, in polar form (i.e., amplitude and phase) as

Ap = |Agle™ (3.4.31)
i = el (3.4.32)

where «; and 8; are the phase components of A, and p,. Substitution of these
relations into (3.4.30) gives

Ik(") = |Aklrﬁ[e)(mn+u;| + EA}(‘&“M""]M(H)

or, equivalently,

xi(n) = 2| Aglry cos(Ben + ap)u(n) (3.4.33)
Thus we conclude that
-1 Ak A: n
z + = 2| Axlr] cos(Ben + apdu(n) (3.4.34)
1-pz7t 1= ppc!

if the ROC is |z} > |pi| = r¢.

From (3.4.34) we observe that each pair of complex-conjugate poles in the
z-domain results in a causal sinusoidal signal component with an exponential en-
velope. The distance r, of the pole from the origin determines the exponential
weighting (growing if r;, > 1, decaying if ri < 1, constant if r, = 1). The angle of
the poles with respect to the positive real axis provides the frequency of the sinu-
soidal signal. The zeros, or equivalently the numerator of the rational transform,
affect only indirectly the amplitude and the phase of x;(n) through A;.

In the case of muitiple poles, either real or complex, the inverse transform
of terms of the form A/(z — pi)” is required. In the case of a double pole the
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following transform pair (see Table 3.3} is quite useful:

-1

Chap. 3

(3.4.35)

provided that the ROC is |z} > |p|. The generalization to the case of poles with

higher multiplicity is left as an exercise for the reader.
Example 3.4.8

Determine the inverse z-transform of
i

Xy = ———————
@ = {15705

(a) ROC: |z| > 1
{(b) ROC: |z) < 0.5
{c) ROC:05 < |zl <1

Solution This is the same problem that we treated in Example 3.4.2. The partial-
fraction expansion for X (z) was determined in Example 34.5. The partial-fraction
expansion of X(z) yields
2 1
X = -1—_:_—1 - 1—_—05:? (3.4.36}
To invert X(z) we should apply (3.4.28) for py = 1 and p» = 0.5. However, this
requires the specification of the corresponding ROC.

(a) In case when the ROC is |z} > 1, the signal x(n) is causal and both terms in
(3.4.36) are causal terms. According to (3.4.28), we obtain

x(n) = 2(D"u(n) — (0.5)"u(n) = 2 - 0.5Mun) (3.4.37)
which agrees with the result in Example 3.4.2(a).
{b) When the ROC is |zj < 0.5, the signal x(n) is anticausal. Thus both terms in
(3.4.36) result in anticausal components. From (3.4.28) we obtain
x(n) =[~2+ (0.5 |u{-n - 1) {3.4.38)

In this case the ROC 0.5 < |z{ < 1 is a ring, which implies that the signal x(r} is
two-sided. Thus one of the terms corresponds to a causal signal and the other
to an anticausal signal. Obviously, the given ROC is the overlapping of the
regions [z| > 0.5 and |z} < 1. Hence the pole p; = 0.5 provides the causal part
and the pole p; = 1 the anticausal. Thus

x(n) = =2(1)"u(—n - 1) = (0.5)"u(n) (3.4.39)

{c

—

Example 3.4.9

Determine the causal signal x(n) whose z-transform is given by

HES A
X(z) = — %
i P
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Solution In Example 3.4.6 we have obtained the partial-fraction expansion as

X = L BN - .
1-pz7! 1= pac™!
where
A= az=t-ji
and

p=pi=3+j}
Since we have a pair of complex-conjugate poles, we should use (3.4.34). The
polar forms of A, and p, are

Ay = me-ﬂljﬁj
2

e

Pliﬁ

Hence

x(n):v%( > cOs (-7:—’]—71.565‘)14(")

ol

Example 3.4.10

Determine the causal signal x(#) having the :-transform

1
X() = ———————
@ (1+zHd —7h)?
Solution From Example 3.4.7 we have

X = 1 1 . 301 N 1 !
T AT At T2
By applving the inverse transform relations in {3.4.28) and (3.4.35), we obtain

=Ly Jumy + nutmy = | 2imty -2 4 8 g
x(n)—z Ju(n)+4un) 2nun- 2 ) 3 7 u(n)

3.4.4 Decomposition of Rational z-Transforms

At this point it is appropriate to discuss some additional issues concerning the
decomposition of rational z-transforms, which will prove very useful in the imple-
mentation of discrete-time systems.

Suppose that we have a rational z-transform X(z) expressed as

M M
Y b [Ta -z

X(z) = —= = by (3.4.40)
1+ e [Ta-pz™
k=1 k=1
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where, for simplicity, we have assumed that gy = 1. If M > N [ie, X(2) is
improper], we convert X(z) to a sum of a polynomial and a proper function
M=N

X(@= ) az™+Xp() (3.4.41)
k=0
If the poles of X, (z) are distinct, it can be expanded in partial fractions as
1
X =A + A +o Ay ——— 3.4.42
pr(z) 1 1= P1271 21 — PZZ—I N 1- PNZ_I ( }

As we have already observed, there may be some complex-conjugate pairs of
poles in (3.4.42). Since we usually deal with real signals, we should avoid complex
coefficients in our decomposition. This can be achieved by grouping and combining
terms containing complex-conjugate poles, in the following way:

A A* _A—AptT + A - Atpr!

+ =
1—pe1 " 1= prz-1 1= pz-1 — peg-1 e —2
pz Pz Pz = pre + ppt (3.4.43)
_ b + byz™!
T 14 a7t +a2z7?
where
by = 2Re(A), a) = —~2Re(p)

(3.4.44)

b =-2 Re (Ap*), a; = lp[z
are the desired coefficients. Obviously, any rational transform of the form (3.4.43)
with coefficients given by (3.4.44), which is the case when af — 4a; < 0, can be
inverted using (3.4.34). By combining (3.4.41), (3.4.42), and (3.4.43) we obtain 2
partial-fraction expansion for the z-transform with distinct poles that contains real
coefficients. The general result is

M-N K1 L¢} -1
_ by boy + bz
X@ =) art+). +3 3.445
@ =0 * mltar!  Hltaur +auz? ( )

where K + 2K; = N. Obviously, if M = N, the first term is just a constant,
and when M < N, this term vanishes. When there are also multiple poles, some
additional higher-order terms should be included in (3.4.45).

An alternative form is obtained by expressing X (z) as a product of simple
terms as in (3.4.40). However, the complex-conjugate poles and zeros should be
combined to avoid complex coefficients in the decomposition. Such combinations
result in second-order rational terms of the following form:

A -zl -zfz7)  1+byzt +byz?
(A= pez7W1 = pfz~)  l4apz ! +ayz?

(3.4.46)

where
by, = —2Re(zy), ay = —2Re(py)
X k 1k ) Pk (3.4.47)
by =zl ay = |pl
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Assuming for simplicity that M = N, we see that X(z) can be decomposed in the
following way:

X() = b ﬁ 1+ bz B 1 bpzt + byz?
h 0k=1 1+az 1+apz ! +ayz™?

where N = K;+2K,. We will return to these important forms in Chapters 7 and 8.

(3.4.48)

-1
k=1

3.5 THE ONE-SIDED Z-TRANSFORM

The two-sided :z-transform requires that the corresponding signals be specified
for the entire time range —oo0 < n < ©0. This requirement prevents its use for
a very useful family of practical problems, namely the evaluation of the output
of nonrelaxed systems. As we recall, these systems are described by difference
equations with nonzero initial conditions. Since the input is applied at a finite
time, say ng, both input and output signals are specified for n > ng, but by no
means are zero for n < ng. Thus the two-sided z-transform cannot be used. In this
section we develop the one-sided z-transform which can be used to solve difference
equations with initial conditions.

3.5.1 Definition and Properties

The one-sided or unilateral z-transform of a signal x(n) is defined by
oc
Xt = Zx(n]:—" (3.5.1)

n=(

We also use the notations Z*{x(n)} and
x(m) <o XH()

The one-sided z-transform differs from the two-sided transform in the lower
limit of the summation, which is aiways zero, whether or not the signal x(n) is zero
for n < 0 (i.e.. causal). Due to this choice of lower limit, the one-sided z-transform
has the following characteristics:

1. It does not contain information about the signal x(n) for negative values of
time (i.e., for n < 0).

2. It is unique only for causal signals, because only these signals are zero for
n <0.

3. The one-sided z-transform X*(z) of x(n) is identical to the two-sided z-
transform of the signal x(n)u(n). Since x{n)u(n) is causal, the ROC of its
transform, and hence the ROC of X*(z), is always the exterior of a circle.
Thus when we deal with one-sided z-transforms, it is not necessary to refer
to their ROC.
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Example 3.5.1
Determine the one-sided z-transform of the signals in Example 3.1.1.
Solution From the definition (3.5.1), we obtain

xn) = {;, 257,01} €5 X =1+2:7 + 5772 4 7073 4 25

x(n) = {1.2,§, 7,01} <5 XF (@) =5+7271 427

x3(n) = [(Tl.o. 1,2,57.0.1) <o Xj(@ =242 + 5270 4 T8 4 17
xu(n) = (2.4, i 7,01} <5 X7 (@ =5+ 7 + 27

xs(n) = 8(n) <> XF(@) =1
) = Bn—k),  k>0<o XI (=2t

x7(n) = &(n + k), k>0<j; X3x)=0
Note that for a noncausal signal, the one-sided :-transform is not unigque. Indeed,
X3(2) = X7 (2) but x2(n) # xu(n). Also for anticausal signals, X*(z) is always zero.

Almost all properties we have studied for the two-sided z-transform carry over to
the one-sided z-transform with the exception of the shifting property.

Shifting Property

Case 1: Time Delay If
x(m) <> X* ()
then
£
xn—k) <= 7X@+ Y x(-m"] k>0 352

n=l

In case x(n) is causal, then
x(n~k) <o 7K (3.53)
Proof. From the definition (3.5.1) we have
-1

ZHxtn~ k) = [): xhz + Zx(l)z"]
=0

I=—k

—k
=z* [Z x(hz™ + X*(z)}

i==1
By changing the index from ! to n = —/, the result in (3.5.2) is easily obtained.
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Example 3.5.2

Determine the one-sided :-transform of the signals

(a) x(n)=a"un)
(b) xi(n) = x(n ~2) where x{n)=a"

Solution
(a) From (3.5.1) we easily obtain
X' = ]—_—F
(b) We will apply the shifting property for k = 2. Indeed. we have
ZHxin - ) = 272[XT@) + x(~ 1)z + x(=2)77]
= XN+ x (-1 4 x(=2)
1

. x(=2) =%, we obtain

Since x(—-1) =a"~

X7 = gl

S1la T

The meaning of the shifting property can be intuitively explained if we write (3.5.2)
as follows:
ZHxtn — k) = [x(=k) +x(=k+ Dz 4 x (=D
(3.5.4)
+:7FXx7) k>0

To obtain x{n —k)(k > 0) from x(n), we should shift x(r) by k samples to the right.
Then k “new” samples, x(—k), x{—k + 1).....x(—1), enter the positive time axis
with x (—k) located at time zero. The first term in {3.5.4) stands for the z-transform
of these samples. The “old” samples of x(n — k) are the same as those of x(n)
simply shifted by & samples to the right. Their z-transform is obviously z 7 X~ (2),
which is the second term in (3.5.4).

Case 2: Time advance If

x(n) <= X*(2)

then
. i—1
xin+k) < 2F [X*(z)—z.r(n):_"}k >0 (3.5.5)
n=0

Proof. From (3.5.1) we have

Z¥(x(n +4)) = Z.r(n +hzh =gk qu)z-’
l=k

n=0
where we have changed the index of summation from n to / = n + k. Now, from
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(3.5.1) we obtain
XT() = Zx(l)-'" Zx(!)-" + Zx(!)'"
i=0

By combining the last two relations, we easily obtain (3.5.5).
Example 3.53

With x(n), as given in Example 3.5.2, determine the one-sided :-transform of the

signal

xa{n) = x(n +2)
Solution We will apply the shifting theorem for k = 2. From (3.5.5), with k = 2, we
obtain
ZHx(n +2)) = 2X* (@) - x(0) — x()z

But x(0) =1, x(1) = a. and X*(z) = 1/(1 —az™"). Thus

-2

+ ~ -2 -
ZHx(n+2)} = o ¢ - az

The case of a time advance can be intuitively explained as follows. To obtain
x(n+k), k > 0, we should shift x () by £ samples to the left. As a result, the samples
x(0). x(1)...., x(k — 1) “leave™ the positive time axis. Thus we first remove their
contribution to the X*(z), and then multiply what remains by z* to compensate
for the shifting of the signal by k samples.

The importance of the shifting property lies in its application to the solution
of difference equations with constant coefficients and nonzero initial conditions.
This makes the one-sided z-transform a very useful tool for the analysis of recursive
linear time-invariant discrete-time systems.

An important theorem useful in the analysis of signals and systems is the
final value theorem.

Final Value Theorem. If
x(n) Sy ()
then
lim x(n) = lim(z — DX*(2) (3.5.6)
n—oo z=1

The limit in {3.5.6) exists if the ROC of (z — 1)X*(z) includes the unit circle,

The proof of this theorem is left as an exercise for the reader.

This theorem is useful when we are interested in the asymptotic behavior of
a signal x(n) and we know its z-transform, but not the signal itself. In such cases,
especially if it is complicated to invert X*(z), we can use the final value theorem
to determine the limit of x(n) as n goes to infinity.



Sec. 3.5 The One-sided z-Transform 201

Example 3.5.4

The impulse response of a relaxed linear time-invariant system is k(r) = a"u(n),
Je| < 1. Determine the value of the step response of the system as n — oo.

Solution The step response of the system is
v{r) = h(n) * x(n)
where
x{n} = u(n)

Obviously, if we excite a causal system with a causal input the output will be causal.
Since h(n), x(n), y(n) are causal signals, the one-sided and two-sided z-transforms are
identical. From the convolution property (3.2.17) we know that the z-transforms of
h(n) and x(n) must be multiplied to yield the z-transform of the output. Thus

1 1 z

Y = 1—az7t1 =zt = (=D —0) ROC: 2] > la

Now
-2

-DY@) = —“—a ROC: |z] > lel

Since [a| < 1 the ROC of (z — 1)¥(z) includes the unit circle. Consequently, we can
apply (3.5.6) and obtain

z 1
lim y(r) = lim —— = ——

Asoc =lz—a l-¢

3.5.2 Solution of Difference Equations

The one-sided z-transform is a very efficient tool for the solution of difference
equations with nonzero initial conditions. It achieves that by reducing the dif-
ference equation relating the two time-domain signals to an equivalent algebraic
equation relating their one-sided z-transforms. This equation can be easily solved
to obtain the transform of the desired signal. The signal in the time domain is
obtained by inverting the resulting z-transform. We will illustrate this approach
with two examples.

Example 3.5.5

The well-known Fibonacci sequence of integer numbers is obtained by computing
each term as the sum of the two previous ones. The first few terms of the sequence are

1,1,2,3,5.8, ...
Determine a closed-form expression for the ath term of the Fibonacci sequence.

Solution Let y(n) be the nth term of the Fibonacci sequence. Clearly, y(n) satisfies
the difference equation

yr)=yln-1)+y(n-2) (357
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with initial conditions
y0) = vi-h+¥y-2=1 (3.5.8a)
1) = ¥(O) +¥(=11 =1 (3.5.8b)
From (3.5.8b) we have y(—1) = 0. Then (3.5.8a) gives ¥(—2) = 1. Thus we have to
determine v(n). n > 0, which satisfies (3.5.7), with initial conditions v(-1) = 0 and
v(~2)=1.
By taking the one-sided :-transform of (3.5.7) and using the shifting property
(3.5.2). we obtain

YR =[P + y(=D] + [T T@) + v(=2) + y(=12 7]

or

R e (35.9)

where we have used the fact that v(—1)=0and y(-2)=1.
We can invert Y*(z} by the partial-fraction expansion method. The poles of
Y*(z) are
1+/5 1-45
M= r=—

F4

and the corresponding coefficients are A, = pl/v/.— and A, = —,1):/\/3. Therefore,
S

- 1+\/§<1+\/§ S VA ! -
vin) = — win
: 243 2 2./3 2

or, equivalently.

vin) = .1—. (l)nd [(] + Jg)n*l — (1 - \/5)”*]:' un) (3.5.10)

V5\2

Example 3.5.6
Determine the step response of the system
v(n) =av(n — 1)+ x(n) —l<ea<l (3.5.11)
when the initial condition is y(~1) = 1.
Solution By taking the one-sided z-transform of both sides of (3.5.11), we obtain
Y@y =eaf7 'Y @ + y (=D + X2
Upon substitution for ¥(~1) and X*(z) and solving for Y*(z). we obtain the result
Y@ = 1_"“_1 +q —az"l)(l —5 (3.5.12)
By performing a partial-fraction expansion and inverse transforming the result, we
have

41

yiny = " lu(n) + uin)

e (3.5.13)

-1—(1 —a™*yu(n)
l—a
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3.6 ANALYSIS OF LINEAR TIME-INVARIANT SYSTEMS IN THE
Z-DOMAIN

In Section 3.4.3 we introduced the system function of a linear time-invariant sys-
tem and related it to the unit sample response and to the difference equation
description of systems. In this section we describe the use of the system func-
tion in the determination of the response of the system to some excitation signal.
Furthermore, we extend this method of analysis to nonrelaxed systems. Our atten-
tion is focused on the important class of pole-zero systems represented by linear
constant-coefficient difference equations with arbitrary initial conditions.

We also consider the topic of stability of linear time-invariant systems and
describe a test for determining the stability of a system based on the coefficients
of the denominator polynomial in the system function. Finally, we provide a
detailed analysis of second-order systems, which form the basic building blocks in
the realization of higher-order systems.

3.6.1 Response of Systems with Rational System
Functions

Let us consider a pole-zero system described by the general linear constant-
coefficient difference equation in (3.3.7) and the corresponding system function
in (3.3.8). We represent H(z) as a ratio of two polynomials B(z)/A(z), where
B(z) is the numerator polynomial that contains the zeros of H(z), and A(z) is the
denominator polynomial that determines the poles of H(z). Furthermore, let us
assume that the input signal x(n) has a rational z-transform X (z) of the form
_N@

Q(2)
This assumption is not overly restrictive, since, as indicated previously, most signals
of practical interest have rational z-transforms.

If the system is initially relaxed, that is, the initial conditions for the difference

equation are zero, y(—1) = y(~2) = --- = y(~N) = 0, the z-transform of the
output of the system has the form

X(2) (3.6.1)

B(z)N(z)

Y= HQX@) = ——— 3.6.2)

{2) ()X (2} A00@ (
Now suppose that the system contains simple poles p;, p2...., pv and the z-
transform of the input signal contains poles g1, g2. ..., qL, where py # gn for all

k=1,2,...,Nand m = 1, 2,..., L. In addition, we assume that the zeros of
the numerator polynomials B(z) and N(z) do not coincide with the poles {p;} and
{gx}, so that there is no pole-zero cancellation. Then a partial-fraction expansion
of Y(z) yields

Y(z):ZN: A +)i O (3.6.3)
S1-pt g l-q! -
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The inverse transform of Y (z) yields the output signal from the system in the form

N L
Y1) =Y Ad(p)um) + Y Ox(gi) uin) (3.6.4)
k=1 k=1

We observe that the output sequence y(n) can be subdivided into two parts. The
first part is a function of the poles {p:} of the system and is called the narural
response of the system. The influence of the input signal on this part of the
response is through the scale factors {A;). The second part of the response is a
function of the poles {g;} of the input signal and is called the forced response of
the system. The influence of the system on this response is exerted through the
scale factors {Q:]).

We should emphasize that the scale factors {A,} and (Q«]} are functions of
both sets of poles {pi} and {¢:}. For example, if X(z) = O so that the input is
zero, then Y(z) = 0, and consequently, the output is zero. Clearly, then, the
natural response of the system is zero. This implies that the natural response of
the system is different from the zero-input response.

When X(z) and H(z) have one or more poles in common or when X{(z)
and/or H(z) contain multiple-order poles, then Y (z) will have multiple-order poles.
Consequently, the partial-fraction expansion of Y (z) will contain factors of the form
1/(1 = gz~ k =1, 2,...,m, where m is the pole order. The inversion of these
factors wilt produce terms of the form #*~!p" in the output v(n) of the system, as
indicated in Section 3.4.2,

3.6.2 Response of Pole~Zero Systems with Nonzero
Initial Conditions

Suppose that the signal x(n) is applied to the pole-zero system at n = 0. Thus
the signal x(n) is assumed to be causal. The effects of all previous input signals to
the system are reflected in the initial conditions y(-1), y(-2),..., y(—N). Since
the input x(n} is causal and since we are interested in determining the output y(n)
for n > 0, we can use the one-sided z-transform, which allows us to deal with the
initial conditions. Thus the one-sided z-transform of (3.4.7) becomes

N k M
Yt =-) az [Y*(z) +y y(—n)z":l +Y b X ) (3.6.5)
k=0

k=1 n=1

Since x(n) is causal, we can set X*(z) = X(z). In any case (3.6.5) may be expressed

as M N £
Ebkz'* Zakz"‘Zy(—n)z"
k=0~ X(z) — 4=t ;=1
1+ Zakz"‘ 1+ Zakz"" (3.6.6)
k=1

No(z) =
A(z)

Y*z) =

HDX@) +
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where
N X
No(z) = — Zaxz_* Z y(—n)z" (3.6.7)
=1 =1

From (3.6.6) it is apparent that the output of the system with nonzero initial
conditions can be subdivided into two parts. The first is the zero-state response of
the system, defined in the z-domain as

Yos(2) = H()X(2) (3.6.8)
The second component corresponds to the output resulting from the nonzero initial
conditions. This output is the zero-input response of the system, which is defined

in the z-domain as
No(2)

A(D)

Hence the total response is the sum of these two output components, which can
be expressed in the time domain by determining the inverse z-transforms of Y,.(2)
and Y, (z) separately, and then adding the results. Thus

Yi@) = (3.6.9)

y(n) = Yps(n) + yailn) (3.6.10)
Since the denominator of Y (z), is A(z), its poles are p. pa..... pn. Conse-
quently, the zero-input response has the form
AY
Yalm) = 3 Di(p)u(n) 3.6.11)
k=1

This can be added to (3.6.4) and the terms involving the poles { p¢} can be combined
to yield the total response in the form

N
Yy =3 Ap)uln) + Y Qelqe)"u(n) (3.6.12)

L
k=1 k=1
where, by definition,
Al = A; + D; (3.6.13)

This development indicates clearly that the effect of the initial conditions
is to alter the natural response of the system through modification of the scale
factors (A,}. There are no new poles introduced by the nonzero initial conditions.
Furthermore, there is no effect on the forced response of the system. These
important points are reinforced in the following example.
Example 3.6.1

Determine the unit step response of the system described by the difference equation

y(n) =0.9y(n — 1) - 0.81y(n — 2) + x(n)

under the following initial conditions:

@ y(-H=y(-2)=0
) y(-1}=y(-2)=1
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Solution The system function is
1
12097+ 0817
This system has two complex-conjugate poles at
" p1 =09 p2 = 0.9¢7/7R

H(z) =

The z-transform of the unit step sequence is
X(z) = T
Therefore,
1
(1 -09ei7R3z-1)(1 = 0.9¢=imAz-1)(1 — ==1)
_ 0542 - j0.049  0.542 + j0.049 1.099
T 1-09emA1 T 1 - 09e-mBzt T 1 — 27!

and hence the zero-state response is

Yu(2) =

Yauln) = [1,099 +1.088(0.9)" cos (g-n - 5.2")} w(n)

(a) Since the initial conditions are zero in this case, we conclude that vin) = vy (n).
(b) For the initial conditions ¥(—1) = v(~2) = 1, the additional component in the
z-transform is
Yu@) = M _ 0.09 — 0.81:7!
e A 1-09:7 +0.81z72
0.026 + j0.4936  0.026 — j0.4936
= T209emRT | 1= 09e- Bz

Consequently, the zerc-input response is

yain) = 0.988(0.9)" cos (-’35,. + 87“) u(n)

In this case the total response has the z-transform

Y() = Ya(2) + Yal@)
1.099  0.568 + j0.445  0.568 — j0.445
= 1~2z-1  1-~009e/n3z~! 1-0.9¢~/7737-1
The inverse transform yields the total response in the form

y(n) = 1.099u(n) + 1.44(0.9)" cos (gn + 38°) u(n)

3.6.3 Transient and Steady-State Responses

As we have seen from our previous discussion, the response of a system to a given
input can be separated into two components, the natural response and the forced
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response. The natural response of a causal system has the form
N
Yor(m) = Y Ac(p)'u(n) (3.6.14)
k=1
where {p}, k = 1, 2,..., N are the poles of the system and {A,} are scale fac-
tors that depend on the initial conditions and on the characteristics of the input
sequence.

If {ps| < 1 for all k, then, yn(n} decays to zero as n approaches infinity. In
such a case we refer to the natural response of the system as the transient response.
The rate at which yn(n) decays toward zero depends on the magnitude of the pole
positions. If all the poles have small magnitudes, the decay is very rapid. On the
other hand, if one or more poles are located near the unit circle, the corresponding
terms in yn(n) will decay slowly toward zero and the transient will persist for a
relatively long time.

The forced response of the system has the form

L
Yerln) =Y Qx(gi)"u(n) (3.6.15)
k=1

where {q:}. k = 1, 2,..., L are the poles in the forcing function and {Q,} are
scale factors that depend on the input sequence and on the characteristics of the
system. If all the poles of the input signal fall inside the unit circle, yi(n) will decay
toward zero as n approaches infinity, just as in the case of the natural response.
This should not be surprising since the input signal is also a transient signal. On
the other hand, when the causal input signal is a sinusoid, the poles fall on the unit
circle and consequently, the forced response is also a sinusoid that persists for all
rn > 0. In this case, the forced response is called the steady-state response of the
system. Thus, for the system to sustain a steady-state output for n > 0, the input
signal must persist for all n > 0.

The following example illustrates the presence of the sieady-state response.

Example 3.62

Determine the transient and steady-state responses of the system characterized by
the difference equation

y(n) =05y(n - 1)+ x(n)

when the input signal is x(n) = 10cos(rn/4)u(n). The system is initially at rest (i.e.,
it is relaxed).

Solution The system function for this system is

1
HO =105
and therefore the system has a pole at z = 0.5. The z-transform of the input signal is
(from Table 3.3)
(< 200 = VD
1~ V21 + 272
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Consequently.
Y(z) = H(DIX(2)

_ 1001 = 3/v2):7)

T A= 03h(1 — el = em iy

_ 6.3 67867137 6.78¢/287

T 1=05z70 T - ezl T ] — gl
The natural or transient response is

¥ar(n) = 6.3(0.5)"u(n)

and the forced or steady-state response is

vieln) = [6.78€_j28'7(ef”"/“) +6.78e/ 7=y (n)
= 13.56 cos (-Z—n - 287 ) u(n)

Thus we see that the steady-state response persists for all # > 0. just as the input
signal persists for all n > 0.

3.6.4 Causality and Stability

As defined previously. a causal linear time-invariant system is one whose unit
sample response h(n) satisfies the condition

hin) =0 n<0
We have also shown that the ROC of the z-transform of a causal sequence is the
exterior of a circle. Consequently. a linear time-invariant system is causal if and
only if the ROC of the svstem function is the exterior of a circle of radius r < o,
including the point z = cc.

The stability of a linear time-invariant system can also be expressed in terms
of the characteristics of the system function. As we recall from our previous
discussion, a necessary and sufficient condition for a linear time-invariant system
to be BIBO stable is

oC
Z lh(n)] < o

n=-oC
In turn, this condition implies that H{z) must contain the unit circle within its ROC.
Indeed, since

X
H@) =Y hmz™
it follows that N
oK ox
H@I < Y ihtmz™ = Y lhin)llz™"
n=—oc a=—00

When evaluated on the unit circle (ie., |z| = 1),

H@I< Y thn

n=—0oc
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Hence, if the system is BIBO stable, the unit circle is contained in the ROC of
H(z). The converse is also true. Therefore, a linear time-invariant system is BIBO
stable if and only if the ROC of the system function includes the unit circle.

We should stress, however, that the conditions for causality and stability are
different and that one does not imply the other. For example, a causal system
may be stable or unstable, just as a noncausal system may be stable or unstable,
Similarly, an unstable system may be either causal or noncausal, just as a stable
system may be causal or noncausal.

For a causal system, however, the condition on stability can be narrowed
to some extent. Indeed, a causal system is characterized by a system function
H(z) having as a ROC the exterior of some circle of radius r. For a stable
system, the ROC must include the unit circle. Consequently, a causal and sta-
ble system must have a system function that converges for |z| > r < 1. Since
the ROC cannot contain any poles of H(z), it follows that a causal linear time-
invariant system is BIBO stable if and only if all the poles of H(z) are inside the
unit circle.

Example 3.6.3
A linear time-invariant system is characterized by the system function
3—4771
1-35z71 415272
1 2

- T To3

Hiz) =

Specify the ROC of H(z) and determine h(n) for the following conditions:

(a) The system is stable.
(b) The system is causal.
(c) The system is anticausal.

Solution The system has poles at z =  and z =3.

(a) Since the system is stable, its ROC must include the unit circle and hence it is
% < |z| < 3. Consequently, h(n) is noncausal and is given as
h(n) = (1)"u(n) — 203)"u(-n — 1)
(b) Since the system is causal, its ROC is |z| > 3. In this case
h(n) = (})"u(n) + 2(3)"u(n)

This system is unstable.
(c) If the system is anticausal, its ROC is |z| < 0.5. Hence

h(n) = —[(})" +23)"Ju(~n — 1)

In this case the system is unstable.
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3.6.5 Pole-Zero Cancellations

When a z-transform has a pole that is at the same location as a zero, the pole
is canceled by the zero and, consequently, the term containing that pole in the
inverse z-transform vanishes. Such pole-zero cancellations are very important in
the analysis of pole—zero systems.

Pole-zero cancellations can occur either in the sysiem function itself or in
the product of the system function with the z-transform of the input signal. In the
first case we say that the order of the system is reduced by one. In the latter case
we say that the pole of the system is suppressed by the zero in the input signal,
or vice versa. Thus, by properly selecting the position of the zeros of the input
signal, it is possible to suppress one or more system modes {pole factors) in the
response of the system. Similarly, by proper selection of the zeros of the system
function, it is possibie to suppress one or more modes of the input signal from the
response of the system.

When the zero is located very near the pole but not exactly at the same loca-
tion, the term in the response has a very small amplitude. For example, nonexact
poie-zero cancellations can occur in practice as a result of insufficiant numerical
precision used in representing the coefficients of the system. Consequently, one
should not attempt to stabilize an inherentty unstable system by placing a zero in
the input signal at the location of the pole.

Example 3.6.4

Determine the unit sample response of the system characterized by the difference
equation

vin)=25v{in—=1)—¥(n—-2)+x(n) —Sx(n = 1)+ 6x{n —2)

Solution The system function is

1-5:"1+6:72
R = 1-25z"1 4272
1-57"+6:72

(1-izha-270)

This system has poles at py =2 and p, = % Consequently, at first glance it appears
that the unit sample response is

1-57"+6:72
(1- %z")(l -27Y

_ A + B
=1 z—% -2

By evaluating the constants at z = § and z = 2, we find that

Y(z) = HOX() =

=3 =
A={ B=0

The fact that B = 0 indicates that there exists a zero at z = 2 which cancels
the pole at z = 2. In fact, the zeros occur at z = 2 and z = 3. Consequently, H{z}
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reduces to
H(:) = — =

T L
l—3z7b -1

1-3:7" -3

1
2.5:7!

- 1._
1-3z7!

1

and therefore

h(n) = 6(n) — 2.5(3)" 'u(n - 1)
The reduced-order system obtained by canceling the common pole and zero is char-
acterized by the difference equation

yim)=Ly(n = 1)+ x(n) = 3xtn — 1)

Although the original system is also BIBO stable due to the pole-zero cancellation.
in a practical implementation of this second-order system. we may encounter an
instability due to imperfect cancellation of the pole and the zero.

Example 3.6.5
Determine the response of the system
y() = Ey(n = 1) = tvin = 2) + x(n)
to the input signal x(n) = §(n) — %B(n - 1).

Solution The system function is

H{z) =

This system has two poles, one at : = } and the other at z = ;. The z-transform of
the input signal is

X@)=1-3z"
In this case the input signal contains a zero at z = % which cancels the pole at = = 3.
Consequently,
Y(2) = HDX()
1
Y(z) = ——
(z -

and hence the response of the system is

yim) = (3)uin)
Clearly, the mode (%)" is suppressed from the output as a result of the pole-zero
cancellation.

3.6.6 Multiple-Order Poles and Stability

As we have observed, a necessary and sufficient condition for a causal linear time-
invariant system to be BIBO stable is that all its poles lie inside the unit circle.
The input signal is bounded if its z-transform contains poles {g;}, k =1,2...., L,
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which satisfy the condition igx| < 1 for all k. We note that the forced response of
the system. given in (3.6.15). is also bounded. even when the input signal contains
one or more distinct poles on the unit circle.

In view of the fact that a bounded input signal may have poles on the unit
circle, it might appear that a stable system may also have poles on the unit circle.
This is not the case, however, since such a system produces an unbounded response
when excited by an input signal that also has a pole at the same position on the
unit circle. The following example illustrates this point.

Example 3.6.6
Determine the step response of the causal system described by the difference equation

yimy=y{n — 1)+ x{n)

Solution The system function for the system is

H@z) =

1—-z!
We note that the system contains a pole on the unit circle at 7 = 1. The :-transform
of the input signal x(rn) = u(n) is

o 1
Xiay = 11—zt
which also contains a pole at ; = 1. Hence the output signal has the transform
Y() = HOX(©
1
1=zt
which contains a double poie at z =
The inverse z-transform of Y(z) is
y(n} = (n+ Dun)

which is a ramp sequence. Thus v(n) is unbounded, even when the input is bounded.
Consequently. the system is unstabie.

Example 3.6.6 demonstrates clearly that BIBO stability requires that the sys-
lem poles be strictly inside the unit circle. If the system poles are all inside the unit
circle and the excitation sequence x(n) contains one or more poles that coincide
with the poles of the system, the output Y{(z) will contain multiple-order poles. As
indicated previously, such multiple-order poles result in an output sequence that
contains terms of the form

At (p) u(n)

where 0 < b < m —1 and m is the order of the pole. If |pi| < 1, these terms decay
to zero as n approaches infinity because the exponential factor (px)" dominates
the term n®. Consequently, no bounded input signal can produce an unbounded
output signal if the system poles are all inside the unit circle.
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Finally, we should state that the only useful systems which contain poles
on the unit circle are the digital oscillators discussed in Chapter 4. We call such
systems marginally stable.

3.6.7 The Schur-Cohn Stability Test

We have stated previously that the stability of a system is determined by the
position of the poles. The poles of the system are the roots of the denominator
polynomial of H(z), namely,

A@=1+aiz7 + a2+ +ayz™ (3.6.16)

When the system is causal all the roots of A{z) must lie inside the unit circle for
the system to be stable.

There are several computational procedures that aid vs in determining if any
of the roots of A(z) lie outside the unit circle. These procedures are called stability
criteria. Below we describe the Schur-Cohn test procedure for the stability of a
system characterized by the system function H(z) = B(z)/A(2).

Before we describe the Schur-Cohn test we need to establish some useful
notation. We denote a polynomial of degree m by

An(2) =) ank)z™  an@ =1 (3.6.17)

k=0
The reciprocal or reverse polynomial B, (z) of degree m is defined as
Bn(z) = 2"An(zY)

z am{m — k)Z“k
k=0

We observe that the coefficients of By, (z) are the same as those of A, (z), but
in reverse order.

In the Schur-Cohn stability test, to determine if the polynomial A(z) has all
its roots inside the unit circle, we compute a set of coefficients, called reflection

(3.6.18)

coefficients, K1, K, ..., Ky from the polynomials A, (z). First, we set
An(z) = A(D)

and (3.6.19)
Ky =an(N)

Then we compute the lower-degree polynomials A,(z),m =N N-1,N-2,...,1,
according to the recursive equation
Ap(z) — KnBn(2)

5 (3.6.20)

Am-1(2) =

where the coefficients K, are defined as
Kn = ap(m) (3.6.21)
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The Schur-Cohn stability test states that the polvnomial A(z) gi en by (3.6.16)
has all its roots inside the unii circle if and only if the coefficients K,, satisfy the
condition |K,,| <1 forallm=12..... N.

We shall not provide a proof of the Schur-Cohn test at this point. The
theoretical justification for this test is given in Chapter 11. We illustrate the com-
putational procedure with the following example.

Example 3.6.7

Determine if the system having the svstem function
H{z) =

is stable.
Solution We begin with A4a(z), which is defined as

Ay =1=- 27 = 427
Hence
Ka= -1
Now
Bs(z) = —'% - ;;Z-I +
and
Ax(2y = KaBa(2)
A (Z) = “—+
‘ 1-K:
—=1-1-"
Therefore.
K, =—§

Since [K)| > 1 it follows that the system is unstable. This fact is easilv estab-
tished in this example, since the denominator is easily factored to vield the two poles
at p; = =2 and p» = {. However, for higher-degree polynomials. the Schur-Cohn

test provides a simpler test for stability than direct factoring of H(z).

The Schur—Cohn stability test can be easily programmed in a digital computer
and it is very efficient in terms of arithmetic operations. Specifically, it requires
only N? multiplications to determine the coefficients {K,,}, m =1, 2,..., N. The
recursive equation in (3.6.20) can be expressed in terms of the polynomial coef-
ficients by expanding the polynomials in both sides of (3.6.20) and equating the
coefficients corresponding te equal powers. Indeed, it is easily established that
(3.6.20) is equivaient to the following algorithm: Set

ay(k) = a; k=1,2,.... N (3.6.22)
Ky = an(N) (3.6.23)
Then, form =N, N —1,...,1, compute
Kn = am(m) an1(0y =1
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and
am (k) - Krnbm(k)
ap,_1(k) = ——I——_T k=1,2.....m—1 (3.6.24)
where
bn{ky = ap(m—k) k=0,1,....m (3.6.25)

This recursive algorithm for the computation of the coefficients {K,} finds
application in various signal processing problems, especially in speech signal pro-
cessing.

3.6.8 Stability of Second-Order Systems

In this section we provide a detailed analysis of a system having two poles. As
we shall see in Chapter 7, two-pole systems form the basic building blocks for the
realization of higher-order systems.

Let us consider a causal two-pole system described by the second-order dif-
ference equation

y(n) = —ayy(n — 1) — aay(n — 2) + box(n) (3.6.26)
The system function is
Y b
H) = _X((Z)) e gt
¢ o (3.627)
b
T Z2taztm
This system has two zeros at the origin and poles at
2
a aj —4ap
pp=——= 3.6.28
P1. p2 2 7 ( )

The system is BIBO stable if the poles lie inside the unit circie, that is, if
|p1l < 1 and |p2| < 1. These conditions can be related to the values of the
coefficients a; and ay. In particular, the roots of a quadratic equation satisfy the
relations

ay = —(pi + p2) (3.6.29)
a = p1p2 (3.6.30)

From (3.6.29) and (3.6.30) we easily obtain the conditions that a; and a; must
satisfy for stability. First, a; must satisfy the condition

lazl = Iprp2l = ipallpal <1 (3.6.31)
The condition for a; can be expressed as
lail <1+ea (3.6.32)
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The conditions in {3.6.31) and (3.6.32) can also be derived from the Schur-
Cohn stability test. From the recursive equations in {3.6.22) through (3.6.25), we
find that

a)

K=
! 1+a;

(3.6.33)
ang
Ki=a; (3.6.34)
The system is stable if and only if {K;| < 1 and |X>{ < 1. Consequently,
-l<ay <1

or equivalently |as| < 1, which agrees with {3.6.31). Also,
aj
1+a;

-1 < <1

or, equivalently,
a < l+a
ay > -1- az

which are in agreement with (3.6.32). Therefore. a two-pole system is stable if and
only if the coefficients a; and a: satisfy the conditions in {3.6.31) and (3.6.32).

The stability conditions given in (3.6.31) and (3.6.32), define a region in the
coefficient plane (a;. a2), which is in the form of a triangle, as shown in Fig. 3.15.
The system is stable if and only if the point (a;, a2) lies inside the triangle, which
we call the stability triangle.

The characteristics of the two-pole system depend on the location of the
poles or, equivalently, on the location of the point (a;, a;) in the stability triangle.
The poles of the system may be real or complex conjugate, depending on the
value of the discriminant A = a? — 4a;. The parabola a; = a; /4 splits the stability

a;

Complex a= e
conjugate

Stability o
€.

riangle

Figure 315 Region of stability
(s1ability triangle) in the (), @)
coefficient plane for a second-order
system.

ay=—a -1
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triangle into two regions, as illustrated in Fig. 3.15. The region below the parabola
(@} > 4ay) corresponds to real and distinct poles. The points on the parabola
(a7 = 4a2) tesult in real and equal (double) poles. Finally. the points above the
parabola correspond to complex-conjugate poles.

Additional insight into the behavior of the system can be obtained from the
unit sample responses for these three cases.

Real and distinct poles (a2 = 4a;). Since py. p; are real and p; # pa. the
system function can be expressed in the form
A Ao

HZ) = 3.6.35
) 1—p1:‘l+1—pz:'1 (3.6.39)
where
by —b
Ay= RPL g, 02 (3.6.36)
pPr— P2 pi—p2
Consequently, the unit sample response is
b

h(n) = ——=—(pi*! — pT*Hu(n) (3.6.37)

— P2
Therefore, the unit sample response is the difference of two decaying exponential
sequences. Figure 3.16 illustrates a typical graph for A(n) when the poles are
distinct.

Real and equal poles (a? = 4a,). In this case p; = p; = p = ~/2. The
system function is
by

H ;)= ——— 3 .“
) A< pa1y? (3.6.38)
and hence the unit sample response of the system is
hin) = bo(n + Vp"u(n) (3.6.39)
hin)
20 (
1s |
>
104 |9
05 F
L.
TTTTT,QQD..-- . n
0 50

Figure 3.16 Plot of h(n) given by (3.6.37) with py = 0.5, pp = 0.75; h(n) =
[1/(p1 = )P} = 3+ Dyutn).
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h(n)
20r

1.5 | T.

r IIITTTT??;q..gv_

0 50

Figure 3.17 Plot of h(n) given by (3.6.39) with p = 3: h(n) = (n + 1) p"uin).

We observe that h(n) is the product of a ramp sequence and a real decaying
exponential sequence. The graph of k(n) is shown in Fig. 3.17.

Complex-conjugate poles (a2 < 4a,). Since the poles are complex con-
jugate, the system function can be factored and expressed as

HE) A2
=4O — 1
P=pzm 1=z (3.6.40)
_ A A
T 1 —rejwz-l 1 = pejanz-l

where p = re/* and 0 < wy < 7. Note that when the poles are complex conjugates,
the parameters a; and a> are related to r and ay according to

ay = —2rcoswy

2 (3.6.41)

a =r

The constant A in the partial-fraction expansion of H(z) is easily shown to be

. bop _ bore!™
= =
pb ei‘n rlers —e) {3.6.42)
0
- Jj2sinwy

Consequently, the unit sample response of a system with complex-conjugate poles

18
bor" ej(n-i—])m;. - e—j(n-&l)w(.

h(n)

i

- oF u(n)
Sin ey J (3.6.43)
bor” .

= — sin(n + 1)wou(n)
sin ewg

In this case k(n) has an oscillatory behavior with an exponentially decaying
envelope when r < 1. The angie wy of the poles determines the frequency of
oscillation and the distance r of the poles from the origin determines the rate of
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Figure 3.18 Plot of h(n) given by (3.6.43) with by = 1, wn = n/d, r = 0.9;
hin) = [bor" /(sin wy)] sin[(n + Doy ju(n).

decay. When r is close to unity, the decay is slow. When r is close to the origin,
the decay is fast. A typical graph of h(n) is illustrated in Fig. 3.18.

3.7 SUMMARY AND REFERENCES

The z-transform plays the same role in discrete-time signals and systems as the
Laplace transform does in continuous-time signals and systems. In this chapter we
derived the important properties of the z-transform, which are extremely useful in
the analysis of discrete-time systems. Of particular importance is the convolution
property, which transforms the convolution of two sequences into a product of
their z-transforms.

In the context of LTI systems, the convolution property results in the product
of the z-transform X (z} of the input signal with the system function H(z), where
the latter is the z-transform of the unit sample response of the system. This
relationship allows us to determine the output of an LTI system in response to an
input with transform X(z) by computing the product Y (z) = H(z)X(z) and then
determining the inverse z-transform of Y(z) to obtain the output sequence y(n).

We observed that many signals of practical interest have rational z-transforms.
Moreover, LTI systems characterized by constant-coefficient linear difference
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equations, also possess rational system functions. Consequently. in determining
the inverse z-transform, we naturally emphasized the inversion of rational trans-
forms. For such transforms. the partial-fraction expansion method is relatively
easy 1o apply. in conjunction with the ROC, to determine the corresponding se-
quence in the time domain. The one-sided z-transform was introduced to solve for
the response of causal systems excited by causal input signals with nonzero initial
conditions.

Finally, we considered the characterization of LTI systems in the z-transform
domain, In particular, we related the pole-zero locations of a svstem 1o its time-
domain characteristics and restated the requirements for stability and causality of
LTI systems in terms of the pole locations. We demonstrated that a causal system
has a system function H(z) with a ROC !z| > r;, where 0 < r; < occ. In a stable
and causal system, the poles of H(z) lie inside the unit circle. On the other hand,
if the system is noncausal, the condition for stability requires that the unit circle be
contained in the ROC of H(:). Hence a noncausal stable LTI system has a system
function with poles both inside and outside the unit circle with an annular ROC
that includes the unit circle. The Schur-Cohn test for the stability of a causal LTI
system was described and the stability of second-order system was considered in
some detail.

An excellent comprehensive treatment of the z-transform and its application
to the analysis of LTI systems is given in the text by Jury (1964). The Schur-
Cohn test for stability is treated in several texts. Qur presentation was given in
the context of reflection coefficients which are used in linear predictive coding of
speech signals. The text by Markel and Gray (1976) is a good reference for the
Schur-Cohn test and its application to speech signal processing.

PROBLEMWMS

3.1 Determine the z-transform of the following signals.
(a) x(n)=1{3.0.0.0.0.6.1. -4}
il

>3
n<4
3.2 Determine the z-transforms of the following signals and sketch the corresponding
pole-zero patterns.
(@) x(n)=(1+njuln)
(b) x(n) = (a" +a "u(n). a real
(©) x(n) = (~=DH"2™"u(n)
(@) x(n) = (na"sinwyn)u(n)
(€) x(n) = (na" coswonju(n)
(D x(n) = Ar" cos(ayn + plu(n).0 <r < 1
(® x(n) =3’ +m)(H" tutn - 1)
(h) x(n) = (3)"[uln) — uin - 10}

(5.
b = 2
(b) x(n) {0.
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33 Determine the z-transforms and sketch the ROC of the following signals.

_fGr. nzo0
(a) 11(")—{(%)_"‘ n<0

(%)" -2, n=>0
0, <0

(b) x2(n) = {
©) x3(n) =x;(n+4)
(d) x4(n) = x1(—n)
3.4 Determine the z-transform of the following signals.
@) x(n) =n(=1)"uin)
(b} x(n) = ru(n)
(©) x(n) =—na"u(-n-1)
(@) x(n) = (=1)" (cos In) u(n)
(e) x(n) = (-1)"u(n)
M x(r)=1(1,0,-1,0,1,-1,...}
1

3.5 Determine the regions of convergence of right-sided, left-sided, and finite-duration
two-sided sequences.
3.6 Express the z-transform of

ym =y xk)

k=-oc
in terms of X(z). [Hint: Find the difference y(rn) — y(n ~ 1).]
3.7 Compute the convolution of the following signals by means of the z-transform.
Gr., nz0
$H™" n<0

xi(n) = [

x2(n) = ()"u(n)

3.8 Use the convolution property to:
(a) Express the z-transform of

ymy =y xk)

ka—0c
in terms of X (z).
(b) Determine the z-transform of x(n) = (n + Du(n). [Hint: Show first that x(n) =
u(n) x u(n).]
3.9 The z-transform X (z) of a real signal x(n) includes a pair of complex-conjugate zeros
and a pair of complex-conjugate poles. What happens to these pairs if we multiply
x(n) by e/*»? (Hins: Use the scaling theorem in the z-domain.)
3.10 Apply the final value theorem to determine x(oo) for the signal
x(n) = { 1, if nis even
0, otherwise

3.11 Using long division, determine the inverse z-transform of
14277t
if (@) x(n) is causal and (b} x(n) is anticausal.

X(@) =
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3.12 Determine the causal signal x(rn) having the z-transform
1
3.13 Let x(n) be a sequence with z-transform X(z). Determine, in terms of X(z), the
z-transforms of the following signals.

n .
(@) n() = X(E)‘ if n even
0, if n odd

X)) =

(b) x2(n) = x(2n)
3.14 Determine the causal signal x(n) if its z-transform X(z) is given by:

14327
@ X&) =
1
) X@Q)=———7—
1=zl 4 12
47
(¢} X(z) = T
142:72
dy X(5) = ——
@ X@=7r=
1 1+6:7 +277
X)) = -
© XO= T a0
2-15:7"
X)) = ——
0 x© 1—1.5:71 405277
1427 +272
® X =
(h) X(z) is specified by a pole—zero pattern in Fig. P3.14. The constant G = 1.
I
D X)) = ——
(i X =
X0 = 55
a R
1
r=Li
2
I
4
11 1
2 4 2
x
Figure P3.14

3.15 Determine alt possible signais x(n) associated with the z-transform
_ 5z
A-22H3-z)
3.16 Determine the convolution of the following pairs of signals by means of the z-
transform.

X(z2)
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kA )
3.18

319

3.20

321

322

323

324

3.25

@ x(0) = ~1). xain)=[1+H"un)
(B) x:(m) =u(n), x(n)=38(n)+ () um
(©) x;(n)=(3)"un), xi(n) = cosxnu(n)
(@) xi(n) = nu(n), xan)=2"un-—1)
Prove the final value theorem for the one-sided z-transform.
If X(z) is the z-transform of x(n), show that:
(@) Z{x"(m)} = X"(z*)
() Z{Re[x(m)]} = ;[X (@) + X*(z")]
() ZUmix(m))} = 3[X(2) ~ X*(")]
) If
= 1% (%), if n/k integer
0, otherwise
then
Xi(2) = X(zH
(€) Z{e™x(n)) = X(ze~/*0)
By first differentiating X (z) and then using appropriate properties of the :-transform.
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