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Lj_ Preface

T his boo k  was deve lo p ed  based on ou r teach ing  o f u n d e rg ra d u a te  and g rad u ­
a te  level cou rses in d ig ita l signal processing  over the  p as t several years. In  this 
b o o k  we p resen t the fu n d am en ta ls  o f d isc re te-tim e signals, system s, and m odern  
digital processing  a lgorithm s and  app lica tions fo r s tu d e n ts  in electrical en g in eer­
ing. co m p u te r  eng ineering , and  co m p u te r  science. T h e  b ook  is su itab le  fo r e ith er 
a one-sem este r o r a tw o-sem ester u n d e rg ra d u a te  level cou rse  in d isc re te  system s 
an d  digital signal processing . It is also in ten d ed  fo r use in a o n e -sem este r first-year 
g raduate-level course in digital signal processing.

It is assum ed th a t the s tu d en t in electrical and co m p u ter eng ineering  has had 
u n d e rg ra d u a te  courses in advanced  calculus (including  o rd in ary  d ifferen tia l eq u a ­
tions). and linear system s for con tinuous-tim e signals, including an  in troduc tion  
to  the  L ap lace transform . A lthough  the F o u rie r  series and  F o u rie r transform s of 
pe rio d ic  and  aperiod ic  signals a re  described  in C h a p te r  4, we expect th a t m any 
s tu d e n ts  m ay have had  th is m ate ria l in a p rio r course.

A  balanced  coverage is p rov ided  of bo th  th eo ry  and  p rac tica l applications. 
A  large n u m b er o f well designed p rob lem s are  p rov id ed  to  he lp  the s tu d e n t in 
m aste ring  the  subject m atte r. A  so lu tions m anual is availab le  fo r the  benefit o f 
the in stru c to r  and can be o b ta ined  from  th e  publisher.

T he th ird  ed ition  o f  the book  covers basically the  sam e m ateria l as the  sec­
ond  ed ition , bu t is o rgan ized  d ifferen tly . T he m ajo r d ifference is in th e  o rd e r in 
w hich the D F T  and  F F T  algorithm s are  covered . B ased  on suggestions m ade by 
severa l rev iew ers, we now  in troduce  the  D F T  and  describe  its efficient co m p u ta ­
tion  im m edia te ly  follow ing our tre a tm e n t of F o u rie r analysis. T his reo rgan iza tion  
has also allow ed us to  elim inate  rep e titio n  o f som e topics concern ing  th e  D F T  and 
its app lications.

In C h a p te r  1 we describe th e  o p era tio n s involved in the analog-to -d ig ita l 
conversion  of analog signals. T h e  process o f sam pling  a sinusoid  is described  in 
som e d eta il and  th e  p ro b lem  of aliasing is exp lained . Signal quan tiza tio n  and 
d ig ita l-to -analog  conversion  are  also described  in genera l term s, b u t the  analysis 
is p re sen ted  in su b seq u en t chap ters.

C h a p te r  2 is d ev o ted  en tire ly  to  th e  ch a rac te riza tio n  and  analysis o f linear 
tim e-invarian t (sh ift-invarian t) d isc re te-tim e system s and  d isc re te-tim e signals in 
th e  tim e dom ain . T h e  convo lu tion  sum  is d erived  an d  system s a re  categorized  
accord ing  to  the  d u ra tio n  of th e ir  im pulse response  as a  fin ite-du ra tion  im pulse
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response  (F IR ) and  as an in fin ite-du ra tion  im pulse response  ( IIR ) . L in ear tim e- 
in varian t system s charac te rized  by d ifference eq u a tio n s are p re se n te d  and the  so ­
lu tion  o f d ifference eq u a tio n s with initial cond itions is o b ta in ed . T he c h ap te r  
concludes w ith a tre a tm e n t o f d isc re te-tim e co rre la tion .

T he z -transfo rm  is in tro d u ced  in C h a p te r  3. B o th  th e  b ila te ra l and the 
un ila tera l z -transfo rm s are p re sen ted , and  m eth o d s fo r d e te rm in in g  the  inverse 
z -transfo rm  are described . U se  o f the z-transfo rm  in the analysis o f linear tim e- 
in varian t system s is illu stra ted , and  im p o rtan t p ro p e rtie s  o f system s, such as causal­
ity and  stability , a re  re la ted  to  z-dom ain  characteristics .

C h a p te r  4 tre a ts  th e  analysis o f signals and system s in the  freq u en cy  dom ain . 
F o u rie r series and the F o u rie r  transfo rm  are  p re sen ted  fo r b o th  con tinuous-tim e 
and  d isc rete-tim e signals. L inear tim e-invarian t (L T I) d isc rete  system s are c h a r­
ac terized  in the frequency  d om ain  by th e ir frequency  response function  and  th e ir  
response  to  period ic  and aperiod ic  signals is d e te rm in ed . A  n u m b er of im p o rtan t 
types of d isc re te-tim e system s are described , includ ing  re so n a to rs , no tch  filters, 
com b filters, all-pass filters, and  oscillators. T he design  of a n u m b e r  of sim ple 
F IR  and  IIR  filters is also considered . In  add ition , the  stu d en t is in tro d u ced  to 
th e  concep ts o f m in im um -phase , m ixed-phase, and  m ax im um -phase  system s and 
to  the  p rob lem  of deconvolu tion .

T he D F T . its p ro p e rtie s  and  its app lications, a re  the topics covered  in C h a p ­
ter 5. T w o m ethods a re  d escribed  for using the D F T  to  perfo rm  lin ear filtering. 
T he use o f the D F T  to  perfo rm  frequency  analysis o f signals is also  described.

C h a p te r  6 covers the  efficient co m pu ta tion  o f the D FT . Included  in this ch ap ­
te r are  d escrip tions o f radix-2, rad ix -4, and  sp lit-rad ix  fast F o u rie r tran sfo rm  (FFT ) 
algorithm s, and  app lica tions o f the  F F T  a lgorithm s to  th e  co m p u ta tio n  o f convo­
lu tion  and  co rre la tio n . T he G oertze l a lgorithm  and  the ch irp-z transfo rm  are 
in tro d u ced  as tw o m eth o d s fo r com puting  the  D F T  using linear filtering.

C h a p te r  7 trea ts  the  rea liza tion  o f I IR  and  F IR  system s. T h is trea tm en t 
includes d irect-fo rm , cascade, para lle l, la ttice, and  la ttice -lad d er rea liza tions. T he 
ch ap te r  includes a tre a tm e n t o f sta te -space  analysis and  s tru c tu res fo r d iscrete-tim e 
system s, and  exam ines quan tiza tio n  effects in a d igital im p lem en ta tio n  o f F IR  and 
I IR  system s.

T ech n iques fo r design of digital F IR  and  IIR  filters are  p re se n te d  in C h a p ­
te r  8. T he design tech n iq u es include bo th  d irect design m eth o d s in d isc re te  tim e 
and m eth o d s involving the  conversion  o f analog  filters in to  digital filters by various 
transfo rm ations. A lso  tre a te d  in this ch ap te r  is the design  of F IR  an d  IIR  filters 
by least-squares m ethods.

C h a p te r  9 focuses on  the  sam pling o f co n tinuous-tim e signals and  the  r e ­
co nstruction  of such signals from  th e ir sam ples. In  th is ch ap te r, we derive the 
sam pling th eo rem  fo r bandpass con tinuous-tim e-signals and  th en  cover th e  A /D  
and  D /A  conversion  techn iques, including oversam pling  A /D  and  D /A  converters.

C h a p te r  10 p rov ides an  indep th  trea tm en t o f sam pling -ra te  conversion  and 
its app lica tions to  m u ltira le  d ig ital signal p rocessing . In  add ition  to  describ ing  dec­
im ation  and  in te rp o la tio n  by in teg er factors, we p resen t a  m e th o d  o f sam pling-rate



Preface xv

conversion  by an a rb itra ry  facto r. Several app lications to  m u ltira te  signal p rocess­
ing are  p re se n te d , includ ing  the  im p lem en ta tio n  o f d igital filters, su bband  coding 
o f speech  signals, tran sm ultip lex ing , and  oversam pling  A /D  an d  D /A  converters.

L in ear p red ic tio n  and  op tim u m  linear (W iener) filters a re  tre a te d  in C h a p ­
te r  11. A lso  included  in this c h a p te r  are descrip tions o f th e  L ev in so n -D u rb in  
algo rithm  and  Schiir a lg o rith m  fo r solving the norm al equ a tio n s , as w ell as the  
A R  la ttice  an d  A R M A  la ttice -lad d er filters.

P ow er sp ectrum  estim atio n  is the  m ain  top ic  of C h a p te r  12. O u r coverage 
includes a d escrip tion  o f n o n p a ram e tric  and  m odel-based  (p a ra m e tric )  m ethods. 
A lso  d escrib ed  a re  e igen -decom position -based  m ethods, including  M U S IC  and 
E S P R IT .

A t N o rth e a s te rn  U niversity , we have used  the  first six chap te rs  o f this b ook  
fo r a o n e-sem es te r  (ju n io r level) course in d iscrete  system s and  d ig ital signal p ro ­
cessing.

A  o n e -sem es te r  sen io r level cou rse  fo r s tuden ts w ho have h ad  p rio r exposure 
to  d isc rete  system s can  use the  m ateria l in C hap te rs  1 th ro u g h  4 for a quick  review  
and  th en  p ro ceed  to  cover C h a p te r  5 th rough  8.

In  a first-vear g rad u a te  level course in digital signal p rocessing , th e  first five 
chap te rs  p rov ide  th e  s tu d en t with a good review  of d isc re te-tim e system s. T he 
in stru c to r can  m ove qu ickly  th rough  m ost o f th is m aterial and  th en  cover C h ap te rs
6 th ro u g h  9, follow ed by e ith e r  C h a p te rs  10 and 11 o r by C h a p te rs  11 and  12.

W e hav e  inc luded  m any exam ples th ro u g h o u t the b ook  and  app rox im ate ly  
500 h o m ew o rk  p rob lem s. M any of the hom ew ork  p ro b lem s can  be so lved n u m e r­
ically on a co m p u ter, using a so ftw are package such as M A T L A B © . T hese  p ro b ­
lem s a re  id en tified  by an  asterisk . A ppend ix  D  con tains a  list o f M A T L A B  func­
tions th a t the  s tu d e n t can use in solving these  p roblem s. T h e  in s tru c to r  m ay also 
wish to  consid er the  use o f a su p p lem en ta ry  book  th a t co n ta in s co m p u te r  based  
exercises, such  as th e  b o o k s Digilal Signal Processing Using M A T L A B  (P.W .S. 
K en t, 1996) by V. K. Ingle and  J. G . P roak is and  C om puter-Based Exercises f o r  
Signal Processing Using M A T L A B  (P ren tice  H all, 1994) by C. S. B u rru s  e t al.

T he a u th o rs  a re  in d eb ted  to  th e ir  m any faculty  co lleagues w ho have p rov ided  
v aluab le suggestions th rough  review s o f the first and  second  ed itions o f this book . 
T h ese  include D rs. W . E . A lex an d er, Y. B resler, J. D e lle r , V. Ingle, C. K eller,
H . L ev-A ri, L. M erakos , W. M ikhael, P. M onticcio lo , C. N ikias, M . S chetzen ,
H . T russell, S. W ilson, and  M. Z o ltow ski. W e a re  also in d eb ted  to  D r. R, P rice fo r 
reco m m en d in g  th e  inclusion o f sp lit-radix  F F T  algorithm s and  re la ted  suggestions. 
F inally , we wish to  acknow ledge th e  suggestions and co m m en ts o f m any  fo rm er 
g rad u a te  s tu d en ts , and  especially  th o se  by A . L. K ok, J. L in and S. S rin idh i w ho 
assisted  in th e  p re p a ra tio n  o f several illu stra tions and  the  so lu tions m anual.

Jo h n  G . P roak is 
D im itris G , M anolak is





Introduction

D igital signal p rocessing  is an area  o f science and  en g ineering  th a t h as developed  
rap id ly  over the  past 30 years. This rap id  d ev elopm en t is a resu lt o f the signif­
icant advances in digital com p u ter techno logy  and  in teg ra ted -c ircu it fabrica tion . 
T he digital com pu ters and associated  digital hardw are of th ree  decades ago w ere 
relatively  large and expensive and, as a consequence, th e ir  use w as lim ited to  
g en era l-p u rp o se  n o n -rea l-tim e (off-line) scientific co m p u ta tio n s and business a p ­
p lications. T he rap id  developm en ts in in teg ra ted -c ircu it technology , s ta rting  with 
m edium -scale  in teg ra tion  (M SI) and  progressing  to  large-scale in teg ra tion  (LSI), 
and  now, very-large-scale in teg ra tio n  (V LSI) of e lec tron ic  circuits has spu rred  
the developm en t o f  pow erful, sm aller, faster, and ch eap e r digital com pu ters and 
special-purpose digital hardw are . T hese  inexpensive and re latively  fast digital c ir­
cuits have m ade it possib le  to  construct highly soph istica ted  digital system s capab le 
of perfo rm ing  com plex digital signal processing  functions and  tasks, w hich are  u su ­
ally too  difficult an d /o r  too  expensive to  be p erfo rm ed  by analog  circuitry  or analog  
signal p rocessing  system s. H ence  m any of the  signal p rocessing  tasks th a t w ere 
conventionally  p e rfo rm ed  by analog  m eans are  realized  to d ay  by less expensive 
and o ften  m ore re liab le  digital h ardw are .

W e do no t wish to  im ply th a t digital signal processing  is the  p ro p e r so lu ­
tion  fo r all signal p rocessing  p rob lem s. In d eed , fo r m any  signals w ith ex trem ely  
w ide bandw id ths, real-tim e processing  is a req u irem en t. F o r such signals, a n a ­
log o r, p e rhaps, optical signal processing  is the  only possib le  so lu tion . H ow ever, 
w here digital circuits are availab le  and have sufficient speed  to  p erfo rm  th e  signal 
p rocessing , they  a re  usually p refe rab le .

N o t only do  digital circuits yield ch eap e r and  m ore re liab le  system s for signal 
processing , they  have o th e r  advan tages as well. In  p a rticu la r, digital processing  
h ard w are  allow s p rog ram m ab le  opera tions. T h rough  softw are, one can m ore easily 
m odify  the  signal processing  functions to  be p erfo rm ed  by the hard w are . T hus 
digital h a rd w are  and  associated  softw are prov ide a g re a te r  deg ree  o f flexibility in 
system  design. A lso , th e re  is often  a h igher o rd e r of p rec ision  ach ievable w ith 
digital hard w are  and softw are com pared  w ith analog  circuits an d  analog signal 
p rocessing  system s. F o r all these  reasons, th e re  has been  an explosive grow th in 
d ig ital signal processing  th eo ry  and  app lications over th e  past th re e  decades.
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In  this book o u r objective is to p resen t an in tro d u c tio n  o f the  basic analysis 
tools and  techn iques for d igital p rocessing  o f signals. W e begin  by in troduc ing  
som e of the necessary  term ino logy  and  by describ ing  the im p o rta n t o p era tio n s 
associated  w ith the process of converting  an analog  signal to  d ig ita l form  su itab le  
fo r digital processing. A s we shall see, digital p rocessing  of analog  signals has 
som e draw backs. F irst, and  fo rem ost, conversion  of an analog  signal to digital 
form , accom plished by sam pling  the signal and  q uan tiz ing  the sam ples, resu lts in a 
d is to rtio n  th a t p rev en ts  us from  reco n stru c tin g  the  o rig inal an a lo g  signal from  the 
quan tized  sam ples. C on tro l o f the am o u n t o f th is d is to rtio n  is ach ieved  by p ro p e r 
choice o f the  sam pling  ra te  and  the  precision  in the  q u an tiza tio n  process. Second, 
there  a re  finite p rec ision  effects th a t m ust be co nsidered  in the  d igital processing  
of the quan tized  sam ples. W hile these  im p o rta n t issues are  consid ered  in som e 
detail in this book , the em phasis is on th e  analysis and  design  o f digital signal 
p rocessing  system s and  co m puta tional techn iques.

1.1 SIGNALS, SYSTEMS, AND SIGNAL PROCESSING

A  signal  is defined as any physical qu an tity  th a t varies with tim e, space, o r any 
o th e r in d ep en d en t variab le  o r variables. M a them atically , we d escribe  a signal as 
a function  o f one o r m ore  in d ep en d en t variables. F o r exam ple, the functions

*i( r )  =  5/
(1.1.1)

S2(t) =  20 r

describe tw o signals, one th a t varies linearly  with the in d ep en d en t variable t (tim e) 
and a second th a t varies q u ad ra tica lly  w ith t. A s an o th e r  exam ple , consider the 
function

v) =  3x + 2xy  +  1 0 y 2 (1 .1 .2 )

This function  describes a signal o f tw o in d ep en d en t variab les x  and  y th a t could 
rep re sen t the tw o spatia l coo rd in a tes in a p lane.

T h e  signals d escribed  by (1.1.1) and  (1.1.2) be long  to  a class o f signals th a t 
are  p recisely  defined by specifying the functional d ep en d en c e  on  th e  in d ep en d en t 
variable. H ow ever, th e re  are cases w here such a fu nctional re la tio n sh ip  is unknow n  
or too  highly com plicated  to  be o f any practical use.

F o r exam ple, a speech signal (see Fig. 1.1) can n o t be d escribed  functionally  
by expressions such as (1.1.1). In  general, a segm en t o f speech  m ay be rep re sen ted  
to a high deg ree  o f accuracy as a sum  of severa l sinuso ids o f d iffe re n t am plitudes 
and  frequencies, th a t is, as

N
A j ( t )  s i n [ 2 ; r f } ( r ) f  +  #,■(/)] (1 .1 .3 )

i=i
w here {/!,(/)}, {F ,(r)j, and  {t9,(r)} are  th e  se ts of (possib ly  tim e-vary ing) am plitudes, 
frequencies, and phases, respectively , o f th e  sinusoids. In fact, o n e  w ay to  in te rp re t 
the in fo rm atio n  c o n ten t o r m essage conveyed  by any sho rt tim e  segm en t o f the
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speech  signal is to m easu re  the am plitudes, frequencies, and  phases con ta in ed  in 
the sho rt tim e segm en t o f the signal.

A n o th e r  exam ple o f a n a tu ra l signal is an e lec tro card io g ram  (E C G ). Such a 
signal p rov ides a d o c to r w ith in fo rm ation  abo u t the cond ition  o f the p a tie n t's  heart. 
Sim ilarly, an e lec tro en cep h a lo g ram  (E E G ) signal p rov ides in fo rm ation  ab o u t the 
activ ity  o f the brain.

Speech, e lec tro card io g ram , and  e lec tro en cep h a lo g ram  signals a re  exam ples 
o f in fo rm atio n -b earin g  signals th a t evolve as functions o f a single in d ep en d en t 
variab le , nam elv , tim e. A n  exam ple o f a signal that is a function  o f tw o in d e ­
p e n d e n t variab les is an im age signal. T he in d ep en d en t variab les in th is case are  
the spatia l coo rd in a tes. T hese  are  bu t a few exam ples o f the  countless num ber of 
n a tu ra l signals en co u n te red  in practice.

A ssocia ted  w ith n a tu ra l signals are  the m eans by w hich such signals are  g en ­
e ra ted . F o r exam ple, speech  signals are  g en era ted  by forcing  air th rough  the  vocal 
cords. Im ages are  o b ta in ed  by exposing a pho to g rap h ic  film to a scene o r  an o b ­
ject. T hus signal gen era tio n  is usually  associated  with a system  tha t responds to  a 
stim ulus o r force. In a speech signal, the system  consists o f the  vocal cords and  
the vocal trac t, also called  the vocal cavity. T he stim ulus in com bin a tio n  with the 
system  is called a signal source.  T hus we have speech sources, im ages sources, and 
various o th e r  types o f signal sources.

A  system  m ay also be defined as a physical device th a t p erfo rm s an  o p e ra ­
tion  on a signal. F o r exam ple, a filter used to reduce  the  noise and  in te rfe ren ce  
co rru p tin g  a d es ired  in fo rm atio n -b earin g  signal is called a system . In this case the  
filter p erfo rm s som e o p era tio n (s ) on the  signal, which has th e  effect o f reducing  
(filtering) th e  noise and  in te rfe ren ce  from  the  desired  in fo rm atio n -b earin g  signal.

W hen  we pass a signal th ro u g h  a system , as in filtering , we say th a t we have 
processed  th e  signal. In  this case th e  processing  of the  signal involves filtering th e  
no ise and in te rfe ren ce  from  th e  d es ired  signal. In genera l, th e  system  is ch arac­
terized  by th e  type o f o p e ra tio n  th a t it p erfo rm s on th e  signal. F o r exam ple, if 
the  o p e ra tio n  is linear, th e  system  is called linear. If the  o p e ra tio n  on  th e  signal 
is n o n lin ear, th e  system  is said to  be non linear, and  so fo rth . Such opera tio n s a re  
usually  re fe rred  to  as signal processing.
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F o r  ou r purposes, it is conven ien t to  b ro ad en  the defin ition  o f a system  to 
include no t only physical devices, b u t also softw are rea liza tions o f o p era tio n s on 
a signal. In  digital processing  o f signals on  a digital co m p u ter, th e  o p era tio n s p e r­
fo rm ed  on a signal consist of a nu m b er of m a th em atica l o p era tio n s as specified by 
a softw are p rogram . In this case, the p ro g ram  rep re sen ts  an im p lem en ta tio n  o f the 
system  in software. T hus we have a system  th a t is rea lized  on a d igital com p u ter 
by m eans o f a sequence o f m ath em atica l o p e ra tio n s; th a t is, w e have a digital 
signal processing  system  realized  in softw are. F o r exam ple, a d ig ita l com p u te r can 
be p ro g ram m ed  to  perfo rm  digital filtering. A lte rn a tiv e ly , the  d igital processing 
on the  signal m ay be perfo rm ed  by digital hardware  (logic circuits) configured to  
perfo rm  th e  desired  specified o pera tions. In such a rea liza tion , we have a physical 
device th a t p erfo rm s the  specified o p era tio n s. In a b ro a d e r  sense, a digital system  
can be im p lem en ted  as a com bination  o f digital h a rd w are  and softw are, each  of 
which p erfo rm s its ow n set of specified o pera tions.

T his book deals with the processing  o f signals by digital m eans, e ith er in so ft­
w are o r in h ardw are . Since m any of the signals en co u n te red  in p rac tice  are analog, 
we will also consider the p rob lem  of converting  an analog  signal in to  a digital sig­
nal fo r processing. T hus we will be dealing  p rim arily  w ith d ig ital system s. The 
o p era tio n s perfo rm ed  by such a system  can usually  be specified m athem atically . 
T he m eth o d  or set o f ru les for im p lem en ting  th e  system  by a p ro g ram  that p e r ­
form s th e  co rrespond ing  m athem atica l o p era tio n s is called an algori thm.  U sually , 
th e re  are  m any ways o r algorithm s by w hich a system  can be im p lem en ted , e ith er 
in softw are o r in h ardw are , to  perfo rm  the desired  o p era tio n s an d  com putations. 
In  prac tice , we have an in te rest in devising a lgo rithm s th a t are co m pu ta tionally  
efficient, fast, and  easily im plem ented . T hus a m ajo r topic in o u r  study o f digi­
tal signal processing  is the discussion of efficient a lgo rithm s fo r perfo rm ing  such 
o p era tio n s as filtering, co rre la tion , and spectra l analysis.

1.1.1 Basic Elements of a Digital Signal Processing 
System

M ost of the signals en co u n te red  in science and en g ineering  are  analog  in natu re. 
T h a t is. the  signals a re  functions of a co n tinuous variab le , such as tim e or space, 
and usually  take  on  values in a con tinuous range. Such signals m ay  be processed  
directly  by ap p ro p ria te  analog system s (such as filters o r  frequency  analyzers) or 
frequency  m ultip lie rs for the  pu rp o se  of changing  th e ir  characteristics o r extracting  
som e desired  in fo rm ation . In  such a case we say th a t th e  signal has b een  processed  
d irectly  in its analog  form , as illustrated  in Fig. 1.2. B o th  the in p u t signal and  the 
o u tp u t signal are  in analog  form .

Analog
input
signal

Analog 
signal 
processor

Analog
output
signal

Figure 1.2 Analog signal processing.
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Figure 1.3 Block diagram of a digital signal processing system.

D igital signal p rocessing  p rov ides an a lte rn a tiv e  m e th o d  fo r p rocessing  the  
analog  signal, as illu stra ted  in Fig. 1.3. T o  p e rfo rm  the p rocessing  digitally, th e re  
is a need  fo r an in te rface  b etw een  the  analog  signal a n d  the  digital processor. 
T h is in te rface  is called  an analog-to-digital (A /D )  converter. T he o u tp u t of the 
A /D  co n v erte r is a d ig ital signal th a t is ap p ro p ria te  as an inpu t to  the d igital 
p rocessor.

T he digital signal p rocesso r m ay be a large p ro g ram m ab le  digital co m p u ter 
o r a sm all m icro p ro cesso r p rog ram m ed  to  p erfo rm  the  d es ired  o p era tio n s on the  
inp u t signal. It m ay also be a h ardw ired  digital p rocesso r configured  to  p e rfo rm  
a specified se t o f o p era tio n s on the  inpu t signal. P rog ram m ab le  m achines p ro ­
vide the  flexibility to  change th e  signal p rocessing  o p e ra tio n s  th rough  a change 
in the  softw are, w h ereas h ardw ired  m achines are  difficult to  reconfigure. C o n se­
q uen tly , p ro g ram m ab le  signal p rocesso rs are  in very com m on use. O n  the o th e r  
h and , w hen signal p rocessing  o p e ra tio n s  are  w ell defined, a h ardw ired  im p lem en ­
ta tio n  o f the  o p era tio n s can be op tim ized , resu lting  in a ch eap e r signal p rocesso r 
and , usually , one th a t runs faster th an  its p ro g ram m ab le  co u n te rp a rt. In ap p li­
cations w here  the  d igital o u tp u t from  the d igital signal p rocesso r is to  be given 
to  the u se r in analog  form , such as in speech  com m unications, we m ust p ro ­
vide an o th e r  in terface  from  the  digital dom ain  to the analog  dom ain . Such an 
in terface  is called a digital-to-analog (D /A )  converter. T hus the signal is p ro ­
v ided to  the  u ser in analog  form , as illu stra ted  in the b lock d iagram  of Fig. 1.3. 
H ow ever, th e re  are  o th e r  practical app lica tions involving signal analysis, w here 
the d es ired  in fo rm atio n  is conveyed  in digital form  and  no  D /A  co n v erte r is 
req u ired . F o r exam ple, in the d igital p rocessing  of ra d a r  signals, the  in fo rm a­
tion  ex trac ted  from  the  rad a r  signal, such as the  position  o f the  aircra ft and  its 
speed , m ay sim ply be p rin ted  on  p ap e r. T h e re  is no  need  fo r a D /A  co n v erte r in 
th is case.

1.1.2 Advantages of Digital over Analog Signal 
Processing

T h e re  are  m any reaso n s why d ig ita l signal p rocessing  o f an  analog  signal m ay  be 
p re fe rab le  to  processing  th e  signal directly  in th e  analog  dom ain , as m en tio n ed  
briefly earlie r. F irst, a digital p ro g ram m ab le  system  allow s flexibility in re c o n ­
figuring the  digital signal p rocessing  o p era tio n s sim ply by changing the  p rog ram .
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R econfigu ra tion  o f an analog  system  usually  im plies a red esig n  o f the  hard w are  
follow ed by testing  and  verification to  see th a t it o p e ra te s  p roperly .

A ccuracy  co nsidera tions also p lay  an im p o rtan t role in de te rm in in g  the  form  
of the  signal p rocessor. T o le rances in analog c ircuit co m p o n en ts  m ake it ex trem ely  
difficult fo r the  system  designer to  con tro l the accuracy o f an analog  signal p ro ­
cessing system . O n  the  o th e r  hand , a digital system  p ro v id es m uch b e tte r  con tro l 
of accuracy req u irem en ts . Such req u irem en ts , in tu rn , re su lt in specifying the ac ­
curacy  req u irem en ts  in the  A /D  co n v erte r and  th e  d igital signal p rocesso r, in te rm s 
of w ord leng th , floating-point versus fixed-point arithm e tic , and  sim ilar factors.

D ig ita l signals are  easily  sto red  on  m agnetic  m edia ( ta p e  o r disk) w ithou t d e ­
te r io ra tio n  o r loss o f signal fidelity b ey o n d  th a t in tro d u ced  in th e  A /D  conversion . 
A s a consequence , th e  signals becom e tran sp o rtab le  and  can  be p rocessed  off-line 
in a rem o te  lab o ra to ry . T h e  digital signal processing  m e th o d  also allows for the im ­
p lem en ta tio n  o f m o re  soph istica ted  signal p rocessing  algorithm s. It is usually  very 
difficult to  p erfo rm  precise  m ath em atica l o p e ra tio n s  on signals in analog  fo rm  b u t 
these sam e o p era tio n s can be rou tine ly  im p lem en ted  on a d ig ital com p u ter using 
softw are.

In som e cases a d igital im p lem en ta tion  of th e  signal p rocessing  system  is 
ch eap e r than  its analog  co u n te rp art. T he low er cost m ay be due to the  fact th a t 
the digital h a rd w are  is ch eap e r, o r p e rh ap s  it is a resu lt o f the  flexibility for m o d ­
ifications p rov ided  by the digital im p lem en ta tion .

A s a co nsequence  o f these advan tages, d igital signal p rocessing  has been  
applied  in p ractical system s covering  a b road  range of d iscip lines. W e cite, for ex­
am ple, the  app lication  o f d igital signal p rocessing  techn iques in speech  processing  
and signal transm ission  on  te lep h o n e  channels, in im age processing  and  transm is­
sion, in seism ology and geophysics, in oil exp lo ra tio n , in th e  d e tec tio n  of nuclear 
explosions, in the processing  of signals received from  o u te r  space, and  in a vast 
variety  of o th e r  app lications. Som e of these  app lica tions are  cited  in su b sequen t 
chap ters.

A s a lready  ind icated , how ever, digital im p lem en ta tio n  has its lim itations. 
O ne practical lim ita tion  is the speed  o f o p e ra tio n  o f A /D  co n v e rte rs  and  digital 
signal processors. W e shall see th a t signals having ex trem ely  w ide bandw id ths re ­
qu ire  fast-sam pling-rate  A /D  converters and  fast d igital signal p rocessors. H ence  
th e re  are  analog  signals w ith large bandw id ths fo r which a digital p rocessing  ap ­
proach  is beyond  the  s ta te  of the art o f digital hardw are .

1.2 CLASSIFICATION OF SIGNALS

T he m eth o d s we use in processing  a signal o r in analyzing  the  re sp o n se  o f a system  
to a signal d ep en d  heavily  on the  characteristic  a ttr ib u te s  o f th e  specific signal. 
T h ere  a re  tech n iq u es th a t app ly  only to  specific fam ilies o f signals. C onsequen tly , 
any investigation  in signal p rocessing  should  sta rt w ith a classification o f th e  signals 
involved in the  specific app lication .
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1.2.1 Multichannel and Multidimensional Signals

A s exp lained  in Section  1.1, a signal is described  by a function  o f one o r m ore 
in d ep en d en t variab les. T he value of th e  function  (i.e., the d e p e n d e n t variab le) can 
be a rea l-va lued  scalar quan tity , a com plex-valued  quan tity , o r p erh ap s a vector. 
F o r exam ple, the signal

si( r )  =  A sin37rr 

is a rea l-va lued  signal. H ow ever, the signal

s2(f) =  A e ji7Tt =  A cos 37t t j'A sin 3:r r
is com plex  valued .

In som e app lica tions, signals are  g en e ra ted  by m ultip le  sources or m ultip le  
sensors. Such signals, in tu rn , can be rep re sen ted  in vecto r form . F igure 1.4 show s 
the th ree  co m p o n en ts  of a vector signal th a t rep re sen ts  the  g round  acce le ra tion  
due to  an e a r th q u a k e . T h is acce le ra tion  is the resu lt of th ree  basic types of elastic  
w aves. T he p rim ary  (P) w aves and the  secondary  (S) w aves p ro p ag a te  w'ithin the 
body of rock and  are  long itud inal and  transversa l, respectively . T he th ird  type 
of elastic w ave is called the  surface w ave, because  it p ro p ag a tes n ea r  the g round  
surface. If $*(/). k =  1. 2. 3. den o tes the  electrical signal from  th e  £ th sensor as a 
function  of tim e, the se t of p =  3 signals can be rep re sen ted  by a vec to r S?(f )< w here

r  si (O '
S;,(r) =  S i ( t )

-S l( t )  J
W e refe r to  such a v ec to r o f signals as a multichannel signal. In e lec tro ca rd io g ra ­
phy. for exam ple, 3-lead and  12-lead e lec trocard iog ram s (E C G ) are  often  used in 
practice, w hich resu lt in 3-channel and  12-channel signals.

L e t us now  tu rn  o u r  a tten tio n  to  the in d ep en d en t variab le(s). If the signal is 
a function  of a single in d ep en d en t variab le , the signal is called a one-dimensional  
signal. O n the  o th e r  hand , a signal is called M -dim ens iona l  if its value is a function  
of M  in d ep en d en t variab les.

T h e  p ic tu re  show n in Fig. 1.5 is an  exam ple of a tw o-d im ensional signal, since 
the in tensity  o r  b righ tness I (x .  y) a t each  po in t is a function  of tw o in d ep en d en t 
variables. O n  th e  o th e r  hand , a b lack-and-w hite  television  p ic tu re  m ay be re p ­
resen ted  as I ( x . y . t )  since the  b righ tness is a function  of tim e. H en ce  the T V  
p ic tu re  m ay be tre a te d  as a th ree-d im en sio n a l signal. In co n trast, a co lor TV  p ic ­
tu re  m ay be d escribed  by th ree  in tensity  functions of the form  Ir (x, y. ?), Is (x. y. t ), 
and  I i , ( x . y , t ) ,  co rre sp o n d in g  to  the  b righ tness of the th ree  p rincipal colors (red . 
g reen , b lue) as functions o f tim e. H en ce  the co lo r TV  p ic tu re  is a th ree-ch an n e l, 
th ree-d im en sio n a l signal, which can be rep re sen ted  by the  vector

-/,(* ,>■ . O '
IU , y. t) —

. l b(x, v ,r )_
In this b ook  we d eal m ainly w ith single-channel, one-d im ensional real- or 

com plex-valued  signals and  we re fe r  to  them  sim ply as signals. In  m athem atica l
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Figure 1.4 Three components of ground acceleration measured a few kilometers 
from the epicenter of an earthquake. (From Earthquakes,  by B. A . Bold. ©1988 
by W. H. Freeman and Company. Reprinted with permission of the publisher.)

te rm s these signals are  described  by a function  o f a single in d e p e n d e n t variable. 
A lth o u g h  the in d ep en d en t variable  need  no t be tim e, it is com m on  practice to  use 
t as the in d ep en d en t variable. In m any cases the  signal p rocessing  o p era tio n s and 
a lgorithm s deve lo p ed  in this tex t for o n e-d im ensional, sing le-channel signals can 
be ex ten d ed  to  m u ltichannel and  m u ltid im ensional signals.

1.2.2 Continuous-Time Versus Discrete-Time Signals

Signals can be fu rth e r  classified in to  fou r d iffe ren t ca teg o ries d epend ing  on the 
characteristics o f th e  tim e (in d ep en d en t)  variab le  and  th e  values they  take. 
Continuous-t ime signals  o r analog signals a re  defined  for every  value o f tim e and
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Figure 1.5 Example of a two-dimensional signal.

they  take  on values in the con tinuous in terval (a . b ). w here  a can be —oc and  b 
can be oc. M athem atically , these signals can be d escribed  by functions o f a co n ­
tinuous variable. T he speech w aveform  in Fig. 1.1 and th e  signals x i(r) =  c o s 7i t ,  
x j{ t )  =  e ^ 1' 1, —oc < t < oq are exam ples o f analog  signals. Discrete-time signals 
a re  defined only at ce rta in  specific values o f tim e. T hese  tim e in stan ts need  n o t be 
equ id istan t, bu t in practice they  are  usually  tak en  a t equally  spaced  in tervals for 
c o m p u ta tio n a l conven ience and  m ath em atica l trac tab ility . T he signal x(t„) =  
n =  0, ± 1 , ± 2 , . . .  p rov ides an exam ple o f a d isc re te -tim e  signal. If we use the  
index n of th e  d iscrete-tim e in stan ts as th e  in d ep en d en t variab le , the  signal value 
becom es a function  o f an in teger variab le  (i.e., a seq u en ce  of num bers). T hus a 
d isc re te-tim e signal can be rep re sen ted  m athem atica lly  by a sequence  of real o r 
com plex num bers. To em phasize the d isc rete-tim e n a tu re  o f a signal, we shall 
d en o te  such a signal as x{n)  instead  o f x ( t ) .  If the  tim e instan ts t„ are  equally  
spaced  (i.e., t„ =  n T ), th e  n o ta tio n  x ( n T )  is also used. F o r exam ple, the  sequence

x(n) if n >  0 
o therw ise

( 1 .2 .1)

is a d isc re te-tim e signal, w hich is re p re se n te d  graph ically  as in Fig. 1.6.
In  app lications, d isc rete-tim e signals m ay arise  in tw o ways:

1. By se lecting  values o f an analog  signal a t d isc re te -tim e  instants. This p rocess 
is called  sampling  and  is discussed in m o re  detail in Section  1.4. A ll m easu r­
ing in stru m en ts th a t take  m easu rem en ts  at a reg u la r  in terval o f tim e p rov ide  
d isc rete-tim e signals. For exam ple, the  signal x(n )  in Fig. 1.6 can be o b ta in ed
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x{n)

I I T
Figure 1.6 Graphical representation of the discrete time signal x[n)  =  0.8" for 
n > 0 and x(n) =  0 for n < 0.

bv sam pling  th e  analog  signal x ( t )  — 0 .8 ', t >  0 and x ( t )  =  0. t < 0 once 
every second.

2. By accum ulating  a variab le  over a p erio d  o f tim e. F o r exam ple , coun ting  the 
nu m b er o f cars using a given s tre e t every hour, o r reco rd in g  th e  value of gold 
every day, resu lts in d isc re te-tim e signals. F igure 1.7 show s a g raph  o f the 
W olfer sunspo t num bers. E ach  sam ple o f this d isc re te-tim e signal prov ides 
th e  num b er o f su nspo ts o b se rved  during  an  in terval o f 1 year.

1.2.3 Continuous-Valued Versus Discrete-Valued Signals

T he values of a con tinuous-tim e or d isc re te-tim e signal can be con tinuous or d is­
crete . If a signal takes on all possib le values on  a finite or an  infinite range, it

Year

Figure 1.7 W olfer annual sunspot num bers (1770-1869).
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is said to  be co n tinuous-valued  signal. A lte rn a tiv e ly , if the signal takes on values 
from  a finite se t of possib le values, it is said to be a d isc re te-valued  signal. U sually , 
these  values are  eq u id istan t and  hence can be expressed  as an  in teg er m ultip le  of 
the d istance betw een  tw o successive values. A  d isc re te-tim e signal having a set of 
d isc rete  values is called a digital signal. F igure 1,8 show s a d igital signal th a t tak es 
on  one of fo u r possib le values.

In o rd e r  for a signal to  be p rocessed  digitally, it m ust be d isc rete  in tim e 
and  its values m ust b e  d isc re te  (i.e., it m ust be a digital signal). If the  signal to 
be p rocessed  is in analog  form , it is conv erted  to  a digital signal by sam pling th e  
analog  signal at d isc rete  instan ts in tim e, ob ta in ing  a d isc re te-tim e signal, and th en  
by quantiz ing  its values to  a set o f d isc re te  values, as described  la te r in the  chap ter. 
T h e  process of converting  a con tinuous-valued  signal in to  a d isc re te-valued  signal, 
called quantization,  is basically an appro x im atio n  process. It m ay be accom plished  
sim ply bv round ing  o r tru n ca tio n . F o r exam ple, if the allow able signal values 
in the d ig ital signal are in tegers, say 0 th rough  15, the co n tinuous-value  signal is 
quan tized  in to  these in teg er values. T hu s the signal value 8.58 will be ap p ro x im ated  
by the value 8 if the q u an tiza tio n  process is p erfo rm ed  by tru n ca tio n  o r by 9 if 
the quan tiza tio n  p rocess is p erfo rm ed  by round ing  to  the n eares t in teger. A n  
exp lanation  o f the analog-to -d ig ita l conversion  process is given la ter in the chap ter.

Figure 1.8 Digital signal with four different amplitude values.

1.2.4 Deterministic Versus Random Signals

T h e  m athem atica l analysis and processing  of signals req u ires  the  availability  o f a 
m ath em atica l descrip tion  fo r the  signal itself. T h is m athem atica l descrip tion , o ften  
re fe rred  to  as the signal model,  leads to  a n o th e r im p o rtan t classification of signals. 
A ny  signal th a t can be un iquely  described  by an explicit m athem atica l expression , 
a tab le  o f d a ta , o r a w ell-defined ru le  is called deterministic.  T his te rm  is used to 
em phasize th e  fact th a t all past, p resen t, and  fu tu re  values o f the  signal are know n 
precisely, w ithou t any u ncerta in ty .

In  m an y  practical app lica tions, how ever, th e re  are signals th a t e ith e r  can n o t 
be described  to  any reaso n a b le  d eg ree  o f accuracy by explicit m athem atica l fo r­
m ulas, o r such a descrip tion  is too  com plicated  to  be of any practical use. T he lack
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of such a re la tio n sh ip  im plies th a t such signals evolve in tim e in an  u n pred ic tab le  
m anner. W e re fe r  to  these signals as random .  T h e  o u tp u t o f  a noise genera to r, 
the  seism ic signal of Fig. 1.4, and  the speech signal in Fig. 1.1 are exam ples of 
ran d o m  signals.

F igure 1.9 show s tw o signals o b ta in ed  fro m  th e  sam e no ise  g en era to r and 
the ir  associated  h istogram s. A lthough  th e  tw o signals do  n o t resem b le  each  o th er 
visually, th e ir  h istog ram s reveal som e sim ilarities. T his p ro v id es  m o tivation  for
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Figure 1.9 Two random signals from the same signal generator and their his­
tograms.
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Figure 1.9 Continued

the analysis and  descrip tion  of random  signals using statistical techn iques instead  
o f explicit form ulas. T h e  m athem atica l fram ew ork  fo r th e  theo re tica l analysis of 
ran d o m  signals is p rov ided  by the th eo ry  of p ro b ab ility  and  stochastic  processes. 
Som e basic e lem en ts o f this app ro ach , a d ap ted  to th e  n eeds o f this book, are 
p re sen ted  in A pp en d ix  A.

It shou ld  be em phasized  a t th is po in t th a t the  classification o f a real-world  
signal as de te rm in is tic  o r ran d o m  is n o t alw ays clear. S om etim es, bo th  app roaches 
lead  to  m eaningfu l resu lts th a t p rov ide  m o re  insight in to  signal behav ior. A t o th e r
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tim es, the w rong classification m ay lead  to  e rro n e o u s  resu lts , since som e m a th e ­
m atical tools m ay apply on ly  to  d e term in istic  signals while o th e rs  m ay apply only 
to  random  signals. T his will becom e c lea re r as we exam ine specific m athem atica l 
tools.

1.3 THE CONCEPT OF FREQUENCY IN CONTINUOUS-TIME AND 
DISCRETE-TIME SIGNALS

T he concep t o f frequency  is fam iliar to  s tu d en ts  in eng ineering  and  the sciences. 
T his concept is basic in. for exam ple, th e  design of a rad io  receiver, a high-fidelity 
system , or a spectra l filter for color ph o to g rap h y . F rom  physics we know  th a t 
frequency  is closely re la ted  to  a specific type o f period ic  m o tio n  called harm onic 
oscillation, which is d escribed  by sinusoidal functions. T he concep t o f frequency  
is d irectly  re la ted  to th e  co ncep t o f tim e. A ctually , it has the  d im ension  of inverse 
tim e. T hus we should  expect th a t the n a tu re  of tim e (con tin u o u s o r d isc rete) w ould 
affect the n a tu re  of the  freq u en cy  accordingly.

1.3.1 Continuous-Time Sinusoidal Signals

A sim ple harm on ic  osc illa tion  is m athem atica lly  described  by the  follow ing 
con tinuous-tim e sinusoidal signal:

x a(t) =  A cos(Qt  +  0). —oc < t < oc (1.3.1)

show n in Fig. 1.10. T he subscrip t a u sed  with x{ t)  den o tes an analog  signal. This 
signal is com pletely  charac te rized  by th ree  param eters: A is the  amplitude  of the 
sinusoid. ft is the  frequency  in rad ians p er second  (rad/s), and  6 is the  phase  in 
radians. In stead  o f ft, we o ften  use the  frequency  F  in cycles p e r  second o r hertz  
(H z), w here

Q — I n  F  (1.3.2)

In term s of F. (1.3.1) can be w ritten  as

x a(t) =  A  cos(2n F t  +  6 ), — oo < t <  oc (1.3.3)

W e will use b o th  form s, (1.3.1) and (1.3.3), in rep re sen tin g  sinusoidal signals.

x j t )  = A cos(2nFt  + 8)

Figure 1.10 Example of an analog 
sinusoidal signal.
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T h e  analog  sinuso idal signal in (1.3.3) is charac te rized  by the follow ing p ro p ­
erties:

A L  For every  fixed value o f the  frequency  F, x a(r) is periodic. In d eed , it can 
easily be  show n, using e lem en ta ry  trigo n o m etry , th a t

x a(.t +  Tp) =  A„(r)

w here  Tp = 1 /F  is the  fu n d am en ta l p erio d  o f the sinusoidal signal.

A 2. C ontinuous-tim e sinusoidal signals w ith d istinct (d ifferen t) frequencies are  
them se lves d istinct.

A 3. Increasing  the frequency  F resu lts in an  increase in the ra te  o f osc illation  
o f the signal, in the  sense th a t m ore perio d s are included in a given tim e 
in terval.

W e observe  th a t fo r F =  0. the value Tp — oc is consisten t w ith the fu n ­
dam en ta l re la tio n  F = 1 /T r . D ue to  con tinu ity  o f the  tim e variab le  r, we can 
increase th e  frequency  F, w ithou t lim it, w ith a co rre spond ing  increase in the ra te  
o f oscillation.

T he re la tionsh ips we have d escribed  for sinusoidal signals carry over to  the  
class o f com plex exponen tia l signals

xa{t) -  A e JlSi,+{" (1.3.4)

T his can easily be seen by expressing  these  signals in te rm s o f sinusoids using the  
E u le r  iden tity

e±j4: =  cos <p i  j  sin <p (1.3.5)

By defin ition , frequency  is an in h eren tly  positive physical quan tity . This 
is obvious if we in te rp re t frequency  as the n u m b er o f cycles p e r  unit tim e in a 
period ic  signal. H ow ever, in m any cases, only for m ath em atica l conven ience , we 
need  to  in tro d u ce  negative  frequencies. T o  see this we recall th a t the sinusoidal 
signal (1.3.1) m ay be expressed  as

xa(t) =  A c o s (^ r  + 6 )  =  j  eJ(Q,+f>) + ~  e - J(a+9) (1.3.6)

which follow s from  (1.3.5). N o te  th a t a sinusoidal signal can be ob ta in ed  by add ing  
tw o equal-am p litu d e  com plex-con jugate  expon en tia l signals, som etim es called pha- 
sors, illu stra ted  in Fig. 1.11. A s  t im e  p rog resses the  p haso rs ro ta te  in opposite  
d irec tions w ith angu lar frequencies ±£2 rad ians per second . Since a positive f r e ­
quency  co rre sp o n d s to  counterc lockw ise  un ifo rm  an g u la r  m otion , a negative f r e ­
quency  sim ply co rre sp o n d s to clockw ise an g u la r m otion .

F o r m ath em atica l conven ience , we use bo th  n egative  and  positive frequencies 
th ro u g h o u t th is b ook . H en ce  th e  frequency  range fo r analog  sinusoids is —oo < 
F  < oo.
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Re

Figure 1.11 Representation of a cosine 
function by a pair of complex-conjugate 
exponentials (phasors).

1.3.2 Discrete-Time Sinusoidal Signals

A d isc rete-tim e sinusoidal signal m ay be expressed  as

x(n )  — A cos (ton + 8), —oo < n < oc (1.3.7)

w here n is an in teger variab le , called the sam ple num b er. A is th e  amplitude  o f the 
sinusoid, co is the frequency  in rad ians p e r  sam ple , and 8 is the  phase  in radians. 

If  instead  of a> we use the frequency  variab le  /  defined  by

a; =  2 n f  (1.3.8)

the re la tion  (1.3.7) becom es

x(n )  — A cos(2n f n  + 8). — oc < n < oc (1.3.9)

T he frequency  /  has d im ensions o f cycles per sam ple . In S ection  1.4. w here 
we consider the sam pling  of analog sinusoids, we re la te  the frequency  variable 
/  of a d isc re te-tim e sinusoid  to the frequency  F  in cycles p e r  second for the 
analog  sinusoid. F o r the m o m en t we consider the d isc re te-tim e sinusoid  in (1.3.7) 
indep en d en tly  of the  con tinuous-tim e sinusoid given in (1.3.1). F igu re  1.12 shows 
a sinusoid  with frequency  co — n /6  rad ians p e r  sam ple ( f  ~  ~  cycles per sam ple) 
and  phase 8 — n /3 .

x(n) -  A  cos (urn + 8)

Figure 1.12 Example of a discrete-time 
sinusoidal signal (w — 7t / 6  and b — 7r/3).



In co n tra s t to con tinuous-tim e sinusoids, the d isc re te-tim e sinusoids are c h a r­
ac terized  by the follow ing p roperties:

B l.  A  discrete-time sinusoid is per iodic only  i f  its frequency  f  is a rational num ber .

By defin ition , a d isc rete-tim e signal x(n)  is period ic  w ith p eriod  N ( N  > 0) if 
an d  only if

x(n  + N )  =  x(n)  fo r all n (1.3.10)

T h e  sm allest value o f N  for which (1.3.10) is tru e  is called the fundamental  period.
T he p ro o f  o f the period icity  p ro p erty  is sim ple. F o r a sinusoid  w ith frequency  

/o  to  be period ic , we should  have

cos[27t /o( A7 +  n) +  8} — cos(2 ,t/o«  +  6)

T his re la tio n  is true  if and  only if th e re  exists an in teger k such th a t

2 n f ) N  =  2kn

or, equ ivalen tly .

/o =  4  (1.3.11)N

A ccord ing  to  (1.3.11). a d iscrete-tim e sinusoidal signal is period ic  only if its f re ­
quency  /o  can be exp ressed  as the ra tio  o f two in tegers (i.e.. / () is ra tio n a l).

T o  d e te rm in e  the fundam en ta l period  N  o f a pe rio d ic  sinusoid , we express its 
frequency  /o  as in (1.3.11) and  cancel com m on factors so th a t k and  N  are  relatively  
p rim e . T h en  the fundam en ta l period  o f the sinusoid  is equal to  N.  O bserve th a t a 
sm all change in frequency  can resu lt in a large change in the period . F o r exam ple, 
no te  th a t f \  =  31 /60 im plies that N\ =  60, w hereas f i  =  30 /60  resu lts in Nz =  2.

B2. Discrete-time sinusoids whose frequencies are separated  by an integer multiple  
o f  2n  are identical.

T o  p rove this assertion , let us consider th e  sinusoid  cos(£oo« +  0). It easily 
follow s th a t

cos[(wo +  2n )n +  B\ =  cos(wo/i +  2nn + 9) — co%{a)Qn +  9) (1.3.12)

A s a resu lt, all sinusoidal sequences

x k(n) — A cos(a>tn +  8). k =  0 , 1 , 2 , . . .  (1.3.13)

w here

Wk =  cl>c +  2k n ,  —7r < o>o < n

are  indistinguishable  (i.e., identical). O n  the  o th e r  han d , the  sequences o f any tw o 
sinuso ids w ith frequencies in the ran g e  - n  < a> < n  or —^ < f  < ~ a re  distinct. 
C o n seq u en tly , d isc rete-tim e sinusoidal signals w ith frequencies M  < n  o r | / |  <  \

Sec. 1.3 Frequency Concepts in Continuous-Discrete-Time Signals 17
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are unique. A ny  sequence  resu lting  from  a sinuso id  w ith a frequency  M  > n , or 
| / |  >  j ,  is iden tical to a se quence  o b ta in ed  from  a sinuso idal signal with frequency  
\co\ <  n .  B ecause  o f this sim ilarity , we call the  sinusoid  hav ing  the frequency  M  > 
tt an alias o f a co rre sp o n d in g  sinusoid w ith frequency  jwj <  n .  T hus we regard  
frequencies in the  range — tt <  a> < tt, o r — 1 <  /  < 1 as u n iq u e  and  all frequencies 
|o>[ > t t , or | / |  >  ~, as aliases. T he re a d e r  shou ld  notice th e  d ifference  b etw een  
d iscrete-tim e sinusoids and con tinuous-tim e sinusoids, w h ere  th e  la tte r  resu lt in 
d istinct signals for £2 o r F  in the  e n tire  range —oc < £2 < oc o r —oc < F  <  oc.

B3. The highest rate o f  oscillation in a discrete-time sinuso id  is attained when  
to — 7i (or cu = —tt) or, equivalently , f  — \  (or f  =  — \ ) .

T o illu stra te  th is p ro p e rty , let us investigate  the  characteristics of th e  sinu ­
soidal signal sequence

x(n)  =  cos ĉ o n

w hen the frequency  varies from  0 to tt. To sim plify the a rg u m en t, we tak e  values 
o f (l>o =  0, 7t / 8, tt /4 , jt /2 , n  co rrespond ing  to  /  =  0, 5 , which resu lt in
p eriod ic  sequences having p eriods N  =  oc, 16, 8, 4, 2. as d ep ic ted  in Fig. 1.13. W e 
no te  th a t the p erio d  of th e  sinusoid d ecreases as the  frequency  increases. In fact, 
we can see th a t the  ra te  o f oscillation  increases as the frequency  increases.

,, xin)

Figure 1.13 Signal x (n )  =  co scu^n for  various values of the frequency cdq.
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T o see w hat h ap p en s for tt < ioq < 2tt . we consider the sinusoids with 
frequencies a>\ =  a>(> and  0J2 — 2 n  — ojq. N o te  that as co\ varies from  tt to 2n .  a>z 
varies from  ir to 0. it can be easily seen  that

=  A cos co} n — A cos won

X2 (n) = A cos uhn — A cos(27r — coo)n (1.3.14)

=  A cos(— coqii) — x \ (h)

H ence ur± is an alias of w\.  If we had  used a sine function  instead  of a cosine func­
tion , the resu lt w ould basically be the  sam e, except for a 180' phase  d ifference 
betw een  the  sinusoids A](«) and xi(n ) .  In any case, as we increase the re lative 
frequency  coo o f a d isc re te-tim e sinusoid  from  tt to 27r. its ra te  of osc illation  d e ­
creases. F o r coo = 2tt the  resu lt is a constan t signal, as in the case for oju =  0. 
O bviously, for co{) =  tt (o r f  = k)  we have the highest ra te  o f oscillation.

As for the  case o f con tinuous-tim e signals, negative frequencies can be in ­
troduced  as well for d isc rete-tim e signals. F o r this pu rp o se  we use the identity

A A
x(n) =  Acos(con + 0) =  — (>Jiwn+0) + — (1.3.15)

Since d isc re te-tim e sinusoidal signals with frequencies th a t are se p a ra te d  by 
an in teger m ultip le o f 27r are identical, it follow s th a t the frequ en c ies in any in terval 
co] < a> < co\ + 2tt constitu te  all the existing d isc rete-tim e sinusoids o r com plex 
exponentials . H ence the frequency  range for d isc rete-tim e sinusoids is finite with 
d u ra tio n  2 n . U sually, we choose the range 0 < co < 2n  o r — tt < co < tt ({) < f  < 1.
— 1 < /  < | ) ,  which we call the fun d a m en ta l  range.

1.3.3 Harmonically Related Complex Exponentials

Sinusoidal signals and  com plex ex ponen tia ls play a m ajo r role in the analysis o f 
signals and system s. In som e cases we deal with sets of harmonically  related co m ­
plex ex ponen tia ls (o r sinusoids). T hese  are sets of period ic  com plex ex ponen tia ls 
w ith fundam en ta l frequencies th a t are  m u ltip les o f a single positive frequency. 
A lthough  we confine o u r discussion to  com plex exponen tia ls , the sam e p ro p e r ­
ties clearly  hold for sinusoidal signals. W e consider harm onically  re la ted  com plex 
ex ponen tia ls in bo th  con tinuous tim e and d iscrete  tim e.

Continuous-time exponentials. T he basic signals for con tinuous-tim e, 
harm onically  re la ted  expo n en tia ls  are

sk(t) =  ejkno' =  e ll7TkFn' jt =  0 . ± l . ± 2 . . . .  (1.3.16)

W e no te  th a t for each  value o f k, s^U) is period ic  with fundam en ta l p eriod
1 /(kFo) = Tp/ k  or fu n d am en ta l frequency  kFo. Since a signal th a t is period ic  
with p erio d  Tp/ k  is also period ic  w ith period  k(Tp/ k ) =  Tp for any positive in teger 
k, we see th a t all o f the  s*(r) have a com m on period  of Tp, F u rth e rm o re , according
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to Section 1.3.1, Fo is a llow ed to take  any value and  all m em b ers of the  set are 
d istinct, in the sense th a t if k\ ^  k2, then  5*1 (7) ^

F rom  the basic signals in (1.3.16) we can co nstruct a lin ear com bination  of 
harm onically  re la ted  com plex exponen tia ls o f the  form

c c  SC

x ° ( ' ) =  =  Ckelkiltit ( 1 -3 -1 7 )  

k — — oc k ~  —  oc

w here ck, k =  0, ± 1 , ± 2 . . . .  are  a rb itra ry  com plex  constan ts. T he signal x a(t) 
is period ic w ith fu n d am en ta l period  Tp =  l / f o ,  and  its re p re se n ta tio n  in term s 
of (1.3.17) is called  the Fourier series expansion fo r x a (t). T h e  com plex-valued 
constan ts are the  F o u rie r  se ries coefficients and  the  signal sk (r) is called the fcth 
harm onic o f x (l(t).

Discrete-time exponentials. Since a d isc re te-tim e com plex  exponen tia l is 
p eriod ic  if its re lative frequency  is a ra tional n u m b er, we choose  f Q — 1/A' and we 
define the  sets o f harm onically  re la ted  com plex  expo n en tia ls  by

sk(n) =  ej2*kf" \  k =  0 . ± 1 . ± 2 , . . .  (1.3.18)

In con trast to  the  co n tinuous-tim e case, we n o te  that

sk+Nln) =  eJ7* n'k+N,/N =  e ^ s k (n) =  sk(n)

This m eans tha t, consisten t w ith (1.3.10), there  are  only N  d istinct period ic  com plex 
exponentials in the se t d escribed  by (1.3.18). F u rth e rm o re , all m em bers of the set 
have a com m on period  of N  sam ples. C learly , we can choose any  consecutive A' 
com plex exponen tia ls , say from  k =  no to  k — no 4- N  — 1 to  fo rm  a harm onically  
re la ted  set with fu n d am en ta l frequency  /(, =  1 /N .  M ost o ften , fo r convenience , 
we choose the set th a t co rresponds to no =  0, th a t is, the  set

sk(n) =  ejlnkn /s . * = 0 . 1 . 2 .........N -  1 (1.3.19)

A s in the case o f co n tinuous-tim e signals, it is obvious th a t the  linear com ­
bination

\ - l  N- 1
x(n)  =  £ c * s * ( n )  = Y L ckei2nkn'N

k = 0 Jt= 0

results in a period ic  signal w ith fundam en ta l p erio d  N .  A s we shall see later, 
this is the  F o u rie r series rep re sen ta tio n  for a period ic  d isc re te -tim e  sequence  with 
F o u rie r coefficients {q}. T he sequence  sk (n) is called  the  /tth h arm o n ic  o f x(n).

Example 1.3.1

Stored in the memory of a digital signal processor is one cycle of the sinusoidal signal

. (  2nn 
x ( n )  =  sin I +  6

where 6 — 2 n q / N , where q and N are integers.



(a) Determine how this table of values can be used to obtain values of harmonically 
related sinusoids having the same phase.

(b) Determine how this table can be used to obtain sinusoids of the same frequency 
but different phase.

Solution
(a) Let denote the sinusoidal signal sequence

(  2 yrnk
xk(n) =  sin I --------- !

V N
This is a sinusoid with frequency f k = k / N.  which is harmonically related to 
x{n). But xk{n) may be expressed as
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xk{n) =  sin
2 tt ( k n )  
— —

=  x(kn)

Thus we observe that ,vt (0) =  .v(0). **(1) =  x( k ) .  x k (2) =  x ( 2 k ) .  and so on. 
Hence the sinusoidal sequence can be obtained from the table of values 
of x ( n )  by taking every k th value of * (« ) . beginning with .v(0). In this manner we 
can generate the values of all harmonically related sinusoids with frequencies
fk = k /N  for k =  0. 1 ....... N -  1 .

(b) We can control the phase 8 of the sinusoid with frequency j \  — k / N  by taking 
the first value of the sequence from memory location q — 9N/2tt. where q is 
an integer. Thus the initial phase 6 controls the starling location in the table 
and we wrap around the table each time the index (kn) exceeds N.

1.4 ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION

M ost signals o f practical in terest, such as speech, bio logical signals, seism ic signals, 
ra d a r  signals, sonar signals, and various com m unications signals such as audio  and  
v ideo  signals, are  analog. To p rocess analog  signals by digital m eans , it is first 
necessary  to  conv ert th em  into digital form , th a t is, to  co n v ert th em  to  a sequence  
o f num b ers having finite precision. T his p ro ced u re  is called analog-to-digital (A /D )  
conversion , and  the  co rrespond ing  devices a re  called A / D  converters (A D C s) .

C oncep tually , we view A /D  conversion  as a th ree -s tep  process. T his p rocess 
is illu stra ted  in Fig. 1.14.

1. Sampling.  This is the conversion  o f a co n tinuous-tim e signal in to  a d isc re te ­
tim e signal o b ta in ed  by taking “ sam ples’" o f the co n tinuous-tim e signal at 
d isc re te-tim e instants. T hus, if xa(t) is th e  inpu t to  th e  sam pler, the o u tp u t 
is xa (nT)  = x(n) ,  w here T  is called the sam pling  interval.

2. Quantiza tion .  T his is the conversion  o f a d isc re te-tim e co n tinuous-valued  
signal in to  a d iscrete-tim e, d iscrete-valued  (d ig ita l) signal. T he value o f each
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A/D converter
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Analog Discrete-time Quantized Digital
signal signal signal signal

Figure 1.14 Basic parts of an analog-to-digital (A /D ) converter.

signal sam ple is re p re se n te d  by a value se lected  from  a finite set o f possi­
ble values. T he d ifference betw een  the unqu an tized  sam ple  x(n)  and  the 
quan tized  o u tp u t x q(n) is called the  q u an tiza tio n  erro r.

3. Coding.  In the  coding  process, each d iscrete  value x q{n) is re p re se n te d  by a 
6-bit b inary  sequence.

A lthough  we m odel the A /D  co n v e rte r  as a sam pler follow ed by a q u an tize r 
and coder, in practice the  A /D  conversion  is p e rfo rm ed  by a single device that 
takes x a(t) and p ro d u ces a b inary -coded  num ber. T he o p era tio n s of sam pling  and 
q u an tiza tion  can be p erfo rm ed  in e ith e r  o rd e r  bu t. in p ractice, sam pling  is always 
p erfo rm ed  befo re  q uan tiza tion .

In m any cases of practical in te re st (e.g., speech p rocessing) it is desirable  
to convert the p rocessed  digital signals in to  analog  form . (O bviously , we cannot 
listen to  the sequence  of sam ples rep re sen tin g  a speech  signal o r see the  n u m ­
bers correspond ing  to  a T V  signal.) T he process o f converting  a digital signal 
in to  an analog signal is know n as digital-to-analog (D /A)  conversion.  All D /A  
converters “connect th e  d o ts’" in a digital signal by perfo rm ing  som e kind of in te r­
po la tion , w hose accuracy  d ep en d s on th e  quality  of the D /A  conversion  process. 
F igure 1.15 illustrates a sim ple form  of D /A  conversion , called a ze ro -o rd e r hold 
o r a sta ircase ap p rox im ation . O th e r app ro x im atio n s are  possib le, such as linearly  
connecting  a pa ir of successive sam ples (linear in te rp o la tio n ), fitting  a quadra tic  
th rough  th ree  successive sam ples (q u ad ra tic  in te rp o la tio n ), and so on. Is th e re  an 
op tim um  (ideal) in te rp o la to r?  F o r signals having a limited f requency  content  (finite 
bandw id th ), the sam pling  th eo rem  in troduced  in the follow ing sec tion  specifies the 
op tim um  form  of in te rp o la tio n .

Sam pling and  q u an tiza tio n  are tre a te d  in th is section . In particu la r, we 
d em o n stra te  th a t sam pling  do es no t re su lt in a loss of in fo rm atio n , n o r does it 
in troduce  d isto rtion  in th e  signal if th e  signal b andw id th  is finite. In  princip le , the 
analog signal can be reco n stru c ted  from  th e  sam ples, p rov ided  th a t th e  sam pling  
ra te  is sufficiently high to  avoid th e  p ro b lem  com m only  called aliasing. O n the 
o th er hand , quan tiza tio n  is a n o n in v ertib le  o r irreversib le  p rocess th a t resu lts in 
signal d istortion . W e shall show  th a t th e  am o u n t o f d is to rtio n  is d ep e n d e n t on
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Figure 1.15 Zero-ordcr hold digital-to-analog (D/A ) conversion.

the accuracy, as m easu red  by the  n u m b er of bits, in the  A /D  conversion  process. 
T he facto rs affecting  the choice of the desired  accuracy of the  A /D  co n v erte r are 
cost and  sam pling  ra te . In general, the cost increases with an increase in accuracy 
an d /o r  sam pling  rate.

1.4.1 Sampling of Analog Signals

T h ere  are  m any ways to  sam ple an analog  signal. W e lim it our discussion to 
periodic  o r uni form  sam pling , which is the type of sam pling  used m ost often in 
practice. T h is is described  by the re la tion

w here x(n )  is the d isc re te-tim e signal ob ta in ed  by “ tak ing  sam p les” o f the  analog 
signal x aU) every  T  seconds. This p ro ced u re  is illu stra ted  in Fig. 1.16. T he tim e 
in terval T  betw een  successive sam ples is called the  sam pling  per iod  o r sample  
interval  and  its recip rocal 1 /7  — Fs is called the sam pling  rate (sam ples p e r  second) 
o r the  sam pling  frequency  (hertz).

P eriod ic  sam pling  estab lishes a re la tio n sh ip  betw een  th e  tim e variab les t and  
n o f co n tinuous-tim e and  d isc re te-tim e signals, respectively . Indeed , these  vari­
ables are  linearly  re la te d  th rough  the  sam pling  p erio d  T  or, equ ivalen tly , through  
the sam pling  ra te  Fs — l / 7 \  as

A s a con seq u en ce  o f (1.4.2), th e re  exists a re la tio n sh ip  betw een  the frequency  
variab le  F  (o r Q) for analog  signals and  the frequency  variab le  /  (o r co) for 
d isc re te-tim e signals. T o  estab lish  th is re la tionsh ip , consider an analog  sinusoidal 
signal of the  form

x ( n )  =  x a ( n T ) .  — o c  <  n  <  c c (1.4.1)

(1.4.2)

x B{t) =  A  c o s ( 2 t t F t  +  8) (1.4.3)
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Analog *(n) = xa(nT) Discrete-time
signal Fs = 1 IT signal

Sampler

Figure 1.16 Periodic sampling of an analog signal.

which, w hen sam pled  period ically  at a ra te  Fs — 1 /7  sam ples p e r  second , yields

x a(n T )  == x{n)  =  A cos(27t F n T  -f 9)

/ 2 n n F  \  (1-4.4)
=  A cos ( — +  9 \

If we com pare (1.4.4) w ith (1.3.9). we no te  th a t the freq u en cy  variab les F 
and  /  a re  linearly  re la ted  as

(1.4.5)
Is

or, equ ivalently , as

co =  Q T  (1.4.6)

T he re la tio n  in (1.4.5) justifies th e  nam e relative o r n orm alized  f r e q u e n c y , w hich is 
som etim es used to  describe  th e  frequency  variab le  / .  A s (1.4.5) im plies, we can use 
/  to  d e te rm in e  the  frequency  F  in h ertz  only if th e  sam pling  freq u en cy  Fs is know n.

W e recall from  Section  1.3.1 th a t th e  range of the  frequency  variab le  F  o r £2 
fo r con tinuous-tim e sinusoids are

—oc < F < oo
( I .4 .7 )

—oc < £2 <  00

H ow ever, the  s itua tion  is d iffe ren t for d isc re te-tim e sinusoids. F ro m  Section  1.3.2 
we recall th a t

c  /  <  \
2 2 (1.4.8)

—n  < co < n

By substitu ting  from  (1.4.5) an d  (1.4.6) in to  (1.4.8), w e find th a t  the frequency  
of the con tinuous-tim e sinusoid  w hen  sam pled  a t a ra te  Fs =  1 / 7  m ust fall in
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the ran ae

or, equ ivalen tly .

-----------=  — n  F, <  Q  <  Ti F,  =  —T . - _ T

25

(1.4.9)

(1.4.10)

T h ese  re la tions are  su m m arized  in T ab le 1.1.

TABLE 1.1 RELATIONS AMONG FREQUENCY VARIABLES

Continuous-time sienals Discrete-time sienals

Q =  F co =  2,t f
radians u .. radians cycles

sec \ sample sample

u> = nT,f=F/F, \ 1 1A 5 IA

/  ' ‘ - /

/ q = to/T.F~f- Fs

\ .................. -  ..... ..\

-o c  < fi < oc — tt/T < Q < ,T /r
— oc < f-' < oc -f-2,/2 5  F < /-;«/-

From  these re la tions we observe that the fu n d am en ta l d ifference betw een 
con tin u o u s-tim e  and d isc rete-tim e signals is in th e ir  range of values o f the fre ­
quency  variab les F  and  / ,  o r Q and w. P eriodic  sam pling  of a con tinuous-tim e 
signal im plies a m apping  of th e  infinite frequency  range for the  variab le  F  (or £2) 
into a finite frequency  range for the variable /  (o r a>). Since the  highest frequency  
in a d isc re te -tim e  signal is co — tt o r /  =  •*, it follow s th a t, w ith a sam pling  rate 
Fs, th e  co rre sp o n d in g  h ighest values o f F  and £2 are

H  _ J_Y ~  2 T (1.4.11)

^max — ft Fs —

T h ere fo re , sam pling  in tro d u ces an am biguity , since the h ighest frequency  in a 
con tin u o u s-tim e  signal th a t can be un iquely  d istingu ished  w hen such a signal is 
sam pled  at a ra te  Fs =  l / T  is Fm&li — F J 2 ,  o r Qmax =  n F s. T o  see w hat happens 
to frequ en c ies ab ove F J 2, let us consider the follow ing exam ple.

Example 1.4.1

The implications of these frequency relations can be fully appreciated by considering 
the two analog sinusoidal signals

xi (!) — cos 2ji(l0)t

xi(t) — cos2;r(50)f
(1.4.12)
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26 Introduction Chap. 1

which are sampled at a rate Fs =  40 Hz. The corresponding discrete-time signals or 
sequences are

However. cos5,t«/2 =  cos(2^n +  7rn/2) — cos7rn /2 . Hence =  *i(n)- Thus the 
sinusoidal signals are identical and, consequently, indistinguishable. If we are given 
the sampled values generated by cos(7r/'2)n, there is some ambiguity as to whether 
these sampled values correspond to x\{i) or xz(D- Since x2(r) yields exactly the same 
values as when the two are sampled at F, — 40 samples per second, we say that 
the frequency F2 — 50 Hz is an alias of the frequency F\ = 10 Hz at the sampling 
rate of 40 samples per second.

It is important to note that F2 is not the only alias of F]. In fact at the sampling 
rate of 40 samples per second, the frequency F3 = 90 Hz is also an alias of F], as is 
the frequency F4 =  130 Hz, and so on. All of the sinusoids cos2tt(Fj -f 40k)i. k = 1.
2. 3. 4 . . . .  sampled at 40 samples per second, yield identical values. Consequently, 
they are all aliases of F\ =  10 Hz.

In general, the sam pling of a con tinuous-tim e sinusoidal signal

w here /o =  F()/F , is the re la tive  frequency  o f the  sinusoid . If we assum e th a t 
- F s /2 < Fo < F J2 .  the frequency  f 0 o f x(n)  is in the  range —  ̂ < /o  < L  which is 
the frequency  range fo r d isc re te-tim e signals. In this case, the re la tio n sh ip  betw een 
Fo and  f {) is o ne-to -one , and  hence it is possib le to  identify  (o r  reconstruct) the 
analog signal xa(t) from  th e  sam ples x(n) .

O n the o th e r  hand , if th e  sinusoids

are sam pled a t a ra te  F,, it is c lear th a t the  frequency  F* is o u tside  the fundam en ta l 
frequency  range —Fs/2 < F  < F J2 .  C onsequen tly , the  sam pled  signal is

(1.4.13)

x a(t) =  A cos(27rF{)/ +  8) 

with a sam pling rate  Fv =  1 / T  resu lts in a d isc re te-tim e signal 

x(n)  =  A cos(27r/ 0« -f 6) ( 1 .4 .1 5 )

(1 .4 .1 4 )

x a {t) =  A co s (27zFkt + 6) (1 .4 .1 6 )

w here

Fk =  F0 + kFs . k =  ±  l . ± 2 . (1.4.17)

=  A c o s (27znFo/Fs + 6 + 2 n k n )

— A cos (2nfon + 6)
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Sec. 1.4 Analog-to-Digital and Digital-to-Analog Conversion 2 7

w hich is iden tical to the d isc re te-tim e signal in (1.4.15) o b ta in ed  by sam pling .
(1.4.14). T hus an  infinite n u m b er of co n tinuous-tim e sinusoids is rep re sen ted  by 
sam pling  th e  sam e  d isc re te-tim e signal (i.e.. by th e  sam e se t o f sam ples). C on­
sequen tly , if we are  given the sequence an  am bigu ity  exists as to  which 
con tinuous-tim e signal x a(t) these  values rep re sen t. E qu iva len tly , we can say th a t 
the  frequencies Fk — F o + k F s, —oo < k < oo (k in teger) are  ind istingu ishab le  from  
the  frequency  Fo a fte r sam pling  and h ence  they  are  aliases o f Fo. The re la tionsh ip  
b e tw een  the  frequency  variab les o f th e  con tinuous-tim e and  d isc rete-tim e signals 
is illu stra ted  in Fig. 1.17.

A n  exam ple  o f aliasing is illu stra ted  in Fig. 1.18. w here  tw o sinusoids w ith 
frequ en c ies F0 =  |  H z and  Fj =  — |  H z yield iden tical sam ples w hen a sam pling  
ra te  o f Fs — 1 H z is used. F rom  (1.4.17) it easily follow s th a t for k =  - 1 ,  Fo =  
F, +  Fs =  (—|  +  1) H z =  i  Hz.

Figure 1.17 Relationship between the continuous-time and discrete-time fre­
quency variables in the case of periodic sampling.

Figure 1.18 Illustration of aliasing.
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28 Introduction Chap. 1

Since Fsf2. w hich co rre sp o n d s to  w  =  tt, is the  highest frequency  th a t can be 
re p re sen ted  uniquely  w ith a sam pling  ra te  Fs , it is a sim ple m a tte r  to de term ine  
the m apping  of any (alias) frequency  above Fs/2  (co — tt) in to  the equ ivalen t 
frequency  below  Fs/2. W e can use F J 2  or a) — t t  as the p ivo ta l po in t and  reflect 
or “ fo ld” the alias frequency  to  the range 0 <  w < tt. Since the  p o in t o f reflection  
is Fsj 2 (co =  t t ) ,  the  frequency  F J 2  (cu = re) is called  the fo ld in g  frequency.

Example 1.4.2

Consider the analog signal

(a) Determine the minimum sampling rate required to avoid aliasing.
(b) Suppose that the signal is sampled at the rate Fs = 200 Hz. What is the 

discrete-time signal obtained after sampling?
(c) Suppose that the signal is sampled at the rate Fs ~  75 Hz. What is the discrete- 

time signal obtained after sampling?
(d) What is the frequency 0 < F < FJ2  of a sinusoid that yields samples identical 

to those obtained in part (c)?

Solution
(a) The frequency of the analog signal is F — 50 Hz. Hence the minimum sampling 

rate required to avoid aliasing is Ff = 100 Hz.
(b) If the signal is sampled at Fs = 200 Hz. the discrete-time signal is

lOOtf TT
x{n) = j  cos — — n — j  cos — n 

200 2
(c) If the signal is sampled at F, = 75 Hz. the discrete-time signal is

sampled at Fs — 75 samples/s yields identical samples. Hence F — 50 Hz is an 
alias of F =  25 Hz for the sampling rate Fs =  75 Hz.

Xait) =  3 cos IOOtt/

x(n) — 3 cos —j ^ —n — 3 cos —  n
100?r A t t

— 3 cos —~n
3

(d) For the sampling rate of Fs ~  75 Hz. we have

F = f  F, = 7 5 /

The frequency of the sinusoid in part (c) is /  — | .  Hence

F = 25 Hz

Clearly, the sinusoidal signal

ya(i) — 3 cos In  Ft

— 3 cos 507ti
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Sec. 1.4 Analog-to-Digital and Digital-to-Analog Conversion 29

1.4.2 The Sampling Theorem

G iven any analog  signal, how  should  we select the sam pling  p erio d  T  or, equ iv­
alently , the  sam pling  ra te  FJ. T o answ er this question , we m ust have som e in­
fo rm atio n  ab o u t the  characteristics of the signal to be sam pled. In particu la r, we 
m ust have som e g en era l in fo rm ation  concern ing  the  frequency  content  o f the sig­
nal. Such in fo rm atio n  is generally  available to us. F o r exam ple, we know  generally  
th a t th e  m ajo r frequency  com ponen ts o f a speech signal fall below  3000 H z. O n 
the o th e r  hand , telev ision  signals, in general, con ta in  im p o rtan t frequency  com ­
po n en ts  up  to 5 M H z. T he in fo rm ation  con ten t of such signals is co n ta in ed  in 
the am plitudes, frequencies, and  phases o f the various frequency  com ponen ts , but 
de ta iled  know ledge of the  characteristics of such signals is n o t availab le  to  us p rio r 
to ob ta in in g  the  signals. In  fact, the pu rp o se  of p rocessing  the signals is usually  to 
ex trac t th is d e ta iled  in fo rm ation . H ow ever, if we know  the m axim um  frequency  
con ten t of th e  genera l class o f signals (e.g.. the class of speech signals, the class 
o f v ideo signals, e tc.). we can specify th e  sam pling ra te  necessary  to  convert the 
analog  signals to  digital signals.

L et us suppose  th a t any analog signal can be re p re sen ted  as a sum  of sinusoids 
o f d ifferen t am plitudes, frequencies, and  phases, th a t is.

w here N  d en o tes the  nu m b er o f frequency  com ponents . All signals, such as speech 
and  video, lend  them se lves to such a rep re sen ta tio n  over any sh o rt tim e segm ent. 
T he am plitudes, frequencies, and  phases usually change slowly w ith tim e from  one 
tim e segm ent to  an o th er. H ow ever, suppose th a t the  frequencies do  no t exceed 
som e know n frequency , say Fmax. F o r exam ple, Fmax =  3000 H z for th e  class 
of speech  signals and  Fmax =  5 M H z for television  signals. Since the m axim um  
frequency  m ay vary slightly from  d iffe ren t rea liza tions am ong signals of any given 
class (e.g., it m ay vary slightly from  sp e ak e r to  sp e ak e r), we m ay wish to  ensure 
th a t Fmax does n o t exceed som e p red e te rm in ed  value by passing  the  analog  signal 
th ro u g h  a filter th a t severe ly  a tte n u a te s  frequency  co m p o n en ts  above Fmax. Thus 
we a re  certa in  th a t no signal in the class con tains frequency  co m p o n en ts  (having 
significant am p litu d e  o r pow er) above Fmax. In p rac tice , such filtering is com m only 
used p rio r to  sam pling.

F ro m  o u r know ledge o f Fmax, we can se lect th e  ap p ro p ria te  sam pling rate. 
W e know  th a t the  highest frequency  in an  analog  signal th a t can be u n am bigu­
ously reco n stru c ted  w hen  th e  signal is sam pled a t a ra te  F, =  1 / T  is F J 7. A ny 
frequency  ab ove Fsf 2 or below  - F J 2 resu lts in sam ples th a t a re  iden tical w ith a 
co rre spond ing  frequency  in th e  range — F J 2 <  F < Fs/2. T o  avoid the  am biguities 
resu lting  from  aliasing, we m ust se lect the sam pling  ra te  to  be sufficiently  high. 
T h a t is, we m ust select F J 2 to  be g rea te r  than  Fmax. T hus to  avoid th e  p rob lem  
o f aliasing, Fs is se lec ted  so th a t

N

(1.4.18)

Fs > 2 Fmax (1.4.19)
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30 Introduction Chap. 1

w here Fmax is th e  largest frequency  co m p o n en t in the analog  signal. W ith  the 
sam pling  ra te  se lec ted  in this m an n er, any frequency  co m p o n en t, say |F ;| <  Fmax, 
in the analog signal is m ap p ed  in to  a d isc re te-tim e sinusoid w ith  a frequency

1 F  1
(1.4.20)

2 Fs ~  2

or, equivalently ,

— tt < a)j =  2n f  < 7r (1.4.21)

Since, | / |  =  \  o r \co\ =  n  is the h ighest (un iq u e) frequency  in a d isc re te-tim e signal, 
the choice o f sam pling ra te  according to  (1.4.19) avoids the  p rob lem  of aliasing. 
In o th e r  w ords, the cond ition  Fs > 2 Fmax ensu res th a t all th e  sinusoidal com po­
nen ts in the an a lo g  signal are  m ap p ed  in to  co rre sp o n d in g  d isc re te -tim e  frequency  
com ponen ts w ith frequencies in the  fun d am en ta l in terval. T h u s  all the frequency  
com ponen ts o f the  analog  signal are  re p re se n te d  in sam pled  fo rm  w ithou t am bi­
guity, and  hence the  analog  signal can be reco n stru c ted  w ithou t d isto rtion  from  
the  sam ple values using an “a p p ro p ria te ” in te rp o la tio n  (d ig ita l-to -analog  conver­
sion) m ethod . T he ‘■ appropriate” o r ideal in te rp o la tio n  fo rm ula  is specified by the 
sampling theorem.

Sampling Theorem . If the h ighest frequency  con ta ined  in an analog signal 
x a(t) is Fmax =  B and  the  signal is sam pled  at a ra te  F, > 2 Fmax =  2 B. th en  A.u(r) 
can be exactly  reco v ered  from  its sam ple  values using the in te rp o la tio n  function

s in 2jrB / _ ,

8(t)  =  2 n B t  ( }
T hus jcfl(f) m ay be expressed  as

* . ( £ ) * ( ' - £ )  (1-4.23)

w here x a(n /Fs ) =  x a( n T ) =  Jt(rc) are  th e  sam ples o f xa(t).

W hen the  sam pling  of x a(t) is p e rfo rm ed  at the m in im um  sam pling  ra te  
Fs = 2 B,  the  reco n stru c tio n  fo rm ula  in (1.4.23) becom es

^  /  n \  s i n 2 n B ( t  — n f l B )  , , ,

=  ( z b )  (1'4 2 4 )

T he sam pling  ra te  F^ =  2B =  2 Fmax is called th e  N yquis t  rate. F igure 1.19 illus­
tra tes the  ideal D /A  conversion  process using the  in te rp o la tio n  function  in (1.4.22).

A s can be o b se rved  from  e ith e r  (1.4.23) o r (1.4.24), the reco n stru c tio n  o f x a(t) 
from  the sequence  x(n)  is a co m plica ted  process, involving a w eigh ted  sum  o f the 
in te rp o la tio n  function  g(t)  and  its tim e-sh ifted  versions g ( t —n T )  fo r —oo < n < oo, 
w here the w eighting facto rs a re  the  sam ples x(n) .  B ecause  o f th e  com plexity  and 
th e  infinite n u m b er of sam ples re q u ire d  in (1.4.23) o r  (1.4.24), th e se  reco n stru c tio n
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sample of ,v„(n

(/[ — ^ / {ri — l ) l fll \’t -r l 11
Figure 1.19 Ideal D/A conversion 
(interpolation).

fo rm uias are p rim arily  o f theo re tica l in terest. P ractical in te rp o la tio n  m eth o d s are 
given in C h a p te r 9.

Example 1.4.3

Consider the analog signal

What is the Nvquist rate for this signal?

Solution The frequencies present in the signal above are

F  =  25 Hz. F: =  150 Hz. F, = 50 Hz 

Thus Fnm =  150 Hz and according to (1.4.19),

F  > 2Fmax = 300 Hz 

The Nvquist rale is FA =  2 Fm;„. Hence

Fs =  300 Hz

Discussion It should be observed that the signal component 10sin300;r/. sampled at 
the Nvquist raie FA- =  300, results in the samples 10 sin 7r/j. which are identically zero. 
In other words, we are sampling the analog sinusoid at its zero-crossing points, and 
hence we miss this signal component completely. This situation would not occur if the 
sinusoid is offset in phase by some amount 8. In such a case we have lOsinGOOin -ffl) 
sampled at the Nvquist rate FA- =  300 samples per second, which yields the samples

Thus if 6 ^  0 or tt, the samples of the sinusoid taken at the Nvquist rate are not all 
zero. However, we still cannot obtain the correct amplitude from the samples when 
the phase 9 is unknown. A simple remedy that avoids this potentially troublesome 
situation is to sample the analog signal at a rate higher than the Nvquist rate.

xu(r) =  3cos50;rz 10sin300;n — cos 100tt?

10sin(7rn+^) =  10(sin nn cos & -+- c o s t t h  sin f>)

=  lOsin 6 cos nn

Example 1.4.4

Consider the analog signal

*a(t) =  3cos2000irf +5sin6000;rr +  lOcos 12.000;?;
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(a) What is the Nvquist rate for this signal?
(b) Assume now that we sample this signal using a sampling rate Fs = 5000 

samples/s. What is the discrete-time signal obtained after sampling?
(c) What is the analog signal y„(r) we can reconstruct from the samples if we use 

ideal interpolation?

and this is the maximum frequency that can be represented uniquely by the 
sampled signal. By making use of (1.4.2) we obtain

Finally, we obtain

x(n) =  13 cos2^({)/i -  5sin27r( = )fl

The same result can be obtained using Fig. 1.17. Indeed, since F, =  5 kHz. 
the folding frequency is FJ2  =  2.5 kHz. This is the maximum frequency that 
can be represented uniquely by the sampled signal. From (1.4.17) we have 
Fti =  Fk — kFs. Thus Fo can be obtained by subtracting from Fk an integer 
multiple of Fs such that —Ft/2 < F0 < F J 2. The frequency F: is less than Fsf2 
and thus it is not affected by aliasing. However, the other two frequencies are 
above the folding frequency and they will be changed by the aliasing effect. 
Indeed.

From (1.4.5) it follows that /] =  h  — and h  =  ^  which are in agreement 
with the result above.

— =  2.5 kHz 
2

= 3 cos 2jt(j )h +  5 sin 2n- (^ )« + 10 cos 2n(^)n  

= 3 cos2 ;r( |)n  + 5sin27r(l — §)« 4- 10cos2,t(1 4- ^)u 

=  3cos2jr({)n 4- 5sin27r(—1)« 4- 10 co s2 ^(|)«

F'2 =  Fj ~  Fs = - 2  kHz 

f; =  Fj — Fs =  1 kHz
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(c) Since only the frequency components at 1 kHz and 2 kHz are present in the 
sampled signal, the analog signal we can recover is

x„(t) =  13 cos 2000^r -  5sin400()-Tf

which is obviously different from the original signal x„U). This distortion of the 
original analog signal was caused by the aliasing effect, due to the low sampling 
rate used.

A lth o u g h  aliasing is a pitfall to be avoided, the re  are tw o useful practical 
app lications based  on the exp lo ita tion  of the aliasing effect. T hese  app lications 
are the  stro b o sco p e  and  the sam pling oscilloscope. B o th  in stru m en ts  are  designed 
to o p e ra te  as a liasing  devices in o rd er to  rep re sen t high frequencies as low fre ­
quencies.

T o  e lab o ra te , consider a signal w ith h igh-frequency  co m p o n en ts  confined to 
a given frequency  band B\ < F < B2. w here Bz — B\ =  B is defined as the 
b andw id th  of the  signal. W e assum e th a t B << B\ < B2. T his cond ition  m eans 
th a t the frequency  com ponen ts in the signal are  m uch larger than  the bandw id th  
B of the signal. Such signals are usually called passband  or n arro w b a n d  signals. 
N ow. if this signal is sam pled  at a rate  Fs > 2B.  bu t F̂  << B\.  then  all the  f re ­
q uency  co m p o n en ts  con ta ined  in the signal will be aliases of frequencies in the 
range 0 < F < F J2 .  C onsequently , if we observe the frequency  con ten t of the 
signal in the  fundam en ta l range 0 < F < FJ2 .  we know  precisely  the frequency 
con ten t of the analog  signal since we know  the frequency  band  B\ < F < B2 un d er 
considera tion . C onsequen tly , if the signal is a narro w b an d  (passb an d ) signal, we 
can reco n stru c t the original signal from  the sam ples, p rov id ed  th a t the signal is 
sam pled  at a ra te  Fs > 2 B.  w here B is the bandw id th . T h is s ta te m e n t constitu tes 
a n o th e r  form  of the sam pling th eo rem , which we call the pas sband  f o r m  in o rd er 
to  d istinguish  it from  the p revious form  of the sam pling  th eo rem , w hich app lies in 
general to  all types of signals. T he la tte r  is som etim es called th e  baseband form.  
T he pass band  f o r m  o f th e  sam pling th eo rem  is described  in deta il in Section  9.1.2.

1.4.3 Quantization of Continuous-Amplitude Signals

A s we have seen , a digital signal is a sequence of n u m b ers (sam ples) in which each 
n u m b er is re p re se n te d  by a finite num ber of digits (finite p recision).

T h e  process of converting  a d iscrete-tim e con tin u o u s-am p litu d e  signal in to  a 
digital signal by expressing  each  sam ple value as a finite (in stead  of an infinite) 
n u m b er o f digits, is called quant izat ion.  T he e rro r  in tro d u ced  in rep re sen tin g  the 
co n tinuous-valued  signal by a finite set o f d iscrete value levels is called quant izat ion  
error  o r quant izat ion noise.

W e d en o te  th e  q u an tize r o p era tio n  on  the sam ples x (n)  as Q[x{n)]  and  let 
x q{n) d en o te  the  sequence o f quan tized  sam ples a t the o u tp u t o f the quan tizer. 
H ence

X q ( n )  =  Q[x(n)]
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T hen  the q u an tiza tion  e rro r  is a seq u en ce  eq(n) defined as the  d ifference  betw een  
the quan tized  value and  the actual sam ple value. T hus

eq(n) =  x q {n) -  x (n )  (1.4.25)

W e illustrate  the q u an tiza tio n  process w ith an  exam ple. L e t us consider the 
d iscrete-tim e signal

o b ta ined  by sam pling  the  analog  ex p o n en tia l signal xa( t) =  0 .9 ', t > 0 w ith a 
sam pling frequency  f ,  =  1 H z (see Fig. 1.20(a)). O bserv a tio n  o f  T ab le  1.2, which 
show s th e  values o f  the first 10 sam ples o f x (n ) ,  reveals th a t the  descrip tion  o f the 
sam ple value x{n)  req u ires  n significant digits. I t is obv ious th a t  th is signal canno t

(a)

Figure 1.20 Illustration of quantization.
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TABLE 1.2 NUMERICAL ILLUSTRATION OF Q UANTIZATION W ITH ONE 
S IGNIFICANT DIGIT USING TRUNCATION OR ROUNDING

x(  n)  x,(n ) .voi)
n D iscrete-tim e signal (Truncation) (Rounding) (Rounding)

0 1 1.0 1.0 0.0
1 0.9 0.9 0.9 0.0
2 0.81 0.8 0.8 - 0.01
3 0.729 0.7 0.7 - 0.029
4 0.6561 0.6 0.7 0.0439
5 0.59049 0.5 0.6 0.00951
6 0.531441 0.5 0.5 - 0.031441
7 0.4782969 0.4 0.5 0.0217031
8 0.43046721 0.4 0.4 - 0.03046721
9 0.387420489 0.3 0.4 0.012579511

be p rocessed  by using a ca lcu lato r o r a digital co m p u ter since only the first few 
sam ples can be sto red  and m an ipu la ted . F or exam ple, m ost calcu lato rs process 
num bers with only eight significant digits.

H ow ever, let us assum e that we w ant to  use only one significant digit. To 
elim inate  the excess digits, we can e ith er sim ply d iscard  them  (truncation ) o r dis­
card them  bv rou n d in g  the resu lting  num b er (rounding).  T he resu lting  quan tized  
signals xq(n) a re  show n in T ab le 1.2. W e discuss only q u an tiza tio n  by rounding , 
although  it is just as easy to  tre a t truncation . T he rou n d in g  p rocess is graphically  
illu stra ted  in Fig. 1.20b. T he values allow ed in the digital signal are called  the 
quantization levels, w hereas the d istance A betw een  two successive quan tiza tion  
levels is called  th e  quantization step size  o r resolution. T h e  round ing  quan tizer 
assigns each sam ple of x (n )  to the n eares t q u an tiza tio n  level. In con trast, a q u a n ­
tizer th a t p erfo rm s tru n ca tio n  w ould have assigned each sam ple  of jc(/z) to  the 
q u an tiza tio n  level below  it. T he  quan tiza tio n  e rro r  eq (n) in ro u n d in g  is lim ited to 
the range of — A /2  to A /2 , th a t is,

A A
-y <<?,(«)<•f  (1A26)

In o th e r  w ords, the in stan tan eo u s q u an tiza tio n  e rro r  can n o t exceed half of the 
quan tiza tio n  step  (see T ab le  1.2).

If jcmjn and  j:max rep re sen t the  m in im um  and m axim um  value of x(n) and  L 
is the  n u m b er o f q u an tiza tio n  levels, then

A =  Xmax ~  ^  (1.4.27)
L -  1

W e define the  dynam ic  range  of the  signal as jrmax — -*min- 1° ou r exam ple we 
have Jtmax =  1, Jtmjn =  0, and  L — 11, w hich leads to  A =  0.1. N o te  th a t if the 
d ynam ic range is fixed, increasing  the n u m b er o f q u an tiza tio n  levels, L  resu lts in a 
decrease  o f th e  q u an tiza tion  step  size. T hus the  q u an tiza tio n  e rro r  d ecreases and 
the accuracy  o f th e  q u an tize r increases. In p rac tice  we can red u ce  the  quan tiza tion
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error to an insignificant am ount by choosing a sufficient num ber o f quantization  
levels.

Theoretically, quantization o f  analog signals always results in a loss o f in­
formation. This is a result o f the ambiguity introduced by quantization. Indeed, 
quantization is an irreversible or noninvertible process (i.e., a m any-to-one map­
ping) since all sam ples in a distance A /2  about a certain quantization level are 
assigned the sam e value. This ambiguity makes the exact quantitative analysis of 
quantization extrem ely difficult. This subject is discussed further in Chapter 9, 
where we use statistical analysis.

1.4.4 Quantization of Sinusoidal Signals

Figure 1.21 illustrates the sam pling and quantization of an analog sinusoidal signal 
x a (/) =  A  cos using a rectangular grid. H orizontal lines w ithin the range of the 
quantizer indicate the allow ed levels o f quantization. V ertical lines indicate the 
sampling times. Thus, from the original analog signal x a{t) w e obtain a discrete­
time signal x ( n ) =  x a{nT)  by sampling and a discrete-tim e, discrete-am plitude  
signal x q(nT)  after quantization. In practice, the staircase signal xv(r) can be  
obtained by using a zero-order hold. This analysis is useful because sinusoids are 
used as test signals in A /D  converters.

If the sampling rate Fs satisfies the sampling theorem , quantization is the only 
error in the A /D  conversion process. Thus we can evaluate the quantization error

Time

Figure L21 Sampling and quantization of a sinusoidal signal.
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bv quan tiz ing  the analog  signal x„(t) instead  of the d isc re te-tim e signal a (« ) =  
x a(nT) .  In spection  of Fig. 1.21 ind icates that the signal x u{t) is a lm ost linear 
be tw een  q u an tiza tio n  levels (see Fig. 1.22). The co rre sp o n d in g  quan tiza tio n  e rro r  
eq (t) — x u(t) — x q(t) is show n in Fig. 1.22. In Fig. 1.22. r  d en o tes the  tim e that 
x a{t) stays w ithin the  quan tiza tio n  levels. The m ean-square  e rro r  pow er Pq is

Pq =  2 t  /  e«{!)cJl =  7  j  (1.4.28)

Since eq(i) =  (A /2 r ) t .  - t < t < t . we have

If the q u an tize r  has b bits of accuracy and the q u an tize r covers the en tire  range 
2A.  the q u an tiza tio n  step  is A =  2 A /2 h. H ence

A 2/  3
P., =  (1.4.30)

T he average po w er o f the signal xu(D is

1 f 1' , A 2
P, =  —  / (A cos Qi,i r d i  =  ~  (1.4.31)

TP Jo 2

T he quality  o f the ou tpu t o f the A /D  conv erte r is usually m easu red  by the signal- 
to-quant izat ion noise ratio ( S Q NR ) .  which provides the ratio  o f the signal pow er 
to the  noise pow er:

S Q N R  =  —  =  -  • 22b
P ">' i/

E xpressed  in decibels (dB ), th e  SQ N R  is

S Q N R (dB ) =  101og1(l S Q N R  =  1.76 +  6.026 (1.4.32)

T his im plies tha t th e  S Q N R  increases app rox im ately  6 dB for every  bit add ed  to  
the w ord  leng th , th a t is. fo r each  doubling  of the q u an tiza tio n  levels.

A lth o u g h  fo rm u la  (1.4.32) was derived  fo r sinuso idal signals, we shall see in 
C h a p te r  9 th a t a sim ilar resu lt holds for every signal w hose dynam ic range spans the 
range of the  quan tize r. T his re la tionsh ip  is ex trem ely  im p o rta n t because  it d ictates

Figure 1.22 The quantization error eq (t)  — xa (t) -  x q (t).
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the n um ber of bits req u ired  by a specific app lica tion  to assure a given signal-to- 
noise ratio . F o r exam ple, m ost com pact disc p layers use a sam pling  frequency  
of 44.1 kH z and 16-bit sam ple reso lu tion , which im plies a S Q N R  of m ore  than  
96 dB.

1.4.5 Coding of Quantized Samples

T he coding process in an A /D  co n v erte r assigns a un ique b in ary  n u m b er to each 
quan tiza tio n  level. If we have L  levels we n eed  at least L d iffe ren t binary' num bers. 
W ith  a w ord length  o f b bits we can  c rea te  2b d iffe ren t b inary  n um bers. H ence  we 
have 2h > L. o r equ ivalen tly , b > log2 L.  T hus the n u m b er of bits req u ired  in the 
coder is the sm allest in teger g re a te r  th an  or equal to  log2 L. In ou r exam ple it can 
easily be seen th a t we need  a cod er w ith b =  4 bits. C om m ercially  available A /D  
converters m ay be o b ta ined  w ith finite precision  of b — 16 o r less. G enera lly , the 
h igher the sam pling speed and  the finer the  q uan tiza tion , the m o re  expensive the 
device becom es.

1.4.6 Digital-to-Analog Conversion

T o convert a digital signal in to  an analog  signal we can use a d ig ita l-to -analog  
(D /A ) converter. A s s ta ted  p reviously , the task o f a D /A  co n v erte r  is to in te rp o la te  
be tw een  sam ples.

T h e  sam pling th eo rem  specifies the  op tim um  in te rp o la tio n  for a bandlim - 
ited  signal. H ow ever, this type o f in te rp o la tio n  is too  com plica ted  and. hence 
im practical, as ind icated  p reviously . F ro m  a p ractical v iew point, the sim plest D /A  
con v erte r is the ze ro -o rd er hold  show n in Fig. 1.15. which sim ply  holds constan t 
the value of one sam ple un til the  nex t one is received. A d d itio n a l im provem en t 
can be o b ta in ed  by using linear in te rp o la tio n  as show n in Fig. 1.23 to  connect 
successive sam ples w ith s tra igh t-line  segm ents. T he ze ro -o rd e r hold and linear 
in te rp o la to r  are analyzed in Section  9.3. B e tte r  in te rp o la tio n  can be achieved by 
using m ore sophisticated  h ig h e r-o rd e r in te rp o la tio n  techniques.

In general, subo p tim u m  in te rp o la tio n  techn iques resu lt in passing  frequencies 
above the folding frequency. Such freq u en cy  com p o n en ts  are un d esirab le  and  are 
usually  rem oved  by passing  th e  o u tp u t o f the  in te rp o la to r  th ro u g h  a p ro p e r analog
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filter, w hich is called a postfilter or sm ooth ing  filter. T hus D /A  conversion  usually 
involves a subop tim um  in te rp o la to r  follow ed by a postfilter. D /A  converters are 
trea ted  in m ore deta il in Section  9.3.

1.4.7 Analysis of Digital Signals and Systems Versus 
Discrete-Time Signals and Systems

We have seen tha t a digital signal is defined as a function  o f an in teg e r  independen t 
variable and its values are tak en  from  a finite set of possib le values. The usefulness 
of such signals is a consequence of the possibilities o ffered  by digital com puters. 
C om puters o p e ra te  on num bers, which are  rep re sen ted  by a string  of 0 's and l's . 
T he leng th  of this string  (w ord length) is fixed and finite and usually  is 8. 12. 16. or 
32 bits. T he effects o f finite w ord length  in co m p u ta tio n s cause com plications in 
the analysis of d igital signal processing  system s. T o  avoid these com plications, we 
neglect the quan tized  n a tu re  of digital signals and system s in m uch of o u r analysis 
and consider them  as d iscrete-tim e signals and  system s.

In C h ap te rs 6. 7. and 9 we investigate the consequences o f using a finite w ord 
length. T his is an im po rtan t topic, since m any digital signal p rocessing  prob lem s are 
solved with sm all co m pu ters o r m icroprocessors that em ploy fixed-point arithm etic . 
C onsequently , one m ust look carefully  at the p rob lem  of fin ite-precision  arithm etic  
and accoun t for it in the design of softw are and h ardw are  that perfo rm s the desired  
signal processing  tasks.

1.5 SUMMARY AND REFERENCES

In this in tro d u c to ry  ch ap te r we have a ttem p ted  to  p rov ide  the m otivation  for digital 
signal processing  as an a lternative  to an a lo g  signal processing . W e p resen ted  the 
basic e lem en ts of a digital signal p rocessing  system  and defined  the opera tions 
n eed ed  to  con v ert an analog  signal in to  a digital signal ready  fo r processing. O f 
p a rticu la r im po rtan ce  is the sam pling th eo rem , which was in tro d u ced  by N vquist 
(1928) and la te r popu la rized  in the classic p ap e r by S hannon  (1949). T he sam pling 
theo rem  as describ ed  in Section 1.4.2 is derived  in C h a p te r  4. S inusoidal signals 
w ere in tro d u ced  prim arily  for the p u rp o se  of illustra ting  the  aliasing  p henom enon  
and for the su b seq u en t developm en t o f the sam pling  theo rem .

Q u an tiza tio n  effects th a t are in h e ren t in the A /D  conversion  of a signal w ere 
also in tro d u ced  in this ch ap te r. Signal quan tiza tio n  is best tre a te d  in statistical 
term s, as described  in C h a p te rs  6, 7. and  9.

Finally , th e  top ic  o f signal reconstruction , o r D /A  conversion , was described 
briefly. Signal reco n stru c tio n  based on sta ircase o r linear in te rp o la tio n  m ethods is 
tre a te d  in S ection  9.3.

T h e re  a re  num ero u s practical app lica tions of d igital signal processing. The 
book  ed ited  by O p p en h e im  (1978) tre a ts  app lica tions to  speech  processing, image 
processing , ra d a r  signal processing , so n a r signal processing , an d  geophysical signal 
processing.
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P R O B L E M S

LI Classify the following signals according to whether they are (1) one- or multi­
dimensional; (2) single or multichannel, (3) continuous time or discrete time, and 
(4) analog or digital (in amplitude). Give a brief explanation.
(a) Closing prices of utility stocks on the New York Stock Exchange.
(b) A color movie.
(c) Position of the steering wheel of a car in motion relative to car’s reference frame.
(d) Position of the steering wheel of a car in motion relative to ground reference 

frame.
(e) Weight and height measurements of a child taken every month.

1.2 Determine which of the following sinusoids are periodic and compute their funda­
mental period.

30n \  (  62m
(a) cosO.OIjt/i (b) c°s n ——- I (c) cos 3™  (d) sin3« (e) sin

105 /  '  '  V 10
1 3  Determine whether or not each of the following signals is periodic. In case a signal 

is periodic, specify its fundamental period.
(a) xu(r) — 3cos(5r + 7r/6)
(b) =  3 cos(5n +  ;r/6)
(c) j:(h) =  2exp[j(n /6  -  7i)]
(d) x(n) =  cos(«/8) cos(?rn/8)
(e) x(n) =  cos(7rn/2) — sin(7rn/8) +  3cos(jrn/4 +  7t / 3)

1.4 (a) Show that the fundamental period Nr of the signals

,s>(«) =  ei2nkr,IN. * =  0 .1 .2 , . . .

is given by Np =  N/ CCD( k .  N ), where GCD is the greatest common divisor of k 
and N.

(b) What is the fundamental period of this set for N =71
(c) What is it for N  =  16?

1.5 Consider the following analog sinusoidal signal:

xa(t) — 3 sin(1007rr)

(a) Sketch the signal xa{t) for 0 < t < 30 ms.
(b) The signal xa(t) is sampled with a sampling rate Fs =  300 samples/s. Determine 

the frequency of the discrete-time signal x{n) =  xa(nT), T =  1 /F„. and show that 
it is periodic.

(c) Compute the sample values in one period of .x(n). Sketch _*<n) on the same 
diagram with x„(t). What is the period of the discrete-time signal in milliseconds?

(d) Can you find a sampling rate Fs such that the signal x(n)  reaches its peak value 
of 3? What is the minimum Fs suitable for this task?

L6 A continuous-time sinusoid xa(t) with fundamental period Tp =  1 /F0 is sampled at a 
rate F, =  1 / T  to produce a discrete-time sinusoid x(n)  =  x„(,nT).
(») Show that x(n) is periodic if T/ Tp =  k/N  (i.e., T/Tp is a rational number).
(b) If x(n)  is periodic, what is its fundamental period Tp in seconds?
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(c) Explain the statement: ,r(n) is periodic if its fundamental period Tr . in seconds, 
is equal to an integer number of periods of .v„u).

1.7 An analog signal contains frequencies up to 10 kHz.
(a) What range of sampling frequencies allows exact reconstruction of this signal 

from its samples?
(b ) Suppose that we sample this signal with a sampling frequency F, =  8 kHz. Ex­

amine what happens to the frequency F| =  5 kHz.
(c) Repeat part (b) for a frequency F> =  9 kHz.

1.8 An analog electrocardiogram (ECG) signal contains useful frequencies up to 100 Hz.
(a) What is the Nvquist rate for this signal?
(b ) Suppose that we sample this signal at a rate of 250 samples/s. What is the highest 

frequency that can be represented uniquely at this sampling rate?
1.9 An analog signal a „ u ) = sin(480;rr) + 3sin(720:rr) is sampled 600 times per second.

(a) Determine the Nvquist sampling rate for xa{t).
(b ) Determine the folding frequency.
(c) What are the frequencies, in radians, in the resulting discrete time signal t (/j )?
(d) If is passed through an ideal D/A converter, what is the reconstructed signal 

v„(n?
1.10 A digital communication link carries binary-coded words representing samples of an 

input signal

(t) — 3 cos 600.7 r 2 cos 1 800jt /

The link is operated at 10.000 bits/s and each input sample is quantized into 1024 
different voltage levels.
(a) What is the sampling frequency and the folding frequency?
(b )  What is the Nvquist rate for the signal .*„(;)?
(c) What are the frequencies in the resulting discrete-time signal x(n)7
(d) What is the resolution A?

1.11 Consider the simple signal processing system shown in Fig. PI.11. The sampling 
periods of the A/D and D/A converters are T = 5 ms and T' = 1 ms. respectively. 
Determine the output v„U) of the system, if the input is

a:„(n =  3 cos 100;rf -+- 2 sin 250;rt (t in seconds)

The postfilter removes any frequency component above F J 2.

Figure P l . l l

1.12 (a) Derive the expression for the discrete-time signal .r(n) in Example 1.4.2 using the 
periodicity properties of sinusoidal functions.

(b) What is the analog signal we can obtain from x(n) if in the reconstruction process 
we assume that Fs =  10 kHz?
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1.13 The discrete-time signal x(n) =  6.35cos(jr/10)n is quantized with a resolution (a) A =
0.1 or (b) A =  0.02. How many bits are required in the A/D converter in each case?

1.14 Determine the bit rate and the resolution in the sampling of a seismic signal with 
dynamic range of 1 volt if the sampling rate is Fs =  20 samples/s and we use an S-bit 
A/D converter? What is the maximum frequency that can be present in the resulting 
digital seismic signal?

1.15* Sampling o f  sinusoidal signals: aliasing Consider the following continuous-time si­
nusoidal signal

Since xa(t) is described mathematically, its sampled version can be described by values 
every T seconds. The sampled signal is described by the formula

where Fs =  l / T  is the sampling frequency.
(a) Plot the signal j:(n), 0 < n < 99 for F, = 5 kHz and Fu =  0.5, 2, 3, and 4.5 kHz. 

Explain the similarities and differences among the various plots.
(b) Suppose that F0 =  2 kHz and Fs = 50 kHz.

(1) Plot the signal x(n). What is the frequency / (l of the signal je(n)?
(2) Plot the signal v(n) created by taking the even-numbered samples of x(n). 

Is this a sinusoidal signal? Why? If so, what is its frequency?
1.16* Quantization error in A /D  conversion o f  a sinuoidal signal Let xq(n) be the signal 

obtained by quantizing the signal x(n) = sin27r/on. The quantization error power PQ 
is defined by

The “quality” of the quantized signal can be measured by the signal-to-quantization 
noise ratio (SQNR) defined by

where Px is the power of the unquantized signal x (n).
(«) For /o =  1/50 and N  =  200, write a program to quantize the signal Jt(n), using 

truncation, to 64, 128, and 256 quantization levels. In each case plot the signals 
x (n), Xq(n), and e(n) and compute the corresponding SQNR.

(b) Repeat part (a) by using rounding instead of truncation.
(c) Comment on the results obtained in parts (a) and (b).
(d) Compare the experimentally measured SQNR with the theoretical SQNR pre­

dicted by formula (1.4.32) and comment on the differences and similarities.

XoO) =  sin2jr/r0f, — oc < t < oo

SQNR =  10 log,0
“a



2
Discrete-Time Signals and 
Systems

In C h a p te r  1 we in tro d u ced  the  read er to  a n u m b er o f im p o rtan t types o f signals 
and described  the sam pling  process bv w hich an analog  signal is conv erted  to  a 
d isc rete-tim e signal. In add ition , we p re sen ted  in som e detail the  characteristics 
o f d isc re te-tim e sinusoidal signals. T he sinusoid  is an im p o rtan t e lem en tary  signal 
th a t serves as a basic build ing  block in m o re  com plex signals. H ow ever, th e re  are 
o th e r  e lem en ta ry  signals th a t are  im p o rtan t in o u r tre a tm e n t o f signal processing. 
T hese d isc re te-tim e signals are  in troduced  in this c h a p te r  and  are used as basis 
functions o r bu ild ing  blocks 1o describe m ore  com plex signals.

T he m ajo r em phasis in this ch ap te r  is the ch a rac te riza tio n  o f d iscrete-tim e 
system s in genera! and  the class o f linear tim e-invarian t (L T I) system s in particu lar. 
A n u m b er of im p o rtan t tim e-dom ain  p ro p e rtie s  o f LTI system s are  defined and 
developed , and  an im po rtan t fo rm ula, called the convolu tion  fo rm ula, is derived 
which allow s us to  d e te rm in e  the o u tp u t of an LTI system  to  any given arb itrary  
inpu t signal. In add ition  to the convolu tion  fo rm ula , d ifference  eq u a tio n s are  in ­
tro d u ced  as an a lte rn a tiv e  m eth o d  for describ ing  the  in p u t-o u tp u t re la tionsh ip  of 
an LTI system , and in add ition , recursive and nonrecu rsive  rea liza tions of LTI 
system s are  trea ted .

O u r  m otivation  for th e  em phasis on  the  study  o f LTI system s is tw ofold. F irst, 
th e re  is a large collection  o f m athem atica l tech n iq u es tha t can be applied  to  the 
analysis o f LTI system s. Second, m any practical system s are  e ith e r  LTI system s 
or can be app ro x im ated  by L T I system s. B ecause of its im p o rtan ce  in digital 
signal processing  app lications and its close resem blance  to  th e  convo lu tion  form ula, 
we also in tro d u ce  the  co rre la tio n  betw een  tw o signals. T he au to co rre la tio n  and 
crossco rre la tion  o f signals are  defined and  th e ir  p ro p e rtie s  a re  p resen ted .

2.1 DISCRETE-TIME SIGNALS

A s we discussed in C h a p te r  1, a d isc re te-tim e signal x{n)  is a function  o f an in d e ­
p en d en t variab le  th a t is an in teger. It is graph ically  re p re se n te d  as in Fig. 2.1. It 
is im p o rtan t to  n o te  th a t a d isc re te-tim e signal is no t  defined  at in stan ts betw een

43
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Figure 2-1 Graphical representation of a discrete-time signal.

tw o successive sam ples. A lso , it is inco rrec t to  th in k  th a t .v(n) is equal to ze ro  if n 
is no t an in teger. Sim ply, the  signal x(n)  is no t defined for n o n in te g e r values o f n.

In the  sequel we will assum e th a t a d isc re te-tim e signal is defined fo r every 
in teger value n fo r —oo < n <  oc. By trad itio n , we re fe r  to  x(n)  as the  “n th  sa m p le” 
of the signal even if the  signal x(n)  is inheren tly  d isc re te  tim e (i.e., not ob ta in ed  
by sam pling an analog  signal). If, indeed , x(n)  w as o b ta in ed  from  sam pling  an 
analog signal x a( t ), th en  .i(n) =  xa(nT) ,  w here T  is the  sam pling  p eriod  (i.e., the 
tim e betw een  successive sam ples).

B esides the  g raphical rep re sen ta tio n  of a d isc re te-tim e signal o r  se q uence  as 
illustrated  in Fig. 2.1. th e re  a re  som e a lte rn a tiv e  rep re sen ta tio n s  that are  often  
m ore  conven ien t to  use. T hese  are:

1. F unctional rep re sen ta tio n , such as

f 1, for n =  1, 3 
x(n)  — I 4, for n =  2 

[ 0, e lsew here

2. T ab u la r rep re sen ta tio n , such as

n ••• - 2  - 1  0 1 2 3 4 5 

x(n)  ■■■

3. S equence rep re sen ta tio n

0 0 0 1 4 1 0 0

(2.1.1)

A n in fin ite-du ra tion  signal o r sequence  with th e  tim e orig in  (n =  0) ind ica ted  
by the sym bol |  is re p re se n te d  as

*<n) =  { . . . 0 . 0 . 1 . 4 , 1 . 0 , 0 , . . . }  (2.1.2)
T

A  sequence  j:(n), which is ze ro  for n < 0, can be re p re se n te d  as

jc(«) =  { 0 ,1 .4 .1 .0 .0 . . . .}
T

(2.1.3)

T he tim e origin fo r a se q uence  x(n) ,  w hich is ze ro  fo r n < 0, is u n d e rs to o d  to  be 
the  first ( le ftm ost) po in t in the  sequence.
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A  fin ite-du ra tion  sequence  can be rep resen ted  as 

x i n) =  {3. - 1 .  - 2 .  5 .0 .4 .  -1 }T (2.1.4)

w hereas a fin ite -d u ra tio n  se q uence  th a t satisfies the condition  x(/i) ~  0 for n < 0 
can be re p re se n te d  as

jc(n) =  { 0 .1 .4 . 1) (2.1.5)T
T he signal in (2.1.4) consists of seven sam ples or po in ts (in tim e), so it is called  or 
identified  as a seven -po in t sequence . S im ilarly, the sequence  given by (2.1.5) is a 
fou r-po in t sequence .

2.1.1 Some Elementary Discrete-Time Signals

In our study  of d isc re te-tim e signals and  system s there  are  a n u m b er o f basic signals 
that ap p e a r often  and  play an im p o rtan t role. T hese signals are  defined  below .

1. T h e  unit sample  sequence  is d en o ted  as <5(n) and  is defined as

for n - 0
<5 ( / i )  =

0. for n ^  0
(2 . 1.6 )

In w ords, the  un it sam ple sequence  is a signal that is zero  evervw here, except 
a t n — 0 w here  its value is unity. T his signal is som etim es re fe rred  to  as a 
unit  impulse.  In  con trast to  the analog signal 8(t).  w hich is also  called a 
unit im pulse and  is defined to  be zero  everyw here excep t / =  0. and has unit 
a rea , the  unit sam ple sequence  is m uch less m athem atica lly  com plicated . T he 
g raph ical re p re se n ta tio n  o f <5(n ) is show n in Fig. 2.2.

2. T he unil  step signal  is d en o ted  asw (n ) and is defined as

u(n)  =
1. fo r n > 0
0. for n < 0

F igure 2.3 illu stra tes  th e  unit step  signal.
3. T he uni t  ramp signal  is d en o ted  as ur (n) and  is defined as

u r (n) -

T his signal is illu stra ted  in Fig. 2.4.

fi(n)

fo r n > 0 
fo r n < 0

(2.1.7)

(2. 1.

Figure 2.2 G raphical representation of 
the unit sample signal.
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u(n)

T

Figure 23  G raphical representation of
0 1 2  3 4 5 6 7 

ur(n)

T

n the unit step signal.

Figure 2,4 G raphical representation of
n the unit ramp signal.

4. T h e  exponent ial  signal  is a se q uence  o f the  form  

jr(n) =  a ” fo r all n (2.1.9)

If  the p a ra m e te r  a is real, th en  jr(n) is a real signal. F igure 2.5 illu stra tes x(n)  
fo r various values o f the p a ra m e te r  a.

W hen the p a ram e te r  a is com plex valued , it can  be ex p ressed  as

a s  rejf1

w here  r and  6 a re  now  the p a ram ete rs . H ence  we can  express x(n)  as 

x(n)  =  r nej0n
(2 . 1.10)

=  r n (cos On -j- y s in # n )

TiiinillU

Figure 2.5 Graphical representation of exponential signals.
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Since x (/j ) is now  com plex valued, it can be rep re sen ted  graph ically  by p lo tting  
the real pa rt

x K(n) =  r" cos6#fi (2.1.11)

as a function  of n. and  separa te ly  p lo tting  the  im aginary  p a rt

xi  (n) = r ’1 sin 6n (2.1.12)

as a function  of n. F igure 2.6 illustrates the  g raphs o f x R(n) and  x / (n )  for r — 0.9 
and 6 =  tt/10 . W e observe th a t the  signals x R(?i) and  x / (n )  a re  a dam p ed  (decaying 
exponen tia l)  cosine function  and  a dam ped  sine function . T h e  angle variab le  6 
is sim ply the frequency  of the sinusoid, previously  d en o ted  by the  (norm alized) 
frequency  variab le  w.  C learly , if r — 1. the  dam ping  d isa p p ea rs  and  x K(n). x/ (n) .  
and A'(n) have a fixed am plitude, which is unity.

A lte rn a tiv e ly , the  signal .*(/?) given by (2.1.10) can be re p re se n te d  graphically  
by the am plitude  function

|.i(h)| =  A{n) =  r ” (2.1.13)

and th e  phase function

_ v(/;) =  <f>{n) = Bn (2.1.14)

F igure 2.7 illu stra tes -4(/?) and 0 (/i) for r — 0.9 and  B =  ,t/1 0 . W e observe that 
the phase function  is linear w ith n. H ow ever, the  phase is defined  only o v er the 
in terval —n  < B < t t  or. equivalen tly , over the in terval 0 < 6  < 2 t t  . C onsequen tly , 
by conven tion  4>(n) is p lo tted  over the finite in terval — n  < B < t t o t Q < $ <  2tt. 
In o th e r  w ords, we sub trac t m ultip lies o f I n  from  <p(n) b efo re  p lo tting . In  one 
case. <p(n) is co n stra in ed  to  the range — n  < 0 < n  and  in the  o th e r  case <p(n) is 
constra in ed  to  th e  range 0 < fi < 2n.  T he  sub trac tio n  o f m u ltip les o f 2n  from  <p(n) 
is equ ivalen t to  in te rp re tin g  the  function  4>(n) as 4>{n), m od u lo  2n.  T he g raph  for 
<p{n). m o d u lo  2n .  is show n in Fig. 2.7b.

2.1.2 Classification of Discrete-Time Signals

The m ath em atica l m eth o d s em ployed  in th e  analysis of d isc re te-tim e signals and 
system s d ep en d  on the characteristics o f the signals. In this section  we classify 
d isc rete-tim e signals according to  a n u m b er of d iffe ren t characteristics .

Energy signals and power signals. T h e  energy  £  of a signal x(n)  is 
defined as

OC

E =  |jc(n)|2 (2.1.15)
n = - o c

W e have used  th e  m agn itu d e-sq u ared  values o f jr(n), so th a t ou r defin ition  applies 
to  com plex-valued  signals as well as rea l-va lued  signals. T h e  energy  of a signal can 
be finite o r infinite. If E  is finite (i.e., 0 <  E < oo), th en  x ( n ) is called an energy



Figure 2.6 G raph of the real and imaginary com ponents of a complex-valued exponential 
signal.
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11
- 1 0  1 2 3 4 5 b ~ S 9 

(a* Graph  of  A {n I = r" . r = 0.9

( b  t G r a p h  o l  ^  n . m o d u l o  2ir  p l o n e d  in t h e  r a n g e  I—t t , it I

Figure 2.7 G r a p h  of  a m p l i tu d e  and  p h a s e  function of  a co m p l e x -v a l u e d  e x p o n e n ­

tial sicnal: ( a )  gr ap h  of  A i m  =  r " . 4  =  0 . 9 :  ( b )  grap h of  c/>in)  =  I . t / I O v j .  m o d u lo  

2ji  p lo tt e d  in the ran ge  i - j i . t t J .

signal.  Som etim es we add a subscrip t .v to £  and w rite £ , to  em phasize th a t £ ,  is 
the energy  of the  signal x(n).

M anv signals th a t possess infinite energy, have a finite average  pow er. The 
average pow er o f a d isc re te-tim e signal x(n)  is defined as

P =  lim
1

■** — 2 N  -j- 1 —n - - , \
(2 . 1 . 1 6 )

If we define the  signal energy  o f x(?i) over the  finite in terval —N  < n < N  as

then  we can express the  signal energy £  as

£  =  lim £/v'
,\ — oc

and  the average pow er o f th e  signal x(n)  as

P =  lim
1

n-+x  2 N  +  1
E n

(2.1.17)

(2.1.18)

(2.1.19)
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C learly, if E  is finite. P =  0. O n  the o th e r  hand , if E  is infinite, th e  average 
p o w er P m ay be e ith e r  finite o r infinite. If  P is finite (and  n o n zero ), the signal is 
called  a p o w e r  signal.  T he follow ing exam ple illu stra tes  such a signal.

Example 2.1.1

Determine the power and energy of the unit step sequence. The average power of 
the unit step signal is

N + 1 1 +  l /N  1 
=  lim --------------  lim ------------- --- -

A1-** 2N 1 a—9c 2 4- l /N  2

Consequently, the unit step sequence is a power signal. Its energy is infinite.

Sim ilarly, it can be show n th a t th e  com plex  ex p o n en tia l sequence  x(n') =  
A e JUJan has average pow er A 2, so it is a p o w er signal. O n th e  o th e r  hand , the unit 
ram p  sequence is n e ither a pow er signal nor an energy  signal.

Periodic signals and aperiodic signals. A s defined  on  Section 1.3, a 
signal x(n)  is period ic  w ith p eriod  N ( N  >  0) if and  only if

T he sm allest value o f N  fo r w hich (2.1.20) ho lds is called  the  (fu n d am en ta l)  period . 
If th e re  is no value of N  th a t satisfies (2.1.20), the signal is called  nonperiodic  or 
aperiodic.

W e have a lready  observed  th a t th e  sinuso idal signal o f the  form

is period ic  w hen /J, is a ra tio n a l n u m b er, th a t is, if /o can be ex p ressed  as

w here k and  N  a re  integers.
T he energy o f a period ic  signal x(n)  o v er a single period , say. over the  in terval

0 5  n < N  -  1, is finite if x («) takes on finite values over the  p erio d . H ow ever, the 
energy  of the  period ic  signal fo r —oc <  n < oo is infinite. O n  th e  o th e r  hand , the 
average  pow er of the  period ic  signal is finite and  it is equal to  the  average pow er 
o v e r a single period . T hus if x («) is a perio d ic  signal with fu n d am en ta l period  N  
and  tak es on  finite values, its pow er is g iven by

x(n +  N)  =  x(n)  fo r all n (2 .1.20)

x(n)  =  A sin 2nfon (2 . 1.21 )

(2.1.22)

n=0
(2.1.23)

C onseq u en tly , period ic  signals are pow er signals.
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Symmetric (even) and antisymmetric (odd) signals. A  real va lued  sig­
nal x ( n ) is called sym m etric  (even) if

j r ( - n )  =  j («) (2.1.24)

O n the o th e r  han d , a signal x(n)  is called an tisym m etric  (odd) if

.v( - h ) =  - x (n )  (2.1.25)

W e no te  th a t if .v(/7) is odd, th en  x(0) =  0. E xam ples o f signals w ith even and odd 
sym m etry  are illu stra ted  in Fig. 2.8.

W e wish to  illustrate  tha t any a rb itra ry  signal can be exp ressed  as the sum  of 
two signal co m p o n en ts , one o f which is even and  the  o th e r  odd. T he even  signal 
com p o n en t is fo rm ed  by add ing  x(/i) to x ( —n) and div id ing  by 2. th a t is.

=  j[.v{7!) +  x ( - » ) ]  (2.1.26)

.v(n]

<' T4
*

►
! I

l l
j T
] ! •
l M  ! ....................

- 4 - 3 - 2 - I  0 1 2  3 4 i,

(a)

- 5  - 4  - 3  - 2  -1

.r(n)

. i l l '

•

<>

1 2  3 4 5 rt

(b)

Figure 2.8 Example of even (a) and odd (b) signals.
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Clearly, x e(n) satisfies the symmetry condition (2.1.24). Similarly, we form an odd  
signal com ponent x„(n) according to the relation

x„(n) =  j[.x(n) -  * ( - / i ) ]  (2.1.27)

A gain, it is clear that x 0(n) satisfies (2.1.25); hence it is indeed odd. N ow , if we 
add the two signal com ponents, defined by (2.1.26) and (2.1.27), we obtain ;c(n), 
that is,

*(n) =  x e(n) + x n{n) (2.1.28)

Thus any arbitrary signal can be expressed as in (2.1.28).

2.1.3 Simple Manipulations of Discrete-Time Signals

In this section we consider som e simple modifications or m anipulations involving  
the independent variable and the signal am plitude (dependent variable).

Transformation of the independent variable (time). A  signal x (n )  may 
be shifted in time by replacing the independent variable n by n — k,  where k is an 
integer. If A: is a positive integer, the time shift results in a delay of the signal by 
k units o f time. If k is a negative integer, the time shift results in an advance of 
the signal by \k\ units in time.

Example 2.L2
A signal x ( n )  is graphically illustrated in Fig. 2.9a. Show a graphical representation 
of the signals x ( n  — 3) and x ( n  -I- 2).

Solution The signal x (/i — 3) is obtained by delaying ;t(n) by three units in time. The 
result is illustrated in Fig. 2.9b. On the other hand, the signal x(n + 2 ) is obtained by 
advancing x ( n )  by two units in time. The result is illustrated in Fig. 2.9c. Note that 
delay corresponds to shifting a signal to the right, whereas advance implies shifting 
the signal to the left on the time axis.

If the signal x(n)  is stored on m agnetic tape or on a disk or, perhaps, in the 
m em ory of a com puter, it is a relatively sim ple operation to m odify the base by 
introducing a delay or an advance. On the other hand, if the signal is not stored but 
is being generated by som e physical phenom enon in real time, it is not possible  
to advance the signal in time, since such an operation involves signal samples 
that have not yet been generated. W hereas it is always possible to  insert a delay 
into signal sam ples that have already been  generated, it is physically im possible 
to view  the future signal sam ples. C onsequently, in real-tim e signal processing  
applications, the operation o f advancing the time base o f the signal is physically 
unrealizable.

A nother useful m odification of the tim e base is to replace the independent 
variable n by —n.  The result o f  this operation is a fo ld in g  or a reflection o f the 
signal about the tim e origin n =  0.
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■ j — 1 —
I  —4 —3 —2 — 1 0 1 2  3 4

x i n  -  3)

i l
T - l  0  1 2 3 4 S 6 

(b)

x i n  +2 )

- 6 - 5 - 4  - 3  - 2 - 1  0 1
Figure 2.9 Graphical representation of 
a signal, and its delayed and advanced 
versions.

Example 2.1.3

Show the graphical representation of the signal x { - n )  and x i - n  + 2). where x ( n )  is 

the signal illustrated in Fig. 2.10a.

Solution The new signal yin) =  x(—n) is shown in Fig. 2.10b. Note that y(0) =  *(0). 

v ( l ) =  x( — 1). y(2) =  _t( —2). and so on. Also, y(—1) =  jc(1 ) , v(—2) =  x(2), and so on. 

Therefore, yin) is simply xin) reflected or folded about the lime origin n =  0. The 

signal yin) — x(—n ■+• 2) is simply x(—n) delayed by two units in time. The resulting 

signal is illustrated in Fig. 2.10c. A  simple way to verify that the result in Fig. 2.10c 

is correct is to compute samples, such as y(0) =  *(2), y (l) =  jc(1 >, v(2) =  ;t(0), 

v(— 1) =  jr(3). and so on.

It is im p o rtan t to  n o te  th a t the  o p era tio n s o f folding and  tim e delay ing  (o r 
advancing) a signal are  no t com m utative . If we d en o te  the  tim e-de lay  o p era tio n  
by TD  and  the  folding o p e ra tio n  by  F D . we can w rite

T D i[jc(n)l =  jc(n -  k) k > 0
(2.1.29)

FD[jc(/j)] =  x ( —n)

Now

TDA(FD[.r(n)]l =  T D *[.t(-n)] =  x ( - n  +  k) (2.1.30)
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w hereas

y(n) = x(-n  + 2)

i n
- 2 - 1  0 1 2 3 4 5 

(c)
Figure 2.10 Graphical illustration of 
the folding and shifting operations.

FD {TD i[j:(n)]} =  FD[j:(/i — &)] =  x ( —n — k ) (2.1.31)

N ote that because the signs o f n and k in x { n —k) and Jt(-n+ik) are different, the re­
sult is a shift o f the signals x(n )  and x ( —n) to the right by k sam ples, corresponding  
to  a time delay.

A  third m odification o f the independent variable involves replacing n by fin, 
where /x is an integer. W e refer to  this tim e-base m odification as time scaling  or 
d o w n s a m p l in g .

Example 2.L4

Show the graphical representation of the signal y(n) =  x(2n),  where x(n) is the signal 
illustrated in Fig. 2.11a.

Solution We note that the signal y(n) is obtained from x(n) by taking every other 
sample from jc(«), starting with x(0). Thus y(0) =  x(0), y{l) =  x(2), y(2) =  jc(4), 
and y ( - l )  =  x(~2), y ( -2 )  =  jc(—4), and so on. In other words, we have skipped
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v(n) = .v(2 n)

I

-4 ! - 2I 0 I 2 3

(b)

Figure 2.11 Graphical illustration ot down-samplinc operation.

the odd-numbered samples in *(«) and retained the even-numbered samples. The
resulting signal is illustrated in Fig. 2.11b.

If th e  signal ,\ («) was originally  o b ta in ed  by sam pling  an an a lo g  signal x a(t), 
then  jc(«) =  Xa(nT),  w here T  is the sam pling  in terval. Nowr. v(n) =  x(2n)  = 
x a(2Tn).  H ence  the tim e-scaling  o p era tio n  described  in E xam ple  2.1.4 is equ ivalen t 
to  changing the  sam pling  ra te  from  1 /T  to  1/27". th a t is, to  d ecreas ing  the ra te  by 
a facto r o f 2. T h is is a downsampl ing  opera tio n .

Addition, multiplication, and scaling of sequences. A m p litu d e  m odifi­
cations include addit ion,  mult ipl ication,  and  scaling o f d isc re te-tim e signals.

A mpl i t ude  scaling o f a signal by a constan t A is accom plished  by m ultiplying 
the  value o f every signal sam ple by A. C onsequen tly , we o b ta in

v(n) =  Ax(n)  — oc < fi < oc

T h e  s um  o f tw o signals xj (n)  and  xzin)  is a signal _v(n), w hose value at any 
instan t is equal  to the sum  o f the values o f these  tw o signals a t th a t in stan t, th a t is.

y(/t) =  jq (n) + X2<n) — oc < n < oc 

T h e  produc t  o f tw o signals is sim ilarly defined on a sa m ple -to -sam ple  basis as 

v(n) =  X](n)X2(n) — oo < n <  oo
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2.2 DISCRETE-TIME SYSTEMS

In  m any  app lica tions of d ig ital signal p rocessing  we wish to  design  a device or 
an algorithm  th a t p erfo rm s som e p rescrib ed  o p e ra tio n  on  a d isc re te -tim e  signal. 
Such a device o r a lgo rithm  is called  a d isc re te-tim e system . M o re  specifically, a 
discrete-time sys tem  is a device o r a lgo rithm  th a t o p e ra te s  on a d isc re te -tim e  signal, 
called  th e  input  o r  excitation,  accord ing  to  som e w ell-defined ru le , to  p ro d u ce  a n ­
o th e r  d iscrete-tim e signal called  th e  output  o r response  of the  system . In general, 
we view  a system  as an o p e ra tio n  o r a se t o f o p e ra tio n s  p e rfo rm e d  on th e  inpu t 
signal x(n)  to  p roduce  th e  o u tp u t signal _v(n). W e say th a t the in p u t signal x(n)  is 
t ransformed  by the  system  in to  a signal >■(«), and  express the g en era l re la tionsh ip  
betw een  jc («) and  y ( n ) as

w here the  sym bol T  d en o tes th e  tran sfo rm a tio n  (also  called an  o p e ra to r) , o r  p ro ­
cessing perfo rm ed  by the  system  on ;c(n) to  p ro d u ce  y(n). T h e  m ath em atica l 
re la tionsh ip  in (2.2.1) is dep ic ted  g raphically  in Fig. 2.12.

T h ere  are  various w ays to  describe the ch aracteristics of th e  system  and  the 
o p e ra tio n  it pe rfo rm s on x(n)  to  p ro d u ce  y(n). In  this c h ap te r  w e shall be con ­
cerned  w ith th e  tim e-dom ain  charac te riza tio n  o f system s. W e shall begin with 
an in p u t-o u tp u t descrip tion  o f the  system . T h e  in p u t-o u tp u t descrip tio n  focuses 
on th e  behav io r at the  term in a ls  of the  system  and  ignores th e  deta iled  in ternal 
construction  o r rea liza tion  o f the system . L a te r, in Section 7.5. we in troduce  the  
sta te -space  descrip tion  o f a system . In this descrip tio n  we d ev e lo p  m a th em ati­
cal equatio n s th a t no t only describe  the  in p u t-o u tp u t b eh av io r o f the system  bu t 
specify its in ternal b eh av io r and  stru c tu re .

2.2.1 Input-Output Description of Systems

T he in p u t-o u tp u t descrip tion  o f a d isc re te -tim e  system  consists o f  a m ath em atica l 
expression  o r a ru le , w hich explicitly defines the  re la tio n  b e tw een  the  in p u t and 
o u tp u t signals ( inpu t -ou tpu t  relationship).  T he  exact in te rn a l s tru c tu re  o f th e  sys­
tem  is e ith e r  unknow n  o r ignored . T hus the  only  w ay to  in te rac t w ith the system  is 
by using its inp u t and  o u tp u t te rm in a ls  (i.e., the  system  is assum ed to  be a “black 
b o x ” to  the u se r). T o  reflec t th is ph ilo sophy , we use the g raph ica l rep re sen ta -

y(n)  =  T[x{n)} (2.2.1)

x (n  J
Discrete-time
System

Input signal 
or excitation

Output signal 
or response

Figure 2.12 Block diagram representation of a discrete-time system.
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tion  dep ic ted  in Fig. 2.12, and  th e  genera l in p u t-o u tp u t re la tio n sh ip  in (2.2.1) or, 
a lte rnative ly , th e  n o ta tio n

Jt(n) y(n) (2.2.2)

which sim ply m eans th a t v(n) is th e  response  of the system  T  to  th e  excita tion  
x{n).  T h e  follow ing exam ples illu stra te  severa l d ifferen t system s.

Example 2.2.1

Determine the response of the following sytems to the input signal

- 3  < n < 3
x(n) =  , A

u, otherwise

(a) y(n) = x{n)
(b) v(«) =  x  in — i)
(c) y(n) = x i n  4- i)
(d) y i n ) =  j[A-(n +  1) +  x ( n )  + x i n  - D]
(e) y(n) =  m a x { x(n + 1), x ( n ) .  x ( n  — 1)1
(0 y ( n ) = Z L . x  x ( k )  =  x ( n )  +  x(n — 1) + x{n — 2) -t (2.2.3)

Solution First, we determine explicitly the sample values of the input signal

xin) = ( . . . .0 .3 ,2 .1 .0 .1 .2 ,  3 ,0 ,. . .)
T

Next, we determine the output of each system using its input-output relationship.

(a) In this case the output is exactly the same as the input signal. Such a system is 
known as the identity system.

(b) This system simply delays the input by one sample. Thus its output is given by

x{n) = { . . . ,0 ,3 .2 .1 ,0 ,1 .2 .3 ,0 , . . , )
t

(c) In this case the system “advances” the input one sample into the future. For 
example, the value of the output at time n = 0 is y(0) =  *(1). The response of 
this system to the given input is

x(n) = { . . . ,0 ,3 . 2 .1 .0 ,1 ,2 . 3 ,0 ....}  
t

(d) The output of this system at any time is the mean value of the present, the 
immediate past, and the immediate future samples. For example, the output at 
time n =  0 is

y(0) =  + x(0) + jr(l)] =  |[1  +  0 +  1] =  |

Repeating this computation for every value of n, we obtain the output signal

>■(«) =  {• . . .0 ,1 ,  f , 2 , l j . l . 2 , § ,  1 .0 ,. . .)  
t
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(e> This system selects as its output at time n the maximum value of the three input 
samples x(n -  l.l, .v(n). and ,r(n +  1). Thus the response of this system to the 
input signal .\{n) is

v(n) =  {0.3. 3. 3. 2 .1 .2 . 3, 3, 3 .0 . . . . )  

t

(f) This system is basically an accumulator that computes the running sum of all 
the past input values up to present time. The response of this system to the 
given input is

v(n) =  {.. . .0 .3 . 5. 6. 6, 7, 9. 1 2 .0 ....}
T

W e observe th a t for several of the system s considered  in E xam ple  2.2.1 the 
o u tp u t at tim e n — no d ep ends not only on the  value of the in p u t at n =  n (, [i.e., 
jc(«o)]- bu t also on the values o f the inpu t app lied  to  the system  befo re  and after 
n = n (). C onsider, for instance, the accu m u la to r in the  exam ple . W e see that the 
o u tp u t at tim e n =  ?i() depends not only on the  inpu t a t tim e n =  no. bu t also on 
x(n)  a t tim es n =  no — 1. no -  2, and so on. By a sim ple a lgeb ra ic  m an ipu lation  
the in p u t-o u tp u t re la tion  o f the accum ulato r can be w ritten  as

=  y(/i -  1) +  x(ti)

w hich justifies the term  accumulator.  In d eed , th e  system  co m p u tes the cu rren t 
value o f the  o u tp u t by adding (accum ulating) th e  cu rre n t value o f the  inpu t to the 
p rev ious o u tp u t value.

T h ere  are som e in teresting  conclusions th a t can be draw n by tak ing  a close 
look in to  this ap p aren tly  sim ple system . Suppose th a t we are given the inpu t signal 
x(rt ) fo r n > no. and  we wish to  d e te rm in e  the o u tp u t v(/i) o f th is  system  for n > no. 
F o r n =  no. no +  1........ (2.2.4) gives

v(nn) =  v(«o -  1) -f x (/i0)

_v(no +  l l  =  v ( « o )  +  x ( n o  +  1)

and  so on. N ote th a t we have a p rob lem  in co m pu ting  y ( n a), since it d ep ends on 
y(«o -  1). H ow ever,

y(t io -  1) =  ^  x(k )
k — — ’X.

th a t is. y(no -  1) “sum m arizes*’ the effect on the  system  from  all the inpu ts which 
had  been  app lied  to  the  system  before tim e no- T hus th e  resp o n se  of the  system  
fo r n > no to  the  inpu t x(/7j th a t is app lied  a t tim e no is the com b in ed  resu lt of this 
inp u t and all inpu ts th a t had  been  app lied  p rev iously  to  the  system . C onsequently . 
y(/i), n > no is no t uniquely  d e te rm in ed  by the inp u t x(n)  fo r n > no.
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The additional information required to determ ine y(n)  for n >  no is the initial 
condi t ion  y(no -  1). This value summarizes the effect o f all previous inputs to the. 
system. Thus the initial condition y(«o -  1) together with the input sequence x(n)  
for n > no uniquely determ ine the output sequence y(n) for n > n0.

If the accum ulator had no excitation prior to n0, the initial condition is y(no — 
1) =  0. In such a case w e say that the system is initially relaxed.  Since y(no — 1) =  0, 
the output sequence y(n) depends only on the input sequence x(n)  for n > n0.

It is custom ary to assume that every system  is relaxed at n =  — oo. In this 
case, if an input x(n)  is applied at n =  —co, the corresponding output y(n)  is solely 
and uniquely  determ ined by the given input.

Example 2.2.2
The accumulator described by (2.2.3) is excited by the sequence x(n) =  nu(n). De­
termine its output under the condition that:

(a) It is initially relaxed [i.e., v ( - l )  =  0].
<b) Initially, y(—1) = 1.

Solution The output of the system is defined as
tl -] r

y(n) =  ^  x(k) =  x(k)  +
*= - o c  *=-oc i=<l

=  y ( - l )  +  x(k)
k=o

But
n(n -f 1)

(a) If the system is initially relaxed, v(—1) =  0 and hence
n(n +  l) 

v ( n )  =  -------- 2 --------  "  -  0

(b) On the other hand, if the initial condition is y ( - l )  =  1, then

n(n -I-1) n2 +  n +  2 
v(n) =  1 + ---- -— - = -------------  n > 0

2.2.2 Block Diagram Representation of Discrete-Time 
Systems

It is useful at this point to introduce a block diagram representation o f discrete­
time systems. For this purpose we need  to define som e basic building blocks that 
can be interconnected to form com plex systems.

An adder. Figure 2.13 illustrates a system  (adder) that performs the addi­
tion o f  two signal sequences to form another (the sum ) sequence, which we denote
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x | ( n )

y (n) = i ,(n )  + x2(n)

Figure 2.13 Graphical representation 
of an adder.

as y(n). N ote th a t it is n o t necessary  to  sto re  e ith e r  one o f th e  sequences in o rd er 
to  p erfo rm  the  add ition . In  o th e r  w ords, the ad d itio n  o p e ra tio n  is memoryless .

A constant multiplier. This o p e ra tio n  is dep ic ted  by Fig. 2.14, and  sim ply 
rep re sen ts  applying a scale fac to r  on th e  inpu t x(n) .  N o te  th a t th is o p e ra tio n  is 
also m em oryless.

a v(n) = o i(n )  Figure 2.14 Graphical representation 
------------------------ - »■ of a constant multiplier.

A signal multiplier. F igure 2.15 illu stra tes the  m u ltip lica tion  o f tw o sig­
nal sequences to  fo rm  a n o th e r  (the  p ro d u c t) sequence , d en o ted  in the  figure as 
y(n). A s in the p reced ing  tw o cases, we can view the  m ultip lica tion  o p e ra tio n  as 
m em oryless.

A|(n) v(n) = jT|(n)Ai(n)---- -0 ^—
Figure 2.1S Graphical representation 
of a signal multiplier.

A unit delay element. T h e  un it delay  is a special system  th a t sim ply delays 
the  signal passing th rough  it by one sam ple. F igu re  2.16 illu stra tes  such a system . 
If the inpu t signal is x(n) ,  th e  o u tp u t is x(n — 1). In fact, the sam ple x{n  — 1) is 
sto red  in m em ory at tim e n — 1 and  it is recalled  from  m em ory  a t tim e n to  form

v (n ) =  x(n -  1)

T hus th is basic bu ild ing  b lock req u ires m em ory. T h e  use o f th e  sym bol ; _1 to  
d en o te  the  unit o f deiay  will becom e a p p a re n t w hen  we discuss the  z -transfo rm  in 
C h a p te r 3.

x(n) y (n) = jr (n— 1)
------------------ »- Figure 2,16 Graphical representation

_____  of the unit delay element.

A unit advance element. In  co n trast to  th e  un it de lay , a unit advance 
m oves th e  inpu t x ( n ) ah ead  by  one sam ple in tim e to  yield x(n  +  1). F igure 2.17 
illu stra tes this o p e ra tio n , with th e  o p e ra to r  ;  being  used to  d e n o te  the  un it advance.

x2(n )
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x(n) y(n ) = x(n  + I )
Figure 2.17 Graphical representation 
of the unit advance element.

W e observe th a t any such advance is physically im possible in real tim e, since, in 
fact, it involves looking in to  the fu tu re  o f the signal. O n the o th e r hand , if we store 
the  signal in th e  m em ory  o f th e  co m p u te r, we can recall any sam ple a t any tim e. 
In such a non rea l-tim e  app lica tion , it is possible to  advance the  signal jr(?r) in tim e.

Example 2.2.3

Using basic building blocks introduced above, sketch the block diagram representa­
tion of the discrete-time system described by the input-output relation.

where x(n)  is the input and y(n) is the output of the system.

Solution According to (2.2.5), the output v(n) is obtained by multiplying the input 
x(n) by 0.5, multiplying the previous input j r (n - l)  by 0.5. adding the two products, and 
then adding the previous output v(n — 1) multiplied by j. Figure 2.18a illustrates this 
block diagram realization of the system. A simple rearrangement of (2.2.5). namely.

leads to the block diagram realization shown in Fig. 2.18b. Note that if we treat "the 
system” from the “viewpoint” of an input-output or an external description, we are 
not concerned about how the system is realized. On the other hand, if we adopt an

v(n) =  3.v(« -  1) +  | x(n) +  \x(n -  1)

v (« ) =  5 .v(n -  1 ) +  5 [jc(k) +  x ( n  -  1 )| (2 .2 .6 )

Black box

0.5-i
x(n)

(a)

Black box

-i
x(n)

Figure 2.18 Block diagram realizations of the system y(n) =  0.25y(n — 1) +  
0.5 x{n)  +  0.5j(n — 1).
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internal description of the system, we know exactly how the system building blocks 
are configured. In terms of such a realization, we can see that a system is relaxed at 
time n = no if the outputs of all the delays existing in the system are zero at n = n{) 
(i.e., all memory is filled with zeros).

2.2.3 Classification of Discrete-Time Systems

In  the  analysis as well as in the design of system s, it is d es irab le  to  classify the 
system s according to the  genera l p ro p e rtie s  th a t they  satisfy. In fact, the m a th e ­
m atical techn iques th a t we develop  in th is and  in su b seq u en t c h ap te rs  for analyzing 
and  designing d isc rete-tim e system s d ep en d  heav ily  on  the g en e ra l characteristics 
of the  system s tha t are being  considered . F o r  th is reason  it is necessary  for us 
to develop  a num b er of p ro p erties  o r ca tego ries th a t can be used  to describe the 
genera l characteristics o f system s.

W e stress the  po in t th a t for a system  to  possess a given p ro p erty , the  p ro p erty  
m ust hold  for every possible inpu t signal to  the  system . If a p ro p e rty  holds for 
som e inpu t signals bu t not fo r  o thers, the  system  does not possess th a t p roperty . 
T hus a co u n terexam ple  is sufficient to  p rove th a t a system  does not possess a 
p ro p erty . H ow ever, to p rove th a t th e  system  has som e p ro p e rty , we m ust prove 
th a t this p ro p erty  holds for every possib le inpu t signal.

Static versus dynamic systems. A  disc re te-tim e system  is called static 
or m em oryless if its o u tp u t at any in stan t n d ep en d s at m ost on  the inpu t sam ple 
at th e  sam e tim e, b u t no t on  p ast o r fu tu re  sam ples o f th e  inpu t. In any o th e r  case, 
th e  system  is said to be dynamic  o r to  have m em ory . If the o u tp u t o f a system  at 
tim e n is com pletely  d e te rm in ed  by the inpu t sam ples in the  in terval from  n -  N  
to  n ( N  > 0), the  system  is said to have m e m o r y  o f d u ra tio n  N.  U N  — 0. the 
system  is static. H 0 < N  < oo,  th e  system  is said to  have f ini te memory ,  w hereas 
if N  = oo, the system  is said to  have infinite memory .

T he system s described  by the follow ing in p u t-o u tp u t eq u a tio n s

y(n) =  ax  {n) (2.2.7)

y ( n ) = nx(n)  + b x 3(n) (2.2.8)

are  bo th  static o r m em oryless. N ote th a t th e re  is no  need  to  s to re  any o f the past 
inp u ts  o r o u tp u ts  in o rd e r  to  com pu te  th e  p resen t o u tp u t. O n  th e  o th e r  hand , the 
system s described  by the  follow ing in p u t-o u tp u t re la tio n s

y(n)  =  x(n)  + 3 x ( n  — 1) (2.2.9)

y(n)  =  J ^ x ( n  - k )  (2.2.10)
k= 0 

X

y(n)  = J 2  x ( n - k )  (2.2.11)
Jt=0

are dynamic systems or systems with memory. The systems described by (2.2.9)
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and (2.2.10) have finite m em ory , w hereas the system  d escribed  by (2.2.11) has 
infinite m em ory.

W e observe  th a t sta tic  o r m em oryless system s are d escribed  in genera l by 
in p u t-o u tp u t eq u a tio n s o f th e  form

y(n) =  T[x(n) ,  n] (2.2.12)

and  th ey  do no t include delay  e lem en ts (m em ory).

Time-invariant versus time-variant systems. W e can subdiv ide th e  gen­
eral class o f system s in to  the  tw o b ro ad  ca tegories, tim e-in v arian t system s and 
tim e-v a rian t system s. A  system  is called tim e-invarian t if its in p u t-o u tp u t ch arac­
teristics do  n o t change with tim e. To e lab o ra te , suppose  th a t we have a system  T  
in a re laxed  s ta te  w hich, w hen  excited  by an inpu t signal x(n) ,  p ro d u ces an o u tp u t 
signal y(n).  T hus we w rite

y(n)  =  T[x{n) )  (2.2.13)

N ow  suppose  th a t th e  sam e input signal is de layed  by k un its o f tim e to  yield 
x(n -  &), and  again  app lied  to  the sam e system . If th e  characteristics of th e  system  
do n o t change w ith tim e, the o u tp u t o f the relaxed  system  will be y(« — k).  T hat is, 
th e  o u tp u t will be th e  sam e as the response to  x(n) .  except th a t it will be delayed 
by th e  sam e k units in tim e th a t the inpu t was delayed. T his leads us to  define a 
tim e-in v arian t o r sh ift-invarian t system  as follows.

Definition. A  relaxed  system  T  is t ime invariant  o r shif t  invariant  if and 
only if

x(n)  y(n)

im plies th a t

x{n  — k) — y(n  — k) (2.2.14)

for every inpu t signal x(n) an d  every tim e shift k.

T o d e te rm in e  if any given system  is tim e invarian t, we need  to  p erfo rm  the 
test specified by  th e  p reced ing  definition. B asically, we excite th e  system  with an 
a rb itra ry  inpu t sequence  x(n) ,  which p roduces an  o u tp u t d e n o te d  as y(n) .  N ext 
we delay  the  in p u t sequence  by sam e am ount k and  reco m p u te  th e  ou tp u t. In 
g eneral, we can w rite th e  o u tp u t as

y(«, k)  =  T [x ( n  — <:)]

N ow  if th is o u tp u t y{n,  k)  =  y{n — k),  for all possib le values o f k, the  system  is 
tim e invarian t. O n  th e  o th e r  hand , if th e  o u tp u t y(n,  k ) ^  y(n — k),  even  fo r one 
value o f k,  th e  system  is tim e varian t.
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- B

“ Differentiator"

x(/t)

“Time" multiplier

v( n ) = xl - n )
“ Folder"

v(n J = .u n ) cos oi„ii

Figure 2.19 Examples of a 
lime-invariant (a) and some time-variant 
systems (h)-(d).

Example 2.2.4

Determine if the systems shown in Fig. 2.19 are time invariant or time variant. 

Solution

(a) This system is described by the input^output equations

y(7i) =  T\xin)} = x(n\  — x(n -  1) (2.2.15)

Nov, if the input is delayed by k units in time and applied to the system, it is 
clear from the block diagram that the output will be

y i n .  k) =  x i n  -  k)  — x i n  — k — 1) (2.2.16)

On the other hand, from (2.2.14) we note that if we delay y (n) by k units in 
time, we obtain

yin — k) = x(n — k) — xin — k — 1) (2.2.17)

Since the right-hand sides of (2.2.16) and (2.2.17) are identical, it follows that 
v(n. k) = yin -  k). Therefore, the system is time invariant.
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(b) The input-output equation for this system is

y(n) = T[x(n)] = nx(n)  (2.2.18)

The response of this system to x(n -  Jt) is

y(n, k) = nx(n -  k) (2.2.19)

Now if we delay ;y(n) in (2.2.18) by k units in time, we obtain 

y(n -  k) =  (n — k)x(n — k)
(2.2.20)

=  nx(n — k) -  kx(n -  k)

This system is time variant, since y(n, k) ^  y(n -  k).
(c) This system is described by the input-output relation

>’(«) =  T[x(n)\  =  x ( - n )  (2.2.21)

The response of this system to jr(n -  k) is

;y(n, A;) =  T[x(n -  *)] =  x ( - n  -  k) (2.2.22)

Now, if we delay the output ;y(n), as given by (2.2.21), by k units in time, the 
result will be

y(n -  k) =  x ( - n  + k) (2.2.23)

Since y(n, k) ^  y{n -  it), the system is time variant.
(d) The input-output equation for this system is

y(n) =  j:(n) costDon (2.2.24)

The response of this system to x(n -  k) is

y(n, k) =  x(n -  k) cos o\)n (2.2.25)

If the expression in (2.2.24) is delayed by k units and the result is compared to
(2.2.25), it is evident that the system is time variant.

Linear versus nonlinear systems. The general class o f system s can also 
be subdivided into linear system s and nonlinear systems. A  linear system  is one 
that satisfies the superposit ion principle.  Simply stated, the principle o f superposi­
tion requires that the response o f the system  to a weighted sum o f signals be equal 
to  the corresponding weighted sum of the responses (outputs) of the system  to each 
of the individual input signals. H ence we have the follow ing definition o f linearity.

Definition. A  re la x e d  T sy s te m  is l in e a r  if an d  only if

T[a ix i (n )  +  azx2{n)] =  a\T[x \ (n ) ]  +  a i T [ x 2{n)] (2.2.26)

for any arbitrary input sequences x\ (n)  and x 2(n),  and any arbitrary constants aj 
and 0 2 -

Figure 2.20 gives a pictorial illustration of the superposition principle.
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if and only if v(n) =  v'(n).

T he superposition  princip le em b o d ied  in the  re la tio n  (2.2.26) can be se p a ­
ra ted  in to  tw o parts. First, suppose th a t a2 =  0. T h en  (2.2.26) red u ces to

T{a\X\(n)]  =  a\T[x\ {n)}  =  a\  vi(n) (2.2.27)
w here

vi (fl) =  T [ x x(n)}

T he re la tio n  (2.2.27) dem o n stra tes  the mult ipl icat ive  o r scaling proper t y  of a linear 
system . T h a t is, if the  response  o f the  system  to  the inpu t x i (n )  is vi(n), the 
response  to  a\X](n)  is sim ply a i j ’i(n ). T hus any scaling of the in p u t resu lts in an 
iden tical scaling o f the  co rrespond ing  ou tp u t.

Second, suppose  th a t ai = a2 =  1 in (2.2.26). T h en

T [ x \ ( n )  +  x 2 (n)] =  T [ x \ { n ) ]  +  T [ x \ ( n ) }
(2.2.28)

=  yi (n)  + yz(n)

This re la tio n  d em o n s tra tes  the addit ivi ty property  o f a  lin ear system . T he additivity  
and m ultip licative p ro p e rtie s  co nstitu te  the  superp o sitio n  p rincip le  as it app lies to 
linear system s.

T h e  linearity  condition  em bod ied  in (2.2.26) can  be e x te n d e d  arb itrarily  to 
any w eigh ted  lin ear com bination  o f signals by induction . In  g en era l, we have

M- 1 M- 1
x(n)  = ^ 2  GkXk(n) y ( n ) =  ^  akyk (n) (2.2.29)

k=l  i= l
w here

^ ( n )  =  T [ x k(n)} k =  1, 2, , . . ,  M  — 1 (2.2.30)
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W e observe from  (2.2.27) th a t if a i — 0, then  y(n) =  0. In o th e r  w ords, a re ­
laxed, linear system  w ith ze ro  inpu t p roduces a ze ro  o u tp u t. If  a system  p roduces 
a n o n ze ro  o u tp u t with a zero  inpu t, the system  m ay be e ith e r  no n re lax ed  or n o n ­
linear. If  a re laxed  system  does no t satisfy the superp o sitio n  p rincip le  as given by 
th e  defin ition  above, it is called  nonlinear.

Example 2.2^

Determine if the systems described by the following input-output equations are linear 
or nonlinear.

(a) y(n) = ttx(n) (b) y(n) = *(n2) (c) v(n) = v2(n)
<d) y(n) =  Ax{n) +  B (e) y(n) = ex[n]

Solution
(a) For two input sequences jti(n) and the corresponding outputs are

Vi(n) = n.ifi(n)
(2.2.31)

y2{n) = nx2(n)

A iinear combination of the two input sequences results in the output 

Vj(«) =  T[a\Xy (n) + oijMh)] =  («) + (/i)]
(2.2.32)

=  ainxi (n) + a2nx2(n)

On the other hand, a linear combination of the two outputs in (2.2.31) results 
in the output

a\ V] (n) +  a2y2(n) = ainx\(n)  +  a2n,x2(n) (2.2.33)

Since the right-hand sides of (2.2.32) and (2.2.33) are identical, the system is 
iinear.

(b) As in part (a), we find the response of the system to two separate input signals 
*i(n) and x2(n). The result is

v,(n) =  X\(n2)
(2.2.341

y2(rt) = X2(n2)

The output of the system to a linear combination of Xi(n) and *;(»?) is

y3(n) =  T\a\X\ («) + a 2x 2(n)] = a hx,(n2) + a2x2(n2) (2.2.35)

Finally, a linear combination of the two outputs in (2.2.36) yields

O] \>i(n) + c 2V2(n) =  a i JCi (n2) + <i2X2(n2) (2.2.36)

By comparing (2.2.35) with (2.2.36). we conclude that the system is linear.
(c) The output of the system is the square of the input. (Electronic devices that 

have such an input-output characteristic and are called square-law devices.) 
From our previous discussion it is clear that such a system is memoryless. We 
now illustrate that this system is nonlinear.
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The responses of the system to two separate input signals are

v,(«) =  .vf(n)
' (2.2.37)

y 2(n) = x;(n)

The response of the system to a linear combination of these two input signals is 

>'3<n) =  T[a 1*1 (n) +  a2x2(n)}

= [fli*i(n) +  a2x2(n)]2 (2.2.38)

=  cfA'fln) -I- 2a-la 2x i ( n ) x2(n)  +  a 2x 2{ n )

On the other hand, if the system is linear, it would produce a linear combination 
of the two outputs in (2.2.37). namely,

ai_Vi(n) +  fl2.V2(n) =  (rt) +  a2x2(n) (2.2.39)

Since the actual output of the system, as given by (2.2.38). is not equal to 
(2.2.39), the system is nonlinear.

(d) Assuming that the system is excited by x\(n)  and x2in) separately, we obtain 
the corresponding outputs

V](n) =  AX](rt) +  B
(2.2.40)

y2(n) =  A x 2(n) + B 

A linear combination of X\(n) and x2{n) produces the output 

V i(« ) =  T [ u ^ X ]  ( /i) +  a2x 2(n>]

= A[a,x,(/i) + a2x 2(n)} + B (2.2.41)

=  A a \ X\ ( n ) -I- a2A x 2(n)  +  B 

On the other hand, if the system were linear, its output to the linear combina­
tion of Ji(n) and x 2(n) would be a linear combination of vjin)  and y2(n).  that is.

ai yi (n ) +  a 2y2(n) =  a ] Ax] { n)  +  a \ B  a 2A x 2{n) +  a 2 B (2.2.42)

Clearly. (2.2.41) and (2.2.42) are different and hence the system fails to satisfy 
the linearity test.

The reason that this system fails to satisfy the linearity test is not that the 
system is nonlinear (in fact, the system is described by a linear equation) but 
the presence of the constant B.  Consequently, the output depends on both the 
input excitation and on the param eter B  ^  0. Hence, for B  ^  0. the system is 
not relaxed. If we set B  = 0, the system is now relaxed and the linearity test is 
satisfied.

(e) Note that the system described by the input-output equation

y(n) =  e,1',) (2.2.43)

is relaxed. If x(n) =  0, we find that y(n) =  1. This is an indication that the 
system is nonlinear. This, in fact, is the conclusion reached when the linearity 
test, is applied.

Causal versus noncausal systems. W e begin  with the  defin ition  o f causal 
d isc re te-tim e system s.
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D efin itio n , a  system  is said to  be causal  if th e  o u tp u t o f the  system  at any 
tim e n [i.e., v(n)]  depends oniy on  p resen t and  past inpu ts [i.e., x { n ), x(tt -  1), 
x(rt — 2 ) , . . . ] ,  b u t does no t d epend  on fu tu re  inpu ts [i.e., x(n  +  1), x(n  +  2 ) , . . . ] .  In  
m athem atica l te rm s, the o u tp u t o f a causal system  satisfies an eq u a tio n  o f th e  form

v(n) =  F[x{n),  x (n  -  1), x(n  -  2 ) , . . . ]  (2.2.44)

w here /'[■] is som e a rb itra ry  function.

If a system  does n o t satisfy this defin ition , it is called noncausal .  Such a 
system  has an o u tp u t th a t d ep en d s n o t oniy on p resen t and  past inpu ts b u t also 
on  fu tu re  inputs.

It is a p p a ren t th a t in real-tim e signal processing  app lications we can n o t o b ­
serve fu tu re  values o f the signal, and h ence  a noncausal system  is physically u n rea l­
izable (i.e., it c an n o t be im p lem en ted ). O n  the  o th e r  hand , if th e  signal is recorded  
so th a t the processing  is done off-line (n o n rea l tim e), it is possible to  im plem ent 
a noncausal system , since all values o f  th e  signal are  available  a t the  tim e o f p ro ­
cessing. T h is is o ften  th e  case in the processing  of geophysical signals and  im ages.

Example 2.2.6

Determine if the systems described by the following input-output equations are causal 
or noncausal.

(a) y(n) =  x(n) -  x(n -  1) (b) y(n) =  x(k) (c) y(n) = ax(n)
(d) y(n') = x(n) + 3jr(n +  4) (e) y(n) =  x(n2) (t) y(n) =  x(2n)
(g) }'(n) =  x (-n )

Solution The systems described in parts (a), (b), and (c) are clearly causal, since the 
output depends only on the present and past inputs. On the other hand, the systems 
in parts (d). (e), and (f) are clearly noncausal, since the output depends on future 
values of the input. The system in (g) is also noncausal, as we note by selecting, for 
example, n = - 1 ,  which yields v(—1) =  * 0 )  Thus the output at n =  -1  depends on 
the input at n =  1, which is two units of time into the future.

Stable versus unstable systems. S tability  is an im p o rtan t p ro p e rty  th a t 
m ust be co nsidered  in any p ractical app lica tion  o f a system . U nstab le  system s 
usually  exhibit e rra tic  and  ex trem e b eh av io r and  cause overflow  in any practical 
im p lem en ta tion . H ere , we define m athem atica lly  w hat we m ean  by a stab le  system , 
and  la ter, in Section  2.3.6, we exp lore the  im plications o f this definition for linear, 
tim e-invarian t system s.

Definition. A n arb itra ry  re laxed  system  is said  to  be b o u n d ed  in p u t-b o u n d e d  
o u tp u t (B IB O ) stab le  if and  only if every  b o u n d ed  inpu t p roduces a bo u n d ed  
ou tp u t.

T h e  cond itions th a t th e  inpu t se q uence  x{n)  an d  the o u tp u t sequence  y(n)  are 
bou n d ed  is tran s la ted  m athem atica lly  to  m ean  th a t the re  exist som e finite num bers,
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say M x and M v. such that

j.v(ri)! < M K < oc <  M x < dc (2.2.45)

for all n.  If. for som e bo u n d ed  inpu t sequence  ,v(»), the o u tp u t is un b o u n d ed  
(infin ite), the system  is classified as unstab le .

Example 2.2.7

Consider the nonlinear system described by the input-output equation

V(/I ) =  — 1 ) ,V(/i )

As an input sequence we select the hounded signal

xin ) =  C&(n )

where C is a constant. We also assume that y(—1) =  0. Then the output sequence is

y(0) =  C, y (l) =  C \  y(2) = Cd............ y(n) =  C: "

Clearly, the output is unbounded when ] < ICl < oc. Therefore, the system is BIBO 
unstable, since a bounded input sequence has resulted in an unbounded output.

2.2.4 Interconnection ot Discrete-Time Systems

D iscrete-tim e system s can be in terco n n ec ted  to form  larger system s. T h ere  are 
tw o basic ways in which system s can be in terco n n ec ted : in cascade (series) o r in 
paralle l. T hese in terco n n ec tio n s are illustrated  in Fig. 2.21. N ote that the two 
in te rco n n ec ted  system s are d ifferent.

In the  cascade in terconnection  the o u tp u t of the  first system  is

yiO?) =  7j[;r(/j)] (2.2.46)

x i n )  :

T\ r  T,
y ( n )

7,

(a)

v | (n)

(b)
Figure 2.21 Cascade (a) and parallel 
(b) interconnections of systems.



and th e  o u tp u t o f the  second system  is

v(n) =  T2[\\(n)]
(2.2.47)

=  r 2 { 7 i [ * ( n ) ] }

W e o b se rv e  th a t system s 7"j and  T2 can be com bined  o r co n so lid a ted  in to  a  single 
overa ll system

%  =  T271 (2.2.48)

C onseq u en tly , we can express the o u tp u t o f th e  com bined  system  as

y(n)  =  Tc[x(n)]

In  g enera l, th e  o rd e r  in which the  o p era tio n s T\ an d  T2 a re  p e rfo rm ed  is 
im p o rtan t. T h a t is,

T27I #  T,T2

for a rb itra ry  system s. H ow ever, if the system s 7j and  T2 a re  iin ear and  tim e 
invarian t, th en  (a) %  is tim e invarian t and (b) T2T\ = T\T2, th a t is, th e  o rd e r  in 
w hich th e  system s process th e  signal is no t im po rtan t. 7^71 an d  T\T2 yield identical 
o u tp u t sequences.

T h e  p ro o f o f (a) follow s. T he p ro o f o f (b) is given in Section  2.3.4. T o  p rove 
tim e invariance , suppose  tha t Tj and T2 a re  tim e invarian t; th en

x(n — k ) vi(/i -  k)

and

Vi(n -  k) — '■+ y(n -  k)

T hus

x{n — k) Tf y(n — k )

and th e re fo re , Tc is tim e invarian t.
In  the  para lle l in terconnection , the  o u tp u t of the  system  T\ is ^ ( n )  and  the 

o u tp u t o f the system  T2 is y2(n). H en ce  the  o u tp u t o f th e  para lle l in te rco n n ec tio n  is

v3(n) =  .V] (n) +  >>2(n)

=  Ti[x{n)\  + T2[x(n)\

=  (T\ + T2)[x(n)}

=  Tp[x(n)\

w h ere  Tp =  T\ +  T2.
In  g enera l, w e can use paralle l and cascade in te rco n n ec tio n  o f  system s to 

c o n s tru c t la rger, m o re  com plex system s. C onversely , we can  ta k e  a la rg er system  
and  b re a k  it do w n  in to  sm aller subsystem s for pu rp o ses o f analysis an d  im ple­
m en ta tio n . W e shall use these  notions la te r, in th e  design an d  im p lem en ta tio n  of 
d ig ital filters.

Sec. 2.2 Discrete-Time Systems 71
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2.3 ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT 
SYSTEMS

In Section  2.2 we classified system s in acco rdance  w ith a n u m b er of characteristic  
p ro p erties  o r categories, nam ely: linearity , causality , stability , an d  tim e invariance. 
H av ing  done so. we now tu rn  ou r a tte n tio n  to  th e  analysis o f th e  im p o rtan t class 
of linear, tim e-invarian t (L T I) system s. In  p a rticu la r, we shall d em o n stra te  th a t 
such system s are charac te rized  in th e  tim e dom ain  sim ply bv th e ir  response to  a 
unit sam ple sequence. W e shall also d em o n s tra te  th a t any a rb itra ry  inpu t signal 
can be decom posed  and re p re sen ted  as a w eighted  sum  of unit sam ple sequences. 
A s a consequence o f th e  linearity  and  tim e-invariance p ro p e rtie s  of the system , 
the response of the system  to  any a rb itra ry  inpu t signal can be expressed  in term s 
of the  unit sam ple response  of the  system . T h e  general form  o f the expression  
th a t re la tes the unit sam ple response  o f the system  and the a rb itra ry  input signal 
to  the o u tp u t signal, called the convolu tion  sum  o r th e  convolu tion  form ula, is also 
derived . T hus we are able  to  de te rm in e  the o u tp u t o f any lin ear, tim e-invarian t 
system  to any a rb itra ry  inpu t signal.

2.3.1 Techniques for the Analysis of Linear Systems

T here  are  two basic m eth o d s for analyzing th e  b eh av io r o r resp o n se  of a linear 
system  to  a given inpu t signal. O ne m eth o d  is based  on the d irec t so lu tion  o f the 
in p u t-o u tp u t eq u a tio n  for the system , w hich, in g enera l, has th e  form

v(ji) - F [v(n  -  1), v (?7 — 2 ) ........ y(n -  N) ,  x(n) .  x (n  — 1).......... x(n  -  M)]

w here F[-] den o tes som e function  o f th e  q u an tities  in b rackets. Specifically, for 
an LTI system , we shall see la te r  th a t the  genera l form  of the in p u t-o u tp u t re la ­
tionsh ip  is

w here and {b*,.} are  constan t p a ra m e te rs  th a t specify the system  and are  in­
d e p en d en t o f x(n)  and  y(n) .  T h e  in p u t-o u tp u t re la tio n sh ip  in (2.3.1) is called 
a difference eq u a tio n  and  rep re sen ts  one way to  characterize  th e  b ehav io r of a 
d isc re te-tim e LTI system . T h e  so lu tion  o f (2.3.1) is th e  subject o f Section 2.4.

T he second m eth o d  fo r analyzing th e  b eh av io r o f a lin ear system  to  a  given 
inpu t signal is first to  decom pose  o r reso lve th e  inp u t signal in to  a sum  of e le ­
m en tary  signals. T he e lem en ta ry  signals a re  se lec ted  so th a t th e  response  o f the 
system  to  each signal co m p o n en t is easily  d e te rm in ed . T hen , using  the linearity  
p ro p e rty  o f th e  system , the  responses o f the  system  to  the  e lem en ta ry  signals are 
added  to  ob ta in  th e  to ta l re sp o n se  of th e  system  to  th e  given in p u t signal. T his 
second m eth o d  is th e  one d escribed  in th is section .

N M
(2.3.1)
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T o  e lab o ra te , suppose th a t the in p u t signal x (n ) is reso lved  into a w eigh ted  
sum  of elem entary ' signal co m p o n en ts  {*/. («)} so th a t

w here the  {ct} a re  th e  set of am plitudes (w eighting coeffic ients) in the decom ­
position  o f th e  signal x(n) .  N ow  suppose  th a t the response  o f the system  to the 
e lem en ta ry  signal co m p o n en t x k{n) is y k(n).  Thus.

assum ing th a t the  system  is re lax ed  and  th a t the  response  to  ckx k(n) is cky k(n).  as 
a co n sequence  of th e  scaling p ro p erty  o f the linear system .

Finally , th e  to ta l response  to  the  inp u t x(n)  is

In (2.3.4) we used the  additiv ity  p ro p e rty  o f the lin ear system .
A lth o u g h  to  a large ex ten t, the choice o f th e  e lem en ta ry  signals ap p ea rs  to 

be a rb itra ry , o u r se lection  is heavily d ep en d en t on the  class of input signals that 
we w ish to  consider. If  we place no  restric tion  on the  characteristics of the  input 
signals, its reso lu tion  in to  a w eigh ted  sum  of unit sam ple (im pulse) sequences 
p roves to  be m athem atica lly  co n ven ien t and  com pletely  general. O n the o th e r  
hand , if we restric t o u r  a tten tio n  to  a subclass o f inpu t signals, th e re  m ay be 
an o th e r  set o f  e lem en ta ry  signals th a t is m o re  co n ven ien t m athem atica lly  in the 
d e te rm in a tio n  of the ou tp u t. F o r exam ple, if th e  inpu t signal x(n)  is periodic 
w ith p eriod  N,  we have a lready  observed  in Section  1.3.5 th a t a m athem atically  
con v en ien t set o f elem entary7 signals is th e  set o f exponentials

T h e  freq u en cy  2 n / N  is called th e  fu n d am en ta l frequency , and  all h igher-frequency  
co m p o n en ts  a re  m ultip les o f th e  fu n d am en ta l frequency  co m ponen t. T h is subclass 
o f inp u t signals is consid ered  in m o re  d eta il later.

F o r th e  reso lu tion  o f the  in p u t signal in to  a w eigh ted  sum  of u n it sam ple 
sequences, we m ust first d e te rm in e  th e  response  o f th e  system  to  a un it sam ­
ple se quence  an d  th en  use th e  scaling an d  m ultip licative p ro p e rtie s  of th e  linear

y*(n) =  T [j.t (n)] (2.3.3)

(2.3.4)

x k (n) =  eJluin k =  0. l , . . . , i V - l  

w h ere  th e  frequencies {cok} a re  harm on ically  re la ted , th a t is.

(2.3.5)

k =  0. 1.........N  -  1 (2.3.6)
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system  to  d e te rm in e  the fo rm ula  fo r the o u tp u t given any a rb itra ry  input, 
developm en t is described  in detail as follows.

This

2.3.2 Resolution of a Discrete-Time Signal into Impulses

Suppose we have an arb itra ry  signal x(n)  th a t we w ish to  resolve in to  a sum of unit 
sam ple sequences. T o  utilize the no ta tio n  estab lished  in the  p reced in g  section , we 
select the e lem en ta ry  signals xk (n) to  be

x k(n) =  8{n -  k) (2.3.7)

w here k rep re sen ts  th e  delay o f the unit sam ple sequence . T o  h and le  an arb itra ry  
signal x(n)  th a t m ay have no n zero  values over an infinite d u ra tio n , the  set of unit 
im pulses m ust also  be infinite, to  encom pass the infinite n u m b er of delays.

N ow  suppose th a t we m ultip ly  the tw o sequen ces x(n)  an d  <5(n -  k).  Since 
8{n — k) is zero  everyw here except a t n =  k , w h ere  its value is unity , the result 
o f th is m ultip lication  is a n o th e r  sequence  th a t is ze ro  everyw here excep t at n — k , 
w here its value is x(k) ,  as illu stra ted  in Fig. 2,22. T hus

x(n)8(n — k) =  x(k)8(n — k) (2.3.8)

T TT 111

Jt(n)

i ’ l l i , ‘ 1 I , T t Ii [ -2-10113 i i 1
(a) JC(Jc)

6(/i -Jt)

(b)

*(*) 6(n — k )

k
0 n

Figure 2.22 Multiplication of a signal x i n )  with a shifted unit sample sequence.
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is a se q uence  th a t is ze ro  everyw here  except at n =  k , w h ere  its va lue  is x(k) .  If  we 
w ere to  re p e a t th e  m u ltip lica tion  of x(n)  with <5(a? — m), w here m  is a n o th e r  delay  
(im =6 k),  the  re su lt will be a sequence th a t is zero  everyw here  excep t a t n =  m, 
w here its value is x (m) .  H en ce

x(n)5(n  — m)  =  x(m)8(n — m)  (2.3.9)

In o th e r  w ords, each  m ultip lica tion  o f the  signal x(n)  by a un it im pulse at som e 
delay  k,  [i.e., <5(n — it)], in essence picks o u t the  single value x(k )  o f the  signal jc(n) 
at the  delay  w h ere  the un it im pulse is nonzero . C onseq u en tly , if we re p e a t this 
m u ltip lica tion  o v e r all possib le delays, - o o  < k < oo, an d  sum  all th e  p roduct 
sequences, th e  re su lt will be a sequence  equal to  th e  se q uence  x(n) ,  th a t is,

PC-
x( n)  =  ^  x(k)8(n — k)  (2.3.10)

k = — oc

W e em phasize  th a t the  righ t-hand  side of (2.3.10) is the  sum m atio n  of an 
infinite n u m b er o f unit sam ple sequences w here the  unit sam ple  se quence  6(n -  k) 
has an am p litu d e  value o f x(k) .  T hus the  righ t-hand  side o f  (2.3.10) gives the 
reso lu tion  o f o r decom p o sitio n  o f any a rb itra ry  signal jc(n) in to  a w eigh ted  (scaled) 
sum  o f  sh ifted  un it sam ple sequences.

Example 2.3.1

Consider the special case of a finite-duration sequence given as

jc(«) =  (2, 4, 0,3)
T

Resolve the sequence x(n) into a sum of weighted impulse sequences.

Solution Since the sequence x(n) is nonzero for the time instants n =  —1, 0. 2, we 
need three impulses at delays k =  —1. 0, 2, Following (2.3.10) we find that

x<n) =  2(5 (n +  1) +  4<5(n) +  3<5(n — 2)

2.3.3 Response of LTI Systems to Arbitrary Inputs: The 
Convolution Sum

H aving  reso lved  an  a rb itra ry  inpu t signal x(n)  in to  a w eigh ted  sum  o f im pulses, 
we a re  now  read y  to  d e te rm in e  the  response  of any re lax ed  lin ea r  system  to  any 
inp u t signal. F irs t, we d en o te  the  response  v(n, k) o f th e  system  to  the  inp u t unit 
sam ple  se q uence  a t n =  it by th e  special sym bol h(n,  k),  —oo < k < oo.  T h a t is,

y(n,  k) =  h(n.  k ) =  T[S(n — £)] (2.3.11)

In (2.3.11) w e n o te  th a t n is the  tim e index and  k is a p a ra m e te r  show ing the 
location  o f th e  in p u t im pulse. If  the im pulse at th e  inpu t is scaled  by an am o u n t 
ct =  jc(it), th e  resp o n se  of th e  system  is th e  co rrespond ing ly  scaled  o u tp u t, th a t is,

Ckh(n, k) = x(k)h(n, k) (2.3.12)
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Finally , if the inpu t is the a rb itra ry  signal x(/t) tha t is exp ressed  as a sum of 
w eigh ted  im pulses, th a t is.

th en  the response of the system  to  x(/ i)  is the co rre spond ing  sum  of w eighted  
o u tpu ts, th a t is,

C learly , (2.3.14) follows from  the su perposition  p ro p erty  of lin ear system s, and is 
know n as the superposit ion summat ion.

W e no te  th a t (2.3.14) is an expression  for the response o f a linear system  to 
any a rb itra ry  input sequence  x(n) .  This expression  is a function  of bo th  .v(») and 
the  responses h(n.  k)  of the system  to  the unit im pulses Sin — k)  fo r — oc < k < oc. 
In deriv ing  (2.3.14) we used the linearity  p ro p e rty  o f the  system  but not its tim e- 
invariance p roperty . T hus the  expression  in (2.3.14) applies to  any relaxed linear 
(tim e-varian t) system .

If. in add ition , the system  is tim e in varian t, the form ula in (2.3.14) sim plifies 
considerably . In fact, if the response o f the  LTI system  to  the un it sam ple sequence 
<5(rc) is d en o ted  as h(n).  th a t is.

then  by the tim e-invariance p ro p erty , th e  response o f the system  to  the delayed 
unit sam ple sequence  <5(n -  k) is

N ow  we observe th a t the  relaxed  LTI system  is com pletely  charac te rized  by a 
single function  h(n),  nam ely , its response to  the  un it sam ple sequence  In
co n trast, the general charac te riza tio n  of the  o u tp u t o f a tim e-v a rian t, linear sys­
tem  req u ires  an infin ite n u m b er o f unit sam ple resp o n se  functions, h{n,  k),  one for 
each  possible delay.

T he fo rm ula in (2.3.17) th a t gives th e  response  y(n)  of th e  LTI system  as a 
function  o f th e  in p u t signal x ( n ) and  th e  un it sam ple (im pulse) response  h(n)  is 
called a convolut ion sum.  W e say th a t th e  inp u t jt(n) is convolved  w ith  the im pulse

(2.3.13)

y(rt) =  7"[.r(/;)] =  T  ^  x(k)S(n — k)

=  ^  x ( k ) T [ 5 (m -  k)] (2.3.14)

ii = —oc

h(n)  =  T[b(n) \ (2.3.15)

h(n — k) =  T[S(n  — A')] 

C onsequen tly , the  fo rm ula  in (2.3.14) reduces to

(2,3.16)

(2.3.17)
k=-oc
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response h(n)  to yield the output y in ). We shall now explain the procedure for 
com puting the response y(n). both m athem atically and graphically, given the input 
x(n )  and the im pulse response h(n)  o f the system.

Suppose that we wish to com pute the output of the system  at som e time 
instant, say n =  n0. According to (2.3.17), the response at n =  no is given as

Our first observation is that the index in the sum m ation is k , and hence both the  
input signal x (k )  and the im pulse response h(no -  k)  are functions o f k.  Second, 
we observe that the sequences x (k )  and h(nQ — k) are m ultiplied together to form  
a product sequence. The output >(«o) is simply the sum over all values o f the 
product sequence. The sequence h (n 0 — k) is obtained from h ( k ) by, first, folding 
h(k)  about k =  0 (the time origin), which results in the sequence h ( —k). The 
folded sequence is then shifted by no to yield h(no — k). T o summarize, the process 
o f com puting the convolution betw een x (k )  and h(k)  involves the follow ing four 
steps.

1. Folding.  Fold h(k)  about k =  0 to obtain h (~ k ) .
2. Shifting,  Shift h ( —k) by n0 to the right (left) if n o is positive (negative), to  

obtain h(no — £).
3. Multiplication.  M ultiply by h (no — k)  to obtain the product sequence  

v„Jk) = x ( k ) h (n 0 -  k).
4. Sum m ation .  Sum all the values o f the product sequence vnt)(k ) to obtain the 

value of the output at time n =  n0.

W e note that this procedure results in the response o f the system  at a sin­
gle tim e instant, say n =  n 0. In general, we are interested in evaluating the 
response o f the system  over all time instants - o o  < n < oo. Consequently, 
steps 2 through 4 in the summary must be repeated, for all possible time shifts
—oo < n < oo.

In order to gain a better understanding o f the procedure for evaluating the 
convolution sum, we shall dem onstrate the process graphically. The graphs will 
aid us in explaining the four steps involved in the com putation o f the convolution  
sum.

Example 2.3.2
The impulse response of a linear time-invariant system is

OC

y (n 0) =  ^ 2  x ( k )h (n 0 -  k) (2.3.18)
Jc=-oc

/!(«) =  [1 .2 ,1 ,-1 }  
T

(2.3.19)

Determine the response of the system to the input signal

x(n) = {1,2.3,1} 
t

(2.3.20)



Discrete-Time Signais and Systems Chap. 2

Solution We shall compute the convolution according to the formula (2.3.17). but 
we shall use graphs of the sequences to aid us in the computation. In Fig. 2.23a we 
illustrate the input signal sequence x(k) and the impulse response h{k) of the system, 
using k as the time index in order to be consistent with (2.3.17),

The first step in the computation of the convolution sum is to fold h(k). The 
folded sequence h(~k)  is illustrated in Fig. 2.23b. Now we can compute the output 
at n =  0. according to (2.3.17), which is

v(0) =  (2.3.21)
*=-cx

Since the shift n = 0, we use h(—k) directly without shifting it. The product sequence

= x(k)h( -k)  (2.3.22)

h(k) x(k

* -i

3 4

T
1

i

•

-1 0 ! j

h(-k)
2

. . - 2  T ’ t . . . .
-10  1 2

Shift

h ( \ - k )

111
T o

(b)

(c)

1 0  1 2 3

L'n( k 1

v A k ) Product

Br T 7 , , .  ProductL’ |{t) sequence

T 2

.  ~ 3 T ! 1 ■

j - 2 - 1  0 1 k 0 1 2  *
(d)

Figure 2.23 Graphical com putation of convolution.
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is also shown in Fig. 2.23b. Finally, the sum of all the terms in the product sequence 
yields

We continue the computation by evaluating the response of the system at n = 1. 
According to (2.3.17),

The sequence h(\  — k) is simply the folded sequence h(—k) shifted to the right by one 
unit in time. This sequence is illustrated in Fig. 2.23c. The product sequence

is also illustrated in Fig. 2.23c. Finally, the sum of all the values in the product 
sequence yields

In a similar manner, we obtain y(2) by shifting h( - k )  two units to the right, 
forming the product sequence ih(A) =  x(k)h(2 — k) and then summing all the terms 
in the product sequence obtaining y(2) =  8. By shifting h(—k) farther to the right, 
multiplying the corresponding sequence, and summing over all the values of the re­
sulting product sequences, we obtain v(3) =  3. v(4) =  -2 , y(5) =  -1 . For u > 5, we 
find that v(n) =  0 because the product sequences contain all zeros. Thus we have 
obtained the response y(n) for n > 0.

Next we wish to evaluate v(n) for n < 0. We begin with n = Then

Now the sequence h (—1 — k) is simply the folded sequence h(—k ) shifted one time 
unit to the left. The resulting sequence is illustrated in Fig. 2.23d. The corresponding 
product sequence is also shown in Fig. 2.23d. Finally, summing over the values of the 
product sequence, we obtain

From observation of the graphs of Fig. 2.23, it is clear that any further shifts of 
h (—1 -  k) to the left always results in an all-zero product sequence, and hence

Now we have the entire response of the system for — oc < n < oc. which we 
summarize below as

■(°) =  £  vott) =  4

(2.3.23)

V] (k} = x(k)h{l — k) (2.3.24)

y(l) =  £  ui(*) = 8

(2.3.25)

V(-1) = 1

y(n) =  0 for n 5  — 2

y(n) =  0 ,0,1, 4. 8, 8. 3, - 2 , - 1 , 0 . 0 . . . .) 
t

(2.3.26)
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In E xam ple 2.3.2 we illu stra ted  th e  co m p u ta tio n  o f the  convo lu tion  sum . 
using graphs o f th e  sequences to  aid us in visualizing th e  steps involved in the 
com pu ta tio n  p rocedure .

B efore w ork ing  ou t a n o th e r  exam ple , we wish to show  th a t the  convo lu ­
tion opera tion  is com m utative  in the sense th a t it is irre lev an t w hich of the tw o 
sequences is fo lded  and  shifted. In d eed , if we begin  with (2.3.17) and  m ake a 
change in the  variab le  o f th e  sum m ation , from  k to  m , by defin ing  a new  index 
m — n — k,  th en  k =  n — m and  (2.3.17) becom es

CC

y(n) =  ^ 2  x(n — m)h{m)  (2.3.27)
m — —

Since m is a dum m y index, we m ay sim ply rep lace  m by k so th a t

y{n)  =  x ( n - k ) h ( k )  (2.3.28)

T he expression  in (2.3.28) involves leav ing  the im pulse resp o n se  h(k)  u n a lte red , 
w hile the  inpu t sequence is fo lded and  shifted . A lth o u g h  th e  o u tp u t v(n) in (2.3.28) 
is iden tical to (2.3.17), th e  p ro d u c t sequen ces in th e  tw o fo rm s o f th e  convolution  
fo rm ula are not identical. In fact, if we define the tw o p ro d u c t sequences as

v„(k) =  x (k )h(n  — k) 

wn(k) =  x(n — k)h(k)

it can be easily show n that

un(£) =  w n (n — k)

and th ere fo re ,

CC CC

v(n) =  ^  ^  ~  k)
k— — oc oc

since bo th  sequences contain  th e  sam e sam ple  values in a d iffe ren t arrangem en t. 

Example 2.3.3

Determine the output y(n) of a relaxed linear time-invariant system with impulse 
response

h(ri) =  a"u(n), \a\ < 1 

when the input is a unit step sequence, that is, 

x (n) = u(n)

Solution In this case both /j(n) and jc(n) are infinite-duration sequences. We use 
the form of the convolution formula given by (2.3.28) in which x (k) is folded. The
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h{k\ x(k)

T T  i  f
x ( - k )

l* 1

- 3  - 2 - 1  0

A(1 - k )

v( 2 — k)

(c)

1 1 2  3 4 * 

(b)

I'oCA')

- 1 1 -  A

i'i(i-)
> a

1
- 1 0  1 k 

1 ':(!>

I I

- 2 - 1 0 1 2 3 4 5  k

Figure 2.24 Graphical computation of convolution in Example 2.3.3.

sequences h(k), x(k). and x{—k) are shown in Fig. 2.24. The product sequences vo(k). 
v\(k), and v2(k) corresponding to x ( —k)h(k), x (l — k)h(k), and x(2 -  k)h(k) are illus­
trated in Fig. 2.24c, d. and e. respectively. Thus we obtain the outputs

v(0) =  1 

y(l) =  1 +  a 

y(  2) =  1 +  a +  a 1



82 Discrete-Time Signals and Systems Chap. 2

Clearly, for n > 0, the output is

y(n) =  1 +  a 4- a2 +  ■ • ■ +  a”
1 _ an+1 (2.3,29)

=  1 - a
On the other hand, for n < 0, the product sequences consist of all zeros. Hence

v(n) = 0  n < 0

A graph of the output y(n) is illustrated in Fig. 2.24f for the case 0 < a < 1. 
Note the exponential rise in the output as a function of n. Since |a | < 1, the final 
value of the output as n approaches infinity is

v(oo) =  lim v(n) = ------- (2.3.30)
n-*oc ' 1 — a

T o  sum m arize, the convo lu tion  form ula p rov ides us w ith a  m eans fo r com ­
pu ting  the response  o f a re laxed , linear tim e-invarian t system  to  any a rb itra ry  input 
signal x(n) .  It tak es o ne  o f tw o equ ivalen t form s, e ith e r  (2.3.17) o r  (2,3.28), w here 
jt(n) is the inp u t signal to  the system , h (n ) is th e  im pulse re sp o n se  of the system , 
and  y(n) is th e  output  o f th e  system  in response  to  th e  in p u t signal x (n). T he 
evaluation  o f th e  convo lu tion  fo rm ula  involves fou r o p e ra tio n s , nam ely: folding  
e ith er th e  im pulse resp o n se  as specified by (2.3.17) o r the inp u t sequence  as spec­
ified by (2.3.28) to  yield e ith e r  h ( —k) o r x { —k).  respectively , shif t ing the  folded 
se q uence  by n un its in tim e to  yield e ith er h{n — k ) o r x{n — k ). mult iplying  the 
tw o sequences to  yield th e  p ro d u c t sequence, e ith e r  x{k)h{n  — k)  o r x(n  -  k ) h( k ) , 
and  finally s u m m i n g  all th e  values in the p ro d u c t sequence  to  y ield  the o u tp u t v(n) 
of th e  system  a t tim e n. T h e  folding o p e ra tio n  is d o n e  only once. H ow ever, the 
o th e r  th ree  o p e ra tio n s  a re  re p e a te d  fo r all possib le  shifts — oc <  n <  oo in o rd e r  
to  ob ta in  y(n) fo r — oo <  n < oc.

2.3.4 Properties of Convolution and the Interconnection 
of LTI Systems

In th is section  we investigate  som e im p o rtan t p ro p e rtie s  o f convo lu tion  and in­
te rp re t these  p ro p e rtie s  in te rm s of in terconnecting  linear tim e-in v arian t system s. 
W e should  stress th a t these p ro p e rtie s  ho ld  fo r every  in p u t signal.

It is con v en ien t to  sim plify the  n o ta tio n  by using an  as te risk  to  d e n o te  the 
convolu tion  o p e ra tio n . T hus

OC

y(n)  = x{n)  * h(n) =  ^  x (k )h(n  — k)  (2.3.31)
Jt =  - O C

In th is n o ta tio n  th e  se q uence  follow ing the  asterisk  [i.e., the im pu lse  response  /i(«)] 
is fo lded  and  shifted . T he inpu t to  the  system  is ;c(n). O n  th e  o th e r  hand , we also 
show ed th a t

OC

>>(n) =  h{n) * x(n)  =  ^  h(k)x (n  -  k)  (2.3.32)
k=-oc
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h(n) < = >
hin) v ( n )

xin)

Figure 2.25 Interpretation of the commutative property of convolution.

In th is form  of the  convo lu tion  form ula, it is the inp u t signal th a t is fo lded. A lte r ­
natively. we m ay in te rp re t this form  of the convolu tion  fo rm ula  as resu lting  from  
an in te rch an g e  o f the ro les o f j:(n) and h(n).  In o th e r  w ords, we m ay reg ard  x(n)  
as the im pulse response  o f the  system  and  h(n)  as the excita tion  o r in p u t signal. 
F igure 2.25 illu stra tes  th is in te rp re ta tio n .

W e can view convo lu tion  m ore abstractly  as a m ath em atica l o p e ra tio n  b e ­
tw een two signal sequences, say x(n)  and  h(n),  th a t satisfies a n u m b er o f  p rop erties . 
T he p ro p e rty  em b o d ied  in (2.3.31) and (2.3.32) is called the  com m utative  law'.

Commutative law

jf(n) * h{n) = h(n) * x(n)  (2.3.33)

V iew ed  m ath em atica lly , the convolution  opera tio n  also satisfies the associa­
tive law, which can be s ta te d  as follows.

Associative law

[-v(/i) * /?[(«)] * h 2(/i) — x(n)  * [/*!(«) * (2.3.34)

F rom  a physical poin t o f view, we can in te rp re t x (n) as the inpu t signal to 
a lin ear tim e-in v arian t system  with im pulse response  /j|(/i) . T he  o u tp u t o f this 
system , d en o ted  as v i(n), becom es the inpu t to  a second lin ear tim e-invarian t 
system  with im pulse response  hzin).  T hen  the o u tp u t is

y(n)  — V] (n) * h2(n)

=  [j:(fi) * h\(n)]  * h2(n)

w hich is precisely  the left-hand  side of (2.3.34). T hus the  left-hand  side o f (2.3.34) 
co rre sp o n d s to  having tw o linear tim e-invarian t system s in cascade. N ow  the  right- 
hand  side of (2.3.34) ind icates tha t the  input x(n)  is app lied  to  an  equ ivalen t system  
having an im pulse response , say h(n),  which is equal to the convo lu tion  o f the two 
im pulse responses. T h a t is,

h(n) = h](n)  * h?(n)

and

y(n) =  x(n)  * h(n)

F u rth e rm o re , since the  convolu tion  o p era tio n  satisfies the co m m utative  p rop erty , 
one can in te rch an g e  the o rd e r  o f the tw o system s w ith respo n ses h\ (n)  and  hzin)  
w ithou t a lte rin g  the  overall in p u t-o u tp u t re la tionsh ip . F igure 2.26 graph ically  il­
lu stra te s  the  associative p ro p erty .
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xin) y(«) jr(n) h(n) = y{/i)

h\(n)  * h2(n)

(a)

x(n)
h,(n)

y</i)
h2(n) h t(n)

v(n)

(b)

Figure Z26  Implications of the associative (a) and the associative and commuta­
tive (b) properties of convolution.

Example 2.3.4
Determine the impulse response for the cascade of two iinear time-invariant systems 
having impulse responses

and

h \ («) =  ( j W " )

Solution To determine the overall impulse response of the two systems in cascade, 
we simply convolve h}{n) with h2(n). Hence

where h2(n) is folded and shifted. We define the product sequence 

v„(k) = h\(k)h2(n -  k)

=  (£)*(*)"-*

which is nonzero for k > 0 and n -  k > 0 or n > k > 0. On the o ther hand, for n < 0, 
we have v„(k) =  0 for all k, and hence

h{n) = 0, n < 0

For n > k > 0. the sum of the values of the product sequence v„(k) over all k yields 

hin) =
tscO

=  H r  

=  (i)"(2"+l - 1 )
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T he g en era liza tion  o f the associative law to m ore than  tw o system s in cascade 
follow s easily from  the d iscussion  given above. T hu s if we have L lin ear tim e-
invarian t system s in cascade with im pulse responses h\(u) .  h ^ i n ) ........ h L(n). there
is an eq u iv a len t linear tim e-invarian t system  having an im pulse response  tha t is 
equal to  the (L — l)-fo id  convo lu tion  of the im pulse responses. T h a t is.

h(n)  =  h \ { n ) * hzin)  * ■ ■ ■ * h L(n) (2.3.35)

T he com m utative  law im plies th a t the  o rd e r  in w hich the convolu tions are  p e r­
fo rm ed  is im m ateria l. C onversely , any linear tim e-invarian t system  can be d eco m ­
posed in to  a cascade in terconnection  o f subsystem s. A  m eth o d  for accom plishing 
the  d ecom position  will be described  la ter.

A  th ird  p ro p e rty  th a t is satisfied by the  convolu tion  o p e ra tio n  is the d istrib u ­
tive law, which m ay be s ta te d  as follows.

Distributive law

x i n )  * 4- =  .xin) * h\{n)  4- x in)  * hzin)  (2.3.36)

In te rp re te d  physically, this law im plies th a t if we have two linear tim e-
invarian t system s with im pulse responses h\ in)  and  /?;(») excited  by the sam e 
inpu t signal .r(/;), the sum of the two responses is identical to  the response of an 
overall system  with im pulse response

h i n ) =  )i\ in) 4- //:(/;)

T hus the overall system  is view ed as a parallel com bination  of the tw o linear 
tim e-invarian t system s as illu stra ted  in Fig. 2.27,

T he genera liza tion  o f (2.3.36) to  m ore than  two linear tim e-invarian t sys­
tem s in paralle l follow's easily by m athem atica l induction . T hus the in te rco n n ec ­
tion of L linear tim e-invarian t system s in para lle l w ith im pulse responses h\ in) .
h z i n ) .........h L{n) and  excited  by the sam e inpu t x i n )  is equ iv a len t to one overall
system  with im pulse response

L

h(n) — ^  hj in)  (2.3.37)
(=i

C onversely , any linear tim e-invarian t system  can be d ecom posed  into a paralle l 
in te rco n n ec tio n  o f subsystem s.

Figure 2.27 Interpretation of the distributive property of convolution: two LTI 
systems connected in parallel can be replaced by a single system with h(n)  =  

(n) + k2{n).
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2.3.5 Causal Linear Time-Invariant Systems

In  S ection  2.2.3 we defined  a causal system  as one w hose o u tp u t at tim e n depends 
only on p resen t and  past inpu ts bu t does n o t d ep en d  on fu tu re  inputs. In  o th er 
w ords, the o u tp u t o f the. system  at som e tim e in s tan t n, say n =  no, d ep en d s only 
on values o f jc(«) fo r n <  n0-

In the case o f a linear tim e-invarian t system , causality  can b e  tran sla ted  
to  a condition  on  the  im pulse response. T o  d e te rm in e  this re la tio n sh ip , le t us 
consider a linear tim e-invarian t system  having an  o u tp u t a t tim e  n =  no given by 
the convolu tion  fo rm ula

OC
v («o) =  ^ 2  h ( k ) x (n o ~ k )

k — - o c

Suppose tha t we subd iv ide th e  sum  in to  tw o sets o f term s, one se t involving p resen t 
and  p ast values o f th e  in p u t [i.e.. x{n)  for n <  n0] and  one se t involving fu tu re  
values o f the inpu t [i.e., n > no]. T hus we ob ta in

OC - I

y (n u) — ^ h ( k ) x ( n o  -  k) +  ^  h(k)x(nu -  k)
i=0  k — — oc

=  [/ ?(0)x(n()) +  h(\ )x(r tu  -  1) +  h ( 2 ) x ( n 0 -  2 ) +  ■ ■ •]

+  [/?( —1 )x(«(] +  1) +  h ( - 2 ) x ( n o  +  2)  +  ■■ ■]

W e observe th a t th e  term s in the first sum  involve jr(no), x(no  — 1).........w hich are
the p re sen t and  past values of the  inpu t signal. O n  th e  o th e r han d , the  term s in
the second  sum  involve the inp u t signal com ponen ts ;c(no +  l) ,  x { n o-f 2 ) .........Now,
if the  o u tp u t a t tim e n =  n 0 is to  d epend  only on th e  p re sen t an d  p ast inpu ts, then , 
clearly , the  im pulse response  o f the  system  m ust satisfy the  con d itio n

ft(n) = 0  n <  0 (2.3.38)

Since h{n)  is th e  response  o f the  re laxed  lin ear tim e-in v arian t system  to  a unit 
im pulse app lied  a t n =  0, it follow s th a t h(n)  =  0 fo r n < 0 is bo th  a necessary  
and a sufficient cond ition  for causality . H ence  an L T I  system is causal  i f  a n d  only  
i f  its impulse response is zero f o r  negative values o f  n.

Since for a causal system , h(n) =  0 fo r n < 0, th e  lim its on  th e  sum m atio n  of 
the convolu tion  fo rm ula  m ay be m odified to  reflect th is re stric tio n . T hus w e have 
the tw o equ ivalen t form s

OC

y(n)  =  ^  h(k)x (n  -  k) (2.3.39)
Jt=0

n
=  ^  x{k)h{n — k) (2.3.40)

k=~oc

A s ind icated  previously , causality  is req u ired  in any rea l-tim e  signal p ro cess­
ing app lication , since at any  given tim e n w e have n o  access to  fu tu re  values o f the
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inpu t signal. O nly  the p re se n t and  past values o f the inpu t signal are  available  in 
com puting  th e  p re sen t ou tp u t.

It is som etim es co n ven ien t to call a sequence th a t is ze ro  fo r n < 0, a causa!  
sequence , and  one th a t is n o n ze ro  fo r n < 0 and  n > 0. a noncausal  sequence.  This 
te rm ino logy  m ean s th a t such a sequence  could be the  unit sam ple response  of a 
causal o r a noncausal system , respectively .

If  the  inp u t to  a causal linear tim e-invarian t system  is a causal sequence  [i.e., 
if jr(n) =  0 fo r n < 0]. the lim its on th e  convolu tion  fo rm ula a re  fu rth er restric ted . 
In this case the tw o  eq u iv a len t form s of the  convolu tion  fo rm u la  becom e

n
y ( n ) =  ^  h(k)x (n — k) (2.3.41)

*=o
n

= - k )  (2.3.42)
*■=<)

W e observe th a t in this case, the lim its on the sum m ations for the tw o a lternative  
form s are  identical, and  the u p p e r lim it is grow ing with tim e. C learly , the response 
o f a causal system  to a causal inpu t sequence  is causal, since y(n)  — 0 for n < 0.

Example 2.3.5

Determine the unit step response of the linear time-invariant system with impulse 
response

h { n )  =  a " u ( n )  \a\ <  1

Solution Since the input signal is a unit step, which is a causal signal, and the system 
is also causal, we can use one of the special forms of the convolution formula, either
(2.3.41) or (2.3.42). Since x(n) =  1 for n > 0. (2.3.41) is simpler to use Because of the 
simplicity of this problem, one can skip the steps involved with sketching the folded 
and shifted sequences. Instead, we use direct substitution of the signals sequences in
(2.3.41) and obtain

y(n) = y ~ v
*=( I

1 -  a"*1 
1 -c i

and y(n) =  0 for n < 0. We note that this result is identical to that obtained in Ex­
ample 2.3.3. In this simple case, however, we computed the convolution algebraically 
without resorting to the detailed procedure outlined previously.

2.3.6 Stability of Linear Time-Invariant Systems

A s in d ica ted  prev iously , stab ility  is an im p o rtan t p ro p e rty  th a t m ust be considered  
in any p rac tica l im p lem en ta tio n  o f a system . W e defined an  a rb itra ry  relaxed  
system  as B IB O  stab le  if and  only if its o u tp u t sequence  y(«) is b o u n d ed  fo r every 
b o u n d ed  inp u t x(n) .



If  x(n)  is b o u n d ed , th e re  exists a co n stan t M x such th a t 

l* (n ) l  < M x < 0 0

Sim ilarly, if the  o u tp u t is bou n d ed , th e re  exists a co n stan t M y such th a t

| ^ ( n ) |  <  My <  OO

for all n.
N ow , given such a b o u n d ed  inpu t sequence  x(n)  to  a lin ea r  tim e-invarian t 

system , le t us investiga te  th e  im plications of th e  defin ition  o f stab ility  on  th e  ch ar­
acteristics of th e  system . T ow ard  th is end , we w ork  again w ith  the convolution  
fo rm ula OO

y(n)  =  £  h{k)x{n -  k )
k=—oc

If we ta k e  the  abso lu te  value of b o th  sides o f th is eq u a tio n , we ob tain
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Lv(«)| = Y  h(k)x (n  — k)
*  =  - O C

N ow , th e  abso lu te  value of the  sum  o f term s is alw ays less th a n  o r equal to the 
sum  of the abso lu te  values o f the term s. H en ce

OC

\y(n)\  < Y  IM*)II*(/1 -  fc)l
i = —oc

If  th e  inp u t is bou n d ed , th e re  exists a finite n u m b er M x such th a t |x(n)[ < M t , By 
su b stitu tin g  this u p p e r b o u n d  fo r x(n)  in the  e q u a tio n  above, we ob ta in

OC'

|y (n )| < M X Y  W *)l
k = -o c

F ro m  th is expression  we observe th a t the o u tp u t is b o u n d ed  if th e  im pulse response 
of th e  system  satisfies the  condition

OO

Sh =  Y  IAWI < 00 <2-3-43)
k= -o c

T h a t is, a linear t ime-invariant  sys tem is stable i f  its impulse  response is absolutely  
summable .  T h is cond ition  is n o t only sufficient b u t it is also n ecessary  to  ensu re  the 
stab ility  o f the  system . In d eed , we shall show  th a t if 5* =  00, th e re  is a b o unded  
in p u t for w hich th e  o u tp u t is n o t bou n d ed . W e choose  the  b o u n d e d  inpu t

■ h{n) ?  0
\h*(-n)\
0, h (n ) =  0

w here  h*(n)  is th e  com plex  con jugate  o f h(n).  I t  is sufficient to  show  th a t th e re  is 
one value o f n fo r w hich y(n)  is unb o u n d ed . F o r n =  0 w e  have

, < 0 , =  £ ;
*=“ 00^ k= —(x. 1 v /l

Thus, if Si, =  00, a bounded input produces an unbounded output since y(0) =  00.
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T he condition  in (2.3.43) im plies th a t the im pulse re sp o n se  h(n)  goes to zero 
as n ap p ro ach es infinity. A s a consequence , the o u tp u t o f the  system  goes to  zero  
as n ap p ro ach es infinity if the inpu t is set to zero  beyond  n >  n0. T o  p rove this, 
suppose th a t |j ( h ) | <  Mx for n < no and  x(n)  =  0 fo r n > no- T hen , at n =  no +  N,  
the  system  o u tp u t is

B u t th e  first sum  is zero  since *(«) =  0 fo r n > no- F o r th e  rem ain ing  part, we 
tak e  the  abso lu te  value o f the  ou tp u t, which is

This resu lt im plies tha t any excitation  at the  input to  the system , which is of a finite 
d u ra tio n , p roduces an o u tp u t th a t is “ tra n s ie n t” in n a tu re ; th a t is, its am plitude 
decays with tim e and dies ou t even tually , w hen the system  is stable .

Example 2.3.6

Determine the range of values of the parameter a for which the linear time-invariant 
system with impulse response

is stable.

Solution First, we note that the system is causal. Consequently, the lower index on 
the summation in (2.3.43) begins with k =  0. Hence

provided that \a\ < 1 . Otherwise, it diverges. Therefore, the system is stable if |a| < 1. 
Otherwise, it is unstable. In effect, h(.n) must decay exponentially toward zero as n 
approaches infinity for the system to be stable.

(no +  AO =  ^  h ( k ) x (n 0 + N  -  k) + ^  h {k )x (n0 + N  -  k)
*-=-oc

j oc I sc
y («0 +  AO| =  h(k)x(no + N  — £)j < |/i(/:)||jf(no + N  — £)|

< Mx W *)!
k = N

Now, as N  app ro ach es infinity.

and hence

lim ] \ {/i() + AO! =  0

hin) =  a"u(n)

Clearly, this geometric series converges to
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Example 23.7

Determine the range of values of a and b for which the linear time-invariant system 
with impulse response

. . .  ( a", n > 0
h(-n) =  w. n[ i f ,  n < 0

is stable.

Solution This system is noncasual. The condition on stability given by (2.3.43) yields

OC OC -1
t :  i*(«)f= ia i" +  y i  |fe,n

n = - o c  fi=s(J n =  - o c

From Example 2.3.6 we have already determined that the first sum converges for 
|a| < 1. The second sum can be manipulated as follows:

=  p(l  + p + p 2 + ■■■) =
I -  p

where p =  \f\b\  must be less than unity for the geometric series to converge. Conse­
quently, the system is stable if both \a\ < 1 and |fc| > 1 are satisfied,

2.3.7 Systems with Finite-Duration and Infinite-Duration 
Impulse Response

U p to this point we have characterized a linear time-invariant system  in terms of 
its im pulse response h(n).  It is also convenient, however, to subdivide the class 
of linear time-invariant system s into tw o types, those that have a finite-duration 
im pulse response (FIR ) and those that have an infinite-duration impulse response 
(IIR ). Thus an FIR  system  has an im pulse response that is zero  outside o f som e 
finite time interval. W ithout loss o f generality, we focus our attention on causal 
FIR systems, so that

h(n)  =  0 n <  0 and n > M  

The convolution formula for such a system  reduces to

u - 1

? (n ) =  H  h ^ x( n̂ ~  k ) 
t=0

A  useful interpretation o f this expression is obtained by observing that the output 
at any time n is sim ply a w eighted iinear com bination o f the input signal sam ples 
x(n), x{n  -  1 ) , ,  x (n  -  M  +  1). In other words, the system  sim ply w eights, by 
the values o f  the im pulse response h(k),  k =  0, 1, — 1, the m ost recent
M  signal sam ples and sum s the resulting M  products. In effect, the system  acts 
as a w indow  that views only the m ost recent M  input signal sam ples in forming 
the output. It neglects or sim ply “forgets” all prior input sam ples [i.e., x(n  — M ),
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x(n — M — 1). . . . ] .  T hus we say th a t an F IR  svstem  has a finite m em ory  of length-M  
sam ples.

In co n trast, an I IR  linear tim e-invarian t system  has an in fin ite -d u ra tio n  im ­
pulse response. Its  o u tp u t, based  on the convolu tion  form ula, is

w here causality  has b een  assum ed, a lthough  this assum ption  is no t necessary. Now. 
the system  o u tp u t is a w eigh ted  [by the im pulse response  *(/:}] linear com bination
of the inp u t signal sam ples .r(n), x{n -  1), x(n  — 2 ) ........ Since this w eigh ted  sum
involves the p re sen t and all the past inp u t sam ples, we say th a t the  system  has an 
infinite m em ory.

W e investiga te  the characteristics of F IR  and IIR  system s in m ore  detail in 
su b seq u en t chap ters.

2.4 DISCRETE-TIME SYSTEMS DESCRIBED BY DIFFERENCE 
EQUATIONS

U p to  this po in t we have trea ted  linear and tim e-invarian t system s th a t are  ch a r­
ac terized  by th e ir  unit sam ple  response h(n).  In tu rn . h(n)  allow s us to de te rm in e  
the o u tp u t v{n) of the system  for any given input sequence  jc(/i) by m eans o f the 
convolu tion  su m m ation .

In g enera l, th en , we have show n th a t any linear tim e-invarian t system  is c h a r­
ac terized  by th e  in p u t-o u tp u t  rela tionsh ip  in (2.4.1). M oreover, the convolu tion  
sum m ation  fo rm ula  in (2.4.1) suggests a m eans for the rea liza tion  o f the  system . 
In th e  case of F IR  system s, such a realization  involves ad d itions, m ultip lications, 
and  a finite n u m b er o f  m em ory  locations. C onsequen tly , an F IR  system  is readily  
im p lem en ted  directly , as im plied  by the convolution  sum m ation .

If the system  is IIR , how ever, its practical im p lem en ta tio n  as im plied  by 
convo lu tion  is clearly  im possib le, since it req u ires  an infinite n u m b er o f m em ­
ory locations, m ultip lica tions, and  add itions. A  q uestion  th a t n a tu ra lly  arises, 
th en , is w h e th e r o r n o t it is possible to  realize IIR  system s o th e r th an  in the 
form  suggested  by the  convolu tion  sum m ation . F o rtu n a te ly , the  answ er is yes. 
th e re  is a p rac tica l and  com pu ta tionally  efficient m eans fo r im p lem en ting  a 
fam ily o f IIR  system s, as will be d em o n s tra ted  in th is section . W ith in  the gen­
eral class of IIR  system s, this fam ily of d isc re te-tim e system s is m o re  co n ­
venien tly  d escrib ed  by d ifference equations. T h is fam ily o r subclass of IIR  
system s is very  useful in a variety  o f p ractical app lications, includ ing  the im p le­
m en ta tio n  of d ig ita l filters, an d  the m odeling  o f physical p h en o m en a  an d  physical 
system s.

v(n) =  ^>2h(k)x(n -  k )

(2.4.1)
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2.4.1 Recursive and Nonrecursive Discrete-Time Systems

A s ind icated  above, the  convolu tion  sum m ation  fo rm ula  exp resses the o u tp u t of 
the  lin ear tim e-invarian t system  explicitly and  only in te rm s o f the  inpu t signal. 
H ow ever, this n eed  no t be the case, as is show n here . T h e re  are  m any system s 
w here it is e ith e r  necessary  o r desirab le  to exp ress the  o u tp u t o f the  system  no t 
only in term s of the  p re sen t and  p ast values o f th e  inpu t, bu t also  in te rm s o f the 
a lread y  available p ast o u tp u t values. T h e  follow ing p ro b lem  illu stra tes  th is point.

Suppose th a t we wish to  com pu te  th e  cumulat ive average  o f a signal x(n)  in 
the in terval 0 < k <  n, defined as

1 "
v(n) = ------- « = 0 .  1, . . .

n +  1 ~—f.
(2.4.2)

A s im plied  by  (2.4.2), the com pu ta tio n  o f _v(n) req u ires  the  sto rag e  o f all th e  input 
sam ples x (k) for 0 < k < n. Since n is increasing , o u r m em ory  re q u irem en ts  grow  
linearly  w ith tim e.

O u r  in tu ition  suggests, how ever, th a t y(n)  can be co m p u ted  m ore  efficiently 
by utilizing the p rev ious o u tp u t value y(n — 1). In d eed , by a sim ple algebraic  
rea rran g em en t o f (2.4.2), we ob ta in

it—l
(« +  l)y (n )  =  x(k )  +  x (n)

= ny(n -  1) +  x{n)

and  hence

y(n)  = ■y(n -  1) +
1

-x(n) (2.4.3)
n +  1 ' n +  1'

N ow , th e  cum ulative average v(n) can be com p u ted  recursively  by  m ultip ly ing  the 
p rev ious o u tp u t va lue  y(n  -  1) by n/ (n  4-1), m ultip ly ing  th e  p re se n t inp u t x(n)  by 
1 / (n  +  1), and add ing  the  tw o products. T hus th e  co m p u ta tio n  o f  y (n) by m eans 
o f (2.4.3) req u ires  tw o m ultip lications, o ne  add itio n , and  o ne  m em o ry  location , as 
illu stra ted  in Fig. 2.28. T his is an exam ple  of a recursive system.  In  g enera l, a 
system  w hose o u tp u t v(n) a t tim e n d ep en d s on  any  n u m b er o f p as t o u tp u t values 
y(n -  1), y(n  -  2 ) , . . .  is called a recursive system .

t in)

Figure 2.28 Realization of a recursive cum ulative averaging system.
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T o  d e te rm in e  the com p u ta tio n  of the recursive system  in (2.4.3) in m ore 
detail, suppose th a t we begin the  p rocess w ith n =  0 and  p ro ceed  fo rw ard  in time. 
T hus, accord ing  to  (2.4.3). we ob ta in

and so on. If one grow s fatigued w ith this co m p u ta tio n  and  w ishes to  pass the 
p rob lem  to so m eo n e  else at som e tim e, say n =  no. the only in fo rm ation  th a t one 
n eeds to  p rov ide his o r h e r successor is the p ast value y(«o -  1) and  the new' input

and p ro ceed s forw ard  in tim e until som e tim e, say n =  n j. w hen he or she be­
com es fatigued  and passes the co m pu ta tional b u rd en  to  som eone else with the 
in fo rm ation  on the value _v(/?i — 1). and  so on.

T he po in t wc wish to  m ake in th is discussion is th a t if one wishes to  com pute 
the response  (in this case, the cum ulative average) of the system  (2,4.3) to an input 
signal x(n)  app lied  at n — tiu. we need  the value y (n (, -  1) and  the  input sam ples 
x(n)  for /? > /in. T he term  y(>i() — 1) is called the  initial condi t ion  for the system  in 
(2.4.3) and con ta in s all the in fo rm ation  n eed ed  to d e te rm in e  the response  o f the 
system  for n > « () to  the inpu t signal x (n ). in d ep en d en t o f w hat has occurred  in 
the past.

T he follow ing exam ple illustrates the  use o f a (n o n lin e ar) recursive system 
to  com pu te  the  square  roo t of a num ber.

Example 2.4.1 Square-Root Algorithm

Many computers and calculators compute the square root of a positive number A.
using the iterative algorithm

where j_i is an initial guess (estimate) of \/~A. As the iteration converges we have 
sn ~  s„_j. Then it easily follows that =  J~A.

Consider now the recursive system

which is realized as in Fig, 2.29. If we excite this system with a step of amplitude 
A [i.e.. x(n)  =  Au(n )] and use as an initial condition y(—1) an estimate of the 
response v(«) of the system will tend toward as n increases. Note that in contrast 
to the system (2.4.3), we do not need to specify exactly the initial condition. A rough 
estimate is sufficient for the proper performance of the system. For example, if we

y(0) -  jc(0)

v (l)  =  5.v(0) +  U ( l )

y(2) =  § y ( l ) +  i* (2 )

sam ples jr(n), j (/j +  1)........ T hus the successor begins with

(2.4.4)
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4n) -0---- -0
v(n -  I)

Figure Z29  Realization of the square-root system.

let A =  2 and y ( - l )  =  1, we obtain j(0 ) =  >-(1) =  1,4166667, v(2) =  1,4142157. 
Similarly, for y ( —1) =  1.5, we have v(0) =  1,416667, y(l) =  1.4142157. Compare 
these values with the %/2, which is approximately 1.4142136.

W e have now  in tro d u c ed  tw o sim ple recursive system s, w here th e  o u tp u t vf/i) 
depends o n  the p rev ious o u tp u t value y(n  — 1) an d  th e  c u rre n t in p u t ;r(n). B o th  
system s are  causal. In g enera l, we can fo rm ula te  m o re  com plex causal recursive 
system s, in which the  o u tp u t y ( n ) is a function  o f severa l past o u tp u t values and 
presen t an d  past inpu ts. T h e  system  shou ld  have a finite n u m b er o f delays or, 
equivalently , should  req u ire  a finite n u m b er o f s to rage  locations to  be p ractically  
im p lem en ted . T hus th e  o u tp u t o f a causal and  practically  rea lizab le  recursive 
system  can be expressed  in genera l as

y(n)  = F[y(n  — 1), y(n  — 2 ) , . . . ,  y(n — N) ,  x (n) ,  x (n  — 1 ) , . . . ,  x(n  — M)\  (2.4.5)

w here F [  ] d en o tes som e function  of its a rgum en ts. T his is a recu rsive  eq u a tio n  
specifying a p ro ced u re  fo r com pu ting  th e  system  o u tp u t in term s o f p rev ious values 
o f the  o u tp u t and  p resen t and  past inputs.

In  co n trast, if y{n)  d ep en d s only on  the  p re se n t and  p ast inp u ts , th en

y(n) =  F[x(n) ,  x ( n  — 1)........ x(rt — M)]  (2.4.6)

Such a system  is called  nonrecursive.  W e h asten  to  add  th a t the causal F IR  system s 
described  in Section  2.3.7 in te rm s o f the convo lu tion  sum  fo rm ula  have th e  form  
of (2.4.6). Indeed , the  co n vo lu tion  sum m ation  fo r a causal F IR  system  is

M

y(n)  =  -  *)
i=0

=  h(0)x(n)  -)- h ( \ ) x ( n  — 1) +  • - • +  h (M) x ( n  — M )

— F [j:(n ), x(n  — 1), . . . ,  x(n  — M )]

w here the  function  F[-] is sim ply a lin ear w eigh ted  sum  o f p re sen t an d  past inp u ts  
an d  the  im pulse response  values h(n),  0 <  n < M,  co n s titu te  the  w eigh ting  co ef­
ficients. C onsequen tly , th e  causal lin ear tim e-invarian t F IR  system s d escribed  by 
th e  convolution  fo rm u la  in S ection  2.3.7, a re  nonrecursive . T he basic  d ifferences 
betw een  nonrecu rsive  an d  recursive  system s a re  illu stra ted  in Fig. 2.30. A  sim ple 
inspection  o f th is figure reveals th a t  th e  fun d am en ta l d iffe ren ce  b e tw e e n  th ese  tw o
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x(n) F[Mn). xin -  1), V(H )

........ t i n  -  .Wl]

x{n) 1 1  ̂
| |

y{n)

K n ) ........... v(/i -  M)\

]

1---------------------------------1 Figure 2.30 Basic form for a causal
and realizable (a) nonrecursive and

(b) (b) recursive system.

system s is the feedback  loop in the  recursive system , which feeds back the o u tp u t 
of the system  in to  the input. T his feedback loop contains a delay  elem ent. The 
presence of this delay is crucial for the realizability  of the system , since the absence 
of this delay  w ould force the system  to com pute yin)  in term s of v(n).  which is 
not possible for discrete-tim e system s.

T he p resence  of the feedback  loop or, equivalently , the recursive n a tu re  of
(2.4.5) c rea tes an o th e r  im p o rtan t difference betw een recursive and nonrecursive 
system s. F o r exam ple, suppose th a t we wish to com pute the o u tp u t y(«o) of a 
system  w hen it is excited  by an input applied  at tim e n =  0. If  the system  is 
recursive, to com pute y («0). we first need  to  com pute all the p rev ious values y(0).
y ( l ) ........ y(«o -  1)- In co n trast, if the system  is nonrecursive. we can com pu te  the
o u tp u t y (n 0) im m ed ia te ly  w ithou t having y(no -  1), y(«o — 2 )........ In conclusion ,
the  o u tp u t o f a recursive system  should  be com pu ted  in o rd e r  [i.e., v(0), y ( l) ,  
y ( 2 ) . . . w hereas for a nonrecursive  system , the o u tp u t can be com p u ted  in any 
o rd e r  [i.e., y(200). y(15). y{3). y(300). etc.]. This fea tu re  is desirab le  in som e 
practical app lications.

2.4.2 Linear Time-Invariant Systems Characterized by 
Constant-Coefficient Difference Equations

In Section 2.3 we tre a te d  lin ear tim e-invarian t system s and  ch arac te rized  them  
in term s o f th e ir  im pulse responses. In this subsection  we focus ou r a tte n tio n  
on  a fam ily o f iin ear tim e-in v arian t system s described  by an in p u t-o u tp u t re la ­
tion  called  a d ifference  eq u a tio n  w ith co n stan t co eff ic ie n ts . System s described  
by constan t-coeffic ien t lin ear d ifference eq u a tio n s are  a subclass o f  the recursive 
and  nonrecu rsive  system s in tro d u ced  in the p reced ing  subsection . T o  bring  ou t 
the  im p o rtan t ideas, we begin  by  trea tin g  a sim ple recursive  system  describ ed  by 
a firs t-o rd er d ifference  equ a tio n .
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<*>

a Figure 131 Block diagram realization 
of a simple recursive system.

Suppose th a t we have  a recursive system  w ith an in p u t-o u tp u t eq u a tio n

w here a is a constan t. F ig u re  2.31 show s a block d iag ram  rea liza tio n  o f th e  system . 
In  com paring  th is system  w ith  the  cum ulative  averag ing  system  described  by the 
in p u t-o u tp u t e q u a tio n  (2.4.3), we observe  th a t th e  system  in (2.4.7) has a constan t 
coeffic ient (in d ep en d en t o f tim e), w h ereas the  system  d escribed  in (2.4.3) has tim e- 
v arian t coefficients. A s we will show , (2.4.7) is an  in p u t-o u tp u t eq u a tio n  for a 
linear tim e-invarian t system , w hereas (2.4.3) describes a lin ear tim e-v a rian t system .

N ow , suppose th a t we apply  an inpu t signal x(n)  to  th e  system  fo r n > 0. 
W e m ak e  no assum ptions ab o u t the  inp u t signal fo r n < 0, b u t we do  assum e 
th e  ex istence o f the  initial condition  v (—1). Since (2.4.7) d escribes the system  
o u tp u t im plicitly, we m ust solve this eq u a tio n  to  o b ta in  an exp licit expression  for 
th e  system  o u tp u t. S uppose th a t we com pute  successive values o f  y(n) fo r n > 0, 
beginn ing  w ith y(0), T hus

y (0) =  o j ( - l )  +  x(0)

v (l)  =  ay(0) +  jc(3 ) =  a2y ( - 1) + o j:(0 )  +  *(1)

y(2) =  o j ( l )  +  x(2)  =  o 3y (—1) + a 2jr(0) + a ^ ( l )  +  x(2)

y(n)  =  ay(n -  1) +  x(n)

=  e " +1y ( - l )  +  a"x(0)  +  fl"’ 1Jt(l) +  • ■ ■ +  ax(n  -  1) +  x(n)  

or, m ore com pactly ,

T h e  response  y(n)  o f th e  system  as given by th e  r ig h t-h an d  side o f (2.4.8) 
consists o f tw o parts. T he first p a rt, w hich con ta in s the  term  y ( —1), is a  re su lt of 
the  initial condition  y (—1) o f the system . T h e  second  p a r t is th e  response  o f the 
system  to  the in p u t signal x(n) .

I f  th e  system  is initially  re laxed  a t tim e n =  0, th en  its m em ory  (i.e., the 
o u tp u t o f  the delay) shou ld  b e  zero . H en ce  y (—1) =  0. T hus a recu rsive  system  is 
re laxed  if it s ta rts  w ith  ze ro  in itia l conditions. B ecau se  th e  m em o ry  o f the  system  
describes, in som e sense, its “ sta te ,” we say th a t th e  system  is a t ze ro  s ta te  and 
its co rre spond ing  o u tp u t is called  th e  zero-state response  o r  f o r c ed  response , and

y(n)  = ay(n -  1) +  x(n) (2.4.7)

n > 0 (2.4.8)
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is d e n o te d  by yzs(n). O bviously, the zero -sta te  response  o r fo rced  response o f the 
system  (2.4.7) is given by

V/jittf) — Y ^ a kx(n  — k) n > 0 (2.4.9)
*=()

It is in te restin g  to  no te  that (2.4.9) is a convo lu tion  sum m ation  involving the 
inpu t signal convolved  w ith the im pulse response

h(n) = a':u (n ) (2.4.10)

W e also observe  th a t the system  described  by the firs t-o rder d ifference equation  
in (2.4.7) is causal. A s a resu lt, the low er lim it on the convolu tion  sum m ation  in
(2.4.9) is k =  0. F u rth e rm o re , th e  condition  v (—1) =  0 im plies th a t the inpu t signal 
can be assum ed causal and hence the u p p er lim it on the convo lu tion  sum m ation  
in (2.4.9) is n.  since x(n  -  k)  =  0 for k > n. In effect, we have o b ta in ed  the  resull 
th a t the  re laxed  recursive system  described  by the  firs t-o rder d ifference equation  
in (2.4.7), is a linear tim e-invarian t IIR  svstem  w ith im pulse response given bv
(2.4.10).

N ow . suppose  that the system  described  by (2.4.7) is initially  n o n re laxed  [i.e.. 
y (— 1) ^  0] and the  input x(/i) =  0 for all //. T hen  the o u tp u t of the system  with 
zero  inpu t is called  the zero- input  response  or natural  response  and  is d en o ted  by 
yZj(/j). F rom  (2.4.7). with ,v(») =  0 for — oc < n < oc . we ob ta in

\Y,OM =  « ',+ l y (  — 1) n  >  0  (2.4.11)

W e observe  th a t a recursive system  w ith non zero  initial cond ition  is non relaxed  
in the sense th a t it can p ro d u ce  an o u tp u t w ithou t being  excited . N ote that the 
zero -in p u t response  is due to  the m em ory  of the system .

T o  sum m arize , the zero -in p u t response  is o b ta in ed  by se ttin g  the input signal 
to  zero , m aking  it in d ep en d en t of the inpu t. It d ep en d s only on  the n a tu re  of the 
system  and  the  initial condition . T hus the ze ro -in p u t response  is a characteristic  of 
the system  itself, and  it is also know n as the  natural  o r f ree response  of the  svstem . 
O n the o th e r  hand , the zero -sta te  response d ep en d s on the n a tu re  of the system  
and the inpu t signal. Since th is o u tp u t is a response  forced u p o n  it by the input 
signal, it is usually  called the f orced  response  of the  system . In general, the  total 
response  o f the system  can be expressed  as v(n) =  y Zi ( n )  +  .Vzs( n) .

T h e  system  described  by the firs t-o rder d ifference  e q u a tio n  in (2.4.7) is the 
sim plest possib le recursive system  in the general class o f recu rsive  system s d e­
scribed by lin ear constan t-coeffic ien t d ifference  equations . T h e  general form  for 
such an eq u a tio n  is

S  M

v(/i) =  — ^  ai,y{n -  k) -j- ^  bkx(n  -  k)  (2.4,12)
i-=l k=0

or, equ ivalen tly ,
Ar M

' Y a ky{n -  k) =  ' Y ^ b kx(n -  k) a0 m 1 (2.4.13)
Jc=0 *=0
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T he in teger N  is called  th e  order  o f the d ifference eq u a tio n  o r the  o rd e r  of the 
system . T he negative sign on  the righ t-hand  side o f (2.4.12) is in tro d u c ed  as a 
m a tte r  o f conven ience to  allow  us to  express the d ifference eq u a tio n  in (2.4.13) 
w ithou t any negative signs.

E q u a tio n  (2.4.12) expresses the  o u tp u t of the system  at tim e rt d irectly  as
a w eigh ted  sum  of past o u tp u ts  \ {n  -  1), y(n  -  2 ).........y(/i -  N )  as well as past
and p resen t inp u t signals sam ples. W e observe th a t in o rd e r to  d e te rm in e  y(n)  
for n >  0, we need  th e  inp u t x(n)  for all n > 0, and  the initial co nd itions y ( —1), 
y (—2), —  y ( —N) .  In o th e r  w ords, the initial cond itions su m m arize  all th a t we 
need  to  know  ab o u t the  p as t h istory  o f the response  o f the system  to  com pu te  
the p resen t and fu tu re  o u tp u ts . T he genera l so lu tion  o f the  /V -order constan t- 
coefficient d ifference e q u a tio n  is considered  in the follow ing subsection .

A t this po in t we re s ta te  the  p ro p erties  of linearity , tim e invariance , and  
stability  in the co n tex t o f recursive system s d escribed  by linear co n stan t-coeffic ien t 
d ifference equations. A s we have observed , a recursive system  m ay  be relaxed  or 
nonre laxed , dep en d in g  on  the  initial conditions. H ence  the defin itions o f these 
p ro p erties  m ust tak e  in to  acco u n t the presence  o f the initial cond itions.

W e begin w ith the  defin ition  o f linearity . A  system  is lin ear if it satisfies the  
follow ing th ree  req u irem en ts:

1. T he to tal response  is equal to  the  sum  of the ze ro -in p u t and  zero -sta te  re ­
sponses [i.e.. y(n)  =  y7.\(n) +  yzs(n)].

2. T he princip le o f superp o sitio n  applies to  the zero -sta te  re sp o n se  (zero-state 
linear).

3. T he princip le o f superp o sitio n  app lies to  the zero -inpu t re sp o n se  (zero- input  
linear).

A system  th a t does no t satisfy all three se p a ra te  req u irem en ts  is by defin ition  
non linear. O bviously, for a re laxed  system , yZj(n) =  0, and  th u s  re q u ire m e n t 2, 
which is the defin ition  o f linearity  given in Section 2.2.4, is sufficient.

W e illustrate  th e  ap p lica tion  o f these req u irem en ts  by a sim p le  exam ple.

Example 2.4.2

Determine if the recursive system defined by the difference equation 

v(n) =  av(n — 1)4- x(n)

is linear.

Solution By combining (2.4.9) and (2.4.11), we obtain (2.4.8), which can be expressed 
as

y(n) = yzi(n) +  y*(n)

Thus the first requirement for linearity is satisfied.
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To check for the second requirement, let us assume that ,t(n) =  +
Then (2.4.9) gives

Hence y„(/i> satisfies the principle of superposition, and thus the system is zero-state 
linear.

Now let us assume that y (— 1) =  q vj(— 1) 4- f2y;( —1). From (2.4.11) we obtain

Hence the system is zero-input linear.
Since the system satisfies all three conditions for linearity, it is linear.

A lth o u g h  it is som ew hat tedious, the p ro ced u re  used in E xam ple 2.4,2 to 
d em o n stra te  linearity  for the  system  described  by the  firs t-o rder d ifference eq u a ­
tion, carries over directly  to  the general recursive system s described  by the constant- 
coefficient d ifference e q u a tio n  given in (2.4.13). H ence , a recursive system 
described  by the  linear d ifference  eq u a tio n  in (2.4.13) also satisfies all th ree  con ­
d itions in the  defin ition  o f linearity , and  th ere fo re  it is linear.

T he nex t q uestion  th a t arises is w he th er o r  no t the causal linear system  
described  by the linear constan t-coeffic ien t difference eq u a tio n  in (2.4.13) is tim e 
invarian t. T h is is fairly easy, w hen dealing  w ith system s d escribed  by explicit 
in p u t-o u tp u t m ath em atica l re la tionsh ips. C learly , the system  described  by (2.4.13) 
is tim e invarian t because the  coeffic ients ak and  bk are  constan ts. O n  th e  o th er 
han d , if one o r m ore o f these  coefficients d ep ends on  tim e, the system  is tim e 
varian t, since its p ro p e rtie s  change as a function  of tim e. T hus we conclude that 
the recursive sys tem described by  a linear constant-coeff icient  di f ference equat ion is 
linear an d  t ime invariant.

T he final issue is the stability  of the recursive system  d escribed  by the linear, 
constan t-coeffic ien t d ifference  eq u a tio n  in (2.4.13). In Section 2.3.6 we in troduced  
the concep t of b o u n d ed  in p u t-b o u n d e d  o u tp u t (B IB O ) stab ility  fo r re laxed  sys­
tem s. F o r n o n re lax ed  system s th a t m ay b e  non linear, B IB O  stability  should  be 
view ed w ith som e care. H ow ever, in the  case o f a linear tim e-invarian t recursive 
system  d escribed  by the  linear constan t-coeffic ien t d ifference  eq u a tio n  in (2.4.13), 
it suffices to  s ta te  th a t such a system  is B IB O  stab le  if and  only if for every 
bou n d ed  inpu t and  every  b o u n d ed  initial cond ition , the to ta l system  response  is 
b o unded .

*={}

=  ('iy^’(n) + C2V^'(n)

1) 4- C;V;(—1)]

=  vi (—1)4- v; ( —1)

=  Ci v'i '(n) +  r ;y ’̂ (/i)
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Example 2.43

Determine if the linear time-invariant recursive system described by the difference 
equation given in (2.4.7) is stable.

Solution Let us assume that the input signal x(n) is bounded in amplitude, that is, 
i*(n)l < < oc for all n > 0. From (2.4.8) we have

If n is finite, the bound Mv is finite and the output is bounded independently of the 
value of a. However, as n -*• oo, the bound My remains finite only if |aj < 1 because 
|a |B -»■ 0 as n -*• oc. Then M y =  Msj(\  -  |o|).

Thus the system is stable only if \a\ < 1.

For the sim ple first-order system  in Exam ple 2.4,3, we w ere able to express 
the condition for B IB O  stability in terms o f the system parameter a. namely \a\ < 1. 
We should stress, how ever, that this task becom es m ore difficult for higher-order 
systems. Fortunately, as we shall see in subsequent chapters, other sim ple and 
m ore efficient techniques exist for investigating the stability o f recursive systems.

2.4.3 Solution of Linear Constant-Coefficient Difference 
Equations

G iven a linear constant-coefficient d ifference equation as the input-output rela­
tionship describing a linear time-invariant system, our objective in this subsection  
is to determ ine an explicit expression for the output y{n).  T he m ethod that is 
developed  is termed the direct method .  A n  alternative m ethod based on the z- 
transform is described in Chapter 3. For reasons that will becom e apparent later, 
the z-transform approach is called the indirect m ethod.

Basically, the goal is to determ ine the output y(n), n > 0, o f  the system  given 
a specific input x ( n ), n > 0, and a set o f initial conditions. T he direct solution  
m ethod assumes that the total solution is the sum of tw o parts:

y(n)  =  yh(n) +  }'r (n)

The part y/,(n) is known as the hom o g en eo u s  or com plem entary  solution, whereas 
yp(n) is called the part icular  solution.

The homogeneous solution of a difference equation. W e begin the 
problem  o f solving the linear constant-coefficient d ifference equation  given by

j v{n J | < |a',+l_y(—1)| +  ^  akx(n -  k) , n > 0
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(2.4.13) bv assum ing th a t the inpu t x(n) =  0. T hus we will first o b ta in  the so lu tion
to the  homogeneous  di f ference equat ion

\
J 2 a ky ( n - k )  = 0 (2.4.14)
*=(>

T he p ro ced u re  fo r solving a linear constan t-coeffic ien t d ifference equation  
directly  is very sim ilar to the p ro ced u re  fo r solving a iin ear constan t-coeffic ien t 
d ifferen tia l eq u a tio n . B asically, we assum e th a t th e  so lu tion  is in the  form  of an 
ex p o n en tia l, th a t is.

yi,{n) =  a" (2.4.15)

w here the subscrip t h on  \ {n)  is used to  den o te  th e  so lu tion  to  the hom ogeneous 
d ifference equ a tio n . If we substitu te  this assum ed so lu tion  in (2.4.14), we ob tain  
the  polynom ial eq u a tio n

= 0
fc=U

or

k" A (k* + ci)k^ ! +  a2k^  * +  • • - +  q n —\k  +  a w ) =  0 (2.4.16)

T he polynom ial in p a ren th ese s is called the characteristic po l ynomi al  o f the
system . In g enera l, it has N  roots, which we d e n o te  as Xi. k 2.........k ^ .  T he roo ts
can be real o r com plex valued. In p rac tice  the coeffic ients a \ , a 2........ are  usually
rea l. C om plex -valued  roo ts occur as com plex-con jugate  pairs. Som e of th e  N  roo ts 
m ay be identical, in which case we have m ultip Je-o rder roo ts.

F o r  the  m om en t, let us assum e th a t the  roo ts a re  d istinct, th a t is, th e re  are 
no  m u ltip le -o rd e r  roo ts. T hen  the  m ost general so lu tion  to  the  hom ogeneous 
d ifference  eq u a tio n  in (2.4.14) is

yh(n) = C\ k \  +  C2k 2 +  • ■ ■ +  C^k^ ,  (2.4.17)

w here C i. C2.........C s  are  w eighting  coefficients.
T h ese  coeffic ients are  d e te rm in ed  from  th e  in itial con d itio n s specified fo r the 

system . Since th e  inpu t jr(n) =  0. (2.4.17) can be used to  ob ta in  th e  zero- input  
response  o f the  system . T h e  follow ing exam ples illu stra te  the  p ro ced u re .

Example 2.4.4

Determine the homogeneous solution of the system described by the first-order dif­
ference equation

_v(n) +  a\y(rt — 1) =  x(n) (2.4.18)

Solution The assumed solution obtained by setting x(n)  =  0 is

y*(n) =  V
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When we substitute this solution in (2.4.18), we obtain [with x(n) =  0]

X -f-12] An  ̂ =  0 

A" *(A +  ai) =  0

A = —O)

Therefore, the solution to the homogeneous difference equation is

=  CA" =  C (-a ,)"  (2.4.19)

The zero-input response of the system can be determined from (2.4,18) and 
(2.4.19). With x(n) = 0, (2.4.18) yields

v(0) =  -a, v ( - l )

On the other hand, from (2.4,19) we have

v*(0) =  C

and hence the zero-input response of the system is

Vii(«) =  (—£i)n+1 v{—1) n > 0 (2.4.20)

With a =  —ai, this result is consistent with (2.4,11) for the first-order system, which 
was obtained earlier by iteration of the difference equation.

Example 2AS
Determine the zero-input response of the system described by the homogeneous 
second-order difference equation

y(«) -  3y(n -  1) -  4y(n -  2) =  0 (2.4.21)

Solution First we determine the solution to the homogeneous equation. We assume 
the solution to be the exponential

yh(n) = X"

Upon substitution of this solution into (2.4.21), we obtain the characteristic equation

a" -  3xn- ' -  4 r ~ 2 =  o 

A"-2(X2 — 3A — 4) = 0

Therefore, the roots are X =  - 1 ,  4, and the general form of the solution to the 
homogeneous equation is

}7i(n) =  CjX" + C 2X2
(2.4.22)

=  C1( - i r  +  C2(4)"

The zero-input response of the system can be obtained from the homogenous 
solution by evaluating the constants in (2.4.22), given the initial conditions y (—1) and 
y ( ~ 2). From the difference equation in (2.4.21) we have

y(0) =  3y(—1) +  4y(—2) 

y(l) =  3v(0) +  4_y (— 1)

=  3 [ 3 y ( - l ) + 4 y ( - 2 ) ]  +  4 y ( - l )

=  13y(—1) +  l2y(—2)
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On the other hand, from (2.4.22) we obtain 

v(0> =  C) +  C;

V( 1 I = -Cl +4C;

By equating these two sets of relations, we have

C i+ C ;  =  3_v( —1) + 4y(—2)

- C ,+ 4 C ;  =  13 v{ — 1) + 12 y( —2)

The solution of these two equations is

Ci =  —7 v( —1 ) +  ? v ( - 2 )

C; =  X .V (-l) +  T.v( -2 )

Therefore, the zero-input response of the system is

v,i(n) =  [ —5 v( — 1 > -  i v(-2)](-l) ''
(2.4.23)

+ [ x .v ( - l » +  t.v(-2)](4>" n > 0 

For example, if v{—2) =  0 and y ( - l )  =  5. then C| =  —1, C: = 16. and hence 

y-,i(H) =  ( -1 )"* 1 +  (4)"+: n > 0

T hese  exam ples illustrate  the m eth o d  for ob ta in ing  the hom og en eo u s so lu tion  
and the zero -inpu t response  o f the  system  w hen the characteristic  equation  con tains 
d istinct roots. O n the o th e r  hand , if the  characteristic  eq uation  con ta ins m ultip le  
roo ts, the form  of the so lu tion  given in (2.4.17) m ust be m odified. F or exam ple, if 
ai is a ro o t o f m ultip licity  m,  then  (2.4.17) becom es

\h(i i) =  Ci A.'.' +  C 2/iX’! +  Cv;:a',' +  ■ ■ • +  Cm>7n'~lX'!
(2.4.24)

+  Cm+\)"m+\ +  ■ • • +  C^Kl

The particular solution of the difference equation. T he p a rticu la r so ­
lu tion  \ p (n) is req u ired  to satisfy the d ifference equ a tio n  (2.4.13) for the specific 
input signal x (n ). n > 0. In o th e r  w ords, y p(n) is any so lu tion  satisfying

N M

' Y ^ a kyp(n -  k) — ' Y ^ b kx(n  -  k) an — 1 (2.4.25)
A-0 *=0

T o solve (2.4.25). we assum e for yp (n), a form  that d ep en d s on  the  form  o f the 
inpu t j:(h). T he follow ing exam ple illustrates the p rocedure .

Example 2.4.6

Determine the particular solution of the first-order difference equation

y(n) + fliy(n -  1) =  x(n).  | f l i | <l  (2,4.26)

when the input x(n) is a unit step sequence, that is.

x ( n )  =  u ( n )
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Solution Since the input sequence x(n)  is a constant for n > 0. the form of the solu­
tion that we assume is also a constant. Hence the assumed solution of the difference 
equation to the forcing function x(n),  called the particular solution of the difference 
equation, is

vr (n) =  Ku(n)

where A- is a scale factor determined so that (2.4.26) is satisfied. Upon substitution 
of this assumed solution into (2.4.26). we obtain

Kuin)  + d]Ku{,n — 1) =  u(n )

To determine K, we must evaluate this equation for any n > 1. where none of the 
terms vanish. Thus

K  -t- O] K — 1

1
K = --------

l + ^ i

Therefore, the particular solution to the difference equation is

v (n) =  --------u(n) (2.4.27)
' ’ 1 +fii

In this exam ple, the  in p u t * (« ). n >  0. is a constan t and  th e  form  assum ed 
for the particu lar so lu tion  is also a constan t. If x{n)  is an ex p o n en tia l, we w ould 
assum e th a t the  particu iar so lu tion  is also an ex p o n en tia l. If x{n)  w ere  a sinusoid , 
th en  >■/,(«) w ould also  be a sinusoid. T hu s o u r assum ed form  fo r  the  particu la r 
so lu tion  takes th e  basic fo rm  of th e  signal x{n).  T ab le  2.1 p ro v id es the general 
form  of the particu la r so lu tion  for several types of excita tion .

Example 2.4.7

Determine the particuiar solution of the difference equation 

v(n) =  | y(n -  1) -  £ v(w -  2) +  x(n) 

when the forcing function x(n) = 2". n > 0 and zero elsewhere.

TABLE 2.1 GENERAL FORM OF THE PARTICULAR 
SOLUTION FOR SEVERAL TYPES OF INPUT 
SIGNALS

Input Signal, Particular Solution,
x(n) vr (n)

A (constant) K
AM" KM"
AnM Kan” + K ^ " - ' 1 + . . .  + KM

AnnM An(Ki)nM + K\ttM 1
A cos Wf>n 
A sin a>on Kj cos toon -I- K2 sin won
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Solution The form of the particular solution is

yp (n) = K2n n > 0

Upon substitution of yP(n) into the difference equation, we obtain

K2"u(n)  =  -  1) -  I K 2 n- 2u(n -  2 ) +  2"« (« )

To determine the value of K,  we can evaluate this equation for any n > 2, where 
none of the terms vanish. Thus we obtain

4A" =  \ (2K)  -  i f f  + 4

and hence K =  Therefore, the particular solution is

yn(n) =  ^2" n > 0

W e have now  d em o n s tra ted  how  to  d e te rm in e  the  tw o co m ponen ts o f the 
so lu tio n  to  a d ifference eq u a tio n  w ith constan t coefficients. T h ese  tw o com ponents 
are the  hom og en eo u s so lu tion  and th e  p articu la r  so lu tion . F rom  these  two com ­
ponen ts , we co n stru c t the to tal so lu tion  from  w hich we can ob ta in  the zero -sta te  
response .

The total solution of the difference equation. T h e  linearity  p ro p e rty  o f 
the linear constan t-coeffic ien t d ifference eq u a tio n  allow s us to  add  the h om oge­
n eo u s  so lu tion  and  the p articu la r  so lu tion  in o rd e r  to  o b ta in  th e  total solution.  T hus

v(«) = y  h(n) + \ p(n)

T h e  re su ltan t sum  v(n) con tains the  co n stan t p a ra m e te rs  {C/} em b o d ied  in th e  
h om og en eo u s so lu tion  com ponen t >v,(n). T hese  co n s tan ts  can  be d e te rm in ed  to 
satisfy th e  initia l conditions. T he follow ing exam ple  illu stra tes  the p rocedure ,

Example 2.4.8

Determine the total solution y(/i), n > 0, to the difference equation

y(n) +aiy(n -  1) =  x(n) (2.4.28)

when x(n) is a unit step sequence [i.e., x(n) = «(«)] and y (—1) is the initial condition. 

Solution From (2.4,19) of Example 2.4.4, the homogeneous solution is 

y*(n) = C(-fli)" 

and from (2.4.26) of Example 2.4.6, the particular solution is

Consequently, the total solution is

y(n) = C(-ai)"  + — -—  n > 0 (2.4.29)
1 +  fli

where the constant C is determined to satisfy the initial condition y ( - l ) .
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In particular, suppose that we wish to obtain the zero-siate response of the 
system described by the first-order difference equation in (2.4.28). Then we set 
y( —1) =  0. To evaluate C. we evaluate (2.4.28) at n = 0 obtaining

y (0 )  +  Oi  y (  — 1 ) =  1

y(0) =  1

On the other hand, (2.4.29) evaluated at n =  0 yields

v(0) =  C 4- —i —
1 + ax

Consequently.
1

C +  --------  =  1
1 +  «i

c a i
1 + a i

Substitution for C into (2.4.29) yields the zero-state response of the system

l - f - f l i ) " * 'Vi* (/i) =  ---- —-----—  n > 0
1 +  «i

If we evaluate the param eter C in (2,4.29) under the condition that y( —1) ^  0. the 
total solution will include the zero-input response as well as the zero-state response 
of the system. In this case (2.4.28) yields

y(0) + a]V( — 1 ) =  1

y (0) =  — fliy( — 1) 4- 1

On the other hand. (2.4.29) yields

]
1 +  U\

By equating these two relations, we obtain

C + — ^—  =  —ai v(— 1) 4- 1 
1 4 - a ,

C =  -g ]  v( 1) +  - —
1 4-  a  ]

Finally, if we substitute this value of C into (2.4.29). we obtain

y(n) =  (—a , r +1y(—1) +  -— ^ —  n > 0
1 + a) (2.4.30)

=  +  V z s ( n )

W e observe th a t the system  response  as given by (2.4.30) is consisten t with 
the response  y(n)  given in (2.4.8) for the firs t-o rder system  (w ith a =  - o i ) .  which 
was o b ta in ed  by solving th e  d ifference eq u a tio n  iterative ly . F u rth e rm o re , we no te  
th a t the  value o f the  co n stan t C  d ep en d s b o th  on  the initial cond ition  y (—1) and  
on th e  excita tion  function . C onsequen tly , the  value o f C  in fluences bo th  the  zero- 
inpu t response  and  th e  zero -sta te  response . O n  the  o th e r  h an d , if we wish to
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obtain the zero-state response only, we simply solve for C under the condition  
that y ( - l )  =  0, as dem onstrated in Exam ple 2.4.8.

We further observe that the particular solution to the difference equation can 
be obtained from the zero-state response o f the system. Indeed, if |o]| <  1, which 
is the condition for stability o f the system, as will be shown in Section 2.4.4, the 
limiting value o f >’zs(«) as n approaches infinity, is the particular solution, that is,

1» ( n )  =  lim >zs(«) =  ---------
n-*Oo 1 + a i

Since this com ponent o f  the system response does not go  to zero as n approaches 
infinity, it is usually called the steady-state response  o f the system. This response  
persists as long as the input persists. The com ponent that d ies out as n approaches 
infinity is called the transient response  o f the system.

Example 2.4.9
Determine the response y(n), n > 0, of the system described by the second-order 
difference equation

v(n) -  3y(n -  1) -  4v(n -  2) =  x(n ) +  2x(n -  1) (2.4.31)

when the input sequence is

x(n) =4"u(n)

Solution We have already determined the solution to the homogeneous difference 
equation for this system in Example 2.4.5. From (2.4.22) we have

y*(n) =  C , ( - l ) n + C 2(4)n (2.4.32)

The particular solution to (2.4.31) is assumed to be an exponential sequence of the 
same form as x(n).  Normally, we could assume a solution of the form

yp(n) = K(4,)au(n)

However, we observe that » (n )  is already contained in the homogeneous solution, 
so that this particular solution is redundant. Instead, we select the particular solution 
to be linearly independent of the terms contained in the homogeneous solution. In 
fact, we treat this situation in the same manner as we have already treated multiple 
roots in the characteristic equation. Thus we assume that

yp(n) =  Kn{4)"u(n) (2.4.33)

Upon substitution of (2.4.33) into (2.4.31), we obtain

Kn(4)"u(n) - 3 K ( n -  l)(4),' - 1u(n -  1) -  4 K{n -  2)(4)n- 2u(n -  2)

=  (4)"u(n) +  2(4)"-1m(/i — 1)

To determine K , we evaluate this equation for any n > 2, where none of the 
unit step terms vanish. To simplify the arithmetic, we select n =  2, from which we 
obtain K =  | .  Therefore,

yP{n) «  |rt(4)n«(/l) (2.4.34)
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The total solution to the difference equation is obtained by adding (2.4.32) to

where the constants C\ and C2 are determined such that the initial conditions are 

satisfied. To accomplish this, we return to (2.4.31), from which we obtain

v(0) =  3y (- l) + 4y(—2) + 1

y (1) =  3v(0) + 4_v(-l) + 6

=  13y(-l) + 12y(-2) + 9

On the other hand, (2.4.35) evaluated at n =  0 and n =  1 yields

y(0) =  Ci + C2

y (l) =  -C] + 4C2 + f

We can now equate these two sets of relations to obtain C\ and C2. In so doing, we 

have the response due to initial conditions y(—1) and y (—2) (the zero-input response), 

and the zero-state or forced response.

Since we have already solved for the zero-input response in Example 2.4.5. we 

can simplify the computations above by setting v(—1) =  y(—2) =  0. Then we have

C, + C; =  1

-C l + 4 C2 + f  = 9

Hence C : =  — ̂  and C2 =  Finally, we have the zero-statc response to the forcing 

function =  (4)"«(n) in the form

The total response of the system, which includes the response to arbitrary initial 

conditions, is the sum of (2.4.23) and (2.4.36).

2.4.4 The Impulse Response of a Linear Time-Invariant 
Recursive System

T he im pulse response  o f a linear tim e-invarian t system  w as p rev iously  defined as 
the  response  o f the system  to  a un it sam ple excita tion  [i.e., x (n ) =  <5(n)]. In  the 
case o f a recursive system , h ( n ) is sim ply equal to  the  ze ro -s ta te  resp o n se  o f the 
system  w hen the inp u t j:(n) =  <5(n) and th e  system  is initially re laxed .

F o r exam ple, in the sim ple firs t-o rder recursive  system  g iven  in (2.4.7), the 
zero -sta te  response  given in (2.4.8), is

(2.4.34). Thus

y(«) — C](—1)" + C;(4)n + |w(4)" n > 0 (2.4.35)

vB(n) = + 5<4)" + H 4)" n Z 0 (2.4.36)

n
(2.4.37)

*=o
With jr(n) =  i (« )  is substituted into (2.4.37), we obtain

n
yzs(n) =  Y 2 a k8(n -  k)

=  a n n  >  0
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H en c e  the  im pulse response  o f the firs t-o rder recu rsive  system  described  by 
(2.4.7) is

h(n) = a nu(n)  (2.4.38)

as in d ica ted  in Section  2.4.2.
In  the  g en era l case o f an  arb itrary , linear tim e-invarian t recu rsive  system , the 

ze ro -s ta te  resp o n se  exp ressed  in te rm s of the  convo lu tion  sum m atio n  is

>’zs(n) — ^ 2 h ( k ) x ( n  — k) n > 0 (2.4.39)
i=0

W hen  the  in p u t is an  im pulse [i.e., * (« ) =  <5(«)], (2.4.39) red u ces to

Vzs(n) =  h(n)  (2.4.40)

N ow , let us consid er the p ro b lem  of d e te rm in in g  the  im pulse response  h i n ) given a 
linear constan t-coeffic ien t d ifference eq u a tio n  descrip tion  o f the system . In term s 
o f o u r  d iscussion  in the p reced ing  subsection , we have es tab lished  the fact tha t the 
to ta l resp o n se  o f  the  system  to any excitation  function  consists o f the sum  of two 
so lu tions o f th e  d ifference equation : th e  so lu tion  to  the ho m o g en eo u s equation  
plus the  p a rticu la r  so lu tion  to  the  excita tion  function . In th e  case w here the exci­
ta tio n  is an im pulse, the p a rticu la r so lu tion  is zero , since x ( n )  =  0 for n > 0. that is.

yp(n) =  0

C o n seq u en tly , the response  o f the system  to  an im pulse consists only o f the so lu ­
tio n  to  the hom og en eo u s equ a tio n , w ith the (Q )  p a ra m e te rs  ev aluated  to  satisfy 
th e  initial cond itions d ic ta ted  by the  im pulse. T he follow ing exam ple illustrates 
th e  p ro ced u re  fo r ob ta in in g  h(n)  g iven th e  d ifference e q u a tio n  fo r the system . 

Example 2.4.10

D eterm ine the impulse response h(n) for the system described by the second-order 
difference equation

y(n ) — 3v(n  — 1) — 4y («  — 2) =  x ( n )  +  2 x i n  — 1) (2.4.41)

Solution We have already determined in Example 2.4.5 that the solution to the 
homogeneous difference equation for this system is

^ (n )  =  C, (-1 )" +  C2(4)" n > 0 (2.4.42)

Since the particular solution is zero when x(n) =  6(n), the impulse response of the sys­
tem is simply given by (2.4.42), where C] and C2 must be evaluated to satisfy (2.4.41). 

For n =  0 and n =  1, (2.4.41) yields

v(0) =  1

y (1) =  3 y (0 )+ 2  =  5

where we have imposed the conditions y (—1) =  y (—2) =  0. since the system must be 
relaxed. On the other hand, (2.4.42) evaluated at n = 0 and n =  1 yields

y (0) =  C, +  C2

y (1) = —Ci +  4C2
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By solving these two sets of equations for C] and C2, we obtain

=  C: = 5

Therefore, the impulse response of the system is

h{n) = [—i ( —1)" +  f  (4)-}u(n)

W e m ake the observ a tio n  th a t b o th  the sim ple firs t-o rder recursive system  
and  the second -o rd er recursive system  have im pulse responses th a t  a re  infinite in 
du ra tion . In o th e r  w ords, b o th  o f these  recursive system s are  IIR  system s. In 
fact, due to the recursive n a tu re  of the  system , any recursive system  d escribed  by 
a lin ear constan t-coefficien t d ifference  eq u a tio n  is an I IR  system . T he converse 
is no t true, how ever. T h a t is, n o t every  linear tim e-in v arian t I IR  system  can  be 
described  by a lin ear constan t-coeffic ien t d ifference equ a tio n . In o th e r  w ords, 
recursive system s describ ed  by linear constan t-coeffic ien t d iffe ren ce  eq u a tio n s are 
a subclass of lin ear tim e-in v arian t I IR  system s.

T he ex tension  o f the ap p ro ach  th a t we have d em o n s tra te d  for d e te rm in ­
ing the  im pulse response  o f the  first- and  se co n d -o rd er system s, genera lizes in a 
s tra igh tfo rw ard  m anner. W hen  the  system  is d escribed  by an A 'th -o rder linear 
difference equation  o f the  type  given in (2.4.13), th e  so lu tion  o f the hom ogeneous 
eq u a tio n  is

*=i
w hen the roo ts {a*} of the charac te ris tic  po lynom ial are  d istinct. H en ce  the  im pulse 
response  of the  system  is iden tical in fo rm , th a t is.

w here th e  p aram e te rs  {Ctl are  d e te rm in ed  by se tting  the  initial con d itio n s v (—1) =
. . .  = y ( - N )  =  0.

T his form  of h{n)  allows us to  easily re la te  the  stability  of a system , described  
by an N th -o rd e r d ifference  eq u a tio n , to  the values o f the roo ts o f th e  characteristic  
po lynom ial. In d eed , since B IB O  stab ility  req u ires  th a t the  im pulse  response  be 
abso lu te ly  sum m able, then , fo r a causal system , we have

(2.4.43)

x  oc N N ooN oo
£ > ( * ) !  =  £  Y ^ C kXnk < £ | C * | £ | A * | "
n=0

N ow  if | j < 1 fo r all k,  th en
«=0 n=0 I k=-l k=\ n=0

and  hence
OC

IM*)[ <  oo
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O n th e  o th e r  hand , if o n e  o r m ore  o f the  > 1, h{n)  is no  longer abso lu te ly  
sum m able, and consequen tly , the  system  is unstab le . T h e re fo re , a necessary  and 
sufficient con d itio n  fo r the  stab ility  o f a causal IIR  system  d escribed  by a linear 
constan t-coeffic ien t d ifference  eq u a tio n , is th a t al! ro o ts  o f th e  ch aracteristic  po ly­
nom ial be less th an  unity  in m agnitude. T h e  re a d e r m ay verify th a t th is cond ition  
carries over to  th e  case w here the system  has ro o ts  o f m ultip lic ity  m.

2.5 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS

O u r tre a tm e n t o f  d isc re te -tim e  system s has been  focused  on th e  tim e-dom ain  c h a r­
ac teriza tio n  and  analysis o f linear tim e-invarian t system s described  by constan t- 
coeffic ient linear d ifference equations. A dd itional analy tical m ethods are  d evel­
op ed  in the nex t tw o chap te rs , w here we characterize  and  analyze LTI system s in 
the  frequency  dom ain . T w o o th e r  im p o rtan t topics th a t will be tre a te d  la ter are 
th e  design and  im p lem en ta tio n  o f these  system s.

In practice, system  design and  im p lem en ta tion  are  usually  tre a te d  jo in tly  
ra th e r  than  separa te ly . O ften , th e  system  design is driven  by the  m eth o d  of 
im p lem en ta tio n  and  by im p lem en ta tio n  constra in ts , such as cost, hard w are  lim ­
ita tions, size lim ita tions, and  pow er requ irem en ts . A t th is po in t, we have no t 
as ye t deve lo p ed  the necessary  analysis and  design tools to  tre a t such com plex 
issues. H ow ever, we have developed  sufficient background  to  consider som e b a­
sic im p lem en ta tio n  m eth o d s for rea liza tions o f LTI system s described  by linear 
constan t-coeffic ien t d ifference  equations.

2.5.1 Structures for the Realization of Linear 
Time-Invariant Systems

In  th is subsection  we describe  s tru c tu res for the  rea liza tion  o f system s described  
by lin ear constan t-coeffic ien t d ifference equations. A d d itio n a l s tru c tu res fo r these 
system s a re  in tro d u c ed  in C h a p te r  7.

A s a beginning, let us consider th e  firs t-o rder system

y(n) =  —aiy (n  — 1) +  box(n) +  b\x (n  -  1) (2.5.1)

which is rea lized  as in Fig. 2.32a. T his rea liza tion  uses se p a ra te  delays (m em ory) 
for b o th  th e  inp u t and  o u tp u t signal sam ples and  it is called  a direct f o r m  I  structure.  
N o te  th a t this system  can be view ed as tw o linear tim e-in v arian t system s in cascade. 
T h e  first is a non recu rsive , system  d escribed  by the eq u a tio n

u(n) =  Z»oj;(n) +  6 j j (n  — 1) (2.5.2)

w h ereas the second  is a recu rsive  system  described  by th e  eq u a tio n

y(n)  =  - a i y ( n  -  1) +  t>{«) (2.5.3)

H ow ever, as we have  seen  in S ection  2.3.4, if w e in te rch an g e  the  o rd e r  o f the 
cascaded  lin ear tim e-in v arian t system s, th e  overall system  response  rem ains the
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sam e. T hus if we in terchange the o rd e r o f the recursive and no n recu rsiv e  system s, 
we ob ta in  an a lte rn a tiv e  s tru c tu re  for the rea liza tion  o f the svstem  d escribed  by
(2.5.1). T he resu lting  system  is show n in Fig. 2.32b. F rom  th is figure we obtain  
the tw o difference eq u a tio n s

w(n)  — — fl] w(n  — 1) +  jt(«) (2-5.4)

v(n) =  t>nw(n) + b\w{n -  1) (2.5.5)

which provide an a lte rn a tiv e  a lgorithm  for com pu ting  the  o u tp u t o f the system  
d escribed  by the single d ifference equ a tio n  given in (2.5.1). In  o th e r  w ords, the 
tw o difference eq u a tio n s (2.5.4) and  (2.5.5) are  equ ivalen t to  the  single difference 
eq u a tio n  (2.5.1).

A  close o bservation  o f Fig. 2.32 reveals that th e  two delay  e lem en ts contain  
the sam e input w(n)  and hence  the sam e o u tp u t w(n — 1). C onseq u en tly , these 
tw o e lem en ts can be m erged  in to  one delay, as show n in Fig. 2.32c. In con trast

x(n) b{, r(n) f  n vim 

-----------------~

(a)

(b.)

(c)

Figure 132 Steps in converting from the direct form I realization in (a) to  the 
direct form II realization in (c).
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to  th e  d irec t fo rm  I s tru c tu re , th is new  rea liza tion  req u ire s  only  one delay  for 
th e  auxiliary  quan tity  ui(n), and  hence  it is m o re  efficient in te rm s o f m em ory 
req u irem en ts . It is called  th e  direct f o r m  I I  structure  and  it is used extensively  in 
p rac tica l app lications.

T h ese  s tru c tu res  can readily  be genera lized  fo r th e  genera l linear tim e- 
in v arian t recursive system  described  by the d ifference  e q u a tio n

N M
y(n) =  -  y ^ a^ .y («  -  k) +  -  k)  (2.5.6)

* = l  k=0

F igu re  2.33 illu stra tes the  d irec t fo rm  I s tru c tu re  fo r th is system . T his stru c tu re  
req u ire s  M  +  N  delays and  N  + M  +  1 m ultip lications. I t can  be v iew ed  as the 
cascade o f a non recu rsive  system

M
i;(«) =  Y  bkx{n -  k) (2.5.7)

i=U

an d  a recursive system
s

y(n) =  -  v(n ~  k) +  v(n) (2.5.8)

By reversing  the  o rd e r  o f these tw o system s as was p rev iously  d o n e  for the 
firs t-o rder system , we o b ta in  the d irec t form  II s tru c tu re  show n in Fig. 2.34 fo r

Figure 1 33  Direct form I structure of the system described by (2.5.6).
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w(n) b0 N
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y(n)

-1

UJ{/1 -  1 )
J

-1

w(n -  2) b2

w(n -  3) by

Figure 2 34  Direct form II structure for the system described by (2.5.6).

N  > M.  This stru c tu re  is the cascade o f a recursive system

N

w(n)  =  — ^  ai W(n -  k ) -f x(n)
*=1

follow ed by a n onrecu rsive  system

M
v(n) =  vu(n -  k )

(2.5.9)

(2.5.10)

W e observe th a t if N  > M .  th is s tru c tu re  req u ire s  a n u m b er o f  delays equal to  
the  o rd e r  N  o f the system . H ow ever, if M  > N ,  the  req u ired  m em ory  is specified 
by M.  F igure 2.34 can  easily by m odified  to  hand le  th is case. T h u s  th e  d irec t form
II stru c tu re  req u ires  M  +  N  +  1 m u ltip lica tions and  max{M , jV} delays. B ecause it 
req u ire s  the m in im um  n u m b er o f delays fo r  the  rea liza tio n  o f th e  system  described  
by (2.5.6), it is som etim es ca lled  a canonic f orm.
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A  special case of (2.5.6) occurs if we set the system  p aram e te rs  ak — 0. 
it =  1.........N.  T h en  the in p u t-o u tp u t re la tionsh ip  fo r the  system  reduces to

M
v(n) = -  k) (2.5.11)

k=0

w hich is a non recu rsive  lin ear tim e-invarian t system . T his system  views only the 
m ost recen t M  +  1 inp u t signal sam ples and , p rio r to  add ition , w eights each  sam ple 
by the a p p ro p ria te  coeffic ient bk from  the set {i^}. In o th e r  w ords, the system  
o u tp u t is basically  a weighted mov i ng  average  of the inpu t signal. F o r this reason  
it is som etim es called a m o vi ng  average ( MA )  system.  Such a system  is an F IR  
system  w ith an  im pulse resp o n se  h (k ) equal to  the coefficients bk, that is.

* '* ) =  { o ! ' o t o r w l "  « ' 5 1 2 »

If  we re tu rn  to  (2.5.6) and  se t M  =  0, the  general linear tim e-invarian t system  
reduces to  a “pu re ly  recu rsiv e” system  described  by the d ifference equation

N
y ( n ) =  ~ Y a O ’(n ~  k) +  bux(n)  (2.5.13)

i = 1

In th is case the system  o u tp u t is a w eigh ted  linear com bination  o f N past ou tp u ts  
and  the p re sen t inpu t.

L in ear tim e-invarian t system s described  by a seco n d -o rd e r d ifference e q u a ­
tion a re  an  im p o rtan t subclass o f the  m ore general system s described  by (2.5.6) 
o r  (2.5.10) o r (2.5.13). T he reaso n  for th e ir im portance  will be exp lained  later 
w hen we discuss quan tiza tio n  effects. Suffice to say at this p o in t th a t second -o rd er 
system s are  usually  used as basic  build ing  b locks fo r realiz ing  h ig h er-o rd er system s. 

T h e  m ost genera l se co n d -o rd e r system  is described  by the d ifference eq uation

y(n) =  -  a[v(n -  1) -  a2v(n -  2) 4- b(,x(n)
(2.5.14)

+  b\x(n — 1) •+- b2x(n — 2)

w hich is o b ta in ed  from  (2.5.6) by  se tting  N  =  2 and  M  =  2. T h e  d irect form  II 
s tru c tu re  fo r realiz ing  th is system  is show n in Fig. 2.35a. If  we se t a\ =  =  0. 
th en  (2.5.14) reduces to

y(n)  =  box(n)  +  b\x(rt  — 1) +  b2x(n  -  2) (2.5.15)

w hich is a special case o f th e  F IR  system  described  by (2.5.11). T he structu re  
fo r realiz ing  th is system  is show n in Fig. 2.35b. F inally , if we set b\ = bz =  0 
in (2.5.14), we o b ta in  th e  pure ly  recursive second-o rder system  described  by the 
d ifference  eq u a tio n

y(n)  =  —a\ y( n  — 1) — a2y(n -  2) 4- box(rt) (2.5.16)

w hich is a special case o f (2.5.13). T h e  stru c tu re  fo r realizing  th is system  is show n 
in Fig. 2.35c.
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xi n)

(a)

(b)
-©---- -0 Y[n)

I _ a '

—-̂ -1 H

—02

-1 „-1
<c)

Figure 2.35 Structures for the realization of second-order systems: (a) general 
second-order system; (b) FIR system; (c) “purely recursive system”

2.5.2 Recursive and Nonrecursive Realizations of FIR 
Systems

W e have a lready  m ade the  d istinction  betw een  F IR  and  IIR  system s, based  on 
w h eth er the im pulse response  h(n)  o f the system  has a finite d u ra tio n , o r an  infi­
nite  du ra tio n . W e have also m ade th e  d istinc tion  betw een  recu rsive  an d  n o n re c u r­
sive system s. B asically, a causal recursive system  is described  by an in p u t-o u tp u t 
eq u a tio n  o f the form

y(n) =  F[v(^i — 1).........y{n — N ) , x ( n ) , ------x ( n  -  M)]  (2.5.17)

and  fo r a linear tim e-invarian t system  specifically, by the d iffe ren ce  equ a tio n

N U

y{n) =  -  Y ak>’(n ~ k ) +  Y , bkX(n ~  k) 
*=i *=o

(2.5.18)
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O n th e  o th e r  hand , causal nonrecursive system s d o  n o t d ep en d  on  p ast values of 
the o u tp u t and  h ence  are  described  by an in p u t-o u tp u t eq u a tio n  o f th e  form

y(n) =  F [x (n ), jc(n -  1).........x(n  — Mj]  (2.5.19)

and  fo r iinear tim e-invarian t system s specifically, by  th e  d ifference  eq u a tio n  in
(2.5.18) w ith ak: =  0 for k =  1, 2 , . . . ,  N.

In  th e  case o f F IR  system s, we have a lready  o b se rved  th a t it is aiw ays possible 
to rea lize  such system s nonrecursively . In  fact, w ith  at. =  0, k =  1, 2 , . . . ,  N,  in
(2.5.18), we have a system  w ith an in p u t-o u tp u t eq u a tio n

v(«) =  ]p 6 * ; t(n  ~ (2.5.20)

T his is a nonrecu rsive  and  F IR  system . A s ind ica ted  in (2.5.12), th e  im pulse 
response  of th e  system  is sim ply equal to  the  coeffic ients {&*). H ence  every F IR  
system  can be rea lized  nonrecursively . O n  the o th e r  hand , any  F IR  system  can 
also be  realized  recursively. A lthough  the general p ro o f o f th is s ta te m e n t is given 
la ter, we shall give a sim ple exam ple to  illu stra te  the poin t.

Suppose th a t we have an F IR  system  o f th e  form

1 m

y(n)  = —— -  -  k)
M + I f - '

(2.5.21)

fo r com pu ting  th e  mov i ng  average of a signal jc(h). C learly , th is system  is F IR  with 
im pulse  response

1
h(n)  ~ 0 < n <  M

M  +  1
F igure 2.36 illu stra tes  the stru c tu re  of the  nonrecursive  rea liza tio n  o f  the  system . 
N ow , suppose th a t we express (2.5.21) as

y(n)
1 M

= --------- x(n  — 1 — k)
M  +  1 ^m  ^  Jt=0

+  . [x(n) ~ x ( n  -  1 -  M )] 

[x(n) — x  (n — 1 — Af)]

M  +  1

y(n -  1) +
1

M  + V
(2.5.22)

Figure 2 3 6  Nonrecursive realization of an FIR moving average system.



118 Discrete-Time Signals and Systems Chap. 2

N ow , (2.5.22) rep re sen ts  a recursive rea liza tion  of the F IR  system . T he structu re  
o f th is recursive rea liza tion  of the m oving average system  is illu stra ted  in Fig. 2.37.

In sum m ary, we can th ink  of the  te rm s F IR  and  IIR  as g en era l characteristics 
th a t distinguish a type of linear tim e-invarian t system , and of the  term s recursive 
and  nonrecursive  as descrip tions of th e  stru c tu res for realiz ing  o r im plem enting  
the system .

vt/> - 1 )

Figure 237 Recursive realization of an FIR moving averapc svstem.

2.6 CORRELATION OF DISCRETE-TIME SIGNALS

A m athem atical o p era tio n  tha t closely resem bles convolu tion  is co rre la tion . Just 
as in the case of convolu tion , tw o signal sequences are  involved in co rre la tion . 
In con trast to  convolu tion , how ever, o u r objective in com pu ting  the co rre la tion  
betw een  the tw o signals is to  m easu re  the  d eg ree  to  which th e  tw o signals are 
sim ilar and  thus to  ex trac t som e in fo rm atio n  th a t d ep ends to  a large ex ten t on 
the application . C o rre la tio n  o f signals is often  en co u n te red  in rad a r , sonar, digital 
com m unications, geology, and  o th e r  a reas in science and eng ineering .

T o  be specific, le t us suppose  th a t we have tw o signal sequences x(n)  and  
y(n)  th a t we wish to com pare . In ra d a r  and  active so n a r app lica tions. x(n)  can 
rep re sen t the sam pled  version  o f th e  tran sm itted  signal and y{n)  can rep re sen t the 
sam pled version of the received  signal at the  o u tp u t o f the analog-to -d ig ita l (A /D ) 
converter. If a ta rg e t is p resen t in the  space being  searched  by th e  rad ar o r sonar, 
the received signal y(n)  consists of a de layed  version  of the tran sm itted  signal, 
reflec ted  from  the targ e t, and  co rru p ted  by  add itive noise. F igure 2.38 dep ic ts the 
ra d a r  signal recep tio n  p rob lem .

W e can rep re sen t the received  signal sequence  as

y(n)  =  a x ( n  — D) + w(n)  (2.6.1)

w here a  is som e a tten u a tio n  fac to r  rep re sen tin g  the  signal loss involved in the 
ro u n d -trip  transm ission  of th e  signal x (n ), D  is th e  ro u n d -tr ip  delay , w hich is
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assumed to be an integer m ultiple o f the sampling interval, and w(n) represents 
the additive noise that is picked up by the antenna and any noise generated by the 
electronic com ponents and amplifiers contained in the front end o f the receiver. 
O n the other hand, if there is no target in the space searched by the radar and 
sonar, the received signal y(n) consists o f noise alone.

H aving the tw o signal sequences, x (n ) ,  which is called the reference signal or 
transmitted signal, and y(n) ,  the received signal, the problem  in radar and sonar 
detection is to com pare y(n) and x(n )  to determ ine if a target is present and, if 
so, to determ ine the time delay D and com pute the distance to the target. In 
practice, the signal x (n  — D) is heavily corrupted by the additive noise to  the point 
where a visual inspection o f  y(n)  does not reveal the presence or absence o f the 
desired signal reflected from the target. Correlation provides us with a m eans for 
extracting this im portant inform ation from y(n).

D igital com m unications is another area where correlation is often  used. In 
digital com m unications the information to  be transmitted from one point to an­
other is usually converted to binary from, that is, a sequence o f  zeros and ones, 
which are then transmitted to  the intended receiver. T o transmit a 0 we can trans­
m it the signal sequence xo(n) for 0 <  n < L  — 1, and to transmit a 1 we can transmit 
the signal sequence jti(n) for 0  <  n <  L  — 1, where L  is som e integer that denotes  
the num ber o f sam ples in each o f the two sequences. Very often , x\ (n) is selected  
to be the negative o f xo(n).  The signal received by the intended receiver may be 
represented as

y(n)  =  x,-(n) +  w(n)  * =  0 ,1  0 < n < L — 1 (2.6.2)

where now the uncertainty is whether x 0(n) or *](n ) is the signal com ponent in 
>(n), and w(n)  represents the additive noise and other interference inherent in
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any com m unication  system . A gain , such noise has its o rig in  in the  e lectron ic  
co m ponen ts con ta in ed  in the  fron t end  o f the  receiver. In  any case, the  receiver 
know s the possible tran sm itted  sequences xo(n)  and  (n) and  is faced  w ith the task 
o f com paring  the received  signal y(n)  w ith  b o th  xo(n) an d  Jti(n) to  d e te rm in e  w hich 
o f th e  tw o signals b e tte r  m atches y(n).  T his com p ariso n  p rocess is p erfo rm ed  by 
m eans o f the co rre la tio n  o p e ra tio n  d escribed  in th e  follow ing subsection .

2.6.1 Crosscorrelation and Autocorrelation Sequences

Suppose th a t we have tw o real signal sequences x(n)  and  y(n)  each  of w hich has 
finite energy. T he crosscorrelation o f x (n)  and v(n) is a seq u en ce  rxy(l), w hich is 
defined as

r.tv(l) — ~  0  l =  0. ± 1 ,± 2 ,  . . .  (2.6.3)
n — ~ x

or, equivalen tly , as
OC

riy(t) — Y ,  X ^n +  0 y (« )  1 =  0, ± 1 , ± 2 , . . .  (2.6.4)
n =  -oc

T h e  index I is the (tim e) sh ift (o r lag) p a ra m e te r  and  th e  subscrip ts x y  on th e  cross­
co rre la tion  sequence  rxy(l) indicate the sequences being co rre la te d . T h e  o rd e r of 
the  subscrip ts, w ith .x p reced in g  y, ind ica tes th e  d irec tion  in w hich  o ne  sequence 
is sh ifted , re lative to  the o th er. T o  e lab o ra te , in (2.6.3), the seq u en ce  x(n)  is left 
unsh ifted  and y(n) is sh ifted  by / un its in tim e, to  the  right fo r / positive and  to 
the  left for I negative. E qu iva len tly , in (2.6.4), the  sequence y(«) is left unshifted  
and  x{n)  is sh ifted  by I units in tim e, to  the  left for / positive and  to  the right for 
/ negative. B u t shifting x (n) to  the left by / un its re lative to  y (n) is equ ivalen t 
to sh ifting  y(«) to  the righ t by / units re lative to  x(n) .  H ence  the  com pu ta tions 
(2.6.3) and  (2.6.4) yield iden tical c rossco rre la tio n  sequences.

If we reverse the  ro les o f jr(«) and  y(n) in (2.6.3) and  (2.6.4) and  th e re fo re  
reverse  the o rd e r  o f the  indices xy. we o b ta in  th e  c rossco rre la tion  sequence

OC

ryx(I) =  y (n)x (n  — I) (2.6.5)
n = — 0C

or, equ ivalen tly ,
OC

ryx(l) = Y  y ( n + l ) x(n)  (2.6.6)
n — —d c

By com paring  (2.6.3) with (2.6.6) o r (2.6.4) w ith (2.6.5), we conclude  th a t

rxy(l) =  ryx(~l )  (2.6.7)

T h e re fo re , ry i (l) is sim ply th e  fo lded  version  o f rxy(l), w here  th e  fo ld ing  is done 
with respec t to  / =  0. H ence , ryx(l) p rov ides exactly  the  sam e in fo rm atio n  as rxv(l), 
w ith  resp ec t to  the  sim ilarity  o f  x(n)  to  y(n).
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Example 2.6.1

Determine the crosscorrelation sequence rxv(l) of the sequences

x(n) =  { . . . .0 .0 .2 . —1 .3 .7 .1 .2 . —3. 0. 0 ....}  
t

v(n) =  { . . . . 0 .0 .1 . - 1 .2 . - 2 .4 .1 . - 2 .  5 .0 .0 , . . . ]  
t

Solution Let us use the definition in (2.6.3) to compute .(/). For I = 0 we have 

r rv(0) =  Y  x(ri)v(n)

The product sequence u()(n) =x(n)y( r )  is

u„(n) =  { ..., 0. 0. 2. 1. 6. -14 . 4. 2, 6, 0, 0. . . .)
t

and hence the sum over all values of n is

r,v(0) =  7

For I > 0, we simpiy shift v(«) to the right relaLive to a ' ( h )  hy / units, compute 
the product sequence v/(n) =  jr(n)_v(n — I), and finally, sum over all values o f the 
product sequence. Thus we obtain

r t ,( l)  =  13, rJV(2) = -18 . r vv(3) =  16. r,,(4 ) =  - 7

rM5)  = 5. r ,v(6) = -3 , rxy (/) =  0. I > 1

For / < 0, we shift y(n) to the left relative to jr(n) by / units, compute the product 
sequence v/(n) =  j(n ) v(n — I), and sum over all values of the product sequence. Thus 
we obtain the values of the crosscorrelation sequence

rIV(—1) =  0, riy( -2 )  = 33. rly{ - 3) =  -1 4 . rTV(-4 )  =  36

rJV(-5 )  =  19, fxv(-6) =  -9 , rIV( - 7) =  10, rxv(l) =  0, I < - 8

Therefore, the crosscorrelation sequence of x{n) and y(n) is

r,AD =  (10, -9 ,1 9 , 36, -1 4 , 33,0, 7,13, -18 ,1 6 . - 7 , 5, -3 )
t

T h e  sim ilarities be tw een  the  co m p u ta tio n  o f the c ro ssco rre la tio n  o f tw o se­
q u ences an d  th e  co nvo lu tion  o f tw o sequences is ap p a ren t. In  the  com pu ta tio n  of 
convo lu tion , o n e  o f th e  sequences is fo lded , th en  shifted , th en  m ultip lied  by the 
o th e r  seq u en ce  to  fo rm  th e  p ro d u c t seq u en ce  fo r th a t shift, and  finally, the  values 
o f the  p ro d u c t se q uence  are  sum m ed. E xcep t fo r the fo ld ing  o p e ra tio n , the  com ­
p u ta tio n  o f the c ro ssco rre la tio n  sequence  involves th e  sam e op era tio n s: shifting 
o ne  o f  th e  sequences , m u ltip lication  o f  th e  tw o sequences, and  sum m ing over all 
values o f th e  p ro d u c t sequence . C onsequen tly , if we have a co m p u te r  p rog ram  
th a t p e rfo rm s convo lu tion , w e can use it to  p erfo rm  cro ssco rre la tio n  by providing



as inpu ts to  the  p rog ram , the  sequence  jc(«) and  the fo lded seq u en ce  y ( —n).  T hen  
the  convolution  o f x(n)  with y (—n) yields the crossco rre la tio n  r rv(/). th a t is,

rxv(D = x ( l ) * y ( - l )  (2.6.8)

In the special case w here y(n)  = x(n) ,  we have the  autocorrelat ion o f *(«), 
which is defined as the sequence

OC
rXx(l)= x(n)j:(n -  0  (2.6.9)

ft ~ — OC

or, equ ivalently , as
OO

rxx{l) =  ^2 ,  x (n + (2.6.10)
n= — oc

In dealing w ith fin ite-du ra tion  sequences, it is custom ary  to  express the  a u to ­
co rre la tion  and  crossco rre la tio n  in te rm s of the  finite lim its on th e  sum m ation . In 
particu la r, if x(«) an d  v(n) are  causal sequen ces o f leng th  N  [i.e., .v(n) =  y(n) =  0 
for n <  0 and n > N],  the c rossco rre la tion  and  a u to co rre la tio n  sequences m ay be 
expressed  as

rxy(l) =  ^  x ( n ) y ( n - l )  (2.6.11)

and
A'-1*1-1

rxx( l ) =  Y  (2.6.12)
n=f

w here i = I, k =  0 fo r / > 0, an d  / =  0, k = I for / < 0.

2.6.2 Properties of the Autocorrelation and 
Crosscorrelation Sequences

T he au to co rre la tio n  and  crossco rre la tio n  sequences have a n u m b e r  of im p o rtan t 
p ro p e rtie s  th a t we now  p resen t. T o  develop  these  p ro p erties , le t us assum e th a t 
we have tw o sequences x(n)  an d  y(n) w ith  finite energy  from  w hich we fo rm  the 
lin ear com bination ,

ax(n)  bv(n — I)

w here a and  b a re  a rb itra ry  co nstan ts and  I is som e tim e shift. T h e  energy in this 
signal is

OC OC OC
Y  [ax(n) +  by(n -  I)]2 =  a 2 ^  x 2( n ) + b 2 ^  y 2{n -  I)

fj—-oc n = —oc /i“  — oc

. -j l  V""' i \ t n  (2 '6 -13)+  2ab ^  x ( n)y (n  — I)
n = —oc

=  a 2rxx(0) +  b2r yy( 0) +  l a b r xy{l)

122 Discrete-Time Signals and Systems Chap. 2
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F irst, we n o te  th a t rxx(0) =  E x an d  /-vy(0) =  £ v, w hich a re  the  energ ies o f 
x{n)  and  y (n), respectively . It is obvious tha t

a 2rxx(0) -I- b2r y>.(0) +  2abrxy(l) > 0 (2.6.14)

N ow , assum ing th a t b ^  0, we can divide (2.6.14) by b2 to  o b ta in

r „ ( 0 )  (̂ )2 +  2rxy(l) Q  +  r v_v(0) > 0

W e view  th is e q u a tio n  as a q u ad ra tic  w ith  coeffic ients rXJ(0), 2rxv(l), and  ^ , (0 ) .  
Since th e  q u ad ra tic  is nonneg a tiv e , it follow s th a t th e  d isc rim inan t of this quad ra tic  
m ust be nonpositive , th a t is,

4 [ r ;v(/) -  r , , ( 0 K v(0)] <  0

T h ere fo re , the c rossco rre la tion  sequence  satisfies th e  cond ition  tha t

|r,v(/>| < y r „ ( 0 ) r , v(0) =  (2.6.15)

In th e  special case w here v(n) =  x ( n ), (2.6.15) reduces to

\rxx( D \ < r xx(0) =  E x (2.6.16)

This m eans th a t th e  au to co rre la tio n  seq u en ce  o f a signal a tta in s its m axim um  value 
at ze ro  lag. T his resu lt is consisten t w ith th e  n o tion  th a t a signal m atches perfectly  
w ith itself a t ze ro  shift. In th e  case o f the c rossco rre la tion  sequence, the  up p er 
bo u n d  on its values is given in (2.6.15).

N o te  th a t if any o ne  o r bo th  o f the  signals involved in th e  c rossco rre la tion  
are  scaled, the  shap e  o f the c rossco rre la tion  seq u en ce  does n o t change, only the 
am plitudes o f the  c rossco rre la tion  se q uence  a re  scaled  accordingly. Since scaling 
is u n im p o rtan t, it is often  des irab le , in p rac tice , to  n o rm alize  th e  au to co rre la tio n  
and  c rossco rre la tion  sequen ces to  the range from  - 1  to  1. In  th e  case o f  the 
au to co rre la tio n  sequence , we can sim ply d iv ide by ^ ( 0 ) .  T h u s the  norm alized  
au to co rre la tio n  sequence  is defined  as

P. A D  =  (2-6-17)rixiO)

Sim ilarly, we define th e  no rm alized  crossco rre la tion  sequence

pXY(l) =  r ' v(l) : (2.6.18) 
v/ r xx(0 )rvv(0)

N ow  \pXI{l)\ < 1 and  |/oXv(0! < 1, and  h ence  these sequen ces are  in d ep en d en t of 
signal scaling.

F inally , as we have a lready  d em o n s tra ted , th e  c ro ssco rre la tio n  sequence  sa t­
isfies th e  p ro p erty

r Xy ( l )  =  f y x ( - 0
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W ith y(n) =  x(n) ,  th is re la tio n  resu lts in the  follow ing im p o rtan t p ro p e rty  for the 
au to co rre la tio n  sequence

r „ { l )  =  rx s ( . - l )  (2.6.19)

H en ce  the au to co rre la tio n  function  is an  even function . C o n seq u en tly , it suffices 
to  com pu te  rxx (l) fo r / >  0.

Example 2.6.2

Compute the autocorrelation of the signal

x(n) =  a"u(n), 0 < a < 1

Solution Since x (n) is an infinite-duration signal, its autocorrelation also has infinite 
duration. We distinguish two cases.

If I > 0. from Fig. 2.39 we observe that

r t J ( / )  =  x ( n ) x ( n  -  / )  =  ' = a  1

n= l n =i n ~ l

Since a < 1, the infinite series coti crges and we obtain

r tl (/) ~   ̂ -V  I > 0
1 — a-

For / < 0 we have

= x(n)x(/i —/) = a -1'S~'(rr)" = ------- -ti~! / < 0
I -  a-

n=(l n=(l

But when / is negative, c r 1 — a ' 1'. Thus the two relations for r i t ( !)  can be combined 
into the following expression:

rx,(!) =  ■ — ,,a ,t: — oc < / < oc (2.6.20)
1 — a~

The sequence rxx(l) is shown in Fig. 2.42(d). We observe that 

r „ ( ~ / |  =  rxAD
and

rlt(0) = 1
1 — a2

Therefore, the normalized autocorrelation sequence is 
r (/)

ps,(!) - — —  — cr|,: ~ oc < I < oc (2.6.21)
rxxW)

2.6.3 Correlation of Periodic Sequences

In Section  2.6.1 we defined th e  c rossco rre la tion  and  a u to c o rre la tio n  sequences of 
energy  signals. In this section  we consider the  co rre la tion  seq u en ces o f  pow er 
signals and , in p a rticu la r, period ic  signals.

L et x(n)  and  y(rc) be tw o pow er signals. T h e ir  c ro ssco rre la tio n  sequence  is 
defined  as

1 M
rx \ 0 )  — lim  — ----- - Y ]  x ( n ) y ( n ~ l )  (2 .6 .2 2 )

M-oc 2 M  +  1
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- 2 - 1 0 1 2 3
(a)

x i n - I )

in .

/ > o

o I
(b)

x(n -  I )

l<  0

(c)

r„(!) = ' , a1'11 -  a2

■■■ - 2 - 1 0  1 2 /
(d)

Figure 139  Compulation of the autocorrelation o f the signal xin) =  a",
0 < a < 1.

If x(n )  =  y(tt),  we have the definition o f the autocorrelation sequence of a 
pow er signal as

1 M
rxx(I) =  iim . . .  , 1 Y ]  x ( n ) x ( n - l )  (2.6.23)

Af-oo 2M + 1

In particular, if x(n )  and y(n)  are two periodic sequences, each with period  
the averages indicated in (2.6.22) and (2.6.23) over the infinite interval, are identical
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to th e  averages over a single period , so th a t (2.6.22) and  (2.6.23) reduce  to

It is c lear tha t r ry(l) and  rxx(l) are  p e rio d ic  co rre la tio n  sequen ces with p erio d  N . 
T he  fac to r 1 / N  can be v iew ed as a n o rm aliza tio n  scale factor.

In som e practical app lications, co rre la tio n  is used  to  iden tify  period icities in 
an observed  physical signal w hich m ay be co rru p ted  by ran d o m  in te rfe ren ce . F or 
exam ple, consider a signal sequence  y(n)  o f the  form

w here jc(/i) is a period ic  sequence  o f som e unknow n  period  N  and  w(n)  rep resen ts  
an additive random  in te rfe ren ce . Suppose th a t we observe  M  sam ples o f y(n), say
0 < n < M  — 1, w here M >> N.  F o r all practical p u rposes, we can assum e th a t 
y(n)  — 0 for n < 0  and n > M.  N ow  the au to co rre la tio n  seq u en ce  of y(n), using 
the norm alization  facto r o f \ / M . is

T he first fac to r on the  rig h t-h an d  side of (2.6.28) is the  a u to co rre la tio n  se­
quence  of xin) .  Since x(n)  is period ic , its a u to co rre la tio n  se q u en ce  exhib its the 
sam e periodicity , thus con ta in ing  relatively  large peak s at / =  0, N , 2N,  and  so 
on. H ow ever, as the shift I ap p ro ach es  M , the  p eak s  a re  re d u c e d  in am plitude  
d ue to  th e  fact th a t we have a finite d a ta  reco rd  o f M  sam ples so th a t m any of the 
p ro d u c ts  ;t(n)j:(rt — /) a re  zero . C onseq u en tly , w e shou ld  avoid  com pu ting  r VT (/) 
fo r large lags, say, I > M f l .

(2.6.24)

and

(2.6.25)

y{n)  =  * (n) +  w(n) (2.6.26)

(2.6.27)

If we substitu te  for y(n) from  (2.6.26) in to  (2.6.27) we ob ta in
__ 1

ry.T(/) =  ■

—  Y ]  x ( n ) x i n  -  /) 
M

■j M- 1

j  M  — J

H— -  y ^ [ .r (n ) i t j(/2 — /) +  w{n)x{n  — /)] (2.6.28)
M  “
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T h e  c ro ssco rre la tions rxu,(/) and  rwx(l) betw een  the  signal and  the ad ­
ditive ran d o m  in te rfe ren ce  a re  expected  to  be relatively  sm all as a resu lt of the 
ex p ec ta tio n  th a t ;r(/i) and  w ( n ) will be to ta lly  un re la ted . F inally , the last term  on 
th e  rig h t-h an d  side of (2.6.28) is the  a u to co rre la tio n  sequence  o f the  ran d o m  se­
quence  w(n) .  T his co rre la tio n  sequence will certa in ly  con tain  a p eak  a t / =  0, but 
because o f its ra n d o m  characteristics , rww(l) is expected  to  decay rapid ly  tow ard  
zero. C onsequen tly , only rxx{l) is expected  to have large p eak s for / > 0. This 
b ehav io r allow s us to  d e tec t th e  p resence  of the  period ic  signal a (/ j ) buried  in the 
in te rfe ren ce  u>(n) and  to  iden tify  its period .

A n  exam ple th a t illu stra tes  the  use of au to co rre la tio n  to  identify  a h idden  
p eriod ic ity  in an  observed  physical signal is show n in Fig. 2.40. T h is figure illus­
tra tes  the  au to co rre la tio n  (no rm alized ) sequence  for the W olfer sunspo t n um bers 
fo r 0 <  / <  20, w here any value o f / co rre sp o n d s to  one year. T hese  num bers are 
given in T ab le  2.2 fo r the 100-year p eriod  1770-1869. T h e re  is c lear evidence in 
this figure th a t a p eriod ic  tren d  exists, w ith a period  o f 10 to 11 years.

Example 2.6.3

Suppose that a signal sequence jr(n) =  sin(7r/5)/i, for 0 < n < 99 is corrupted by 
an additive noise sequence «Kn), where the values of the additive noise are selected 
independently from sample to sample, from a uniform distribution over the range

TABLE 2.2 YEARLY WOLFER SUNSPOT NUMBERS

1770 101 1795 21 1820 16 1845 40
1771 82 1796 16 1821 7 1846 62
1772 66 1797 6 1822 4 1847 9X
1773 35 1798 4 1823 2 1848 124
1774 31 1799 7 1824 8 1849 96
1775 7 1800 14 1825 17 1850 66
1776 20 1801 34 1826 36 1851 64
1777 92 1802 45 1827 50 1852 54
1778 154 1803 43 1828 62 1853 39
1779 125 1804 48 1829 67 1854 21
1780 85 1805 42 1830 71 1855 7
1781 68 1806 28 1831 48 1856 4
1782 38 1807 10 1832 28 1857 23
1783 23 1808 8 1833 8 1858 55
1784 10 1809 2 1834 13 1859 94
1785 24 1810 0 1835 57 1860 96
1786 83 1811 1 1836 122 1861 77
1787 132 1812 5 1837 138 1862 59
1788 131 1813 12 1838 103 1863 44
1789 118 1814 14 1839 86 1864 47
1790 90 1815 35 1840 63 1865 30
1791 67 1816 46 1841 37 1866 16
1792 60 1817 41 1842 24 1867 7
1793 47 1818 30 1843 11 1868 37
1794 41 1819 24 1844 15 1869 74
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Year

(a)

Figure 2.40 Identification of periodicity in the Wolfer sunspot numbers: (a) an­
nual Wolfer sunspot numbers; (b) autocorrelation sequence.

(—A/2, A/2), where A is a param eter of the distribution. The observed sequence is 
y(n) =  x(n) + w(n). Determine the autocorrelation sequence rvt(n) and thus determine 
the period of the signal x(rt).

Solution The assumption is that the signal sequence x(n) has some unknown period 
that we are attempting to determine from the noise-corrupted observations {y(n)). 
Although x(n) is periodic with period 10, we have only a ftmte-duration sequence of
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length M  =  100 [i.e.. 10 periods of jcm)]. The noise power level P„ in the sequence 
u'(n) is determined by the parameter A. We simply state that Pu = A: /12. The signal 
power level is P, = I. Therefore, the signal-to-noise ratio (SNR) is defined as

P, 3 6 
~P~U ~  A : /1 2  “  A :

Usually, the SNR is expressed on a logarithmic scale in decibels (dB) as 101ogui
(PJPv) .

Figure 2.41 illustrates a sample of a noise sequence w(n), and the observed 
sequence y(n) — x(n) +  it’(n) when the SNR =  1 dB. The autocorrelation sequence

I l l

J '

♦ Lt ttIiIt. Tllrii! i l l . . t I  1.

'  *

I i i  h i
t

1 i ([Ijj-liii •
i|  4

i

j  1 
*

•  4

I T
* 4

p
1  1  •

p T T J l j w  ^

la]

(c)

Figure 2.41 Use of autocorrelation to detect the presence of a periodic signal corrupted by 
noise.



1 3 0 Discrete-Time Signals and Systems Chap. 2

w(n) L T TTTT. Tt T J IT.TTUTtTT ._L T .T. I .T. ttT .1.pp V|Vvli ' |
(a)

(b)

r „ M . I  1  r![It rl It r!lfit 1  tTT
?  xij|il

i o 1
F  1[1* ?

(c)

Figure 2.42 Use of autocorrelation to detect the presence of a periodic signal 
corrupted by noise.

rvv(/) is illustrated in Fig. 2.41c. We observe that the periodic signal •*(/?), embedded 
in y(n),  results in a periodic autocorrelation function rZI(l) with period N — 10. The 
effect of the additive noise is to add to the peak value at / =  0. but for I ^  0, the 
correlation sequence rwu,(l) = ^ 0 a s a  result of the fact that values of w(ri) were gen­
erated independently. Such noise is usually called white noise. The presence of this 
noise explains the reason for the large peak at I = 0. The smaller, nearly equal peaks 
at I = ±10, ± 2 0 ,. . .  are due the periodic characteristics of x(n).

Figure 2.42 illustrates the noise sequence w(n), the noise-corrupted signal y(n), 
and the autocorrelation sequence rvv(/) for the same signal, within which is embedded 
a signal at a smaller noise level. In this case, the SNR =  5 dB. Even with this relatively 
small noise level, the periodicity of the signal is not easily determined from observa­
tion of y(n). However, it is clearly evident from observation of the autocorrelation 
sequence ryy(n).

2.6.4 Computation of Correlation Sequences

A s indicated on Section 2.6.1, the procedure for com puting the crosscorrelation  
sequence betw een x(n )  and y(n)  involves shifting one of the sequences, say x(n),
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to o b ta in  x(n  -  /), m ultip ly ing  the sh ifted  sequence  by v(n) to  o b ta in  th e  p ro d ­
uct sequence  y (n)x (n  -  /), and  then  sum m ing all the values o f the  p ro d u c t se­
quence to ob ta in  r yx(l). This p ro ced u re  is rep ea ted  for d iffe ren t values o f the 
lag /. E xcep t fo r the fo ld ing  o p e ra tio n  th a t is involved in convolu tion , these b a ­
sic o p e ra tio n s  fo r com pu ting  the co rre la tio n  sequence  are  iden tica l to  those  in 
convolu tion .

T he p ro ced u re  fo r com pu ting  the convo lu tion  is directly  app licab le  to  com ­
pu ting  the  co rre la tio n  o f tw o sequences. Specifically, if we fo ld  y(n) to  ob ta in  
y ( —n),  th en  th e  convo lu tion  o f x(n)  w ith  v ( —n) is identical to  the crossco rre la tion  
of x(n)  w ith y(n).  T h a t is.

A s a consequence , th e  co m pu ta tional p ro ced u re  described  for convolu tion  can be 
app lied  d irectly  to  the  co m p u ta tio n  o f the co rre la tion  sequence.

W e now  describ e  an a lgorithm  th a t can  be  easily p ro g ram m ed  to com pute 
the c rossco rre la tion  se q uence  of tw o fin ite-du ra tion  signals * (« ), 0 < n < N  ~  I, 
and y(n) ,  0 < n < M  — 1.

T h e  algo rithm  com pu tes rJV(/) for positive lags. A ccord ing  to  the  re la tion  
rxy(—l) =  r YX (I), the  values o f rXY(l) for negative lags can be o b ta in ed  by using the  
sam e a lgo rithm  for positive lags, and in terchang ing  the roles o f jt(«) and  v(n). W e 
observe th a t if M  < N,  rXY{i) can be co m p u ted  by the  re la tions

O n th e  o th e r  hand , if M  > N,  the form ula fo r the c rossco rre la tion  becom es

T he fo rm u las in (2.6.30) and  (2.6.31) can  be com bined  and  co m p u ted  by m eans 
of the follow ing sim ple algo rithm  illu stra ted  in the  flow chart in Fig. 2.43. By 
in terchang ing  the  ro les o f j ( « )  and  y(n) and  recom puting  th e  crossco rre la tion  
sequence , we o b ta in  th e  values o f rXY(l) co rre sp o n d in g  to  negative shifts I.

If we wish to  com pu te  the  a u to co rre la tio n  se q uence  rxx(l), we se t y(n) =  jr(n) 
and M  =  N  in (2.6.31). T he com pu ta tion  o f rxx{l) can be d o n e  by m eans of the 
sam e a lgorithm  for positive shifts only.

2.6.5 Input-Output Correlation Sequences

rxy(l) =  x(rt) * y (—n ) |n=/ (2.6.29)

M - \ + l

Y ' ,  x (n )y (n  — /), 0 < 1 < N  — M

(2.6.30)

rxy(l) =  Y  x ( n )v (n  -  1) 0 < 1 < N - 1 (2.6.31)

In this section  we derive  tw o in p u t-o u tp u t  re la tio n sh ip s fo r L T I system s in the 
“co rre la tio n  d o m ain .” L e t us assum e th a t a signal x(n)  w ith know n  a u to c o rre la ­
tion  rxx(I) is app lied  to  an L T I system  w ith im pulse response  h(n),  p roducing  the
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C j “lD Figure 2A3  Flowchart for software 
implementation of crosscorrelation.



Sec. 2.6 Correlation of Discrete-Time Signals 133

o u tp u t signal

v(n) =  h(n)  *  .x (/?) =  ^  h(k)x(>i  — k)
k= — oc

T he cro ssco rre la tio n  betw een  the o u tp u t and  the in p u t signal is

r VJ-(7) =  y d )  * x ( - l )  — h ( l ) *  [*(/) * * ( - / ) ]

or

ryx(l) =  /;(/) * rxx(l) (2.6.32)

w here we have used  (2.6.8) and  the p ro p erties  o f convo lu tion . H ence the crosscor­
re la tio n  b e tw een  the inpu t and  the o u tp u t of the  system  is th e  convo lu tion  of the 
im pulse response  with the au to co rre la tio n  of the inp u t se quence . A lternative ly . 
ryx(l) m av be view ed as th e  o u tp u t of the  LTI system  w hen the  inpu t sequence is 
rxx (/). T his is illu stra ted  in Fig. 2.44. If we replace / by - /  in (2.6.32), we obtain

T he au to co rre la tio n  of the o u tp u t signal can be o b ta in ed  by using (2.6.8) with 
x(/i) =  y(/i) and  the p ro p e rtie s  o f convolution . T hus we have

T he au to co rre la tio n  rhh(l) of th e  im pulse response h(n)  exists if the  system  is stable. 
F u rth e rm o re , the  stability  insures th a t the  system  does not change the type (energy 
or pow er) o f th e  inp u t signal. By evaluating  (2.6.33) fo r / =  0 we ob ta in

w hich p rov ides th e  energy  (o r  pow er) of the o u tp u t signal in te rm s o f a u to c o rre ­
lations. T h ese  re la tio n sh ip s hold  for bo th  energy and  pow er signals. T h e  direct 
de riv a tio n  o f these  re la tionsh ips for energy  and po w er signals, and  th e ir  ex tensions 
to com plex  signals, are  left as exercises fo r the s tuden t.

r.tyU) =  h ( - D  * rxx(l)

r lv(/) =  v(/) * v (—/)

=  [/;(/) * * (/)] * [/j(—/ J * * ( —/)]

=  [/?(/) * h ( — /)] * [*(/) * * ( —/)]

=  rhh(l) * rxx(l)

(2.6.33)

CC

(2.6.34)

Input LTI
SYSTEM

ft(n)

Output

rxx<n ) rvr(n)

Figure 2.44 Input-output relation for 
crosscorrelation ryx(n).
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2.7 SUMMARY AND REFERENCES

T he m ajo r them e of th is ch ap te r  is th e  ch a rac te riza tio n  o f d isc re te-tim e signals and 
system s in the tim e dom ain . O f p a rticu la r  im p o rtan ce  is the class o f linear tim e- 
invarian t (LT I) system s w hich are  w idely used  in th e  design and  im p lem en ta tion  
of d ig ital signal p rocessing  system s. W e ch a rac te rized  LTI system s by th e ir un it 
sam ple response  h{n)  and  d erived  the  convo lu tion  sum m ation , w hich is a form ula 
fo r d e term in ing  th e  response  y(n)  o f th e  system  charac te rized  by h(n)  to  any  given 
inp u t sequence  x(n).

T h e  class o f L TI system s ch arac te rized  by lin ear d ifference eq u a tio n s  with 
co n stan t coefficients is by fa r the  m ost im p o rta n t of the  LTI system s in th e  theo ry  
and  app lication  of d igital signal processing . T h e  g enera l so lu tio n  of a linear dif­
ference  equ a tio n  with constan t coeffic ients w as derived  in th is c h a p te r  and  show n 
to  consist of tw o com ponents: the  so lu tion  o f th e  hom o g en eo u s eq u a tio n  which 
rep re sen ts  th e  n a tu ra l response  o f th e  system  w hen the  inp u t is zero , and  the p a r­
ticu lar so lu tion , w hich rep re sen ts  the  resp o n se  o f the  system  to  th e  inp u t signal. 
F rom  th e  d ifference equation , we also  d em o n s tra te d  how  to  derive  the  u n it sam ple 
response  of the  LTI system .

L in ear tim e-invarian t system s w ere generally  subdiv ided  in to  F IR  (finite- 
d u ra tio n  im pulse response) an d  I IR  (in fin ite -d u ra tio n  im pulse resp o n se) d ep en d ­
ing on w heth er h(n)  has finite d u ra tio n  o r infinite d u ra tio n , respectively . T he 
rea liza tions o f such system s w ere briefly described . F u rth e rm o re , in the rea liza­
tio n  o f F IR  system s, we m ade the d istinction  b e tw een  recursive an d  nonrecursive 
rea lizations. O n  th e  o th e r  h an d , we ob se rv ed  th a t I IR  system s can be im p lem en ted  
recursively , only.

T h ere  are  a n u m b er o f tex ts on  d isc re te-tim e signals and  system s. W e m en ­
tion  as exam ples the  books by M cG illem  an d  C o o p e r (1984), O p p en h e im  and  W ill- 
sky (1983), and  S iebert (1986). L in ear constan t-coeffic ien t d ifference  eq u a tio n s are  
tre a te d  in d ep th  in the  books by H ild eb ran d  (1952) and  Levy and  L essm an (1961).

T h e  last top ic  in this ch ap te r, on  co rre la tio n  o f d isc re te-tim e signals, plays an 
im p o rta n t role in d igital signal processing , especially  in app lica tions dealing  with 
digital com m unications, ra d a r  de tec tio n  and  estim atio n , sonar, and  geophysics. In 
o u r tre a tm e n t of co rre la tio n  sequences, we avo ided  the  use o f sta tis tica l concepts. 
C o rre la tio n  is sim ply defined as a m ath em atica l o p e ra tio n  betw een  tw o sequences, 
w hich p roduces an o th e r  sequence , called  e ith e r  th e  crosscorrelat ion sequence  w hen 
th e  tw o sequences are  d ifferen t, o r th e  autocorrelat ion sequence  w hen  the  tw o se­
q u ences are  identical.

In  p ractical app lica tions in w hich c o rre la tio n  is used , o n e  (o r  b o th )  o f the 
sequences is (a re ) co n tam in a ted  by noise an d , p e rh ap s , by o th e r  fo rm s o f in te rfe r­
ence. In  such a case, the  noisy sequence  is called  a ran d om sequence  and  is ch ar­
ac terized  in sta tistical term s. T h e  co rre sp o n d in g  co rre la tio n  se q u en ce  becom es a 
function  o f the sta tistical characteristics of the  noise and  any o th e r  in terference .

T h e  statistical ch arac te riza tio n  o f sequen ces and  th e ir  c o rre la tio n  is tre a te d  in 
A p p en d ix  A . S upp lem en ta ry  read in g  on  p ro b ab ilis tic  and  sta tis tical concep ts deal-
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ing w ith co rre la tio n  can be found in the books by D av en p o rt (1970). H elstrom  
(1990). Papoulis (1984). and P eeb les (1987).

P R O B L E M S

2.1 A  discrete-time signal x(n) is defined as

I l +  j ,  —3 < n < —1 
1. 0 < n < 3

0, elsewhere

(a) Determine its values and sketch the signal .v(n).
(b) Sketch the signals that result if we:

(1) First fold x{n) and then delay the resulting signal by four samples.
(2) First delay xin) by four samples and then fold the resulting signal

(c) Sketch the signal x ( —n + 4 ).
(d) Compare the results in parts (b) and (c) and derive a rule for obtaining the signal 

,v(— n -t- k) from
(e) Can you express the signal ,r(n) in terms of signals S(n) and u{n)l

2.2 A  discrete-time signal ,v(n) is shown in Fig. P2.2. Sketch and label carefully each of 
the following signals.

.v(n)

J_ J_

L L _ _________
- 2 - 1 0 1 2 3 4  „ FigUre P2.2

(a) x(n -  2) (b) x(4 — n) (c)x(n + 2) (d) x(n)u(2 — n)
(e) x(n -  1 )8{n -  3) (F) x(n2) (g) even part of x{n)
(h) odd part of x(n)

23  Show that
(a) &(n) = u(n) — u(n — 1)
(b) u(n) =  8(k) =  ^

2.4 Show that any signal can be decomposed into an even and an odd component. Is the 
decomposition unique? Illustrate your arguments using the stgnal

x(n) = {2. 3, 4. 5. 6) 
t

2.5 Show that the energy (power) of a real-valued energy (power) signal is equal to the 
sum of the energies (powers) of its even and odd components.

2.6 Consider the system
vf«) =  T[x( n) ]  =  x ( n2)

(a) Determine if the system is time invariant.
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(b) To clarify the result in part (a) assume that the signal
_ f l ,  O5 /1  < 3 

\ 0, elsewhere
is applied into the system.
(1) Sketch the signal *(«).
(2) Determine and sketch the signal y(n)  =  T[x(n)},
(3) Sketch the signal y'2(n) =  y(n — 2).
(4) Determine and sketch the signal x2(n) =  x(n -  2).
(5) Determine and sketch the signal =  T \ x 2(n)].
(6) Compare the signals ^ (n )  and y(n -  2). What is your conclusion?

(c) Repeat part (b) for the system

Can you use this result to make any statement about the time invariance of this 
system? Why?

(d) Repeat parts (b) and (c) for the system

y(rt) = T[x(n )] =  nx(n)

2.7 A discrete-time system can be
(1) Static or dynamic
(2) Linear or nonlinear
(3) Time invariant or time varying
(4) Causal or noncausal
(5) Stable or unstable

Examine the following systems with respect to the properties above.
(a) v(«) =  cos[jc(n)]

(c) v(n) =  x(n)cos(£^n)
(d) y(n) ~  x ( —n +  2)
(e) y(n) =  Trun[;c(n)], where Trun[jc(n)] denotes the integer part of x(n),  obtained 

by truncation
(f) y(n) = Round[jc(n)], where Round[;c(n)] denotes the integer part of Jt(n) obtained 

by rounding
Remark: The systems in parts (e) and (f) are quantizers that perform truncation and 
rounding, respectively.
(g) y(B) =  |*(n)|
(h) v(rt) =  x(n)u(n)
(I) y(n) = x(n) +  nx{n + 1)
(j) y ( n)=x(2n)

(I) y(n) = x ( - n )
(m) y(n) =  sign[j:(n)]
(n) The ideal sampling system with input xaU) and output x(n)  =  xa(nT),  —oc <

2J8 Two discrete-time systems 7] and T2 are connected in cascade to form a new system 
T  as shown in Fig. P2.8. Prove or disprove the following statements.

y(rt) =  x(n) -  x(n — 1)

(b) v(n) = x(k>

n < oo
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xin) yin)
T;Ti

T  -  T-. T 2 Figure P2.8

(a) If T\ and % are linear, then T  is linear (i.e.. the cascade connection of two linear 
systems is linear).

(b) If T\ and are time invariant, then T  is time invariant.
(c) If T[ and 7? are causal, then T  is causal.
<d) If T] and T2 are linear and time invariant, the same holds for T .
(e) If 7] and T2 are linear and time invariant, then interchanging their order does not 

change the system T.
(0  As in part (e) except that 7J, T2 are now time varying. (Hint: Use an example.)
(g) If 7] and T2 are nonlinear, then T  is nonlinear.
(h) If T< and T2 are stable, then T  is stable.
(i) Show by an example that the inverse of parts (c) and (h) do not hold in general. 

2.9 Let T  be an LTI, relaxed, and BIBO stable system with input x{n) and output y(n).
Show that:
(a) If x(n) is periodic with period N [i.e., jr(n) =  x{n + N)  for all n > 0], the output 

y(n) tends to a periodic signal with the same period.
(b) If x(n) is bounded and tends 10 a constant, the output will also tend to a constant.
(c) If x{n) is an energy signal, the output y(n) will also be an energy signal.

2.10 The following input-output pairs have been observed during the operation of a ume- 
invariam system:

x,(n) =  {1.0,2} ^  y,(fi) =  (0, 1.2} 
t  t

x,(n) = {0.0,3} ^  v; (n) =  (0, 1.0,2} 
t  t

x-\(n) =  {0. 0, 0. 1} vj(n) =  (1,2, 1} 
t  t

Can you draw any conclusions regarding the linearity of the system. What is the 
impulse response of the system?

2.11 The following input-output pairs have been observed during the operation of a linear 
system:

Xi(n) =  {-1. 2. 1} y,(/i) =  (1, 2. - 1 , 0. 1}
t  t

x2{n) =  {1, -1 , -1} \'2in) =  {-1. 1, 0, 2} 
t  t

x 3(n) =  {0, 1, 1) yi (n)  =  {1, 2. 1}
t  r

Can you draw any conclusions about the time invariance of this system?
2.12 The only available information about a system consists of N  input-output pairs, of 

signals y,(rc) =  T[xj(n)], / =  1, 2........N.
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(a) What is the class of input signals for which we can determine the output, using 
the information above, if the system is known to be linear?

(b) The same as above, if the system is known to be time invariant.
2.13 Show that the necessary and sufficient condition for a relaxed LTI system to be BIBO 

stable is

y .  i/i(«)i < Mh < oo

for some constant Mn.
2.14 Show that;

(a) A relaxed linear system is causal if and only if for any input x(n) such that

jc(n) =  0 for n < no => y(n) =  0 for n < no

(b) A relaxed LTI system is causal if and only if

h(n) =  0 for n < 0

2.15 (a) Show that for any real or complex constant a, and any finite integer numbers M
and N,  we have

n  a M — ah
. if « * !

1 — <3

N -  M +  1, if a =  1

(b) Show that if |o| < 1 , then

y v  = - i -  
l  - a

2.16 (a) If y(n) = x (n) * h(n). show that £ v =  £ / .-  where ^  _w
(b) Compute the convolution y(n) = x(n) * h(n) of the following signals and check 

the correctness of the results by using the test in (a).
(1) jr(n) — (1,2, 4), /)(n) =  (1 ,1 ,1 ,1 ,1}
(2) x(n)  =  {1, 2, -1 ) ,  h(n) =  x (n)
(3) x(n)  =  (0,1, - 2 ,  3. -4 ) . h(n) =  {£, i ,  1, 1}
(4) jc(n)= :{1.2.3.4.5J.A (n) =  {l)
(5) x(n) = (1, -2 ,3} , h(n) =  (0, 0 .1 .1 ,1 ,1 )

t  t
(6) x(n) =  {0 ,0 ,1 ,1 ,1 ,1 ), h(n) =  { 1 ,-2 . 3}

t  t
(7) jr(u) =  {0,1, 4, -31. h(n) = [1,0, - 1 ,  -1}

t  t
(8) =  [1,1,2], h(n) =  u(n)

t
(9) jt(n) =  [1,1. 0,1,11, h(n) = {1, - 2 ,  - 3 ,  4}

t  t
(10) jc(n) =  (1,2, 0 ,2 , l}/i(n) =  Jt(n)

t
(11) *{n) =  (i)"u(n), h(rt) =  ( j ) nM(n)

2.17 Compute and plot the convolutions x(n) * h(n) and h(n) *x(n)  for the pairs of signals 
shown in Fig. P2.17.
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trln)
b T I f  -

0  1 2  3 n

j x(n)

■Iiit.
1 2 3 n

x(n)

i ..III!..
3 4  5 6  n

J (n )

]

111!

0  l 2 3 4 5 b n 

h\n)

- 3 - 2 - 1 0  I 2 3 

hin)

II

II

htnl

2 3 4  5 —2-1
<di Figure P2.172.18 Determine and sketch the convolution y(n) of the signals

-V(/l) =

h(n) -

x (n) =  

h(n) =

0 < Ji < 6
0. elsewhere

1, —2 < n < 2  
0. elsewhere

(a) Graphicallv
(b) Analytically

2.19 Compute the convolution y(n) of  the signals
o'". —3 < n < 5

0. elsewhere
1, 0 < n < 4
0, elsewhere

2.20 Consider the following three operations.
(a) Multiply the integer numbers: 131 and 122.
(b) Compute the convolution of signals: {1. 3.1) * (1,2. 2}.
(c) Multiply the polynomials: 1 4- 3; +  z2 and 1 4- 2z 4- 2z2.
(d> Repeat part (a) for the numbers 1.31 and 12.2.
(e) Comment on your results.

2.21 Compute the convolution y(n) = x (n) * h(n) of the following pairs of signals.
(a) x(n) =  a"u(n), h(n) =  b"u{n) when a ^  b and when a ~ b

1. n =  —2, 0, 1
(b) x (n)  = 2, n = — 1

. 0, elsewhere 
h(n) =  S(n) — S (n — 1) +  S(n — 4) + S(n — 5)
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(c) x{n) =  u(n +  1) — u(n — 4) — <5(n — 5) 
h(n) =  [u(n +2)  — u(n -  3)] • (3 -  |n|)

(d) x ( n )  =  u(n)  -  u(n -  5)
h(n) = u(n — 2) — u(n — 8) 4- u(n — 11) — u(n — 17)

2.22 Let x(n) be the input signal to a discrete-time filter with impulse response ht(n) and 
let y,(n) be the corresponding output.
(a) Compute and sketch x(n) and \ j ( n )  in the following cases, using the same scale 

in all figures.

Sketch x(n),  yi(n), y 2(n)  on one graph and *(«). y3(n), y,j(n), y.s(n) on another 
graph

(b) What is the difference between yi(«) and \’2(n). and between y^(n) and y^(n)?
(c) Comment on the smoothness of v2(/?) and v4(n). Which factors affect the smooth­

ness?
(d) Compare y4(n) with ysfn). What is the difference? Can you explain it?
(e) Let h(,(n) = {^, - j } .  Compute y’6<n). Sketch v(n), y2(n),  and yft(n) on the same 

figure and comment on the results.
2.23 The discrete-time system

v(n) = ny(n — 1) +  jr(n) n > 0

is at rest [i.e., v(—1) =  0]. Check if the system is linear time invariant and BIBO stable.
2.24 Consider the signal y(n) =  a"u(n), 0 < a < 1.

(a) Show that any sequence x{n) can be decomposed as

and express ck in terms of x(n).
(b) Use the properties of linearity and time invariance to express the output y(n) = 

T[x(n)] in terms of the input x (n) and the signal g(n) =  T[y(n)],  where T[ ] is 
an LTI system.

(c) Express the impulse response h(n) = T[B{n)} in terms of g(rt).
2.25 Determine the zero-input response of the system described by the second-order dif­

ference equation
x(n)  -  3y(n -  1) -  4y(n -  2) =  0

2.26 Determine the particular solution of the difference equation

y(n) = jv(ii -  1) -  £y(n -  2) +x(n)  

when the forcing function is x(n) =  2"u(n).

x(n)  =  {1,4, 2. 3, 5, 3, 3. 4. 5. 7. 6. 9}

h](n) =  (1,1)

h2(n) =  {1,2.1}

]ij(n) = {i, j)

*4(») =  {?• {■ j)
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221  Determine the response yin). n > 0. of the system described by the second-order 
difference equation

yin) -  3v(n — 1) — 4y(/i — 2) =  xin)  +  2x(n — 1) 

to the input xin)  =  4"w(n).
2.28 Determine the impulse response of the following causal system:

y(n) — 3y(n — 1) — 4v(n — 2) = jr(n) +  2x(n — 1)

2.29 Let xin).  A'i < n < N2 and h(n), < n < M2 be two finite-duration signals.
(a) Determine the range L\ < n < L2 of their convolution, in terms of N\, N2, M\ 

and M2.
(b) Determine the limits of the cases of partial overlap from the left, full overlap, 

and partial overlap from the right. For convenience, assume that h(n) has shorter 
duration than jc(«).

(c) Illustrate the validity of your results by computing the convolution of the signals
-2  < n < 4 
elsewhere
-1  < n < 2  
elsewhere

2.30 Determine the impulse response and the unit step response of the systems described 
by the difference equation
(a) yin) =  ().6y(;i -  1) -  ().08v(n -  2) +  xin)
(b) _v(« ) =  0.7y(;; -  1) -  0.1 yin -  2) -f 2xin) -  xin -  2)

231 Consider a svstem with impulse response

A,«) = H r ' ° - n - 4
( 0. elsewhere

Determine the input xin)  for 0 < n < S that will generate the output sequence

v(n) = 1 1 .2 .2 .5 .3 .3 .3 .2 .1 .0 ....}
t

232 Consider the interconnection of LTI systems as shown in Fig. P2.32.
(a) Express the overall impulse response in terms of h \ (n), h2(n), h^in). and h^in).
(b) Determine h{n) when

M « ) =  {j. 3. 7}

h2{n) — hy(n) =  (n +  1 )u(n)

fi4(n) =  S(n — 2)

Figure P2J2
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(c) Determine the response of the system in part (b) if

x(n) =  &(n + 2) + 3S(n -  1) -  4S(n -  3)

233 Consider the system in Fig. P2.33 with h(n) = a"u(n), — 1 < a < 1. Determine the 
response y(n) of the system to the excitation

*(n) =  «(n +  5) — u(n — 10)

2 3 5  Determine the range of values of the param eter a for which the linear time-invariant 
system with impulse response

(Hint: The solution can be obtained easily and quickly by applying the linearity and 
time-invariance properties to the result in Example 2.3.5.)

2 3 7  Determine the response of the (relaxed) system characterized by the impulse response

to the input signal
| 1, 0 < n < 10 x(n) = { ^ ~
10, otherwise

2 3 8  Determine the response of the (relaxed) system characterized by the impulse response

h(n) = ( j ) Hu{n)

to the input signals
(a) x(n) =  2nu(n)
(b) x(n) = u ( -n )

x(n)

Figure P233

2 3 4  Compute and sketch the step response of the system
U _ 1

h(n) = ( l ) ”u(n)
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239 Three systems with impulse responses h\(n) — 5(n) — &(n — 1). h2(rt) =  h(n}. and 
=  u(n), are connected in cascade.

(a) What is the impulse response. of the overall system?
(b ) Does the order of the interconnection affect the overall system?

2.40 (a) Prove and explain graphically the difference between the relations

x(n )5(n — no) =  — «o) and x(n) *&(n -  n0) =  x(n -  nu)

(b) Show that a discrete-time system, which is described by a convolution summation, 
is LTI and relaxed,

(c) What is the impulse response of the system described by y(n) =  x(n — n())?
2.41 Two signals 5(n) and u(n) are related through the following difference equations

j(n) +  a\ j(n — 1) +  ■ ■ — N)  =  bi)v(n)

Design the block diagram realization of:
(a) The system that generates x(n) when excited by v(n).
(b ) The system that generates u(n) when excited by s(n).
(c) What is the impulse response of the cascade interconnection of systems in parts

(a) and (b)?
2.42 Compute the zero-state response of the system described by the difference equation

to the input

y(n ) +   ̂v(n — 1) =  x(n  ) +  2x{n — 2)

xin)  =  (1.2. 3. 4, 2, 1) 
T

by solving the difference equation recursively.
2.43 Determine the direct form II realization for each of the following LTI systems.

(a) 2v(n) +  y(n — 1) -  4 v(n — 3) =  x(n) + 3x(n — 5)

(b) y(n) =  Jr(n) — x(n — 1) +  2x(n — 2) — 3x(n -  4)
2.44  Consider the discrete-time system shown in Fig. P2.44.

Figure P2.44

(a) Compute the 10 first samples of its impulse response.
(b ) Find the input-output relation.
(c) Apply the input x(n) =  {1 .1 .1 ....}  and compute the first 10 samples of the output,

t
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(d) Compute the first 10 samples of the output for the input given in part (c) by using 
convolution.

(e) Is the system causal? Is it stable?
2^5  Consider the system described by the difference equation

y(n) =  ay(n -  1) +  bx(n)
(a) Determine b in terms of a so that

(b ) Compute the zero-state step response s(n) of the system and choose b so that 
j(oo) =  1.

(c) Compare the values of b obtained in parts (a) and (b). W hat did you notice? 
2*46 A discrete-time system is realized by the structure shown in Fig. P2.46.

(a) Determine the impulse response.
(b) Determine a realization for its inverse system, that is, the system which produces 

x(n) as an output when y(n) is used as an input.

x in )

- o -0 ■ v(n)

0.8 Figure P2.46

2 .47  Consider the discrete-time system shown in Fig. P2.47.

v(n)

Figure P2^f7

(a) Compute the first six values of the impulse response of the system.
(b ) Compute the first six values of the zero-state step response of the system.
(c) Determine an analytical expression for the impulse response of the system.

148 Determine and sketch the impulse response of the following systems for n — 0,
1........9.
(a) Fig. P2.48(a).
(b ) Fig. P 2.48(b ).
(c) Fig. P2.48(c).
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Cc)

Figure P2.48

(d) Classify the systems above as FIR or IIR.
(e) Find an explicit expression for the impulse response of the system in part (c).

2.49 Consider the systems shown in Fig. P2.49.
(a) Determine and sketch their impulse responses /i|(n), h2(n), and h3(n).
(b) Is it possible to choose the coefficients of these systems in such a way that

h\(n) = h2(n) = h3(n)

2.50 Consider the system shown in Fig. P2.50.
(a) Determine its impulse response h(n).
(b) Show that h(n)  is equal to the convolution of the following signals.

h] (n) =  6(n) + 6(n -  1)

M " )  =  ( ^ ) " u ( n )
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v (n )

y in)

2.51 Compute the sketch the convolution y,(n) and correlation r,(n) sequences for the 
following pair of signals and comment on the results obtained.
(a) *,{«) =  (1.2.4) A ,(n)=  (1 ,1 .1 .1 . If

t  t

(b) x2(n) = (0,1. - 2 . 3, -4 ]  h2(n) = U. 1. 2 .1 ,i}
t  ‘ t

(c) jt-j(b) =  (1.2. 3, 4} A 3 ( u )  =  (4. 3. 2, 1)
t  t

(d) x4(n) = {1. 2, 3,4) hA(n) =  (1 .2 .3 . 4)
t  t

2.52 The zero-state response of a causal LTI system to the input x (n ) =  {1,3, 3,1) is 
y(n) =  (1,4, 6 ,4 ,1). Determine its impulse response. t
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2.53 Prove by direct substitution the equivalence of equations (2.5.9) and (2.5.10), which 
describe the direct form II structure, to the relation (2.5.6), which describes the direct 
form I structure.

2.54 Determine the response y(n). n > 0 of the system described by the second-order 
difference equation

y ( n)  — 4 y(n -  1) +  4v(/i  — 2) =  x(n)  — x(n — 1)

when the input is

x(n) =  (-l)"u (n )

and the initial conditions are v(— 1) =  y (-2 )  =  0.
2.55 Determine the impulse response h(n) for the system described by the second-order 

difference equation

v(ni — 4v(;i — 1 > + 4y(n — 2) =  x(r?) — x(n — 1)

2.56 Show that any discrete-time signal x(n) can be expressed as

c(n) =  [.v(A') — x(k — 1 )]u(n -  k)

where «(/i -  k ) is a unit step delayed by k units in time, that is,
1. n > k

u ( / i  -  k )  =  .
I 0, otherwise

2.57 Show that the output of an LTI system can be expressed in terms of its unit step 
response v(n) as follows.

i'(n) =  y " ' [,v(A:) — x(k — 1 )]jr(fl — k)

= Y  [x(AQ -  x ( k  -  l) ]s ( /i -  k)
c

2.58 Compute the correlation sequences rIX(l) and rtv(l) for the following signal sequences.

j _  P  ■ nu -  N  < n < n {, + N  
I 0, otherwise

f 1. - N  < n  < N 
v ( n )  =  1 „ ,

10, otherwise
2.59 Determine the autocorrelation sequences of the following signals.

(a) x(n) =  {1. 2.1.1)
t

(b) v(n) = il. 1.2.1}
t

What is your conclusion?
2.60 W hat is the normalized autocorrelation sequence of the signal x(n)  given by

1, -jV < n <  N
x(n) =  , „0, otherwise
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2.61 An audio signal j(r) generated by a loudspeaker is reflected at two different walls 
with reflection coefficients r ] and r2. The signal *(/) recorded by a microphone close 
to the loudspeaker, after sampling, is

x (n) = s(n) + rxs(n — k\) + r2s(n — k2)

where kt and k2 are the delays of the two echoes.
(a) Determine the autocorrelation rzx(I) of the signal x(n).
(b) Can we obtain ri, r2, k\, and k2 by observing r,s (1)1
(c) What happens if r2 = 0?

2.62* Time-delay estimation in radar Let xa(t) be the transmitted signal and yfl(r) be the 
received signal in a radar system, where

y„(r) =  axa(t -  id) +  vu(f)

and va(t) is additive random noise. The signals xa(t) and >■„(/) are sampled in the 
receiver, according to the sampling theorem, and are processed digitally to deter­
mine the time delay and hence the distance of the object. The resulting discrete-time 
signals are

jr(n) =  xa(nT)

y(n) =  y„(nT) =  axu(nT -  DT)  +  vu(nT)

=  ax(n — D) +  u(n)

(a) Explain how we can measure the delay D by computing the crosscorrelation r*,.(/).
(b) Let x(n)  be the 13-point Barker sequence

X (n) =  ( +  1,+1,+1,+1,+1, -1, -l.+l.+l, -1,+1. -1,+1)

and u(n) be a Gaussian random sequence with zero mean and variance a 2 = 0.01. 
Write a program that generates the sequence v(n), 0 < n < 199 for a = 0.9 and 
D =  20. Plot the signals jt(«), y(n), 0 < n < 199.

(c) Compute and plot the crosscorrelation rTV(/), 0 < / < 59. Use the plot to estimate 
the value of the delay D.

(d) Repeat parts (b) and (c) for a 2 = 0.1 and a 2 = 1.
<e) Repeat parts (b) and (c) for the signal sequence

jt(n) =  j _ l , _ l , - l , + i , + i , + i . + i , - i ,

+  1 . - l . + l . + l , - 1 , - 1 ,+ 1 }

which is obtained from the four-stage feedback shift register shown in Fig. P2.62,

Figure P2.61 Linear feedback shift 
register.
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Note that x(n) is just one period of the periodic sequence obtained from the 
feedback shift register.

(f) Repeat parts (b) and (c) for a sequence of period N — 27 — 1, which is obtained 
from a seven-stage feedback shift register. Table 2.3 gives the stages connected 
to the modulo-2 adder for (maximal-length) shift-register sequences of length 
N  = 2 "  —

TABLE 2.3 SHIFT-REGISTER 
CONNECTIONS FOR GENERATING 
MAXIMAL-LENGTH SEQUENCES

m Stages Connected to Modu)o-2 Adder

1 1
2 1. 2
3 1. 3
4 1. 4
5 S. 4
6 L 6
7 1. 7
H 1, 5, 6. 7
y 1.6

id 1. K
li 1. 10
12 i. 7. y, 12
13 1. H), 11. 13
14 1. 5. 9. 14
15 1. 15
16 1. 5. 14, 16
17 1. 15

2.63* Implementation o f  LTI  systems Consider the recursive discrete-time system described 
by the difference equation

_v(n) =  — U\v(n  — 1) — a;v(n  — 2) 4- b^x(rt)

where a\ -  —0.8, u? =  0.64. and b() =  0.866.
(a) Write a program to compute and plot the impulse response h{n) of the system 

for 0 < n < 49.
(b) Write a program to compute and plot the zero-state step response s(n) of the 

system for 0 < n < 100.
(c) Define an FIR  system with impulse response ^ fir(h) given by

, , . 1 h(n), 0 < n < 19 
10. elsewhere

where h(n) is the impulse response computed in part (a). Write a program to 
compute and plot its step response.

(d) Compare the results obtained in parts (b) and (c) and explain their similarities 
and differences.



2jS4* Write a computer program that computes the overall impulse response h(n) of the sys­
tem shown in Fig. P2.64 for 0 < n < 99. The systems TU T2, T3, and %  are specified by

Ti : hi(n) =  {1 . 5. g. 55) 
t

T2 : h2(n) =  {1,1,1,1,11 
t
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Ts : +  5*(" -  1) +  -  2)

T4 : y(n) = 0 .9y(n — 1) — 0.81y{n — 2) +  v(n) +  u(n — 1) 

Plot h(n) for 0 < n < 99.

Figure P2.64



3
The Z -Transform and Its 
Application to the Analysis of 
LTI Systems

T ransfo rm  techn iques are  an im p o rtan t tool in the analysis o f signals and  lin­
ear tim e-invarian t (L T I) system s. In this ch ap te r  we in tro d u ce  the  ^-transform , 
develop  its p ro p erties , and d em o n s tra te  its im portance  in the analysis and  ch arac­
teriza tion  o f linear tim e-invarian t system s.

T he : -transform  plays the  sam e role in the analysis o f d isc re te-tim e signals 
and LTI system s as the  L aplace transform  does in the analysis o f con tinuous-tim e 
signals an d  LTI svstem s. F o r exam ple, we shad  see th a t in the  ^-dom ain  (com plex 
z-p lane) the  convolu tion  of tw o tim e-dom ain  signals is equ iv a len t to m ultip lication  
o f th e ir co rre sp o n d in g  ^-transform s. T h is p ro p erty  g reatly  sim plifies the analysis 
o f the response  o f an LTI system  to various signals. In  add ition , the c-transform  
p rov ides us w ith a m eans of characteriz ing  an LTI system , and  its response to 
various signals, by its p o le -z e ro  locations.

W e begin this ch ap te r  by defining the  c-transform . Its im p o rtan t p ro p erties  
are  p re sen ted  in Section  3.2. In  Section 3.3 the tran sfo rm  is used  to  characterize 
signals in te rm s of th e ir  p o le -z e ro  patte rn s. Section 3.4 describes m ethods for 
inverting  th e  z-transfo rm  of a signal so as to  o b ta in  th e  tim e-dom ain  re p re se n ta ­
tion  o f the signal. T he one-sided  :- tran sfo rm  is tre a te d  in S ection  3.5 and  used 
to  solve lin ear d ifference eq u a tio n s  with non zero  in itia l conditions. T he ch ap te r  
concludes with a discussion on  the  use of th e  z -transfo rm  in the analysis o f LTI 
system s.

3.1 THE Z-TRANSFORM

In th is section  we in troduce  th e  z-transfo rm  of a d isc re te-tim e signal, investigate 
its convergence  p ro p erties , and  briefly discuss th e  inverse z-transform .

151
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3.1.1 T h e  D irec t z -T ra n s fo rm

T he ^-transform  of a d isc re te-tim e signal jt(fi) is defined  as the  po w er series
OC

X (z )  =  x { n ) z~'‘ (3-u )
n = —oo

w here z is a com plex variab le . T he re la tio n  (3.1.1) is som etim es called  the  direct 
z- transform because it transfo rm s the  tim e-dom ain  signal x(n)  in to  its com plex- 
p lane  rep re sen ta tio n  X (z). T he inverse p ro ced u re  [i.e., ob ta in ing  x(n)  from  X (z)] 
is called the  inverse z- t ransform and  is exam ined  briefly in S ection  3.1.2 an d  in 
m o re  detail in Section  3.4.

F o r convenience , the z -transfo rm  of a signal x(n)  is d e n o te d  by

X (z) -  Z U («)}  (3.1.2)

w hereas the re la tio n sh ip  betw een  x(n)  an d  X (z )  is in d ica ted  by

jc(«) < - ^  * ( ; )  (3.1.3)
Since the  z-transfo rm  is an infinite pow er series, it exists only fo r those  values of 
z for w hich this se ries converges. T h e  region o f  convergence  (R O C ) of X  (z) is the 
set o f  all values o f z fo r which X(z )  a tta in s a finite value. T hus any  tim e we cite 
a z-transform  we shou ld  also ind icate  its R O C .

W e illustrate  these  concep ts by som e sim ple exam ples.

Example 3.1.1

Determine the ^-transforms of the following finite-duration signals.

(a) jf,(n) =  (1 ,2 .5 .7 ,0 ,1}
(b) jf■,(«) =  ( I .2 .5 .7 .0 .1)

t

(c) jc3(n) =  (0 ,0 ,1 ,2 , 5, 7,0.1}
(d) *4(h) =  (2 .4 ,5 .7 .0 ,1 )

t

(e) x j ( n )  =  S(n)

(f) x$(n) =  <S(n — k), k > 0
(g) x j ( n )  = &(n + k) ,k > 0

Solution From definition (3.1.1), we have

(a) X](z) =  1 + 2z~' +  5z~2 +  7 z '3 +  z~5, ROC: entire z-plane except z =  0
(b) X2(z) = z2 + 2z + 5 + 7c-1 +  z-3, ROC: entire z-plane except z =  0 and z =  oo
(c) Xj(z) =  z~2 +  2z-3 +  5z-4 +  7z-5 -I- z-7, ROC: entire z-plane except z = 0
(d) X4(z) =  2z2 -I- 4z -I- 5 4- 7z_1 -I- z-3, ROC: entire z-plane except z =  0 and z =  oo

(e) X;(z) =  l[i.e„ S(n) *■ 1], ROC: entire z-plane

(f) Xb(z) =  z_ t[i.e„ &(n — k) «— ► z_t], k > 0, ROC: entire z-plane except z =  0

(g) Xy(z) =  zk[i.e„ &(n + k) z*], k > 0, ROC: entire z-plane except z =  oo
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F ro m  th is exam ple  it is easily seen  th a t the R O C  of a f ini te-durat ion signal  
is the  en tire  ;-p la n e , excep t possibly the  po in ts z =  0 an d /o r z — oo. T h ese  po in ts 
a re  excluded , b ecau se  z t (k > 0} becom es u n b o u n d ed  fo r z =  oc and  z~k01 >  0) 
becom es u n b o u n d ed  fo r z =  0.

F rom  a m a th em atica l p o in t of view th e  z-transform  is sim ply  an a lternative  
rep re sen ta tio n  o f  a signal. T h is is nicely illustra ted  in E xam p le  3.1.1, w h ere  we 
see th a t the  coeffic ient o f z~", in a given transfo rm , is the v alue  o f the  signal at 
tim e n.  In  o th e r  w ords, th e  ex p o n en t o f z contains the  tim e in fo rm ation  w e need 
to  iden tify  the  sam ples o f  th e  signal.

In  m any  cases w e can express th e  sum  of th e  finite o r infinite se ries fo r th e  
z-transfo rm  in a c losed-fo rm  expression . In  such cases the z-tran sfo rm  offers a 
com pact a lte rn a tiv e  rep re sen ta tio n  of the  signal.

Example 3.1.2

Determine the z-transform of the signal 

Jf(n) =  (5

Solution The signal jc(n) consists of an infinite number of nonzero values

x(n)= ( l .au^ .U)'1....

The z-transform of x(n) is the infinite power series

X(z)  =  1 +  U ” ' +  (^)2z - 2 +  ( | )"z"" +  ---

ft=<) nail

This is an infinite geometric series. We recall that

1 +  A +  ,42 +  A3 - t - - - - = — if | A 1 < 1 
1 — A

Consequently, for | 1  < 1, or equivalently* for \z\ > X(z)  converges to 

X(z) = -  ROC: (zl > |
J jZ

We see that in this case, the z-transform provides a compact alternative representation
of the signal x(n).

L e t us express the  com plex  variab le  z in p o la r fo rm  as

z =  re}6 (3.1.4)

w here r =  |z | and  6 =  i^z- T h en  X(z )  can be expressed  as

OC

X ( z ) \ t- r ' »  =  Y  x ( n ) r ~ne - j en
n*-00
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In  the  R O C  of X U ). |X ( ;) | < oc. But

(3.1.5)

5  \ M n ) r - ne - '*n \ =  £  \x(n)r~n\

H en ce  |X (z)| is finite if th e  sequence x(n)r~ ' ’ is abso lu te ly  sum m ab le .
T he p rob lem  of finding th e  R O C  for X (z )  is eq u ivalen t to  d e te rm in in g  the 

ran g e  of values of r fo r which the  sequence  x(n)r~"  is abso lu te ly  sum m able. To 
e lab o ra te , let us express (3.1.5) as

If X (z )  converges in som e region of the com plex  p lane , bo th  sum m ations in (3.1.6) 
m ust be finite in th a t region. If the first sum in (3.1.6) converges, th e re  m ust exist 
values o f r sm all enough  such that the p ro d u c t seq u en ce  x ( —n)r" .  1 < /; < oc, is 
abso lu te ly  sum m able. T h ere fo re , the R O C  for the  first sum consists o f all poin ts 
in a circle of som e rad ius r^, w here /■] < oc, as illu stra ted  in Fig. 3.1a. O n the 
o th e r  han d , if the  second sum  in (3.1.6) converges, th e re  m ust exist values o f r 
large enough  such th a t the  p ro d u c t se quence  x ( n ) / r " .  0 < n < oc, is absolu te ly  
sum m able. H ence the R O C  for the second  sum in (3.1.6) consists o f all poin ts 
ou tside  a circle o f rad ius r > r2. as illu stra ted  in Fig. 3.1b.

Since the convergence of X(c) requ ires th a t b o th  sum s in (3.1.6) be finite, it 
follow s th a t the  R O C  of X(z )  is generally  specified as the  an n u la r  region in the 
;-p la n e , r: < r < r\.  which is the com m on region w here  bo th  sum s are finite. This 
region is illu stra ted  in Fig. 3.1c. O n the  o th e r  hand , if > r\, th e re  is no  com m on 
reg ion  of convergence for the  tw o sum s and  hence X ( ;)  does n o t exist.

T he follow ing exam ples illustrate  these  im p o rta n t concepts.

Example 3.1.3

Determine the e-transform of the signal

Solution From the definition (3.1.1) we have

(3.1.6)

If \az 11 < 1 or equivalently, |z| > |a |, this power series converges to 1/(1 -  a ; -1).
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Im(z)

Im(;)

Im(z)

Figure 3.1 Region of convergence for 
X  (z) and its corresponding causal and 
anticausa! components.
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Figure 3.2 The exponential signal xin)  =  txnu{n) (a), and the ROC of its 
transform (b).

Thus we have the z-transform pair

x(n) =a"u(n)  X (;) =
1

ROC: |z| > |cr| (3.1.7)
1 -  a ; - 1

The ROC is the exterior of a circle having radius |a |. Figure 3.2 shows a graph of the 
signal .x(n) and its corresponding ROC. Note that, in general, or need not be real.

If we set or =  1 in (3.1.7), we obtain the z-transform of the unit step signal

x(n) - u(n) X(z) =
1

1

Example 3.1.4

Determine the z-transform of the signal

x(n) =  —a"u(—n — 1) =
0,

ROC: |zl > 1

n > 0 
n < -1

(3.1.6

Solution From the definition (3.1.1) we have
-I oc

n—---oc /= i

where / =  — n. Using the formula

A + A: +  A3 +  • ■ ■ =  A(1 +  A + A2 +  ■ ■ ■) =  

when | >1 f < 1 gives

A
1 -  A

* ( ;)  =  - -
1

1 — a ~ lz l - a ; ' 1 

provided that |cr_1z| < 1 or, equivalently, |z| < jar j. Thus
1

x(n) =  —a"u(—n — 1) X(Z) = -
1 - a z -

ROC: [z| < |a | (3.1.9)

The ROC is now the interior of a circle having radius |a |. This is shown in Fig. 3.3.
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Im(c)

Figure 3.3 Anticausal signal jt(h) =  -crnu(—n -  1) (a), and the ROC of its 
transform (b).

E xam ples 3.1.3 and 3.1.4 illu stra te  tw o very im p o rtan t issues. T he first con ­
cerns the  un iqu en ess o f the "-transform . F rom  (3.1.7) and (3.1.9) we see that 
the causal signal a nu ( n ) and  the anticausal signal —a " u ( —n — 1) have identical 
closed-form  expressions fo r the  ^-transform , th a t is,

Z ( o " w ( « ) )  =  Z { —a nu ( —n -  1)) - ------ --------
1 — a c ' 1

This im plies th a t a c losed-form  expression  fo r the  z-transfo rm  does no t uniquely  
specify the  signal in the tim e dom ain . T he am biguity  can be reso lved  only if 
in add ition  to  th e  c losed-form  expression , the R O C  is specified. In sum m ary , a 
discrete-time signal x(n)  is uniquely  determined by  its z- t ransform  A' ( ;) an d  the 
region o f  convergence o f  X(z ) .  In  this tex t the  term  “z -tran sfo rm " is used  to  refe r 
to bo th  th e  closed-fo rm  expression  and th e  co rrespond ing  R O C . E xam ple  3.1.3 
also illu stra tes th e  po in t th a t the R O C  o f  a causal signal is the exterior o f  a circle 
o f  some  radius r2 whi le the R O C  o f  an ant icausal signal is the interior o f  a circle o f  
some  radius  rj. T h e  follow ing exam ple considers a sequence th a t is n o n ze ro  for 
—00 <  n < 00.

Example 3.1.5

Determine the z-transform of the signal

x (n) = a"u(n) +  bnu(—n — 1)

Solution From definition (3.1.1) we have

X(z) =  b"z "  = +  Y i b - ' z ) 1
n = 0  n = —oc n = 0  i= l

The first power series converges if locz-11 < 1 or |z| > |a |. The second power series 
converges if \b~xz\ < 1 or |z| < |6j.

In determining the convergence of XCz), we consider two different cases.
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Case 1 |b| <  |a | :  In this case the two RO C above do not overlap, as shown 
in Fig. 3.4(a). Consequently, we cannot find values of z for which both power series 
converge simultaneously. Clearly, in this case, X(c) does not exist.

Case 2 |f>| >  |a |:  In this case there is a ring in the z-plane where both power 
series converge simultaneously, as shown in Fig. 3.4(b). Then we obtain

The ROC of X(z)  ts |cr| < \z\ < \b\.

T his exam ple show s th a t i f  there is a R O C  f o r  an infinite durat ion two-sided  
signal, it is a ring (annular region) in the z-plane.  F rom  E xam ples 3.1.1, 3.1.3, 3.1.4, 
and  3.1.5. we see th a t th e  R O C  of a signal d ep en d s on  bo th  its d u ra tion  (finite 
or infin ite) and on  w h eth er it is causal, an ticausal, o r tw o-sided . T hese  facts are 
sum m arized  in T ab le  3.1.

O ne special case of a tw o-sided  signal is a signal th a t has infinite d u ra tion  
on th e  right side bu t n o t on  th e  left [i.e., x(n)  =  0 fo r n <  « (l < 0], A  sec­
ond case is a signal th a t has infinite d u ra tio n  o n  th e  left side b u t no t on the

X(z) =
1 — ccz 1 1 — bz 1 

b — a (3.1.10)

a +  b — z — abz~l

•plane

Ifcl < tot
X(z) does not exisl

Im(;)

krl < IAI

ROC for X(z)

ReU)

Figure 3.4 R O C  for z-transform in
Exam ple 3.1.5.
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TABLE 3.1 CHARACTERISTIC FAMILIES OF SIGNALS W ITH THEIR  
CO RRESPO NDING  ROC

Signal RO C

Finite-Duration Signals

Two-sided

. . T T T l i t , —
0 n

Causal
Jnfinite-Duration

l l T t *  -

Anltcausal

T ] T 1
Two-sided

I . I t.....

righ t [i.e., x{n)  =  0 fo r n > n\ > 0]. A  th ird  special case is a signal th a t has 
finite d u ra tio n  on  b o th  the left and  righ t sides [i.e., x(n )  =  0 fo r n < no < 0 
and  n > n\  > 0]. T hese  types o f signals a re  som etim es called  right-sided, left­
sided, and  finite-duration two-sided,  signals, respectively . T h e  d e te rm in a tio n  o f  the  
R O C  fo r these  th re e  types o f signals is left as an  exercise  fo r  the  re a d e r  (P ro b ­
lem  3.5).

F inally , we n o te  th a t th e  z -transfo rm  defined by  (3.1.1) is som etim es re fe rred  
to  as th e  two-sided  o r  bilateral z-transform,  to  d istingu ish  it fro m  th e  one-sided  or
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unilateral z- t ransform given by

X~(z )  =  ^ * ( « ) z ~ " (3.1.11)

T he one-sided  z -transfo rm  is exam ined  in Section 3.5. In  this tex t we use the 
expression  z-transfo rm  exclusively to m ean  the tw o-sided z-transfo rm  defined by
(3.1.1). T he term  ‘'tw o -sid ed ’' will be  u sed  oniy in cases w here we w ant to  resolve 
any am biguities. C learly , if x(n)  is causal [i.e., * (72) =  0 for n < 0], the one-sided 
and tw o-sided z-transform s a re  equ ivalen t. In any o th e r  case, th ey  a re  d ifferen t.

3.1.2 The Inverse z-Transform

O ften , we have th e  z-transform  X(z )  of a  signal and  we m ust d e te rm in e  the  signal 
sequence. T he p ro ced u re  fo r tran sfo rm in g  from  th e  z-dom ain  to  th e  tim e dom ain 
is called the  inverse z- transform.  A n inversion  fo rm ula  for ob ta in ing  x(n)  from  
X  (z) can be derived by using the Cauchy integral t heorem , which is an im p o rtan t 
th eo rem  in the th eo ry  of com plex variables.

T o  begin, we have the z-transfo rm  defined by (3.1.1) as

Suppose th a t we m ultiply bo th  sides o f (3.1.12) by z"~' and in teg ra te  both sides 
over a closed co n to u r w ithin the R O C  of X(z )  w hich encloses the origin. Such a 
con to u r is illu stra ted  in Fig. 3.5. T hus we have

w here  C d eno tes th e  closed co n to u r in the  R O C  of A'(z). tak en  in a co u n te rc lo ck ­
wise d irection . Since the se ries converges on th is con to u r, we can in terchange 
the o rd e r  of in teg ra tion  and  sum m ation  on th e  r igh t-hand  side o f (3,1.13). T hus

(3.1.13)

im(o

Figure 3.5 Contour C for integral in 
(3.1.13).
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(3.1.13) becom es

£ x ( z ) z n- ' d z  =  x ( k ) ( h z n- l~kdz  (3.1.14)
t= —00 *

N ow  we can invoke th e  C auchy in teg ra l th eo rem , w hich s ta te s  th a t

ftM5)
w here C is any c o n to u r th a t encloses th e  origin. By applying (3.1.15), the  right- 
h an d  side o f (3.1.14) reduces to  2 n j x ( n )  and  hence  the  desired  inversion  fo rm ula

x( n)  =  ^ - ^ X ( z ) z n_I dz  (3.1.16)

A lth o u g h  th e  c o n to u r in teg ra l in (3.1.16) p rov ides th e  d es ired  inversion  fo r­
m ula fo r d e te rm in in g  th e  sequence  * («) from  the z-transform , w e shall no t use 
(3.1.16) directly  in o u r evaluation  o f inverse z-transform s. In o u r  tre a tm e n t w e deal 
w ith signals and  system s in th e  z-dom ain  w hich have ra tional z -transfo rm s (i.e., z- 
tran sfo rm s th a t a re  a ra tio  o f tw o  polynom ials). F o r such z -transfo rm s we d ev e lo p  a 
s im pler m eth o d  fo r inversion  th a t stem s from  (3.1.16) and em ploys a tab le  lookup .

3.2 PROPERTIES OF THE Z-TRANSFORM

T he z -transfo rm  is a very pow erfu l too l fo r  the  study  o f d isc re te-tim e signals and  
system s. T he pow er o f th is tran sfo rm  is a consequence o f som e very im p o rtan t 
p ro p e rtie s  th a t th e  tran sfo rm  possesses. In  th is section  we exam ine som e o f  these  
p ro p erties .

In  th e  tre a tm e n t th a t follow s, it shou ld  be rem em b ere d  th a t w hen  w e com bine  
several z -transfo rm s, the  R O C  o f the  overall tran sfo rm  is, at least, the  in tersec tio n  
o f th e  R O C  o f th e  indiv idual transfo rm s. T his will becom e m o re  ap p a re n t la ter, 
w hen we discuss specific exam ples.

Linearity. If

Jt,(n) Xi ( z )
and

x 2(n) < -U  X 2(z)
then

x(n)  =  a\x \ (n)  +  a2x 2(n) X( z )  =  aj Xj ( z )  -h o2X 2(z) (3.2.1)

fo r any co n stan ts  a i and  a2. T h e  p ro o f o f th is p ro p e rty  follow s im m ed ia te ly  from  
th e  defin ition  o f linearity  and  is left as an  exercise fo r  th e  read e r.

T h e  linearity  p ro p e rty  can easily be genera lized  fo r an a rb itra ry  n u m b er o f 
signals. B asically , it im plies th a t th e  z-transfo rm  of a lin ear com bin a tio n  o f signals 
is th e  sam e lin ear co m bination  o f th e ir  z-transform s. T hus the  linearity  p ro p e rty  
helps us to  find th e  z -tran sfo rm  o f a signal by expressing  th e  signal as a sum  of 
e lem en ta ry  signals, fo r each  o f w hich, th e  z -transfo rm  is a lready  know n.
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Example 3.2.1

Determine the z-transform and the ROC of the signal 

*(«) =  [3(2") -4 (3")]«(«)

Solution If we define the signals

jti(«) =  2"u(n)

and

x2(n) =  3 "u(n)

then jc(«) can be written as

x(n) =  3xi(n) — 4 x2(n)

According to (3.2.1), its z-transform is

X(;) =  3 X ,(c ) -4 X 2(z)

From (3.1.7) we recall that

a'‘u(n) - ROC: |z| > |a | (3.2.2)
1 -  az

By setting a  =  2 and or =  3 in (3.2.2). we obtain

Ai(n) =  2”u(n) X,(z) =   ̂ ROC: |zj > 2

x2(n) =  3nu(ri) X 2(z) ~   ̂ __■ , ROC: |zl > 3

The intersection of the ROC of X,(z) and X2(:) is |z| > 3. Thus the overall transform 
X (z) is

ROC: |; | > 3

Example 3.2.2

Determine the z-transform of the signals

(a) x(n) =  (COSo»on)u(n)
(b) x(n) = (sinw^n)u(n)

Solution

(a) By using Euler's identity, the signal .t(n) can be expressed as 

x (n) = (cosa>on)u(n) =  \ e Jaln"u(.n) +  ^e~JUJn”u(n)

Thus (3.2.1) implies that

X( z )  =  \ Z { e ^ u ( n ) )  +  ^ { g - ^ u i n ) }



If we set a  =  e^^O ori =  \e±i<u°\ =  1) in (3.2.2), we obtain

eJUV"u(fi) --------------- R O C : |z[ > 1
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and

Thus

1 -
e - ,wnnu(n) ^  --------— T T T  R O C : l; l >  1

X(z) =  -------- ----------h I ------- - ------r ROC: |;1 > 1
2 1 — ^ “fz -1 2 1 — e~J‘̂ lz~I

After some simple algebraic manipulations we obtain the desired result, namely,

: 1 — C_ ! COSW() , ,, ,, ,
(coscO(}f?)u(n) <— ► -— -— ;---------------- - ROC: |-1 > 1 Lr2.j)

1 -  2z~1 cos ton +

(b) From Euler’s identity,

x(n) =  (sino<o«)«(n) =  ^-\eiun" u(n) — e~,w""u(»)]
2  j

Thus

X(-) =  ^ - f - ------1------- -  ------- ------- - |  ROC: |: | > 1
2 j \  1 — r _ 1 1 —

and finally.

z sm OH)
(sincoi,n)u(n) x - ^  ----- -— ------------------ ROC: |; | > 1 (3.2.4)

1 -  2z_1 cos wo +  z~-

Time shifting. If

x(n)  X(c)

then

x{n -  k ) z ~ kX{ z )  (3.2.5)

T h e  R O C  o f z~kX ( z )  is the  sam e as th a t o f X (z )  excep t fo r j  =  0 if k > 0 and 
z =  oo if  k < 0. T he p ro o f  o f  th is p ro p e rty  follow s im m ed ia te ly  from  the definition 
o f th e  ^ -transfo rm  given in (3.1.1)

T h e  p ro p e rtie s  o f linearity  and tim e shifting a re  the  key  fea tu res th a t m ake 
th e  z-transfo rm  ex trem ely  usefu l fo r th e  analysis o f d isc re te -tim e  LTI system s.

Example 3*23
By applying the time-shifting property, determine the z-transform of the signals .T2(n,i 
and xi(n)  in Example 3.1.1 from the Z'transform of Jti(n).

Solution It can easily be seen that

x 2( n)  =  * ](«  +  2)
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and

*i(n) =  j:i(n -  2)

Thus from (3.2.5) we obtain

X2(z) =  z2X, (z) =  r  +  2; +  5 +  7 z ' 1 +  z“3
and

X3(z) = r 2X,(z) =  z"2 +  2z"3 +  5z-4 +  7 z"s +  z-7 

Note that because of the multiplication by z2, the ROC of X2(z) does not include the 
point z =  oc, even if it is contained in the ROC of A î(z).

E xam ple 3.2.3 prov ides add itio n a l insight in u n d e rs tan d in g  th e  m eaning  of 
the shifting p roperty . In d eed , if we recall th a t th e  coefficient o f z~n is the  sam ple 
value at tim e n, it is im m edia te ly  seen  th a t delaying a signal by k(k  > 0) sam ples 
[i.e., x(n)  x(n  — A')] co rre sp o n d s to  m ultip ly ing  all te rm s o f th e  z -transfo rm  by 
z~k. T he coeffic ient o f z~" becom es th e  coefficient o f ~~tn+k).

Example 3.2.4

Determine the transform of the signal
f 1, 0  <  n <  jV -  1 „ „ ,

' ‘" H o .  e lsew h ere < 3 1 6 >

Solution We can determine the z-transform of this signal by using the definition
(3.1.1). Indeed,

*-i f N,  ifz  =  l
X(z) =  ^ l  • z ^  =  l + ; - ' + - - -  +  z - (Af- l l =  l - r *  -f . , ,  (3.2.7)

»*=<' I 1 -  z -1 ' 1
Since .v(n) has finite duration, its ROC is the entire z-plane, except z — 0.

Let us also derive this transform by using the linearity and time shifting prop­
erties. Note that xin) can be expressed in terms of two unit step signals

x(n) = u(n) — u(n — N)

By using (3.2.1) and (3.2.5) we have

X(z) =  Z{u(n)} -  Z{u(n -  N)) = (1 -  z"*')Z{u(«)} (3.2.8)

However, from (3.1.8) we have

Z[u(n)) =   ̂ ROC: jzl > 1

which, when combined with (3.2.8), leads to (3.2.7).

E xam ple  3.2,4 helps to  clarify a very  im p o rtan t issue reg ard in g  the R O C  
of th e  com bination  o f severa l z-transform s. If th e  linear co m b in a tio n  of several 
signals has finite du ra tio n , th e  R O C  o f its z -transfo rm  is exclusively d ic ta ted  by the 
fin ite-du ra tion  n a tu re  of th is signal, n o t by the  R O C  o f th e  ind iv idual transform s.

Scaling in the z-domain. If

x { n ) X { z )  ROC: ri < [z| < r2
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then
a nx ( n ) ► X (c~ ’z) R O C : \a\r\ <  |z| <  \a\r2 

for any  constan t a,  rea l o r  com plex.

Proof.  F rom  the  defin ition  (3.1.1)

(3.2.9)

OC OC

Z{a"x(n)}  =  Y  anx (n )z  " =  ^  x(n) (a  ‘z) n

\o\r i <  I;I <  \a\r2
T o  b e tte r  u n d e rstan d  the  m eaning  and  im plications o f  th e  scaling p ro p erty , 

we express a and  z in p o la r  form  as a =  rae->a", z =  r e i<0, an d  we in tro d u ce  a new  
com plex variab le  w =  a~^z-  T hus Z{x(n) )  = X (z )  and  Z{a"x(n)}  =  X (if) . It can 
easily be seen  th a t

T his change of v ariab les resu lts  in e ith e r  shrink ing  (if r0 > 1) o r  expand ing  (if 
r0 <  1) th e  z-p lane in com bination  w ith a ro ta tio n  (if too #  2i-jr ) o f th e  z-p lane 
(see Fig. 3.6). T his exp lains why we have a change in the  R O C  o f th e  new  transfo rm  
w here  |a | <  1. T he case \a\ =  1, th a t is, a =  e^w" is o f special in te rest b ecause  it 
co rre sp o n d s only to  ro ta tio n  o f  the  z-p lane.

Example 3.2.5

Determine the z-transforms of the signals

(a) x(n) = a"(cosu\in)u(n)
(b) x(n) = tf"(sinio»n)u(n)

r-planc w-plane
Im(-)

(W-Ĉ o

0 Re(z) 0 Re(w)

Figure 3.6 Mapping of the r-plane to the u -plane via the transformation ui =
o _ 1 Z ,  a — roê .
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Solution
(a) From (3.2.3) and (3.2.9) we easily obtain

1 -  a ; -1 cos wn
a  (C O S  a i | , «  ) u ( r t )  *-------*■ --------- ---------- ;--------------------------

1 — l a z r 1 cos ton -f a

(b) Similarly, (3.2.4) and (3.2.9) yield

a r -1 sin to<i
a (sin wii/i)u(n) *— ► --- ---- ;---------

1 — 2az~ cos to,, +  a

Time reversal. If

a (//) *-—> X(z )  R O C : r\ < < r;

then

j r ( - n )  <-i-> X { z ~ ]) R O C : — < |z < -  (3.2.12)
r 2 r \

P r o o f  F rom  the defin ition  (3.1.1), we have

Z{a (—/;)) =  Y  -x {-! i )z~" — Y  ■'‘ ( h ( z ~ t )~l — Ar(z~ ')
h = - x. / = ->;

w here the change of variab le  / =  — n is m ade. T he R O C  of A '( ;_1) is

< |c—1 f  < r-i o r equ ivalen tly  — < ];| < —
r2 n

N ote th a t the R O C  for x(n)  is the inverse o f th a t for x ( —n).  T h is  m eans th a t if co 
b elongs to the R O C  of x(n) ,  then  l/"o  is in the R O C  for x ( —n).

A n in tu itive p ro o f o f (3.2.12) is the  follow ing. W hen  we fold a signal, the 
coeffic ient of z~n becom es the  coefficient o f zn. T hus, fo ld ing  a signal is equ ivalent 
to  rep lacing  ;  by in the  z-transform  form ula. In  o th e r  w ords, reflection  in the 
tim e dom ain  co rre sponds to  inversion in the z-dom ain .

Example 3.2.6

Determine the z-transform of the signal

x i n ) =  u( — n)

Solution It is known from (3.1.8) that

u(n) <-U i ROC: | z l  > 1

By using (3.2.12), we easily obtain

u(—n) *■ ------  ROC: |z < 1 (3.2.13)

(3.2.10)

|z! > la I (3.2.11)

Differentiation in the z-domain. If
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then

nx{n ) <— >- —z ^ ^ y —  (3.2.14)
dz

Proof .  By differentiating both sides o f (3.1.1), we have 

d X { z )

n~—oc n= — oc

— - z ~ l Z{nx(n)}

N ote that both transforms have the sam e ROC.

Example 3.2.7
Determine the z-transform of the signal

jr(n) =  na"u(n)

Solution The signal j:(n) can be expressed as njcitn), where Xj(n) = a"u(n). From
(3.2.2) we have that

jri(rt) =  aKu(n) < - X,(z) =  -— ----- - ROC: |z| > \a\
1 — az~'

Thus, by using (3.2.14), we obtain

dXjiz)  a : ' 1
n<j"ii(n) X(z) = - z — ^ -  =  ----------- r-r ROC: |z| > |a| (3.2.15)

az  (1 -  az~' V

If we set a =  1 in (3.2.15), we find the z-transform of the unit ramp signal

ntt(n) 2 ROC: jz| > 1 (3.2.16)

Example 3.2.8
Determine the signal x(n) whose z-transform is given by

X(z)  =  log(l -t- o z '1) |z! > |o(

Solution By taking the first derivative of X(z),  we obtain

dX{z)  - a z ~2 
dz  “ 1 + az~l

Thus

dX(z)
dz

= az
1 -  (- a ) z ->

> \a]

The inverse z-transform of the term in brackets is (-a)".  The multiplication by 
z_1 implies a time delay by one sample (time shifting property), which results in 
( - a ) " _1u(n — 1). Finally, from the differentiation property we have

nx(n) =  a(—a)n~lu(n — 1)
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x(n)  =  ( - 1 } " +1 —  u(n -  1) 
n

Convolution of two sequences. I f

Xi (rt)

x 2( n)

X ^ z )

X 2 {z)

t h e n

x(n)  =  jfi(n) * x 2(n) X (z )  =  X \ ( z ) X 2(z) (3.2.17)

T he R O C  of X (;)  is, at least, the in tersec tio n  of th a t for ATi(c) and  AS(z).

Proof.  T he convolu tion  o f  x i(n ) and  x 2 (n) is defined  as
OC

x ( n ) =  Y  x i ( k )x 2(n -  k)
i' = —oc

T he z-transfo rm  o f x(n)  is
oc oc ac

AT{;) =  Y 2  x(n)z~"  = Y ,  x \ ( k ) x 2(n -  k)
n — - x  n = -oc  |_Jt = -cc

U p o n  in terchanging  the  o rd e r o f the sum m ations an d  applying the tim e-shifting  
p ro p e rty  in (3.2.5). we ob tain

X{z)  = Y  x ' {k) x 2(n — k)z  "

=  X 2(z) Y  ^ ( k ) z ~ k =  X 2 ( z ) X ](z)

Example 3.2.9
Compute the convolution x(rt) of the signals 

jt,(n) =  { 1 .-2 ,1 )

_  f 1. 0 < n < 5
2 10 , elsewhere 

Solution From (3.1.1), we have

* ,( ; )  =  1 - 2 ; “ ' + z ~ 2

X2(z) = I + z ~ ' +  z~2 +  j ' 3 +  z"4 +

According to (3.2.17), we carry out the multiplication of X\(z) and X 2(z). Thus 

X(z) = X 1(z)X1 (z) = 1 -  z"1 -  z~6 +  z "7

Hence

x(n)  =  { 1 . - 1 .0 ,  0, 0, 0 , - 1 , 1 }  
t



The same result can also be obtained by noting that 

X,U) =  (1 -  ; ~ ' r

1 -  ; -6 
x 2w  =  3— p

Then

X(z) =  (1 -  ; - ‘)(l -  z~*) =  1 -  -  z"6 +  :" 7

The reader is encouraged to obtain the same result explicitly by using the convolution 
summation formula (time-domain approach).

T h e  convo lu tion  p ro p e rty  is one o f th e  m ost pow erfu l p ro p e rtie s  o f the  z- 
tran sfo rm  because  it converts th e  convo lu tion  o f tw o signals (tim e dom ain ) to 
m u ltip lica tion  of th e ir  transfo rm s. C o m p u ta tio n  of th e  convo lu tion  o f tw o signals, 
using th e  z -transfo rm , req u ires  the follow ing steps:

1. C o m pu te  th e  z -transfo rm s of the  signals to  be convolved.

X i(z) =  Z{x\ (n) \

(tim e dom ain  — *■ -.-dom ain)

X 2(z) = Z { x 2(n) ]

2 . M ultip ly  th e  tw o z-transform s.

X (z) =  X ,(z )X 2(;) (z-dom ain)

3. F ind  the inverse  z-tran sfo rm  o f X (z).

x(n)  =  Z _ , {X(z)) (z-dom ain  — ► tim e d o m ain )

T his p ro ced u re  is, in m an y  cases, co m p u ta tio n a lly  eas ie r  th an  the  d irect ev a l­
u a tio n  of the  convo lu tion  sum m ation .

Correlation of two sequences. If

xj (n)  X i(z) 

x 2(n) X2(z)

th en
OC

Rx,J2(z) =  X 1(Z)X2(Z"1) (3.2.18)
OC
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Proof .  We recall that

rXix2U) =  x\ ( l )  * x 2( - l )
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U sing the  convo lu tion  and tim e-reversa l p ro p e rtie s , we easily o b ta in

=  Z{x] ( / )}Z{xz(—/)} =  X l ( z ) X2( z~1)

T he R O C  of RX}X2(z) is at least the in tersec tion  o f th a t fo r X i(c) and  X2("-1 )- 
A s in the  case o f convo lu tion , th e  crossco rre la tio n  o f tw o  signals is m ore 

easily done via po lynom ial m ultip lication  accord ing  to  (3.2.18) and  then  inverse 
transfo rm ing  the  result.

Example 3.2.10

Determine the autocorrelation sequence of the signal

x (n )  =  a " u { n ) .  —  1 <  a  <  1

S olu tion  Since the autocorrelation sequence of a signal is its correlation with itself,
(3.2.18) gives

Rxs(z) = Z{rxJI ))  = X (z)X (;~l )

From (3.2.2) we have

Ale) =  ---------- - ROC: |z| > \a\ (causal signal)
J -  az~'

and by using (3.2.15). we obtain

1 1| =  -.... ■ ROC: |; | < —  (anticausal signal)
1 -  az (a|

Thus

=  - -—  =  ------------ ------------ - ROC: \a\ < |; | < —
1 — az  1 1 -  az 1 — a(; +  ; ) +  fl |c|

Since the ROC of Rxx(z) is a ring, rIX{i) is a two-sided signal, even if x(n) is causal.
To obtain rsJ l ) ,  we observe that the ^-transform of the sequence in Exam­

ple 3.1.5 with b =  1 /a is simply (1 — a1)Rxx(z). Hence it follows that

rXI(l) =  — -—- a ^  — oc < I < oo 
\  — a -

The reader is encouraged to compare this approach with the time-domain solution of 
the same problem given in Section 2.6.

Multiplication of two sequences. If

x\ (n)  ATi(z) 

x 2(n) X 2{z)

then

•r(n) =  x i ( n ) x 2(n) X (z )  =  ( “ )  v ~ ^ v (3.2.19)

w here C  is a c losed co n to u r th a t encloses th e  o rig in  and  lies w ith in  th e  reg ion  of 
convergence com m on to  bo th  X](i>) and  ^ ( l / u ) .



Proof .  T h e  z -transfo rm  of J 3(n) is
OC OC

X(z )  = Y  x ( n) z ~n = Y  x ](n)x2 (n)z~n
ft— n = —oc

L et us su b stitu te  the  inverse transfo rm  

* i(n ) =

for in th e  z -transfo rm  X (z) and  in terchange th e  o rd e r  o f sum m ation  and
in teg ra tion . T hus we ob ta in

1 /  " oc
X ( z ) = 2 v~ ^ v

T he sum  in th e  b rack e ts  is sim ply the transfo rm  X 2 (:)  ev a lu a ted  a t z /v .  T here fo re ,

X ( z )  =  ^ - 6 x ^ x 2
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2n  j  Jc

w hich is the d es ired  result.
T o  o b ta in  th e  R O C  of X (z) we n o te  th a t if X i(u) converges fo r ru < |u | < r\ 

and  X 2iz)  converges fo r r2! < |z| <  r2ll, th en  the  R O C  o f X 2{z/v)  is

H en ce  th e  R O C  for A"(z) is at least

r\ir2i < |z[ < ru r2u (3.2.20)

A lth o u g h  this p ro p e rty  will no t be used im m edia te ly , it will p ro v e  usefu l later, 
especially  in o u r tre a tm e n t o f filter design based  on  th e  w indow  tech n iq u e , w here 
w e m ultip ly  the  im pulse response  o f an IIR  system  by a f in ite -d u ra tio n  “w indow ” 
w hich serves to  tru n ca te  the  im pulse response  o f th e  I IR  system .

F o r com plex-valued  sequences .ti(rt) and  x 2(n) we can  define th e  p roduct 
se q uence  as x(n)  =  Jti (njx^in) .  T hen  th e  co rre sp o n d in g  com plex  convolu tion  
in teg ra l becom es

x(n)  =  x i (n ) x 2 {n) X ( z )  =  v ~ ld v  (3.2.21)

T h e  p ro o f  o f (3.2.21) is left as an exercise for th e  read e r.

Parseval’s relation. If jti(n) and x 2(n) a re  com plex -valued  sequences, th en

y  * i(n )x 2 (n) =  l j ( j ^ X i ( v ) X 2 v ~ 'd v  (3.2.22)

p ro v id ed  th a t r ^ r y  <  1 <  n ur2u, w here  ry  <  |z| <  r \u and  r ^  < |z| <  r2u a re  th e  
R O C  of X ](z) an d  X 2(z). T h e  p ro o f o f (3.2.22) follow s im m ed ia te ly  by evaluating  
X( z )  in (3.2.21) at z =  1.
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The Initial Value Theorem. If j ( ; i )  is causal  [i.e.. x(n)  =  0 fo r n < 0], then

.r(0) =  lim X (z )  (3.2.23):—*• sc

Proof.  Since x{n)  is causal. (3.1.1) gives

X  (z) — y  x  {n )z ” — x (0) +  x  (1 )z 1 +  x (2)z +  ■ ■ •
«=o

O bviously, as z —► oc. z ~" —► 0 since n > 0 and (3.2.23) follow s.
A ll the  p ro p e rtie s  o f th e  z -transfo rm  p re se n te d  in th is se c tio n  are sum m arized  

in T ab le  3.2 fo r easy re fe rence . T hey  are listed in the sam e o rd e r as they  have 
been in troduced  in th e  tex t. T h e  con jugation  p ro p e rtie s  and  P arsev a l's  relation  
are left as exercises for th e  reader.

W e have now' deriv ed  m ost o f the  z -transfo rm s th a t are en co u n te red  in m any 
practical app lications. T hese  z -transfo rm  pairs a re  sum m arized  in T ab le 3.3 for 
easy re fe rence . A  sim ple inspection  o f th is tab le  show s th a t these  z-transform s 
are  all rational funct ions  (i.e., ra tios o f polynom ials in z _1). A s will soon becom e 
ap p a ren t, ra tional z -transfo rm s are en co u n te red  no t only as th e  z-transform s of 
various im p o rtan t signals bu t also in the ch arac te riza tio n  of d isc re te -tim e  linear 
tim e-invarian t system s described  by constan t-coeffic ien t d ifference  equations.

3.3 RATIONAL Z-TRANSFORMS

A s ind ica ted  in Section  3.2, an im p o rtan t fam ily o f z-transfo rm s a re  those fo r which 
X(z )  is a ra tional function , tha t is. a ra tio  of tw o po lynom ials in z _l (o r z). In 
this section we discuss som e very im p o rtan t issues regard ing  th e  class o f ra tional 
z-transform s.

3.3.1 Poles and Zeros

T he zeros  of a z -transfo rm  X (z) are  the  values of z fo r  w hich X  (z) =  0. T he poles  
o f a z-transform  are the  values o f z for which X (z) =  oc. If X ( z ) is a rational 
function , then

JK ,)  .  =  ™ --------- (3.3.1)
D(z)  ao + ai z  1 + ----- \ -aNz ~ h *

k=o

If ao /  0 and bo ^  0, we can avoid the  negative pow ers o f z by  facto ring  ou t the 
term s boz~M and  a$z~N as follows:

N( z)  b0z~M z M + {bx/bo)zM~x +  • • ■ +  bM/ b0
X(z)  =

D(z)  a0z N ZN + (a \ /aa) z fJ~l H--------\ -aN/ a Q



TABLE 3.2 PROPERTIES OF THE Z-TRANSFORM

Property Time Domain z-Domain ROC

Notation *(n) X(z) ROC: r2 < |z) < r\
xt (n) Xi(z) ROC,
■^(n) X2(z) ROC2

Linearity aixy(n) + a2x2(n) <t\*l(z) + « 2X2(z) At least the intersection of R O Q  
and ROC2

Time shifting x{n -  k) z~kX(z) That of X (z), except z =  0 if k > 0 
and z =  oo if k < 0

Scaling in the z-domain a"x(n) X(a~'z) \a\r2 < |z| < |a|r[

Time reversal x(~rj) X(z~')
1 1

-  < |z| < —
Conjugation x'(rt) X' ( z ' )

r1 r2 
ROC

Real part Relx(n)} i[X (z) +  X*U*)] Includes ROC
Imaginary part lm{x(n)) i [X (z ) - * ♦ ( ; • ) ] Includes ROC

Differentiation in the 
z-domain

nx(n) dX(z)
Z dz

r2 < |z| < r.

Convolution x i ( n ) * x 2(n) Jf|(z)X 2(z) At least, the intersection of ROCi 
and ROC2

Correlation rx,x2(l) = *i(0  * x 2(~l) / W z )  =  Xi<z)*2<z_l) At least, the intersection of ROC of 
X,(z) and -K^z”1)

Initial value theorem If x(n) causal .r(O) =  lim X(z)

Multiplication Xi(n)x2(n) 2 ~ J ^ X , ( v ) X 2 ^ J v - ' d v At least rj/ry < |z| < r]„r2a

Parseval’s relation
= 2? i i 5X ,(t))^ (l/tJ  ’) v- ' dv
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TABLE 3.3 SOME COMMON Z-TRANSFORM PAIRS

Signal. x(n) : -Transform, X (c) R O C

1 5{n) 1 A ll ;

2 u(n)
1

1 -  r-1
1:1 > 1

3 a"u(n)
1

1 — az~l
\z\ > \a\

4 na"u(n)
a : " 1

( l - a z ^ ) 2
Izt > !a|

5 —a”u(—n — 1)
1

1 — a : -1 kl < la|

6 —na'’u(—n — 1)
a z~l 

(1 - c : - 1)2
|; | < N

7 (cos aion)u(n)
1 -  Z '1 COSf^o

1 -  2; _1 costal +  z~2 kl > 1

8 (sin a>nn)u(n)
sin

1 -  2 ;" 1 cos tun +  z~2
\z\ >  1

(a" cosiH ) n ) u ( n )
1 — az~] cos a*)

1 — 2az~‘ cos wo +  a2z~2

10 (a'1 sin£i*in)u{n)
a ; -1 sinaiii

1 - 2a ; " 1 cos a*, +  a2z ~2

Since N( z )  and D(z)  are polynom ials in z,  they can be expressed in factored form as

X ( - )  — —  b() - - M + N  ~  ~  Z2) ■■■ (Z ~  Z m )

D(z)  (z -  p i ) ( z  -  P i )  ■ • ■ (z -  p n )
u

n «  "  z*} (3.3.2) 
X ( z )  =  G z N~ M^ ------------A

n<* ~ pjt)
*=i

where G  =  6o/ao- Thus X (r) has M  finite zeros at z =  z\ ,  z i ,  ■. •, zm (the roots o f
the numerator polynom ial), N  finite poles at z =  p\ ,  p i .........Pn  (the roots o f  the
denom inator polynom ial), and \N — M\  zeros (if N  >  M )  or p o les (if N  <  M )  at 
the origin z =  0. P oles or zeros may also occur at z =  0 0 . A  zero exists at z =  oc if 
X  (0 0 ) =  0 and a p ole exists at z =  oc if X (0 0 ) =  oc. If w e count the poles and zeros 
at zero and infinity, we find that X  (z) has exactly the sam e num ber o f poles as zeros.

W e can represent X (z )  graphically by a p o l e - z e r o  p l o t  (or pat tern)  in the 
com plex plane, which shows the location o f poles by crosses ( x )  and the location  
of zeros by circles (o). The multiplicity of multipie*order po les or zeros is indicated 
by a number close to  the corresponding cross or circle. O bviously, by definition, 
the R O C  of a z-transform should not contain any poles.
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Example 33.1

Determine the pole-zero plot for the signal

x(n) =  a"u(n) a > 0

Solution From Table 3.3 we find that
1_____

- a
X(z) = ROC; \z\ > a

1 — a ; -1
Thus has one zero at n  = 0  and one pole at pi  =  a. The pole-zero plot is 
shown in Fig. 3.7. Note that the pole p\ =  a is not included in the ROC since the 
z-transform does not converge at a pole.

Re(;)

Figure 3.7 Pole-zero plot for the 
causal exponential signal ,v(«) =  a"imu

Example 3 3 .2

Determine the pole-zero plot for the signal

O f  n < W -  1 
1 0, elsewhere

where a > 0.

Solution From the definition (3.1.1) we obtain

^  ln  l - t a ; ' 1) "  z“ - a u
X(z)  =  X W 1}" =  - r r ^ ------ r  =  S T T t--------T"  1 -  az 1 z (z -  a)

Since a > 0, the equation z M =  a M has M roots at

Z t  =  a e ' 1 * * ' "  i t  =  0 , 1 . . . . . . M  -  1

The zero zo = a cancels the pole at z = a. Thus

w  , (Z -  Z\ ) (Z -  Zl )  ■ ’ ■ (Z - Z j t f - i )
X(z)  = ---------------- ^ - ----------------

which has M — 1 zeros and M -  1 poles, located as shown in Fig. 3.8 for M =  8. Note 
that the R O C  is the entire z-plane except z =  0 because of the M -  1 poles located 
at the origin.
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Red)

Figure 3.8 Pole-zero patlem for 
the finite-duration signal x(n) = a",
0 < n < M — l(a > 0). for M = 8.

C learly , if we are  given a p o le -z e ro  p lo t, we can d e te rm in e  X ( ’ ), by using 
(3.3.2), to  w ithin a scaling fac to r G. This is illu stra ted  in the follow ing exam ple.

Example 3.3.3

Determine the c-transform and the signal that corresponds to the pole-zero plot of 
Fiji. 3.9.

Solution There are two zeros (M =  2) at Z] =  0, Z2 =  r cosojo and two poles (N =  2) 
, Pz = re~iw". By substitution of these relations into (3.3.2), we obtainal p] — reJ 

X(z) = ( =  G-
Z(Z — r C O S ttH i)

(; -  Pi)(c -  pi) (c -  re}wu)(z -  re~>w") 
After some simple algebraic manipulations, we obtain

ROC:

Xiz)  = G-.
1 - COS a><)

costou +  r11 - 2  r -~ l 

From Table 3.3 we find that

x(n) = G(r" cosa>on)u(n)

ROC: 1-1 > r

F rom  E xam ple  3.3.3, we see th a t the p ro d u c t (; — p \ ) ( z  — P2) resu lts in a 
polynom ial w ith rea l coefficients, w hen p\  and  p 2 a re  com plex  conjugates. In

Im(2)

Figure 3.9 Pole-zero pattern  for
Example 3.3.3.
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genera l, if a po lynom ial has rea l coefficients, its ro o ts  are  e ith e r  real o r occur in 
com plex-con jugate  pairs.

A s we have seen , th e  ; -transform  X (z )  is a com plex function  of the  com plex 
variable  z =  Re ( z )  +  j  Im (r). O bviously , |X (c) |, th e  m ag n itu d e  o f  X ( z ), is a real 
and positive function  o f c. S ince :  rep re sen ts  a po in t in th e  com plex  p lane , |X ( ’ )| 
is a tw o-d im ensional function  and  describes a “su rface .” T his is illu stra ted  in 
Fig. 3.10(a) for th e  z -transfo rm

7 - 1  _  - - 2

(a)

Figure 3.10 Graph of |X (;)| for the 
;;-Transform in (3.3.3). [Reproduced with 
permission from Introduction to Systems 
Analysis,  by T. H. Glisson, ©  1985 by 
McGraw-Hill Book Company.]
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w hich has one ze ro  a t z\ =  1 and  tw o po les a t p\ ,  p2 =  0.9e±J" /4. N ote the 
high p eak s n ea r  th e  singu larities (po les) and  th e  d eep  valley  close to  th e  zero. 
F igure 3.10(b) illu stra tes th e  g raph  o f lX(z)j fo r z =  eJO>.

3.3.2 Pole Location and Time-Domain Behavior for 
Causal Signals

In  th is subsection  we consider the  re la tio n  b e tw een  th e  z -p lan e  location  o f a pole 
p a ir  an d  the  fo rm  (shape) o f th e  co rre spond ing  signal in th e  tim e  dom ain . T he dis­
cussion is based  generally  on  the  collection  o f z-tran sfo rm  p a irs  given in T ab le  3.3 
and  th e  resu lts in th e  p reced in g  subsection . W e d e a l exclusively w ith  real, causal 
signals. In  p a rticu la r, we see th a t th e  charac te ris tic  b eh av io r o f  causal signals de­
p ends on  w h e th e r th e  po les o f the  tran sfo rm  are  co n ta in ed  in th e  reg ion  |z| <  1 , 
o r in th e  reg ion  |z| >  1, o r on th e  circle |z| =  1. Since th e  circle jz| =  1 has a 
rad ius o f  1 , it is called  th e  unit circle.

If  a real signal has a  z-transform  w ith o ne  po le , th is po le  has to  be real. The 
only such signal is th e  rea l exponen tia l

x(n)  =  a nu{n)  ^  X (z )  = — ------ r R O C : |z] > |o|
1 — az

having one zero  a t zi =  0 and  o ne  po le  a t pi — a on the  rea l axis. F igure 3.11

x (n)

1 1 !  T T t
11 o

x(n)

x(n)

n n i
'1 0

x(n)

l i t ,

x(n

i l l
0

I I I
rt

1
- o i

'

Figure 3.11 Time-domain behavior of a single-real pole causal signal as a function 
of the location of the pole with respect to the unit circle.
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illu stra tes th e  b eh av io r  o f th e  signal w ith respec t to  th e  loca tio n  o f th e  po le  re l­
ative to  th e  un it circle. T h e  signal is decaying  if the  po le  is inside the unit 
circle, fixed if the  po le  is on  the un it circle, and  grow ing if th e  pole is o u t­
side th e  un it circle. In  add ition , a negative po le  resu lts in a signal th a t a lte r­
nates in sign. O bviously , causal signals w ith poles ou tsid e  th e  u n it circle b e ­
com e u n b o u n d ed , cause overflow  in d igital system s, and  in g enera l, shou ld  be 
avoided .

A  causal rea l signal w ith a double rea l po le  has th e  fo rm  

x (n )  =  n a nu (n )

(see T ab le  3.3) and  its b eh av io r is illu stra ted  in Fig. 3.12. N o te  th a t in co n tra s t to  
the sing le-po le  signal, a do u b le  real po le  on  the  u n it circle resu lts  in an  u n b o u n d ed  
signal.

F igu re  3.13 illu stra tes the  case of a p a ir  o f com plex -con jugate  poles. A cco rd ­
ing to  T ab le  3.3, th is configuration  of po les resu lts in an expon en tia lly  w eighted  
sinusoidal signal. T he d istance r of the poles from  the origin d e te rm in es  the  en v e­
lope of th e  sinuso idal signal and th e ir  angle w ith th e  real p o sitiv e  axis, its relative 
frequency . N o te  th a t the  am plitude  o f the signal is grow ing if r > 1, constan t if 
r — 1 (sinuso idal signals), an d  decaying if r  <  1 .

x(n)
<■

T T T ....

j xin)

. T !

0 1
n

l

Figure 3.12 Time-domain behavior of causal signals corresponding to a double (m =  2) real 
pole, as a function of the pole location.
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Figwe 3.13 A  pair of complex-conjugate poles corresponds to causal signals with 
oscillatory behavior.

Finally, Fig. 3.14 shows the behavior o f a causal signal with a double pair of 
poles on the unit circle. This reinforces the corresponding results in Fig. 3.12 and 
illustrates that m ultiple poles on the unit circle should be treated with great care.

T o summarize, causal real signals with sim ple real poles or sim ple com plex- 
conjugate pairs o f  poles, which are inside or on the unit circle are always bounded  
in amplitude. Furtherm ore, a signal with a pole (or a com plex-conjugate pair 
o f  p o les) near the origin decays m ore rapidly than one associated with a pole  
near (but inside) the unit circle. Thus the time behavior o f  a signal depends 
strongly on the location o f  its poles relative to the unit circle. Z eros also af­
fect the behavior o f  a signal but not as strongly as poles. For exam ple, in the
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Figure 3.14 Causal signal corresponding to a double pair of complex-conjugate 
poles on the unit circle.

case o f sinusoidal signals, the p resence and  location  o f zeros affects only the ir 
phase.

A t this po in t, it shou ld  be stressed  th a t every th ing  we have said ab o u t causal 
signals app lies as well to  causal LTI system s, since th e ir  im pulse response  is a causal 
signal. H ence if a po le  of a system  is o u tside  the unit circle, th e  im pulse response 
of the  system  becom es u n b o u n d ed  and. consequen tly , the  system  is unstab le .

3.3.3 The System Function of a Linear Time-Invariant 
System

In C h a p te r  2 we d em o n s tra ted  th a t the o u tp u t o f a (re laxed ) linear tim e-invarian t 
system  to  an inpu t sequence  x(n)  can be ob ta in ed  by com pu ting  the  convolu tion  
of jc(h) with th e  un it sam ple response o f the  system . T he convo lu tion  p roperty , 
derived  in Section 3.2, allow s us to express th is re la tionsh ip  in the  z-dom ain  as

w here Y(z)  is the  z -transfo rm  of the o u tp u t sequence v(n), X (z) is the  z-transform  
o f  the  inpu t seq u en ce  x(n)  and  H(z)  is the  z - transfo rm  of the  unit sam ple response
h{n).

If  we know  h(n)  and  x(n) ,  we can d e te rm in e  th e ir  co rre sp o n d in g  z-transfo rm s 
H (z )  and X(z ) ,  m ultip ly  them  to  ob ta in  Y(z) ,  and  th e re fo re  d e te rm in e  y(n)  by 
evaluating  the inverse z -transfo rm  of K(z). A lternative ly , if we know  x(n)  and  we 
observe th e  o u tp u t y(n)  of the system , we can dete rm in e  the u n it sam ple response 
by first solving for H(z)  from  th e  re la tio n

and  th en  eva lu a tin g  the  inverse z -transfo rm  o f  H(z) .  
Since

Y(z)  =  m z ) X ( z ) (3.3.4)

OC

(3.3.6)
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it is c lea r th a t H ( z)  rep re sen ts  the  z-dom ain  ch a rac te riza tio n  o f  a system , w hereas 
h{n)  is th e  co rre sp o n d in g  tim e-dom ain  ch a rac te riza tio n  of th e  system . In o th er 
w ords, H{z)  and  h(n)  are  eq u iv a len t descrip tions o f a system  in the  tw o dom ains. 
T he tran sfo rm  H{z)  is called  the  system funct ion.

T h e  re la tio n  in (3.3.5) is particu larly  useful in o b ta in in g  H{z )  w hen  th e  system  
is d escribed  by a lin ea r  constan t-coeffic ien t d ifference  e q u a tio n  o f the  form

In th is case the  system  function  can be d e te rm in ed  d irectly  fro m  (3.3.7) by com ­
pu ting  the  z-transfo rm  o f b o th  sides o f (3.3.7). T hus, by app ly ing  th e  tim e-shifting  
p ro p erty , we ob ta in

T h ere fo re , a lin ear tim e-in v arian t system  d escribed  by a constan t-coeffic ien t dif­
ference eq u a tio n  has a  ra tio n a l system  function .

T his is th e  g en e ra l fo rm  fo r th e  system  function  o f a  system  d escribed  by a 
lin ear constan t-coeffic ien t d ifference equ a tio n . F rom  th is g en e ra l fo rm  we obtain  
tw o im p o rta n t special form s. F irst, if ajt =  0 fo r 1 <  k <  N,  (3 .3 .8) reduces to

In  th is case, H ( z )  con ta ins M  zeros, w hose values a re  d e te rm in e d  by the 
system  p a ram e te rs  {£*}, and  an M th -o rd e r  po le  a t the  origin z  =  0. Since the 
system  con ta ins on ly  trivial p o les  (a t z =  0) and  M  n o n triv ia l zeros, it is called

N M
(3.3.7)

M

y u ) = -  J 2 a*Y ^ z ~k +  E b i X ( z ) r ‘

M

Y(z)
X(z )

or, equ ivalen tly ,

£ > z - *

(3.3.8)

M
H( z)  =  J 2 bkz~k

k =  0 

1 » (3.3.9)
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an all -zero system.  C learly , such a system  has a f in ite -d u ra tio n  im pulse response 
(F IR ), and  it is called  an  F IR  system  o r a m oving average (M A ) system .

O n  th e  o th e r  hand , if bk — 0 fo r 1 <  k < M,  the  system  function  reduces to

A'

1 k
* = 1 

boz"

at*.

(3.3.10)

<io =  l

In  this case H(z)  consists of N  poles, w hose values are  d e te rm in e d  by the  system  
p a ra m e te rs  {a*} and  an /V th-order zero  at the  orig in  z =  0- W e usually  do  not 
m ak e  re fe ren ce  to  these  trivial zeros. C onsequen tly , the  system  function  in (3.3.10) 
co n ta in s on ly  n on triv ia l poles and  the co rre spond ing  system  is called  an all-pole 
system.  D ue to  th e  p resence  o f poles, the  im pulse response  o f  such a system  is 
infinite in d u ra tio n , and  hence  it is an I IR  system .

T h e  genera l form  of the  system  function  given by (3.3.8) co n ta in s bo th  poles 
and  zeros, and hen ce  the  co rre spond ing  system  is called a p o l e - ze r o  sy s t em , with 
N  po les and  M  zeros. Poles and /o r zeros at c =  0 and  z =  oc a re  im plied  b u t are 
not co u n ted  explicitly. D ue to  the  p resence  o f poles, a p o le -z e ro  system  is an IIR  
system .

T h e  follow ing exam ple illustrates the p ro ced u re  fo r d e te rm in in g  th e  system  
function  and  th e  un it sam ple response from  the d ifference  eq u a tio n .

Example 3.3.4

Determ ine the system function and the unit sample response of the system described 
by the difference equation

v ( n )  =  1 y ( n  -  1) +  2 x ( n )

Solution By computing the -transform of the difference equation, we obtain 

Y(z) = ±z - >Y(z) + 2X(z)

Hence the system function is

x t : l  I -  J z -1

This system has a pole at z =  \  and a zero at the origin. Using Table 3.3 we obtain 
the inverse transform

h(n) =  2(i)"u(«)

This is the unit sample response of the system.
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W e have now  d e m o n s tra ted  th a t ra tio n a l z-tran sfo rm s a re  en co u n te red  in 
com m only  used  system s and  in th e  ch a rac te riza tio n  o f lin ear tim e-in v arian t sys­
tem s. In  Section  3.4 we describe  severa l m e th o d s fo r  d e te rm in in g  the  inverse 
z -transfo rm  of ra tio n a l functions.

3.4 INVERSION OF THE Z-TRANSFORM

A s we saw in Section  3.1.2, th e  inverse z -tran sfo rm  is fo rm ally  given by

x(n)  =  - — <£ x ( z ) zn~1d z  (3.4.1)
2 n j j t

w here the  in teg ra l is a c o n to u r in teg ra l o v er a c losed  p a th  C  th a t encloses the 
origin and  lies w ith in  the  reg ion  of convergence  o f ^ ( z ) .  F o r sim plicity , C  can be 
tak en  as a circle in the  R O C  o f X (z) in the  z-p lane.

T h e re  are  th re e  m eth o d s th a t a re  o ften  used  fo r th e  ev a lu a tio n  o f th e  inverse 
z-transform  in practice:

1. D irec t evaluation  o f (3.4.1), by c o n to u r  in teg ra tio n .
2. E xpansion  in to  a se ries o f te rm s, in th e  v ariab les z, and  z_1.
3. P artia l-frac tion  expansion  and  tab le  lookup .

3.4.1 The Inverse z-Transform by Contour Integration

In  th is section  we d em o n s tra te  th e  use o f th e  C auchy resid u e  th e o re m  to  d eterm ine  
the  inverse z -transfo rm  directly  from  th e  co n to u r in tegral.

Cauchy residue theorem. L e t / ( z )  b e  a function  o f th e  com plex  variab le  
z  and  C be a  closed  p a th  in th e  z-p lane. If the  derivative  d f ( z ) / d z  exists on  and 
inside the  co n to u r C and  if / ( z )  has no  po les a t z =  zo, then

-L (f)J !± d z  = |^ <Zl,)' (3.4.2)
2 n j j c z - z o  10 , if zo is outside C

M ore generally , if th e  (k +  l ) -o rd e r  d erivative  o f  / ( z) exists and  / ( z )  has n o  poles 
a t z =  zo, then

1 d k- ' f ( z )
» - ! > '  C 04.3)

0, if  zo is o u ts id e  C

T h e  values on  th e  rig h t-h an d  side o f (3.4.2) and  (3.4.3) are  ca lled  th e  residues of 
the po le  a t z =  zo- T h e  resu lts in (3.4.2) an d  (3.4.3) are  tw o fo rm s o f  the  Cauchy  
residue theorem.

W e can apply  (3.4.2) an d  (3.4.3) to  o b ta in  th e  v a lues o f  m o re  general co n to u r 
integrals. T o  be specific, suppose  th a t th e  in teg ran d  of th e  c o n to u r  in teg ra l is
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P(z)  =  f ( z ) /g ( z )~  w here  f ( z )  has no  po les inside the  co n to u r C and  g(z) is a 
p o lynom ial w ith d istinct (sim ple) roo ts c i, ^2 . ___-n inside C. T hen

T he values (A, (-;,)} a re  residues o f the co rrespond ing  po les at z =  / =  1, 2 , . . . .  n. 
H ence  th e  value o f th e  co n to u r in teg ra l is equal to  the sum  of the  residues o f all 
the po les inside th e  co n to u r C.

W e observe  th a t (3.4.4) w as o b ta in ed  by perfo rm ing  a partia l-frac tio n  ex p an ­
sion of the  in teg ran d  and applying (3.4.2). W hen g(z) has m u ltip le -o rd e r  roo ts 
as well as sim ple roo ts inside the  con to u r, the p artia l-frac tion  expansion , w ith a p ­
p ro p ria te  m odifica tions, and  (3.4.3) can be used to  evaluate  th e  residues at the 
co rre spond ing  poles.

In the  case o f the  inverse z-transform , we have

prov ided  th a t th e  po les {z,} a re  sim ple. If X (z )r"_1 has no  po les inside th e  co n to u r 
C fo r o ne  o r m o re  values o f  n,  then  x(n) =  0 for these  values.

T h e  follow ing exam ple illu stra tes th e  evaluation  o f th e  inverse z-transform  
by use of th e  C auchy  residue  theo rem .

Example 3.4.1

Evaluate the inverse z-transform of

where C is a circle at radius greater than |a|. We shall evaluate this integral using 
(3.4.2) with f ( z ) =  z". We distinguish two cases.

(3.4.4)

n

1=1
w here

f ( z )
A l (z) = ( z - z i )P{z)  = ( z - z l) J- - 1x

g(z)
(3.4.5)

[residue of X (z)zn 1 a t z (3.4.6)
a l l  p o l e s  U t )  in s i d e  C

X(z)  =  ---------- r kl > kil
1 — az~

using the complex inversion integral. 

Solution We have
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L  If n > 0, f ( z )  has only zeros and hence no poles inside C. The only pole inside 
C is z = a. Hence

*(*) =• /(zo) = a n n >  0

2. If n < 0, / (z )  =  z" has an nth-order pole at z =  0, which is also inside C. Thus 
there are contributions from both poles. For n =  -1  we have

x ( - l )  =  

If n =  —2, we have

-  1 S) 1 dz = 1
2 nj  j c z ( z  — a) z — a

1
+  - =  0

2) 2n j § z H z - a ) dZ dz ( z - f l )
=  0

By continuing in the same way we can show that *(n) =  0 for n < 0. Thus

x (n) =  a"u(n)

3.4.2 The Inverse z-Transform by Power Series 
Expansion

The basic idea in this m ethod is the following: G iven a z-transform  X (z )  with its 
corresponding R O C , we can expand X  (z) into a pow er series o f  the form

OO

X(z )  =  £  c»z~n (3.4.7)
co

which converges in the given RO C. Then, by the uniqueness o f  the z-transform, 
x ( n ) =  c„ for all n.  W hen X ( z )  is rational, the expansion can be perform ed by 
long division.

T o illustrate this technique, we will invert som e z-transforms involving the 
sam e expression for X(z ) ,  but different RO C. This will also serve to emphasize 
again the im portance o f  the R O C  in dealing with z-transforms.

Example 3A 2

Determine the inverse z-transform of

1 — 1.5z_1 +  0.5z“2
when

(a) ROC: |z| > 1
(b) ROC: |z| < 0.5

Solution

(a) Since the RO C is the exterior of a circle, we expect x(n)  to  be a causal signal. 
Thus we seek a power series expansion in negative powers of z. By dividing
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the num erator of X{z)  by its denominator, we obtain the power series

A’UI =  ! _  3_-; +  =  1 +  +  ^  +  TE; "4 +  "  '

By comparing this relation with (3.1.1), we conclude that

t

Note that in each step of the long-division process, we eliminate the lowest- 
power term of c~*.

(b) In this case the ROC is the interior of a circle. Consequently, the signal x(n) 
is anticausal. To obtain a power series expansion in positive powers of c. we 
perform the long division in the following way:

2: 2 + 6c3 +  14c4 +  30cs +  62c* +  ■ • ■
+ i l l

1 -  3: +  2c:
3c -  2z2 
3c -  9c: +  6c3 

l z 2 -  6c3 
7 r  -  21 c3 +  14c4 

15c3 -  14c4 

15c3 -  45c4 +  30cs 
31c4 -  30c5

Thus

X  (c) =  , 1------:------=  2c: +  6c3 +  14c4 +  30c5 +  62cfi +  ■ • •
1 _

In this case x(n) = 0 for n > 0. By comparing this result to (3.1.1), we conclude 
that

Jt(n) = { 62. 30. 14.6,2, 0. 0} 
t

We observe that in each step of the long-division process, the lowest-power 
term of c is eliminated. We emphasize that in the case of anticausal sig­
nals we simply carry out the long division by writing down the two poly­
nomials in “reverse” order (i.e., starting with the most negative term on the 
left).

F ro m  th is exam p le  we n o te  th a t, in general, th e  m e th o d  o f long d ivision will 
no t p ro v id e  answ ers fo r x(n)  w hen  n is large b ecause  th e  long  division becom es 
ted ious. A lth o u g h , th e  m eth o d  p rov ides a d irect evaluation  o f x(n) ,  a closed-form  
so lu tion  is n o t possib le , excep t if the resu lting  p a tte rn  is sim ple enough  to  infer 
the  g en era l te rm  x(n) .  H ence  th is m ethod  is used only if one w ished  to  dete rm in e  
th e  v a lues o f th e  first few  sam ples o f th e  signal.
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Example 3.4.3

Determine the inverse z-transform of

X(z) =  log(l +  az_1) |zj > |a|

Solution Using the power series expansion for log(l +  x ) ,  with |jc| <  1, we have

^  ( - r v r "

Thus

0, n <  0

Expansion of irrational functions into power series can be obtained from tables.

3.4.3 The Inverse z-Transform by Partial-Fraction 
Expansion

In the table lookup  m eth o d , we a ttem p t to  express the function  X  (z) as a linear 
com bination

X (z )  =  a j  X] (;)  +  02X 2(1 ) +  • - - +  c/Kx fc(z) (3.4.8)

w here X] ( ; ) , . . . .  X k (z ) a re  expressions w ith inverse tran sfo rm s x \ ( n ) , . . . ,  x k W  
available  in a tab le  of z-transform  pairs. If such a decom p o sitio n  is possible, 
th en  x(n) ,  the  inverse z -transfo rm  of X(z ) ,  can easily be  found  using the linearity  
p ro p e rty  as

x(n)  =  at]Xi(n) + a 2x2 (n) H--------\ - aKx K(n) (3.4.9)

T his ap p ro ach  is particu larly  useful if X (z )  is a ra tio n a l function , as in (3.3.1). W ith ­
ou t loss o f generality , we assum e th a t ao =  1, so th a t (3.3.1) can b e  expressed  as

_  t o  _  b + b , r '  + -  +  t „ r «

D ( z ) l + f l i Z - 1 H----- + a u z ~ N
N ote  th a t if a0 ^  1. we can o b ta in  (3.4.10) from  (3.3.1) by div id ing  bo th  nu m era to r 
and d en o m in a to r by ao-

A  ra tional function  o f th e  form  (3.4.10) is called  prope r  if a N ^  0 and M  < N.  
F rom  (3.3.2) it follow s th a t th is is equ iv a len t to  saying th a t th e  n u m b er o f finite 
zeros is less than  th e  n u m b er o f fin ite poles.

A n  im p ro p e r ra tio n a l function  (M  >  N)  can alw ays be w ritte n  as th e  sum  of 
a po lynom ial and  a p ro p e r  ra tio n a l function . T h is p ro ced u re  is illu stra ted  by the 
follow ing exam ple.

Example 3.4.4

Express the improper rational transform
l + 3 z - '  +  n z - 2 +  l 2-3 

1 5 
1 +  6Z +

in terms of a polynomial and a proper function.
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Solution First, we note that we should reduce the num erator so that the terms ; -2 
and c-*' are eliminated. Thus we should carry out the long division with these two 
polynomials written in reverse order. We stop the division when the order of the 
remainder becomes Then we obtain

^  =  1 + 2: - i +

In genera l, any im p ro p e r ra tional function  (M  >  N)  can be expressed  as

X (;)  =  W i =  Co +  C i:" 1 + ' ' ' +  Cu~nZ~im~N) +  ( 3 A l l )

T h e  inverse z-tran sfo rm  of the polynom ial can easily be found  by inspection . 
W e focus ou r a tte n tio n  on th e  inversion o f p ro p e r  ra tio n a l transfo rm s, since any 
im p ro p e r function  can be tran sfo rm ed  in to  a p ro p e r function  by  using (3.4.11). 
W e carry  ou t th e  d ev e lo p m en t in tw o steps. F irst, we p e rfo rm  a p artia l frac­
tion expansion  of the  p ro p e r  ra tional function  and  th en  we invert each  o f the 
term s.

L e t A"(c) be a p ro p e r ra tio n a l function , th a t is,

* (.-)  =  —  =  - " - - ' " T ,1 +— + b u Z ^  (3.4.12)
D(z)  1 + ^ iC  +  • * • -t~

w here

aN ^  0 and  M < N

To sim plify o u r discussion we e lim inate  negative pow ers of c by m ultip ly ing  bo th  
the n u m e ra to r  and  d e n o m in a to r  of (3,4,12) by z N. T his resu lts in

L  „ N  I L _ y v - l  I I L „ N - M

X{z)  =  -  (3.4.13,
CA 4- a \ z N + ------(- <a/v

w hich con ta in s only positive pow ers o f Since N  > M,  the function
,N-2  _i_____ l

(3,4.14)
;  : w +  tiicw- 1 + - - -  +  flW

is also alw ays p ro p er.
O u r task  in perfo rm in g  a partia l-frac tion  expansion  is to  express (3.4.14) 

o r, eq u ivalen tly , (3.4.12) as a sum  of sim ple fractions. F o r th is p u rpose  we first 
fac to r the  d e n o m in a to r polynom ial in (3.4.14) in to  factors th a t  con tain  th e  poles 
P i, p 2, . . . ,  p n  of X (z). W e distinguish tw o cases.

Distinct poles. S uppose th a t the  po les p\ ,  p 2........ p/v are  all d ifferen t (dis­
tinct). T h en  we seek  an  expansion  of the  form

+  -. - + ( 3 . 4 . 1 5 )
z z — p\  z — P2 z — Pn

T he p ro b lem  is to  d e te rm in e  the coeffic ients A i ,  A 2 , . - . ,  A s -  T h e re  a re  tw o ways 
to  solve this p ro b lem , as illu stra ted  in the  follow ing exam ple.
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Example 3.4 .5

Determine the partial-fraction expansion of the proper function

(3'‘U 6 ,
Solution First we eliminate the negative powers, by multiplying both numerator and 
denominator by z2. Thus

.2

X i z ) = V  1 < i n z2 -  1.5z + 0 .5
The poles of X(z) are p\ =  1 and P2 =  0.5. Consequently, the expansion of the form
(3.4,15) is

X(z) z A\ A2
Cz — l)(z — 0.5) z 1 z — 0.5

(3.4.17)

A very simple method to determine A[ and A2 is to multiply the equation by the 
denominator term (z -  l)(z -  0.5). Thus we obtain

z =  (z -0 .5 M i +  ( z -1 ) A 2 (3.4.18)

Now if we set z =  p\ =  1 in (3.4.18), we eliminate the term involving A2. Hence

1 =  (1 -0 .5 )A ,

Thus we obtain the result A i =  2. Next we return to (3.4.18) and set z =  p2 =  0.5, 
thus eliminating the term involving A i, so we have

0.5 =  (0 .5 -  1)A2

and hence Ai  =  —1. Therefore, the result of the partial-fraction expansion is 

X(z) 2 1
z -  1 z -  0.5

(3.4.19)

The exam ple given above suggests that we can determ ine the coefficients A \,  

A i , . . . ,  Afj ,  by m ultiplying both sides o f (3.4.15) by each o f the terms (z -  Pk). 
k =  1 , 2 , , . . ,  N,  and evaluating the resulting expressions at the corresponding pole 
positions, p\ ,  p i .........P n ■ Thus we have, in general,

(Z- Pl)X(;) = (z -wM.i+ ... + /lt+,..+ fa-P»)^ (3420)
z z -  PI z -  P n

Consequently, with z =  Pk, (3.4.20) yields the Jtth coefficient as

A k =  ( z ~ ^ ) X ( ; ) i k =  1 , 2. . N  (3.4.21)
z  \ z - p l

Example 3.4.6
Determine the partial-fraction expansion of

1 1 7 - ^ 0 . 5 , -  ,3A22)
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Solution To eliminate negative powers o f ; in (3.4.22), we multiply both numerator 
and denominator by Thus

X(z) z +  1
- z2 -  ;  +  0.5 

The poles of X(z)  are complex conjugates

Px =  \ + J i

and
Pi =  \ ~ j \

Since p\  ^  p 2- we seek an expansion of the form (3.4.15). Thus 
* ( : )  ;  + l A] Ai

z ( z - p i ) ( : - p 2 ) z - P \  z - p i  
To obtain A , and A2, we use the formula (3,4.21), Thus we obtain

;  +  1 I ? +  !( z - p i ) X ( z )  At = -----------

( z - p 2)X(z) A- = ------------

- P 2 \ ^ P1 3 + J 5 - 5 + . / 5  
1 1;  +  l

-  Pi :=P2

T h e  expansion  (3,4.15) an d  the fo rm ula  (3.4.21) hold  for b o th  real and  com ­
plex  poles. T h e  only co n stra in t is th a t all po les be d istinct. W e also n o te  that 
A; =  A*. It can be easily seen  th a t th is is a co n sequence  o f the  fact th a t p 2 =  p ' .  
In o th e r  w ords, complex-conjugate poles  result in complex-conjugate coefficients in 
the part ial-fraction expansion.  T h is sim ple resu lt will p rove very  usefu l la te r  in our 
discussion.

M u ltip le -o rd e r  p o le s .  If X  U) has a po le  o f m ultip lic ity  /, th a t is, it con ta ins 
in its d e n o m in a to r  the  fac to r (z -  pk)1, th en  th e  ex pansion  (3.4.15) is n o  longer 
true. In th is case a d ifferen t expansion  is needed . F irs t, we investiga te  the  case of 
a d o u b le  pole (i.e., 1 =  2).

Example 3.4.7

Determine the partial-fraction expansion of

Solution First, we express (3.4,23) in terms of positive powers of in the form

* ( ;)  =  z2 
: (z +  1)(; -  l ) 2

X (z) has a simple pole at p\ = - 1  and a double pole pi  =  p$ =  1. In such a case the
appropriate partial-fraction expansion is

™  =  ______ t ______ =  +  ( 3 4 2 4 )
z (z +  l)(z - 1)2 z +  1 z - l  ( z - 1 ) 2

The problem is to determine the coefficients A1, A2, and A3.



We proceed as in the case of distinct poles. To determine Aj, we multiply both 
sides of (3.4.24) by (z +  1) and evaluate the result at z =  - 1 . Thus (3.4.24) becomes

(z +  l)X (z) z +  1 z +  1
------------------  =  Ai  + ------ - A 2 +  ------- r - z A i

z z - 1  ( z - 1)2
which, when evaluated at z =  - 1 , yields

1
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(z +  1 )X(z) 
A i =  ------------------

4z

Next, if we multiply both sides of (3.4.24) by (z -  l )2, we obtain

= + + <3.4.25,
Z z +  1

Now, if we evaluate (3.4.25) at z =  1, we obtain A 3. Thus 

(z — l)2X(z) I = 1

* L i  2
The remaining coefficient Az can be obtained by differentiating both sides of 

(3.4.25) with respect to z and evaluating the result at z =  1. Note that it is not 
necessary formally to carry out the differentiation of the right-hand side of (3.4.25), 
since all terms except A2 vanish when we set z =  1. Thus

d
A2 = —  

dz
(z — l ) 2X(z)

T he generalization of the procedure in the exam ple above to the case o f an 
/th-order pole ( z  — p k)! is straightforward. The partial-fraction expansion must 
contain the terms

■Alt Mk
Z -  Pk ( z -  Pk ) 2 ( z  -  Pk) 1

The coefficients {A,*} can be evaluated through differentiation as illustrated in 
Exam ple 3.4.7 for / =  2.

N ow  that we have perform ed the partial-fraction expansion, we are ready to 
take the final step in the inversion of X  (z).  First, let us consider the case in which 
X (z )  contains distinct poles. From the partial-fraction expansion (3.4.15), it easily  
follow s that

X ( z )  — A \ -------------r +  A i  -------------- +  ■■•-)- A n --------------- (3.4.27)
1 -  P \ Z ~ 1 1 -  P l Z  1 -  P n Z~ 1

The inverse z-transform, x(n)  =  Z ~ i {X(z )) ,  can b e  obtained by inverting each 
term in (3.4.27) and taking the corresponding linear com bination. From Table 3.3 
it follow s that these terms can be inverted using the formula

( p k)nu{n),  if ROC: |*| >  Ip*J
(causal signals) „

- ( P k ) nu ( - n  -  1), if ROC: |z| <  \Pk \
(anticausal signals)
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If  th e  signal jc(n) is causal, the R O C  is |r | >  p max- w h ere  p max =  max{|/>i|,
\p2\.........IpnII- In th is case all te rm s in (3.4.27) resu lt in causal signal com p o n en ts
and the  signal x ( n)  is given by

jr(/i) =  (A i +  A -Pz  --------f" A Np nN)u(n)  (3.4.29)

If all p o les  are  real. (3.4.29) is th e  desired  expression  for the  signal j («). T hu s a 
causal signal, having a ; - transfo rm  th a t con tains real and  d istinct poles, is a linear 
com bin a tio n  of rea l ex p o n en tia l signals.

Suppose now  th a t all po les are  d istinct b u t som e o f th em  a re  com plex . In 
this case som e of th e  te rm s in (3.4.27) resu lt in com plex ex p o n en tia l com ponents . 
H ow ever, if th e  signal x(n)  is real, we should  be ab le  to  red u ce  these  term s in to  
real com ponen ts . If x(n)  is real, the  po lynom ials ap p ea rin g  in X (z) have real co­
efficients. In this case, as we have seen  in Section  3.3, if pj  is a po le , its com plex 
con jugate  p j  is also  a pole. A s w as d em o n s tra ted  in E xam ple 3.4.6, the  c o rre sp o n d ­
ing coeffic ients in th e  partia l-frac tio n  expansion  are  also com plex conjugates. T hus 
the co n trib u tio n  of tw o com plex-con jugate  po les is of th e  form

x k(n) =  \ Ak{pt )n +  A H p l )"]«(«) (3.4.30)

T hese  tw o term s can be com bined  to form  a real signal com p o n en t. F irst, 
we express Aj and Pj in p o la r form  (i.e., am plitude  and  phase) as

A* =  \Ak \eja' (3.4.31)

Pi: =  (3.4.32)

w here a k and  fik a re  the ph ase  co m p o n en ts  o f A k and  p k. S u bstitu tion  o f these 
re la tions in to  (3.4.30) gives

x k{n) =  I Ai ’ +  e - -'(A"+“‘ l]u(n)

or, equivalen tly ,

x k(n) =  2 |A *|r" cos($ tn  + a k)u(n)  (3.4.33)

T hus we conclude th a t

Z - 1 ( - — —— r +  -— ~ — r )  =  2 \ Ak \rRk c o s (f tn  + a k)u(n)  (3.4.34)
\i -  p kz ~ l i - p ; z ~ v

if the R O C  is |zj > \pk \ =  rk .
F rom  (3.4.34) we observe  th a t each  p a ir  o f com plex-con jugate  p o les in the  

z -dom ain  resu lts in a causal sinusoidal signal co m p o n en t w ith  an  expo n en tia l en ­
velope. T he d istance  rk o f th e  po le  from  the o rig in  d e te rm in es  the exponen tia l 
w eighting  (grow ing if rk > 1, decaying if rk < 1, constan t if rk =  1). T h e  angle of 
the  p o les w ith resp ec t to  the  positive rea l axis p rov ides th e  frequency  o f th e  sinu ­
soidal signal. T h e  zeros, o r equ ivalen tly  th e  n u m e ra to r  o f th e  ra tio n a l transform , 
affect only ind irec tly  th e  am plitude  and  the  phase  o f x k (n) th ro u g h  A k.

In  th e  case o f  mult iple  poles, e ith e r  rea l o r  com plex , th e  inverse transfo rm  
o f  te rm s o f  th e  fo rm  Aj ( z  — pk)n is req u ired . In  th e  case o f a  doub le  p o le  the



follow ing tran sfo rm  p a ir  (see T ab le  3.3) is qu ite  useful:

p z ~ x
=  np nu(n)  (3.4.35)
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(1 -  p z  ] )2

p rov ided  th a t th e  R O C  is |z| > \p\. T h e  genera liza tion  to  the case o f p o les with 
h igher m ultip lic ity  is left as an  exercise  for th e  read er.

Example 3.4.8

Determine the inverse z-transform of
1

XU)  =
1 -  1 .5 ;- ' +0.5z~2

(a) ROC
(b) ROC
(c) ROC

III >  1
Izl < 0.5 
0.5 < |z| < 1

Solution This is the same problem that we treated in Example 3.4.2. The partial- 
fraction expansion for X(z) was determined in Example 3.4.5. The partial-fraction 
expansion of X(z) yields

= <3-4-36> 

To invert X(z) we should apply (3.4,28) for pi — 1 and p2 =  0.5. However, this 
requires the specification of the corresponding ROC.

(a) In case when the RO C is |z| > 1, the signal x(n) is causal and both terms in
(3.4.36) are causal terms. According to (3.4.28), we obtain

x(n) =  2 (l)n«(n) — (0.5)"u(n) = (2 — 0.5 ”)u(n) (3.4.37)

which agrees with the result in Example 3.4.2(a).
(b) When the ROC is |z| < 0.5, the signal x(n) is anticausal. Thus both terms in

(3.4.36) result in anticausal components. From (3.4.28) we obtain

x(n) = [—2 +  (0.5)'I]u(—n — 1) (3.4.38)

(c) In this case the ROC 0.5 < |z| < 1 is a ring, which implies that the signal x(n) is 
two-sided. Thus one of the terms corresponds to a causal signal and the other 
to an anticausal signal. Obviously, the given ROC is the overlapping of the 
regions (z| > 0.5 and |z| < 1. Hence the pole p2 = 0.5 provides the causal part 
and the pole p\ = 1 the anticausal. Thus

x(n) = -2 (1  )"u( -n  -  1) -  (0.5)"«(n) (3.4.39)

Example 3.4.9

Determine the causal signal jc(n) whose z-transform is given by
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Solution In Example 3.4.6 we have obtained the partial-fraction expansion as

where

A, =  Al = j - j

and

Pi = p ’ = i

Since we have a pair of complex-conjugate poles, we should use (3.4.34). The 
polar forms of Aj and p, are

3.4.4 Decomposition of Rational z-Transforms

A t this p o in t it is ap p ro p ria te  to  discuss som e add itio n a l issues concern in g  the  
decom p o sitio n  o f ra tio n a l z-transform s, w hich will p ro v e  very  usefu l in the  im ple­
m en ta tio n  of d isc re te-tim e system s.

S uppose th a t we have a ra tio n a l z-transform  X ( z )  exp ressed  as

Hence

Example 3.4.10

Determine the causal signal x(n) having the ;-transiorm

X(z) =
(1 + ; - ’)(]

Solution From Example 3.4.7 we have

3
+ T

.-1

X(Z) 4 1 + 4 1 + 2 ( 1 - ; - 1)2

By applying the inverse transform relations in (3.4.28) and (3.4.35), we obtain

1 3 1 f  1 3 w*l
x( n)  =  - ( —l)"«(n) +  t«(«)  +  - n u ( n )  =  t ( - 1 )  +  -  +  -  u(n)

4 4 2 4 4 2

X(z)  = (3.4.40)
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w here, fo r sim plicity, we have assum ed th a t ao =  1. If  M  >  N  [i.e., X(z )  is 
im proper], we conv ert X (z) to  a sum  o f a po lynom ial and  a p ro p e r  function

M-H
X ( z ) =  J 2  c t z~k +  X pAz)  (3.4.41)

k= o

If  the  po les o f X pr(z ) are  d istinct, it can be  ex p an d ed  in p artia l frac tio n s as

pT(z) =  A \ - ------------- +  A 2 ------------- r  +  --- +  ^ jv -------------- r  (3.4.42)
l - p \ z ~ l l ~ P 2Z~l 1 -  PnZ ~ 1

A s we have a lready  observed , th e re  m ay b e  som e com plex -con jugate  pairs of 
po les in (3.4.42). Since we usually  deal w ith  real signals, w e shou ld  avoid  com plex 
coefficients in o u r  decom position . T his can be ach ieved  by g ro u p in g  and  com bining 
term s con ta in ing  com plex-con jugate  po les, in th e  follow ing way:

A — A p* z ~ l +  A* -  A * p z ~ l

1 -  p z ~ ] 1 — /5*z-1 1 -  p z  1 -  p*z~'  +  PP*z~2 

_  bo +  b -iZ ~ l 

1 +  a i z ~ l +  02 z~2

(3.4.43)

w here

(3.4.44)
£>o =  2 R e ( A ) ,  a \  =  — 2 R e ( p )

b\  = - 2  Re (Ap*),  a2 = \ p \2

a re  th e  desired  coefficients. O bviously , any  ra tional tran sfo rm  o f th e  form  (3.4.43) 
w ith coefficients given by (3.4.44), w hich is the  case w hen  a2 — 4a2 <  0, can be 
inverted  using (3.4.34). By com bin ing  (3.4.41), (3.4.42), and  (3.4.43) we ob ta in  a 
partia l-frac tion  expansion  fo r th e  z-tran sfo rm  w ith distinct  po les th a t con ta ins real 
coefficients. T he genera l resu lt is

M—N K\ 1 1. 1 l. —1

X i z )  =  £  C Z - *  +  E  +  E  , /  f'l - 2  <3 A 4 S >£ 3  t l l + a u z  1 + a u Z  2

w here K\  +  2 AS =  N . O bviously , if Af =  TV, th e  first te rm  is ju s t a constan t, 
and  w hen  M  < N,  th is te rm  van ishes. W hen  th e re  a re  also m u ltip le  poles, som e 
add itio n a l h ig h e r-o rd e r  te rm s shou ld  be included  in (3.4.45).

A n  a lternative  fo rm  is o b ta in ed  by expressing  X ( z )  as a  p ro d u c t o f sim ple 
te rm s as in (3.4.40). H ow ever, th e  com plex -con jugate  po les an d  zeros should  be 
com bined  to  avoid  com plex  coeffic ients in the  decom position . Such com binations 
resu lt in seco n d -o rd er ra tio n a l te rm s o f th e  follow ing form :

(1 -  Z*Z-1 )(1 -  z*kz~ ' )  1 +  b\kZ~l + b u z ~2
(1 -  />*z-1 ) ( l  -  p*kz ~ l ) 1 -I- a u z -1 +  a u z ~2

w here

b\k = - 2 R t ( z k ) ,  flu  =  —2 R e (p * )

(3.4.46)

b u  =  jz i l  , 02* =  \Pk\
(3.4.47)
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A ssum ing  fo r sim plicity  th a t M  =  N,  we see th a t X (z) can be decom p o sed  in the 
follow ing way:

<3-4 -48>1 + a kz  1 1 + a u z  1 +  a x z  2 

w here N  =  K\  + 2 /^ *  W e will re tu rn  to  th ese  im p o rtan t form s in C h ap te rs  7 and  8.

3.5 THE ONE-SIDED Z-TRANSFORM

T h e  tw o-sided  z -transfo rm  req u ire s  th a t th e  co rrespond ing  signals be specified 
for th e  en tire  tim e range —oo < n < oo. This req u irem en t p rev en ts  its use for 
a very usefu l fam ily o f p rac tica l p rob lem s, nam ely  the eva lu a tio n  o f th e  o u tp u t 
o f n o n re lax ed  system s. As we recall, these  system s a re  d escribed  by d ifference 
eq u a tio n s w ith n o n zero  initial conditions. Since th e  inpu t is app lied  a t a finite 
tim e, say n ()l b o th  inp u t and  o u tp u t signals are  specified for n >  no, but by no 
m eans a re  zero  fo r n <  no- T h u s  th e  tw o-sided z-transform  c an n o t be used. In  this 
sec tion  we develop  th e  o ne-sided  z-transfo rm  which can be used  to  solve difference 
eq u a tio n s w ith initia l conditions.

3.5.1 Definition and Properties

T h e  one-sided  o r unilateral  z -transfo rm  of a signal x(n)  is defined by
CC

* + (;) -
n = 0

W e also  use th e  n o ta tio n s  Z +{x(n)} and

*{n) X + (z)

T h e  o ne-sided  z -transfo rm  differs from  the  tw o-sided tran sfo rm  in the  low er 
lim it o f th e  su m m ation , w hich is aiw ays zero , w h e th er or no t th e  signal x(n)  is zero  
fo r n < 0  (i.e., causal). D u e  to  th is choice o f low er lim it, th e  o ne-sided  z-transform  
has th e  follow ing characteristics:

1. It does no t con ta in  in fo rm atio n  ab o u t th e  signal jc(n) for negative  values o f 
tim e (i.e., fo r n < 0).

2. I t is unique  on ly  for causal signals, because only these signals are  ze ro  for 
n < 0.

3. T h e  one-sid ed  z-tran sfo rm  A,+(z) o f  x(n)  is identical to  the  tw o-sided z- 
tran sfo rm  of th e  signal x(n)u(n) .  Since x ( n ) u ( n ) is causal, th e  R O C  o f its 
tran sfo rm , and  hence  th e  R O C  of X + {z), is alw ays th e  ex te rio r o f  a circle. 
T h u s w hen  we dea l w ith one-sided  z-transform s, it is no t necessary  to  refe r 
to  th e ir  R O C .
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Example 3.5.1

Determine the one-sided z-transform of the signals in Example 3.1.1.

Solution From the definition (3.5.1), we obtain

x,(n) =  {1, 2 ,5 ,7 ,0 ,1}  Xf ( z )  = 1 +  2 ; '1 +  5z~2 +  7z~3 +  ;~ 5 
t

x2(n) =  {1.2, 5, 7, 0,1} Jt:+(z) =  5 +  7z ~l + z ~3 
t

x3(n) =  (0 ,0 ,1 ,2 , 5,7, 0,1} X^(z)  = z ~2 + 2z"3 +  5z~4 +  l z ' s + z~7 
t

xA(n) =  {2,4, 5, 7 ,0 ,1 ) X4+(z) =  5 +  7 ; '1 +  z’ 3 
t

x 5(n) ~  S(n) -*-1- *• X+(z) =  1

x6(n) =  6(n -  A), k > 0 -e—*• (z) =  z~k

*700 =  <S(k -I- k), k > 0 Xy (z) =  0 

Note that for a noncausal signal, the one-sided z-transform is not unique. Indeed, 
X 2 (z) =  X^(z) but X2(n) ^  x 4(n). Also for anticausal signals, (z) is always zero.

A lm ost all properties we have studied for the tw o-sided z-transform carry over to 
the one-sided z-transform with the exception  of the shi f t ing  property.

Shifting Property

C ase 1: T im e D elay  If

then
x(n)  «  X +(z) 

k
X (n - k )  X *  z~*[Ar+(z) +  ] [ ] j c ( - n ) z n] k >  0

n=l
In case jc(n) is causal, then

x{ n ~ k )  «  z~kX +(z)

Proof .  From the definition (3.5.1) we have

(3.5.2)

(3.5.3)

Z +{x(n -  k)} =  z~ f S ( 0 z - ' +  Y t x( l )z -

-k

By changing the index from / to n  =  — the result in (3.5.2) is easily obtained.
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Example 3.5.2

Determine the one-sided ^-transform of the signals

(a) x(n)  = a nu(n)

(b) Ai(n) =  xin — 2) where x(n)  =  a "

Solution

(a) From (3.5.1) we easily obtain

(b) We will apply the shifting property for k = 2. Indeed, we have 

Z+{x(n~  2)1 =  ; " 2[X + ( ; ) + j : ( - 1 ) ; + j : ( - 2 ) - 2] 

=  r 2^ +(:) +  JT (- l) ;-1 +  * ( -2 )  

Since x( — 1) =  a~ '. x ( —2) = a~2. we obtain

^ +  <T2
1 -  az~l

T he m ean ing  o f the  shifting p ro p erty  can be in tuitively exp la ined  if we w rite (3.5.2) 
as follows:

Z +[x (?i — &)} =  [jc (—k) x ( — £ +  1); ' +  +  1); *+* ]
(3.5.4)

+ :.~kX +(.z) k >  0

T o ob ta in  x { n - k ) ( k  > 0) from  ;t(r?), we should  shift x(n)  by k sam ples to  th e  right. 
T hen  k “ new ” sam ples, x ( - k ) ,  x { —k +  1), — * ( - 1 ) ,  en te r  th e  positive tim e axis 
w ith x ( —k) lo ca ted  at tim e zero . T he first te rm  in (3.5.4) s tands fo r the  z-transform  
of these  sam ples. T h e  “o ld ” sam ples o f x(n — k) a re  the sam e as those  o f .r(n) 
sim ply sh ifted  by k sam ples to  th e  right. T h e ir  z-transfo rm  is obviously  z_i’X + (z), 
which is the second  term  in (3.5.4).

Case 2: Time advance If

x in ) X +(z)

then

X + ( z ) - Y x ( n ) z - n k > 0 (3.5.5)x (n  + k) «— ► z 

Proof .  F ro m  (3.5.1) we have
oc oc

Z +[x(n + *)} =  +  k) z~n =  zk Y m z ~ l
n = 0  l= k

w here  we have changed  the  index of sum m ation  from  n to 1 =  n +  k.  N ow , from



200 The z-Transform and Its Application to the Analysis of LTI Systems Chap. 3

(3.5.1) we ob ta in

* + (z) =  j r *  ( / ) : “ ' =  Y x { l ) z~l +
/=o i=0 i=t

By com bining the  last tw o re la tions, we easily  o b ta in  (3.5.5).

Example 3.5.3

With x(n),  as given in Example 3.5.2, determine the one-sided ^-transform of the 
signal

xi (n) = x(n + 2)

Solution We will apply the shifting theorem for k =  2. From (3.5.5), with k =  2, we 
obtain

Z +{x(n +  2)| =  -2X+(z) -  x (0);2 -  *(1);

But jc(0) =  1, jc(1) =  a. and X + (z) =  1/(1 -  a ; -1). Thus
,2

Z +{x(n +  2)) =  -— ----- - -  z2 -  az
1 — az~

T he case of a tim e advance can be in tu itive ly  exp la ined  as follow s. T o  ob tain  
x(n- i -k) , k  > 0, we shou ld  shift jc (n) by k sam ples to  th e  left. A s a resu lt, the  sam ples
*(0). * ( 1 ) ,___x ( k  — 1) “ leav e” the  positive tim e axis. T hus we first rem ove the ir
con trib u tio n  to  th e  X +(z), and  th en  m ultip ly  w hat rem ains by zk to  com pensate  
fo r the shifting o f th e  signal by k sam ples.

T h e  im po rtan ce  of the  shifting p ro p e rty  lies in its ap p lica tion  to  the  so lu tion  
of d ifference eq u a tio n s w ith constan t coeffic ients and  n o n zero  in itial conditions. 
T his m akes the one-sided  z -transfo rm  a very  useful to o l fo r th e  analysis o f recursive 
lin ear tim e-invarian t d isc re te-tim e system s.

A n  im p o rtan t th eo rem  useful in th e  analysis o f signals an d  system s is the 
final value theo rem .

F inal V alue  T h eo rem . If

x{n)  X +{z)

then

lim  x(n)  =  lim (z -  l ) X + (z) (3.5.6)
n-» 00 7-»l

T he lim it in (3.5.6) exists if the  R O C  o f (z -  l)A '+ (z) includes th e  un it circle.

T h e  p ro o f o f th is th eo rem  is left as an  exercise  fo r th e  read e r.
This th eo rem  is useful w hen  we a re  in te re s ted  in th e  asym pto tic  b eh av io r  of 

a  signal x(n)  and  we know  its z -transfo rm , b u t n o t th e  signal itself. In  such cases, 
especially  if it is com plicated  to  invert X + (z), we can  use th e  final value th eo rem  
to  d e te rm in e  th e  lim it o f x{n)  as n goes to  infinity.
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Example 3.5.4
The impulse response of a relaxed linear time-invariant system is k(n) = a"u(n), 
|« | < 1. Determine the value of the step response of the system as n —► oo.

Solution The step response of the system is

y{n) = h(n) * x(n)

where

Jt(n) =  u(n)

Obviously, if we excite a causal system with a causal input the output will be causal. 
Since h(n), x(n), v(n) are causal signals, the one-sided and two-sided z-transforms are 
identical. From the convolution property (3.2.17) we know that the z-transforms of 
h(n) and *(n) must be multiplied to yield the z-transform of the output. Thus

=  . ■— , . - , =  7----- tt?------- r ROC: |z| > |ar|
1 -  a z  1 1 -  z 1 (z -  l ) ( z  -  cr)

Now

(z -  l)y (z) -  ROC: |z| > |a |
Z — a

Since |a | < 1 the ROC of (z -  l)K(z) includes the unit circle. Consequently, we can 
apply (3.5.6) and obtain

lim v(n) =  lim —-—  =  ———
n—oc' 1 — a

3.5.2 Solution of Difference Equations

The one-sided  z-transform is a very efficient tool for the solution of difference  
equations with nonzero initial conditions. It achieves that by reducing the dif­
ference equation relating the tw o tim e-dom ain signals to an equivalent algebraic 
equation relating their one-sided z-transforms. This equation can be easily solved  
to obtain the transform of the desired signal. The signal in the time domain is 
obtained by inverting the resulting z-transform. W e will illustrate this approach 
with two exam ples.

Example 3-5.5

The well-known Fibonacci sequence of integer numbers is obtained by computing 
each term as the sum of the two previous ones. The first few terms of the sequence are

1 ,1 ,2 , 3,5. 8 , . . .

Determine a closed-form expression for the n th term of the Fibonacci sequence.

Solution Let y(n) be the nth term of the Fibonacci sequence. Clearly, y(n) satisfies 
the difference equation

y (n ) =  y(n -  1) +  y(n -  2) (3.5.7)
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with initial conditions

v(0) =  v (— 11 + v(—2) =  1 (3.5.8a)

y(l) =  y(0) +  V(-1) =  1 (3.5.8b)

From (3.5.8b) we have y (—1) =  0. Then (3.5.8a) gives v(—2) =  1. Thus we have to 
determine y(n), n > 0, which satisfies (3.5.7), with initial conditions y (—1) =  0 and 
y(—2) =  1.

By taking the one-sided ^-transform of (3.5.7) and using the shifting property
(3.5.2). we obtain

y+(z) =  [ ; - 'y +(-) + y (—1) ] +  [z~2Y^( z ) + y (-2 )  + . v ( - l ) ; - 1]

or
1 "

K +(c) = (3.5.9)

where we have used the fact that y{ —1) =  0 and v(—2) =  1.
We can invert K+(;) by the partial-fraction expansion method. The poles of 

y'+(;) are

1 -I- V5 l - V s
Pi - P 2 =

and the corresponding coefficients are A i =  p i/V 5 and A2 =  -/> ;/V 5 . Therefore, 

'l  + V5 /  1 + v'S \"  1 -  V5 / I  -  n /5 \ ’"
v(n) =  

or, equivalently.
2V5 2^5

u(rt)

u{n) (3.5.10)

—  1 <  a <  1 (3.5.11)

Example 3.5.6

Determine the step response of the system 

v(n) =  ay(n — 1) + x(rt) 

when the initial condition is y (—1) = 1.

Solution By taking the one-sided ^-transform of both sides of (3.5.11), we obtain 

K+(;) =  a[;- 'y*(c) + v(-D] + X +(z)

Upon substitution for v ( - l )  and X+(;) and solving for y +(;). we obtain the result
1

Y+(z) = (3.5.12)
1 — a ; -1 (1 — a ; - l )(l -  ; _l)

By performing a partial-fraction expansion and inverse transforming the result, we 
have

, 1 — or"+I 
y(n) = a" u(n) +  —;--------u(n)

1 — a

1 — a

( l - a " +2) u ( n )

(3.5 .13)
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3.6 ANALYSIS OF LINEAR TIME-INVARIANT SYSTEMS IN THE 
Z-DOMAIN

In S ection  3.4.3 we in tro d u c ed  the  system  function  o f a lin ea r  tim e-in v arian t sys­
tem  an d  re la te d  it to  th e  un it sam ple response  an d  to  th e  d ifference  eq u a tio n  
descrip tion  o f system s. In  th is section  w e describe th e  use o f  th e  system  func­
tion  in  th e  d e te rm in a tio n  o f th e  response  of th e  system  to  som e excita tion  signal. 
F u rth e rm o re , we ex ten d  th is m e th o d  o f  analysis to  n o n re lax ed  system s. O u r  a t te n ­
tion is focused  on  th e  im p o rta n t class o f p o le -z e ro  system s re p re se n te d  by lin ear 
constan t-coeffic ien t d ifference  eq u a tio n s w ith  a rb itra ry  in itia l conditions.

W e also  co n sid er th e  top ic  o f stab ility  o f lin ear tim e-in v a rian t system s and 
describe  a test fo r  d e te rm in in g  the  stab ility  o f a system  based  on  th e  coeffic ients 
o f th e  d e n o m in a to r  po lynom ial in th e  system  function . F inally , w e p ro v id e  a 
d e ta iled  analysis o f se co n d -o rd e r  system s, w hich fo rm  th e  basic  bu ild ing  b locks in 
the  rea liza tio n  o f h ig h e r-o rd e r  system s.

3.6.1 Response of Systems with Rational System 
Functions

L et us consid er a p o le -z e ro  system  describ ed  by th e  genera l lin ea r  constan t- 
coeffic ient d ifference  eq u a tio n  in (3.3.7) and  the  co rre sp o n d in g  system  function  
in (3.3.8). W e re p re se n t H ( z)  as a ra tio  o f  tw o po lynom ials B(z ) / A( z ) ,  w here 
B(z) is the  n u m e ra to r  p o lynom ial th a t con ta ins the  zeros o f H(z) ,  and  A(z )  is the 
d e n o m in a to r po lynom ial th a t d e te rm in es th e  po les o f H(z) .  F u rth e rm o re , let us 
assum e th a t th e  in p u t signal x(n)  has a ra tio n a l z -transfo rm  X (z) o f  th e  fo rm

X ( z )  =  —  (3.6.1)
Q(z)

T his assum ption  is n o t overly  restric tive, since, as in d ica ted  p rev iously , m ost signals 
o f p rac tica l in te re s t have ra tio n a l z-transform s.

If  th e  system  is initially  re laxed , th a t is, th e  in itia l co n d itio n s fo r th e  d ifference  
eq u a tio n  are zero , y ( —1) =  y ( —2) =  • ■ ■ =  y ( —N )  =  0, th e  z-tran sfo rm  o f  the 
o u tp u t o f th e  system  has th e  form

Y(z)  =  H ( z ) X ( z )  =  (3.6.2)
M z ) Q ( z )

N ow  su p p o se  th a t the  system  con ta ins sim ple po les p\ ,  p j .........p s  and  th e  z-
tran sfo rm  o f th e  in p u t signal con ta in s po les <71, qt,  ■ ■ ■ , q u  w h ere  p t  ^  qm fo r all 
it =  1, 2 an d  m =  1, 2 , . . . ,  L.  In  add ition , we assum e th a t th e  ze ro s o f
the  n u m e ra to r  po lynom ials B(z)  and  N ( z)  do  n o t coincide w ith th e  po les {p t } and  
{<7i}, so th a t th e re  is n o  p o le -z e ro  cance lla tion . T hen  a  p a rtia l-frac tio n  expansion  
of K(z) yields

t o  1 -  PkZ 1 *-* 1 -  qkZ 1
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T h e  inverse tran sfo rm  of ^ (z )  y ields th e  o u tp u t signal from  th e  system  in th e  form
N L

y(n) =  Y  A t ( P k ) nu ( n)  +  5 2  £2*0?*)'1n(n) (3.6.4)
*=i *-i 

W e observe th a t th e  o u tp u t se quence  y(n)  can b e  subd iv ided  in to  tw o p arts. The 
first p a r t is a function  o f th e  poles {pt} o f  th e  system  and  is called th e  natural  
response  of th e  system . T h e  in fluence o f th e  in p u t signal o n  th is p a r t o f the  
response  is th ro u g h  th e  scale facto rs {A*}. T h e  second  p a r t o f th e  response  is a 
function  o f the  p o les {qk} o f  th e  in p u t signal and  is called  th e  f o r c ed  response  of 
th e  system . T h e  in fluence o f th e  system  on th is response  is ex e rted  th ro u g h  the 
scale facto rs { Qk} -

W e shou ld  em phasize th a t th e  scale fac to rs  {A*} and  { Q k } are  functions o f 
b o th  se ts o f po les {pk } an d  { ^ ) . F o r exam ple, if AXz) =  0 so  th a t th e  inp u t is 
zero , th en  K(z) =  0, and  consequen tly , th e  o u tp u t is zero . C learly , th en , the  
n a tu ra l response  o f  the  system  is zero . T h is im plies th a t th e  n a tu ra l response  of 
th e  system  is d ifferen t from  the  ze ro -in p u t response .

W hen  X (z) and  H( z)  have o ne  o r m ore  poles in com m on  o r  w hen  X(z) 
an d /o r  H{z)  co n ta in  m u ltip le -o rd e r poles, th en  K(z) will have m u ltip le -o rd e r poles. 
C onsequen tly , th e  partia l-frac tio n  expansion  o f Y(z)  will co n ta in  fac to rs  o f the  form  
1/(1 -  p/ z~l )t , k =  1, 2 , . . . ,  m, w here m  is the po le  o rder. T h e  inversion  o f these 
factors will p ro d u ce  te rm s o f the  fo rm  n k~xp* in th e  o u tp u t y(n)  o f the  system , as 
ind ica ted  in Section  3.4.2.

3.6.2 Response of Pole-Zero Systems with Nonzero 
Initial Conditions

Suppose th a t th e  signal x( n)  is ap p lied  to  th e  p o le -z e ro  system  at n =  0. Thus 
th e  signal x(n)  is assum ed to  be causal. T h e  effects o f all p rev io u s inp u t signals to
the  system  a re  reflec ted  in th e  in itial cond itions y (—1), y ( ~ 2 ) .........y ( —N) .  Since
th e  in p u t x(n)  is causal and  since we a re  in te re s ted  in d e te rm in in g  the  o u tp u t y ( n ) 
fo r n > 0, we can  use th e  o ne-sided  z-transfo rm , w hich allow s us to  d eal w ith the 
in itial conditions. T hus th e  o n e-sid ed  z-transfo rm  o f  (3.4.7) beco m es

■ ft)— E akz Y +{z) + Y j y (' - n) z '' +  £ f c * z - * X + (z) (3.6.5)

Since x(n)  is causal, we can se t X + (z) =  X (z). In  any case (3.6.5) m ay be expressed  
as

Y +(z) =
5 2 ^
*=0

s
1 + 52<:

=  H ( z ) X ( z )  +

- X ( z ) -

No(z)
A(z)

akz (3.6.6)



Sec. 3.6 Analysis of Linear Time-Invariant Systems in the z-Domain 205

w h ere
N k

No(z)  =  -  5 Z a *z_,t (3.6.7)
k=1 n=l

F rom  (3.6.6) it is a p p a re n t th a t th e  o u tp u t o f  the  system  w ith n onzero  initial 
co nd itions can  b e  subd iv ided  in to  tw o  p arts. T h e  first is the  ze ro -sta te  response  of 
the  system , defined  in the  z-dom ain  as

Ya (z) =  H ( z ) X ( z )  (3.6.8)

T h e  second  c o m p o n en t co rre sp o n d s to  the  o u tp u t resu lting  from  the  n o n zero  initial 
cond itions. T h is o u tp u t is th e  ze ro -in p u t response  o f  the  system , w hich is defined 
in th e  z-dom ain  as

(z) = TTT a6’9)A(z)
H en ce  the  to ta l response  is th e  sum  o f  these tw o o u tp u t co m ponen ts , which can 
be expressed  in th e  tim e dom ain  by dete rm in in g  th e  inverse z -transfo rm s of Kzs(;)  
an d  Y A z )  se p a ra te ly , and  th e n  add ing  the  results. T hus

y(n)  =  >zs(«) +  >'zi(n) (3.6.10)

Since the  d e n o m in a to r  of Fz|( z ) ,  is A(z) ,  its po les are  pi ,  P2........ Ps-  C onse­
q uen tly , the  ze ro -in p u t response  has th e  form

N

>'zi(n) =  52 (3.6.11)

T his can be ad d e d  to  (3.6.4) and  the term s involving the po les {/?*} can be com bined  
to  yield th e  to ta l response  in the  form

N L

y(n)  =  52 A 'k(Pk)nu(n)  +  51 Q k i qk Tu( n)  (3.6.12)
k= 1 k=\

w h ere , by defin ition ,
A'k =  +  Dk (3.6.13)

T his d ev e lo p m en t ind icates clearly  th a t th e  effect o f  th e  initial cond itions 
is to  a lte r  th e  n a tu ra l response  o f the  system  th ro u g h  m odifica tion  o f  the  scale 
fac to rs  {Ak}. T h e re  a re  no  new  po les in tro d u ced  by th e  n o n ze ro  in itial conditions. 
F u rth e rm o re , th e re  is no  effect on  th e  fo rced  response  o f the  system . T hese 
im p o rta n t p o in ts  a re  re in fo rced  in th e  follow ing exam ple.

Example 3.6.1

Determine the unit step response of the system described by the difference equation 

y{n) =  0.9y(n — 1) -  0.81y(n -  2) +  x(n) 

under the following initial conditions:

(a) y ( - l )  =  > (-2 ) =  0
(b) y ( - 1) =  y ( - 2 )  = 1
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Solution The system function is

1
H {z )  = 1 - 0 . 9 : - 1 + 0 .8 1 ;-2 

This system has two complex-conjugate poles at

p l =  Q . 9 e ^ °  P2 =  G. 9e- jn/ i  

The z-transform of the unit step sequence is

1
X(z) = 1 - z - 1 

Therefore,

1
(1 - 0 . 9 e j ”^ z - l K l  - 0 . 9 e - j ”'1z -' l ) ( l  - z ~ ' )

0.542 - /0 .0 4 9  0.542 + y0.049 1.099 
+  :---- — r +

1 -  0 .9 e ^ f h ~ l 1 -  0 .9e->nPz - 1 1 -  z ~ l 

and hence the zero-state response is

y ^ ( n )  =  £l.099 +  1.088(0.9)" cos ( ~ n  -  5.2C) J  u ( n )

(a) Since the initial conditions are zero in this case, we conclude that v(n) =  >'is(fl).
(b) For the initial conditions v ( - l )  =  v (-2 ) =  1, the additional component in the 

z-transform is

Mi(z) 0.09 -  0.S ir" 1
I'ziW

A(z) 1 - 0 .9 ; - '  +  0.81r“2

0.026 +  j0.4936 i 0.026 -  jO.4936 
“  1 -  0 H e i ' f i z - 1 +  1 - 0 .9 e - '* P z ~ '  

Consequently, the zero-input response is

yzi(n) =  0.988(0.9)'' cos ^ ~ n  + 87° Ĵ u(n)

In this case the total response has the z-transform

y (z) = J ^ w  +  y^u)

1.099 0.568 +  y'0.445 0.568 -  /0.445
+  :---- „ -  r +

1 -  z"1 1 -  Q.9eJ*Vz- 1 1 -  0.9e“' ff/3; -1 
The inverse transform yields the total response in the form

y(n) =  1.099u(n) +  1.44(0.9)" cos ( ^ n  +  3 8 ^  u (n)

3.6.3 Transient and Steady-State Responses

A s we have seen from  o u r p rev ious d iscussion, the  response  o f a system  to  a given 
inp u t can be se p ara te d  in to  tw o com p o n en ts , th e  n a tu ra l response  an d  the  fo rced
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response . T h e  n a tu ra l response  o f  a causal system  has th e  fo rm
N

>’nr(n) =  52 A kipk)nu{n)  (3.6.14)
*=1

w here  {pk), k = 1, 2, N  a re  the  po les o f th e  system  and  {A*} a re  scale  fac­
tors th a t  d ep en d  on  th e  in itial cond itions and  on  th e  characteristics o f th e  inpu t 
sequence.

If  |/>*| < 1  fo r all k,  th en , ynT(n) decays to  ze ro  as n a p p ro ach es  infinity. In 
such a case we re fe r  to  th e  n a tu ra l response  of th e  system  as th e  t ransient  response.  
T h e  ra te  a t w hich >'nr(n) decays tow ard  ze ro  d ep en d s on  th e  m ag n itu d e  o f th e  po le  
positions. I f  all th e  po les have sm all m agn itudes, th e  decay  is very  rap id . O n  the 
o th e r  han d , if o n e  o r m o re  p o les are  located  n e a r th e  un it circle, th e  co rre sp o n d in g  
term s in >’nr(n) will decay  slowly tow ard  zero  and  th e  tran s ien t will persis t fo r a 
relatively  long tim e.

T h e  fo rced  resp o n se  o f th e  system  has th e  form
i

Vfr(«) =  5 2  <2*(<?*)"«(«) (3.6.15)
k=\

w here  {^t), k =  1, 2 , . . . ,  L  a re  the  po les in th e  forcing function  an d  {Qk} a re  
scale fac to rs th a t d ep en d  on  th e  inpu t se q uence  and on  the charac te ris tics  o f  the 
system . If all the  po les o f the in p u t signal fall inside the  u n it circle, ^ ( n )  will decay 
tow ard  ze ro  as n ap p ro ach es infinity, ju st as in the case o f  th e  n a tu ra l response. 
T his shou ld  no t be surprising  since the  inp u t signal is also a tran s ien t signal. O n 
th e  o th e r  hand , w hen  the  causal inpu t signal is a sinusoid , th e  p o les fall o n  th e  unit 
circle an d  consequen tly , the  fo rced  response  is also a sinuso id  th a t persists fo r all 
n >  0. In  th is case, th e  fo rced  response  is called th e  steady-state response  o f  the 
system . T hus, fo r th e  system  to  sustain a s tead y -s ta te  o u tp u t fo r n >  0, the  inpu t 
signal m ust p ersis t fo r  all n >  0.

T h e  follow ing exam ple  illu stra tes th e  p resence  o f th e  s te ad y -s ta te  response.

Example 3*6.2

Determ ine the transient and steady-state responses of the system characterized by 
the difference equation

>{n) =  0.5;y(n -  1) + jc(n)

when the input signal is x(n ) =  10cos(jrn/4)u(n). The system is initially at rest (i.e., 
it is relaxed).

Solution The system function for this system is

and therefore the system has a pole at z =  0.5. The z-transform of the input signal is 
(from Table 3.3)

10(1 — ( l /y /2 ) z ~ 1)
X (z )  ---------------f ----------------

1 -  y / 2 £_1 +  Z~1
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Consequently.

K(o =  H (:)X (z )

10(1 -  ( l /v '2 ) ; - 1)
(1 — 0.5~-‘ )(1 - e - w 4; - 1)!! i)

6.3 6.78e~J2&1 6.7&ej2K1
‘ ,—"T

1 - 0.5;-1 1 - 1 - e-J*iAz~x

The natural or transient response is
ynr(n) =  6.3(0.5)"u(«) 

and the forced or steady-state response is

Vfr (n) = +6.1&eJ2*J e - inn!A]u(},)

= 13.56cos (^~̂ n — 2 8 . 7 w(«)

Thus we see that the steady-state response persists for all n > 0. just as the input 
signal persists for all n > 0.

3.6.4 Causality and Stability

As defined previously, a causal linear tim e-invarian t system  is one w hose unit 
sam ple response h (n )  satisfies the condition

h (n )  = 0  n <  0

W e have also show n that the R O C  of the ;;-transfo rm  of a causal sequence  is the 
ex te rio r o f a circle. C onsequen tly , a l in e a r  t im e -in v a r ia n t  syste m  is  c a u s a l i f  an d  
o n ly  i f  the R O C  o f  the system  f u n c t io n  is  the e x te rio r o f  a c ir c le  o f  ra d iu s  r  <  00, 
in c lu d in g  the p o in t  z — do .

T h e  stability  o f a linear tim e-in v arian t system  can also be exp ressed  in term s 
of th e  characteristics of the system  function . A s w e recall from  o u r previous 
discussion, a necessary  and sufficient cond ition  fo r a linear tim e-in v arian t system  
to  be B IB O  stab le  is

52
n = - x
t H ( z )  musi

OC

H ( z )  =  h (n)z

In  tu rn , this cond ition  im plies th a t H ( z )  m ust con ta in  th e  un it circle w ith in  its R O C . 
In d eed , since

it follow s th a t
OC OC

n —— oc n = —oc

W hen ev a lu a ted  on  the un it circle (i.e., |z| =  1),
OC

\h (z )\ <  5 2
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H ence, if the system  is B IB O  stable, the unit circle is contained in the R O C  of  
H(z)-  The converse is also true. Therefore, a linear tim e-invarian t system  is B IB O  
stable i f  a nd  o n ly  i f  the R O C  o f  the system  fu n c tio n  includes the un it circle.

W e should stress, however, that the conditions for causality and stability are 
different and that one does not imply the other. For exam ple, a causal system  
may be stable or unstable, just as a noncausal system  may be stable or unstable. 
Similarly, an unstable system  may be either causal or noncausal, just as a stable 
system  may be causal or noncausal.

For a causal system , how ever, the condition on stability can be narrowed 
to som e extent. Indeed, a causal system  is characterized by a system  function  
H( z)  having as a R O C  the exterior o f som e circle o f radius r.  For a stable 
system , the R O C  must include the unit circle. C onsequently, a causal and sta­
ble system  must have a system  function that converges for |z| > r <  1. Since 
the R O C  cannot contain any poles o f H(z) ,  it follow s that a causal linear tim e- 
invariant system  is B I B O  stable i f  and on ly  i f  all the po les o f  H( z )  are inside the 
unit circle.

Example 3.63

A linear time-invariant system is characterized by the system function

3 -  4z-'
H(z) ~  1 -  3.5z-> +  1.5: ' 2 

1 2 
"  l - ' i z - 1 +  1 - 3 z- 1

Specify the ROC of H(z) and determine h(n) for the following conditions:

(a) The system is stable.
(b)  The system is causal.
(c) The system is anticausal.

Solution The system has poles at z =  5 and z = 3.

(a) Since the system is stable, its ROC must include the unit circle and hence it is 
\  < \z\ < 3. Consequently, h(n) is noncausal and is given as

h(n) =  (i)"n(«) -  2(3)-it ( - n  -  1)

(b) Since the system is causal, its ROC is jz| > 3. In this case

/i(n) =  ( i r « ( n)+ 2(3)"u(n)

This system is unstable.
(c) If the system is anticausal, its ROC is |z| < 0.5. Hence

h{n) = - { ( \ y  + 2 ( 3 T ) u ( - n - l )

In this case the system is unstable.
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3.6.5 Pole-Zero Cancellations

W hen a z -transfo rm  has a po le  th a t is a t th e  sam e location  as a zero , the  pole 
is cance led  by th e  ze ro  and , consequen tly , th e  te rm  co n ta in ing  th a t p o le  in the 
inverse z-transform  vanishes. Such p o le -z e ro  cance llations are  very  im p o rtan t in 
the analysis o f p o le -z e ro  system s.

P o le -z e ro  cance llations can  occu r e ith e r  in th e  system  function  itself o r in 
the p ro d u c t o f the  system  function  w ith  th e  z -transfo rm  of the in p u t signal. In the 
first case we say th a t th e  o rd e r  o f th e  system  is red u ced  by o n e . In  th e  la t te r  case 
we say th a t the  po le  o f th e  system  is su p pressed  by th e  ze ro  in th e  inp u t signal, 
o r vice versa. T hus, by p ro p erly  se lecting  th e  position  o f th e  zeros o f th e  input 
signal, it is possib le to  suppress one o r  m ore  system  m odes (p o le  fac to rs) in the 
response  of the  system . S im ilarly, by p ro p e r  se lec tion  o f the  ze ro s o f th e  system  
function , it is possib le  to  suppress one o r m o re  m odes o f the  in p u t signal from  the 
response  o f the  system .

W hen  th e  ze ro  is lo ca ted  very  n ea r th e  po le  b u t no t exactly  a t th e  sam e loca­
tion , th e  term  in th e  response  has a very  sm all am plitude . F o r  exam p le , nonexact 
p o ie -z e ro  cancellations can  occur in p rac tice  as a resu lt o f insuffic iant num erical 
p recision  used in rep re sen tin g  th e  coeffic ients o f th e  system . C o n seq u en tly , one 
shou ld  no t a ttem p t to  stabilize an  in h eren tly  unstab le  system  by p lacing a ze ro  in 
the  inp u t signal at th e  location  o f th e  pole.

Example 3.6.4

Determine the unit sample response of the system characterized by the difference 
equation

v(n) =  2.5 v(n — 1) — >’(n — 2) +  jr(n) — 5jr(n — 1) +  6 x(n — 2)

Solution The system function is

This system has poles at p\ =  2 and p x = ~, Consequently, at first glance it appears 
that the unit sample response is

The fact that 5  =  0 indicates that there exists a zero at z =  2 which cancels 
the pole at z =  2. In fact, the zeros occur at z =  2 and z =  3. Consequently, H{z)

1 -  5*-1 +  6z ' 2
(1 -  i z - ') ( l  - 2 z - ‘

Y(z) = H(z)X(z)  =
1 - 5 z ~ ' +  6z“2

(1 -  j z _ ,)(l -  2z_l

By evaluating the constants at z =  j  and z =  2, we find that

A = * B = 0
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reduces to

and therefore

1 - 3 : -1
H(z) =

=  1 -

1 -  k - 1 

2 .5 ;-1

h(rt) =  S{n)  -  2.5( 5)" ~  ^
The reduced*order system obtained by canceling the common pole and zero is char­
acterized by the difference equation

y(n) =  iy(n -  1) +  x(n) -  3x{n -  1)

Although the original system is also BIBO stable due to the pole-zero cancellation, 
in a practical implementation of this second-order system, we may encounter an 
instability due to imperfect cancellation of the pole and the zero.

Example 3.6.5

Determine the response of  the system

v(n) =  jjy(>i -  1) -  £y(n -  2) +  x(n) 

to the input signal x{n) =  S(n) — ^&(n — 1).

Solution The system function is
1

WU) =

(1 -  (1 -  1c-1)

This system has two poles, one at z =  ̂ and the other at : =  The ^transform  of 
the input signal is

X {z )  =  1 -  j i ' 1

In this case the input signal contains a zero at ; =  i  which cancels the pole at ; =  
Consequently,

Y(z) = HU)X(z)

m  -  i r p

and hence the response of the system is

y(n) =  ( 5)n«(n)

Clearly, the mode ( |)"  is suppressed from the output as a result of the pole-zero 
cancellation.

3.6.6 Multiple-Order Poles and Stability

A s w e hav e  obse rv ed , a  necessary  and  sufficient cond ition  fo r a causal lin ear tim e- 
in v arian t system  to  be B IB O  stab le  is th a t all its po les lie inside th e  un it circle. 
T h e  in p u t signal is b o u n d ed  if its z -tran sfo rm  con ta in s po les {qk}, k =  1 ,2 —  , L,
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w hich satisfy the  cond ition  \qk \ <  1 fo r all k.  W e n o te  th a t th e  fo rced  response  of 
the  system , given in (3.6.15). is also  b o u n d ed , even  w hen  the  in p u t signal contains 
one o r m ore d istinct poles on  the  unit circle.

In view of the fact th a t a b o u n d ed  inp u t signal m ay have po les on the  unit 
circle, it m ight ap p e a r th a t a stab le  system  m ay also  have po les on  the u n it circle. 
This is no t the case, how ever, since such a  system  p ro d u ces an u n b o u n d e d  response 
w hen excited  by an  inp u t signal th a t also has a po le  a t the  sam e position  on  the 
unit circle. T h e  follow ing exam ple  illu stra tes  th is po in t.

Example 3.6.6

Determine the step response of the causal system described by the difference equation 

v(n) =  y{n -  1) +  x{n)

Solution The system function for the system is

We note that the system contains a pole on the unit circle at c =  1. The ^-transform 
of the input signal x(n) = u{n) is

which also contains a pole at ;  =  1. Hence the output signal has the transform 

K(=) =  H{z)X{z)

1
“  (1 - ; - 1)2

which contains a double pole at z =  1.
The inverse z-transform of Y(z) is

>-(«)= (n +  l)n(B)

which is a ramp sequence. Thus y(n) is unbounded, even when the input is bounded.
Consequently, the system is unstable.

E xam ple 3.6.6 d em o n s tra te s  clearly  th a t B IB O  stability  re q u ire s  th a t the sys­
tem  po les be strictly  inside th e  un it circle. If  th e  system  poles a re  all inside the  unit 
circle and  th e  excita tion  se q uence  x(n)  con ta in s o n e  o r m o re  p o les tha t coincide 
w ith the poles o f th e  system , th e  o u tp u t Y(z)  will con ta in  m u ltip le -o rd e r poles. As 
ind ica ted  p reviously , such m u ltip le -o rd e r poles re su lt in an o u tp u t se q uence  that 
con tains term s o f the form

A knb( pk)nu(n)

w here 0 < b <  m  — 1 and m is the  o rd e r  o f th e  pole. If  |p*| < 1, th ese  te rm s decay 
to  ze ro  as n ap p ro ach es infinity becau se  the  ex p o n en tia l fac to r  (pk)n dom inates 
the  te rm  nb. C onsequen tly , no  b o u n d ed  in p u t signal can p ro d u ce  an  unbou n d ed  
o u tp u t signal if th e  system  po les a re  all inside th e  u n it circle.
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F inally , we shou ld  s ta te  th a t the  only  useful system s w hich  con ta in  poles 
on th e  un it circle a re  the d ig ita l osc illa to rs discussed in C h a p te r  4. W e call such 
system s marginal ly  stable.

3.6.7 The Schur-Cohn Stability Test

W e have sta te d  p rev iously  th a t the  stability  o f a system  is d e te rm in ed  by the 
position  o f th e  po les. T he po les o f the  system  are th e  ro o ts  o f the  d en o m in a to r 
po lynom ial o f H ( z ), nam ely ,

A(z) =  1 +  a\z  1 +  Q-2Z 2 +  ■ • • +  QpfZ ^  (3.6.16)

W hen  th e  system  is causal all th e  ro o ts  o f A(z) m ust lie inside th e  un it circle for 
the  system  to  b e  stab le .

T h e re  a re  severa l co m p u ta tio n a l p ro ced u res th a t aid  us in de te rm in in g  if any 
o f th e  ro o ts  o f A (z) lie o u tsid e  the  u n it circle. T hese  p ro ced u res a re  called  stability 
criteria. B e iow  we describe  th e  S ch u r-C o h n  test p ro ced u re  fo r  th e  stab ility  o f a 
system  ch arac te rized  by the  system  function  H(z)  =  B ( z ) / A { z).

B efo re  w e d escribe  the  S ch u r-C o h n  test we n eed  to  estab lish  som e useful 
n o ta tio n . W e d e n o te  a  po lynom ial o f deg ree  m by

Am(z) =  £ a m(* )z -A a m(0) =  l  (3.6.17)
i=0

T h e  reciprocal  o r  reverse p ol ynomi al  Bm(z) o f degree m is d efined  as 

Bm(z) =  z - ' )

(3.6.18)
UmV"‘ — k 

k*= 0

W e o b se rv e  th a t th e  coeffic ients o f  Bm(z) are  th e  sam e as th o se  o f Am(z), bu t 
in rev erse  o rd e r.

In th e  S c h u r-C o h n  stab ility  tes t, to  d e te rm in e  if th e  p o lynom ial A(z) has all 
its ro o ts  inside th e  u n it circle, we co m p u te  a set o f coefficients, called  reflection 
coeff icients , K \ ,  K i .........K n from  th e  polynom ials A m(z). F irst, we set

A N(z) =  A(z)

an d  (3.6.19)
ATjV =  a # ( N )

T h en  w e co m p u te  th e  low er-d eg ree  po lynom ials Am(z), m =  N ,  N  — 1, N  — 2 , . . . ,  1, 
acco rd ing  to  th e  recu rsive  e q u a tio n

A  ̂ ^m (z) — KmBm(z) ^ c 
A m- i ( z )  = --------1 --------  (3.6.20)

w h ere  th e  coeffic ients K m a re  defined  as

Km = am{m) (3.6.21)



T he S ch u r-C o h n  stab ility  test sta tes th a t the po l yn o mi a l  A (;)  gi en by (3.6.16) 
has all its roots inside the uni i  circle i f  and  only  i f  the coeff icients K m satisfy the 
condi t ion \Km \ <  1 f o r  all m — 1, 2 ........ N.

W e shall no t prov ide a p ro o f  o f th e  S ch u r-C o h n  tes t at th is po in t. The 
th eo re tica l justification  for th is te s t is given in C h a p te r  11. W e illu stra te  th e  com ­
p u ta tio n a l p ro ced u re  w ith the  follow ing exam ple.

Example 3.6.7

Determine if the system having the system function
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is stable.

Solution We begin with A ;(;), which is defined as

A 2 ( z ) =  1 -  l z ~ ] -  k " 2

Hence

Now

and
#>(:) =

/\2(r) -  
1 -  K;

Therefore.

Ki = - I

Since |ATi | > 1 il follows that the system is unstable. This fact is easily estab­
lished in this example, since the denominator is easily factored to yield the two poles 
at pi =  —2 and p2 — However, for higher-degree polynomials, the Schur-Cohn 
test provides a simpler test for stability than direct factoring of //(- ) .

T h e  S ch u r-C o h n  stab ility  tes t can be  easily p rog ram m ed  in a d igital com puter 
and it is very efficient in te rm s of a rith m e tic  opera tio n s. Specifically, it requires
only N 2 m ultip lica tions to  d e te rm in e  th e  coeffic ients {Km}, m =  1 , 2 .........N.  The
recursive equation  in (3.6.20) can  be expressed  in te rm s o f th e  po lynom ial coef­
ficients by expanding  th e  po lynom ials in bo th  sides o f (3.6.20) an d  eq u a tin g  the 
coefficients co rre sp o n d in g  to  equal pow ers. In d eed , it is easily  es tab lished  that
(3.6.20) is equ ivalen t to  th e  follow ing algorithm : Set

aN (k) =  ak i t  =  1 ,2 .........N  (3.6.22)

Kfj  =  af j (N)

T hen , for m  =  N , N  — 1 , . . . ,  1, com pu te

K m = a m(rn) <jm_i(0) =  l

(3.6.23)
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and

it =  1, 2 , . . .  , m  — 1 (3.6.24)

w here

bm(k) =  am(m — k) k =  0 , 1 , . . . , m (3.6.25)

T his recursive a lgo rith m  fo r the  co m p u ta tio n  o f the  coeffic ients {ATm} finds 
app lica tion  in v arious signal p rocessing  p rob lem s, especially  in speech  signal p ro ­
cessing.

3.6.8 Stability of Second-Order Systems

In  th is sec tion  we p rov ide  a de ta iled  analysis o f a system  hav ing  tw o  po les. A s 
we shall see  in C h a p te r  7, tw o-po le  system s fo rm  th e  basic b u ild ing  b locks fo r the  
rea liza tion  o f h ig h e r-o rd e r  system s.

L e t us co n sid er a causal tw o-pole system  d escribed  by th e  se co n d -o rd e r  dif­
ference  eq u a tio n

T h e  system  is B IB O  sta b le  if the  p o les lie inside the u n it circle, th a t is, if 
|P i | <  1 an d  \p2\ <  1. T h ese  cond itions can be re la ted  to  th e  values o f  the  
coeffic ients a\ and  a 2. In  p a rticu la r, th e  ro o ts  o f a  q u ad ra tic  e q u a tio n  satisfy the 
re la tions

F rom  (3.6.29) an d  (3.6.30) w e easily o b ta in  the cond itions th a t  a\ an d  a2 m ust 
satisfy fo r stability . F irst, aj  m ust satisfy th e  cond ition

y(n) =  - a ^ y ( n  -  I) -  a2y(n  -  2) +  b0x(n) (3.6.26)

T h e  system  function  is

X ( z )  1 4- a i r 1 +  a2z ~ : 

boz2
(3.6.27)

z2 + a \z  +  «2

T his system  has tw o  zeros at th e  origin and  poles a t

(3.6.28)

fil =  —(P5 +  pi ) (3.6.29)

(3.6.30)

\ai\ =  \p\pi \  -  \p\Wpi\  <  1 

T h e  cond itio n  fo r a\  can be ex p ressed  as

1 1 <  1 +  «2

(3.6.31)

(3.6.32)
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T h e  conditions in (3.6.31) and  (3.6.32) can also  be deriv ed  from  th e  S chur- 
C ohn  stability  test. F rom  th e  recursive eq u a tio n s  in (3.6.22) th ro u g h  (3.6.25), we 
find th a t

T h e  system  is stab le  if and  oniy  if [AT]| < 1 and  lA^I <  1. C onseq u en tly ,

—1 < «2 <  1

o r equ ivalen tly  \a%\ < 1, w hich agrees w ith (3.6.31). A lso,

or, equ ivalently ,

which a re  in ag reem en t with (3.6.32). T h e re fo re , a tw o-pole system  is stab le  if and 
only if the  coefficients a\ and  a ;  satisfy the cond itions in (3.6.31) an d  (3.6.32).

T he stability  cond itions given in (3.6.31) and  (3.6.32), define a region in the 
coefficient p lane (o i. ai) ,  w hich is in the  form  o f a triang le , as show n in Fig. 3.15. 
T h e  system  is stab le  if and  only if th e  p o in t (o j, q t)  lies inside th e  triang le , which 
we call the stability triangle.

T he characteristics o f th e  tw o-po le system  d ep en d  on th e  location  o f the 
poles o r. equ ivalen tly , on the  location  o f th e  po in t (e i, 02) in th e  stab ility  triangle. 
T he p o les o f the  system  m ay be rea l o r com plex  con jugate , d ep en d in g  on  the 
value o f th e  d isc rim inan t A =  a* — Aa2- T h e  p arab o la  a2 =  a \ f 4 splits th e  stability

(3.6.33)

and

K 2 =  02 (3.6.34)

ai <  1 ~b 02 

d\ >  —1 — a2

Figmre 3 .15 Region of stability 
(stability triangle) in the (a i, a?) 
coefficient plane for a second-order 
system.
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triang le  in to  tw o reg ions, as illu stra ted  in Fig. 3.15. T h e  reg ion  below  the p arab o la  
(,a\  >  4d2) co rre sp o n d s to  rea l and  d istinct poles. T h e  po in ts  on  the p arab o la  
(af  =  4*22) resu lt in  rea l and  eq u a l (dou b le ) poles. F inally, the  p o in ts above the  
p arab o la  co rre sp o n d  to  com plex-con jugate  poles.

A d d itio n a l insight in to  th e  b ehav io r o f the  system  can be o b ta in ed  from  the 
u n it sam ple  respo n ses fo r these  th ree  cases.

Real and distinct poles (af = 4a2)- Since p  1, pi are rea l and  p\ ^  p2. the 
system  function  can be exp ressed  in the  form

A\  , A2

w here
1 -  Pi z  1 

koPi
A i  ~

1 -  P2Z' 1 

- b o P 2

Pi -  P2
C onsequen tly , th e  u n it sam ple response  is

P 1 -  P2

b° ' ( P T '  - P ? l )u(n)

(3.6.35)

(3.6.36)

(3.6.37)
Pi — P 2

T h erefo re , th e  un it sam ple response  is th e  d ifference of tw o decay ing  exponen tia l 
sequences. F igure 3.16 illu stra tes  a typical g raph  for h(n)  w hen  the  poles are 
distinct.

Real and equal poles (af = 4a2). In  th is case p\  
system  function  is

( 1 - p z - 1)2
and  h ence  the un it sam ple  response  o f the  system  is 

h{n) =  b0(n +  1 ) p nu(n)

h(n)

P2 — p  = —a \ / 2. The

(3.6.38)

(3.6.39)

Figure 3.16 Plot of h(n) given by (3.6.37) with p\ = 0.5, pz = 0.75; h(n) = 
~  P2)](P”+1 - P 2 +I)u(n).
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h(n)

Figure 3.17 Plot of h(rr) given by (3.6.39) with p =  ti(n) = (n +  1

W e observe th a t h(n)  is th e  p ro d u c t o f a ram p  sequence  a n d  a real decaying 
exponen tia l sequence. T he g raph  of h(n)  is show n in Fig. 3.17.

Complex-conjugate poles (af < 4a2). Since the po les are  com plex con­
jugate , the system  function  can be fac to red  and expressed  as

A A’
+

1 — p : -1 1 — p*z~l 
A A '

(3.6.40)

+
1 -  r e ^ ' z ' 1 1 -  re~)tUi' z~x 

w here p  =  reJai and  0 < coq < tt. N ote th a t w hen th e  p o les are  com plex  conjugates, 
the p aram e te rs  a\ an d  02 a re  re la ted  to  r and  a>o accord ing  to

a\ =  — 2 r  cos coo
(3.6.41)

az =  r

T he constan t A in the p a rtia l-fra c tio n  expansion  o f H(z)  is easily  show n to  be

bo p  boreJW"
A =

p  — p* r ( e i™0 — e~JW0) 
b0eJ<I*

(3.6.42)

j  2  sin ti>o

C onsequently , the un it sam ple response  o f a system  w ith com piex -con jugate  poles 
is

h{n) =
sin coo 2  j
born

sin(rt -t- l)cuou(n)

-«(n)
(3.6.43)

sin coo
In this case h ( n ) h as an osc illa to ry  b eh av io r w ith an ex p o n en tia lly  decaying 

envelope w hen r <  1. T he ang le  wo o f  the poles d e te rm in es th e  frequency  of 
oscillation and  th e  d istance r o f the  p o les from  th e  origin d e te rm in es  th e  ra te  of
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ft(n)

Figure 3.18 Plot of h(n)  given by (3.6.43) with bo = 1, a*> =  n/4, r =  0.9; 
h(n) = [fcor"/(sin sin[(n +  l)twn)u(n).

decay. W hen  r  is close to  unity , the decay is slow. W hen  r is close to  th e  origin, 
the  decay is fast. A  typical g raph  of h(n)  is illu stra ted  in Fig. 3.18.

3.7 SUMMARY AND REFERENCES

T h e  z-tran sfo rm  plays th e  sam e ro le  in d isc re te-tim e signals an d  system s as th e  
L ap lace  tran sfo rm  does in co n tinuous-tim e signals an d  system s. In  th is c h a p te r  we 
d erived  th e  im p o rta n t p ro p e rtie s  o f th e  z-transform , w hich a re  ex trem ely  useful in 
th e  analysis o f d isc re te-tim e system s. O f p a rticu la r im p o rtan ce  is th e  convo lu tion  
p ro p e rty , w hich tran sfo rm s th e  convolu tion  o f tw o sequen ces in to  a p ro d u c t o f 
th e ir  z-transform s.

In  th e  co n tex t o f L T I system s, the  convo lu tion  p ro p e rty  re su lts  in th e  p ro d u c t 
o f th e  z-tran sfo rm  X ( z )  o f th e  inpu t signal w ith th e  system  fu n c tio n  H( z) ,  w here  
the la tte r  is th e  z-tran sfo rm  of th e  un it sam ple resp o n se  o f  th e  system . This 
re la tio n sh ip  allow s us to  d e te rm in e  the  o u tp u t o f an  L T I system  in re sp o n se  to  an  
in p u t w ith tran sfo rm  X ( z )  by  com puting  th e  p ro d u c t Y(z )  =  H ( z ) X ( z )  and  th en  
d e te rm in in g  th e  inverse  z -transfo rm  of Y(z )  to  o b ta in  th e  o u tp u t seq u en ce  y(n).

W e ob se rv ed  th a t m any  signals o f p rac tica l in te re s t have  ra tio n a l z-transform s. 
M oreover, L T I system s charac te rized  by  constan t-coeffic ien t lin ea r  d ifference



equa tio n s , also possess ra tio n a l system  functions. C onseq u en tly , in determ ining 
th e  inverse z -transform , we natura lly  em phasized  the  inversion  o f ra tional trans­
form s. F o r such transfo rm s, the partia l-frac tio n  expansion  m e th o d  is relatively 
easy to  apply, in con junction  w ith the R O C , to  d e te rm in e  th e  co rre sp o n d in g  se­
quence  in the tim e dom ain . T he one-sided  z -transfo rm  w as in tro d u c ed  to  solve for 
th e  response o f causal system s excited  by causal inp u t signals w ith  n o n zero  initial 
conditions.

F inally, we co nsidered  th e  ch a rac te riza tio n  of LTI system s in the z-transform  
d om ain . In p articu lar, we re la ted  th e  p o le -z e ro  locations of a system  to  its time- 
dom ain  characteristics and  re sta ted  th e  req u irem en ts for stab ility  and  causality  of 
LTI system s in term s of th e  po le locations. W e d em o n s tra ted  th a t  a causal system 
has a system  function  H(z)  w ith a R O C  |z| > w here  0 < r\ <  oc. In a stable 
and causal system , the poles o f H(z)  lie inside the un it circle. O n  the  o th e r  hand, 
if the  system  is noncausal, th e  cond ition  for stability  req u ires th a t the  un it circle be 
con ta in ed  in the R O C  of H(z) .  H ence a noncausal stab le  LTI system  has a system 
function  w ith poles bo th  inside and o u tsid e  th e  un it circle w ith an a n n u la r  RO C 
th a t includes th e  unit circle. T h e  S ch u r-C o h n  test fo r the stab ility  o f a causal LTI 
system  w as described  and th e  stability  o f seco n d -o rd e r  system  w as considered  in 
som e detail.

A n  excellent com prehensive tre a tm e n t o f the z-transfo rm  an d  its application 
to  th e  analysis o f LTI system s is given in the tex t by Jury  (1964). T he Schur- 
C ohn  test for stab ility  is tre a te d  in severa l texts. O u r  p re se n ta tio n  w as given in 
the  con tex t of reflec tion  coeffic ients w hich are  used in lin ear p red ic tive  coding of 
speech signals. T h e  tex t by M arkel and  G ray  (1976) is a good refe ren ce  for the 
S ch u r-C o h n  test and  its app lication  to  speech  signal processing.
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P R O B L E M S

3.1 Determine the z-transform of the following signals,
(a) x(n) = {3. 0. 0. 0, 0, 6, 1. —4}

(b) x(n) = ( } ) \  » > 5  
0. n < 4

3.2 Determine the z-transforms of the following signals and sketch the corresponding 
pole-zero patterns.
(a) x ( n ) =  (1 +  n)u( n)
(b) x ( n ) =  (a" + a ' ”)u(n) ,  a  real
(c) x ( n )  =  ( —1 )n2 -n u (r)
W) x ( n )  =  ( na" sina»on)w(rc)
(e )  x ( n )  =  (na" CQSwon)u(n)
(I) x (n) =  Ar"  c o s (w^n + <j>)u(n). 0  <  r  < 1
(g) *(n) = j(n : - i ~  1)
(h) jr(rt) =  ( i ) n[«(n) -  u(n -  10)]
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_ 0
(a) x,(n)

33 Determine the z-transforms and sketch the ROC of the following signals.
f ( i ) \  n > 

“ 1 (f)" " . " <

( i ) B-  2 \  n > 0(b) x2(n) =
0, n < 0

(c) *j(«) = x 1(n + 4 )
<d) x4(n) = j t , ( - n )

3.4 Determ ine the z-transform of the following signals.
(a) x(n)  =  n(—l)"w(n)
(b) x(n)  =  n2u(n)
(c) x(n) =  —nanu(—n — 1)
(d) x(n) =  (-1 )"  (cos ~n) u(n)
<e) x(n) = (—l)"u(n)
(f) jr(n) =  (1 ,0 .-1 ,0 .  1 , - 1 , . . .}  

t

3.5 Determine the regions of convergence of right-sided, left-sided, and finite-duration 
two-sided sequences.

3.6 Express the z-transform of

y(n) =  Y  x(k)
k=*—oc

in terms of X(-). [Him: Find the difference y(n) -  y(n -  1).]
3.7 Compute the convolution of the following signals by means of the z-transform.

*i(n)
= f (£)". n >0 

1 (£)"". n < 0

*2 (n) =  ( j ) nH(n)

3.8 Use the convolution property to:
(a) Express the z-transform of

y(n) = 5 2  x
tt-oc

in terms of X(z).
(b) Determine the z-transform of x(n) = (n + l)u(n). [Hint. Show first that x(n ) = 

u(n) * n(n).]
3.9 The z-transform X(z)  of a real signal x(n) includes a pair of complex-conjugate zeros 

and a pair of complex-conjugate poles. What happens to these pairs if we multiply 
x(n)  by eJW°nl  (Hint. Use the scaling theorem in the z-domain.)

3.10 Apply the final value theorem to determine jt(oo) for the signal
1, if n is even

10, otherwise
3.11 Using long division, determine the inverse z-transform of

1 +  2Z-1 
1 -  2 z 1 +  z 2 

if (a) jr(n) is causal and (b) x(n) is anticausal.
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3.12 Determine the causal signal having the z-transform

1
*(z) =

(a) j:i(n) = even 

if n odd

( l - Z z - ' H l - z - 1)2
3.13 Let ;t(n) be a sequence with z-transform X(z)- Determine, in terms of 

z-transforms of the following signals.

i,n
0,

(b) x2(n) = x(2n)
3.14 Determine the causal signal x (n) if its z-transform X(z)  is given by: 

l + 3 z - ’
1 + 3 z - ‘ + 2 z - 2 

1
1 - z - '  +  ^z-2 
z -6 +  z^7

(a) II

(b) II*

(c) II><

(d) II><

(e) X(z) =

(0 X(z) =

(g)
II*

(h) X(z) is

(i) II

(j) * II

1 -
1 +  2z-2
1 + : - 2
1 1 + 6z“ ‘ + z"2

4 (1 - 2 ;- 1 + 2 z '2)(l -  O.Sz"1)

2 — 1.5z-1 

1 - 1.5--1 + C.5z^:

1 + 2z“ ‘ + z-2 

1 + 4z_1 +4z-2

specified by a pole-zero patten  
1 -  k - 1

1 - a z -1

Figure P3.14

3.15 Determine all possible signals x(n)  associated with the z-transform

X U ) =  {1 - 2 z - ') (3 - z - ])

3.16 Determine the convolution of the following pairs of signals by means 
transform.

X(z), the

of the z-
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(a) x\(ft) = -  1), x 2(n) =  [1 +
(b) X i ( n )  =  u ( n ) ,  jc2(n) =  5(n) +  (i)"u(n)
(c) x\ (n) =  ( i ) nM(n), *2(71) =  c-Osnnu(n)
(d) ari(n) =  nu(n) ,  x 2(n) =  2"u(n — 1)

3.17 Prove the final value theorem for the one-sided z-transform.
3.18 If X(z)  is the z-transform of x(n),  show that:

(a) Z{xm(n)} =  X' (z ' )
(b) Z{Re[jr(n}]} =  j[X (z) +  X*(z*)]

(c) Z{Im[jr(«)]l =  |[X (z) -  **(=*)]
(d) If

* * ( „ ) = { * ( ? ) •  if " A  integer 
1 0, otherwise

then
X t U) =  X (zk)

(e) = X(ze~Jw°)
3.19 By first differentiating X(z) and then using appropriate properties of the z-transform. 

determine x(n)  for the following transforms.
(a) X(z) =  lo g ( l—2z), \z\<{

(b) X(z) =  log(l -  z-1), |z! > 5
3.20 (a) Draw the pole-zero pattern for the signal

jcj(n) =  (r" sin a>on)u(fi) 0 < r < 1

(b) Compute the z-transform A^tz), which corresponds to the pole-zero pattern in 
part (a).

(c) Compare X]{z) with X2(z). Are they indentical? If not. indicate a method lo 
derive Xi(z) from the pole-zero pattern.

3.21 Show that the roots of a polynomial with real coefficients are real or form complex- 
conjugate pairs. The inverse is not true, in general.

3.22 Prove the convolution and correlation properties of the z-transform using only its 
definition.

3.23 Determine the signal x(n)  with z-transform

X(z) =  e: + e l/z |z|^0

3.24 Determine, in closed form, the causal signals x(n) whose z-transforms are given by:

(a) X(z) =  T T T 5 ^ T o3 P

(b) X(Z) = 1 -  0.5z~! +  0.6z“2
Partially check your results by computing *(0), x (l), *(2), and jt(oo) by an alternative 
method.

3.25 Determine all possible signals that can have the following z-transforms.
1
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3.26 Determine the signal x(n) with z-transform

XU)  =
1 -  + z - 2

if X(z) converges on the unit circle.
3.27  Prove the complex convolution relation given by (3.2.22).
3.28  Prove the conjugation properties and Parse val’s relation for the z-transform given in 

Table 3.2.
3.29 In Example 3.4.1 we solved for .r(n), n < 0, by performing contour integrations for 

each value of n. In general, this procedure proves to be tedious. It can be avoided by 
making a transformation in the contour integral from z-plane to the uj =  1/z plane. 
Thus a circle of radius R in the z-plane is mapped into a circle of radius 1 /R  in the w- 
plane. As a consequence, a pole inside the unit circle in the z-plane is mapped into a 
pole outside the unit circle in the m-plane. By making the change of variable w = 1/z 
in the contour integral, determine the sequence x ( n )  for n < 0 in Example 3.4.1,

3.30  Let *(n), 0 < n  < N — 1 be a finite-duration sequence, which is also real-valued and 
even. Show that the zeros of the polynomial X(z)  occur in mirror-image pairs about 
the unit circle. That is. if z =  rej/> is a zero of X(z), then z =  (1 / r ) eJ" is also a zero.

3.31 Compute the convolution of the following pair of signals in the time domain and by 
using the one-sided z-transform.
(a) .v,(n) =  {1. 1. 1. 1. 1). x2(n) = (1. 1. 1)

t  t

(b) Xi (n) = ( j)"u(h). x2(n) = (i)"u(n)
(c) .ii(n) =  (1.2, 3.4}. x 2(n) =  (4, 3, 2. 1}

t  t

(d) *,(«) =  {1.1. 1.1.1}. Jr2 ( « )  =  {1.1,1}
t  t  

Did you obtain the same results by both methods? Explain.
3.32  Determine the one-sided z-transform of the constant signal x ( n )  =  1. —oo < n < 00.
3.33  Prove that the Fibonacci sequence can be thought of as the impulse response of the 

system described by the difference equation ,y(/i) =  v(n -  1) +  y ( n  -  2) 4- x(n).  Then 
determine h(n) using z-transform techniques.

3.34  Use the one-sided z-transform to determine y(n), n > 0 in the following cases.
(a) y(n) + \y(n  -  1) -  \ y(n  -  2) =  0; y ( - l )  =  y (-2 )  =  1
(b) y(n) -  1.5y(n -  1) +  0.5y(n -  2) =  0; y ( - l ) =  1. v(—2) =  0
(c) v(n) =  \ y ( n  -  1) +  x ( n )  

x ( n )  =  (±)"u(rt) .  y ( - l )  =  1

(d) _v(r) =  j v(n -  2) +  x(n) 

x( n )  =  u{n)

>’(—1) =  0; y(—2) =  1
3.35  Show that the following systems are equivalent.

(a) y ( n ) =  0 .2y(n  -  1) +  x{ n)  -  0.3.r(n -  1) +  0.02jt(n -  2)
(b) _y{«) =  x ( n )  -  0 .1x(n  -  1)
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3.36 Consider the sequence xin) = ci"uin). — 1 < a < 1. Determine at least two sequences 
that are not equal to xin)  but have the same autocorrelation.

3.37 Compute the unit step response of the system with impulse response

f 3 \  n < 0
n > 0

3.38 Compute the zero-state response for the following pairs of systems and input signals.

(a) hin) = ,v(h) =  < j)"^cos w r j ;<('?)

(b) h(n) =  ( |  Y‘uOi ). xin)  = { \ ) ’‘u{n) +  ( \ r " u ( - n  -  1)
(c) yin) =  — 0.1 yin — 1) +  0.2y(>i -  2) + xin) +  xin -  1)

,v ( / i )  =  ( ^ V m ( i i )

(d) yin) = |.v(») -  — 1) 

x{n) = lO^Cos — n'ju(n)

(e) yin) = —yin —2)+  lOjr(n)

,v(/7) =  lO^cos — n^jnin)

(f) h{n)  = i ^ Y ’ii (n).  x i n )  — i/ ln) — it in — 7)

(g) hin) =  (|V'if(H). xin) = ( — 1)", — 3C < n < x

(h) hin) =  U) ' ‘i f =  in + 1)(j)"h<h)
3.39 Consider the system

1 -  2 r '  +  2:~: -
H ( Z )  = ----------;---- ----------- :------------------ ROC: 0.5 < |d  < l

( 1 - 0 . 5 ; - ‘ ) ( l - 0 . 2 : - ' )

(a) Sketch the pole-zero pattern. Is the system stable?
(b) Determine the impulse response of the system.

3.40 Compute the response of the system

ytn) = 0.7v(n -  1) — 0.12y(n -  2) + x(n — 1) + xin — 2)

to the input v(/?) =  nuin), Is the system stable?
3.41 Determine the impulse response and the step response of the following causal systems. 

Plot the pole-zero patterns and determine which of the systems are stable.
(a) y i n )  =  j  v(« -  1) -  jr v(n -  2) +  x( n )

(b) y(n) =  vin — 1) — 0.5y(n -  2) +  x(n)  +  xin — I )
; ~ ' f l  +

(c> ™  =
(d) v(n) =  0.6y(n — 1) — 0.08v(n — 2) -f- x(n)
(e) v(«) =  0.7y(n — 1) — 0.1y(/3 — 2) +  2xin) — x(n — 2)

3.42 Let xin)  be a causal sequence with ;-transform X(z) whose pole-zero plot is shown 
in Fig. P3.42. Sketch the pole-zero plots and the ROC of the following sequences;
(a) Xt(n) =  x(~n  -)- 2)
(b) x2(n) = eim/iu,x(n)
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Re(;)

Figure P3.42

3.43  We want to design a causal discrete-time LTI system with the property that if the 
input is

x( n)  =  ( l ) nu(n)  -  -  1)

then the output is
V(lt) =  (|)"tt(n)

(a) Determine the impulse response h(n) and the system function H(z) of a system 
that satisfies the foregoing conditions.

(b) Find the difference equation that characterizes this system.
(c) Determine a realization of the system that requires the minimum possible amount 

of memory.
(d) Determine if the system is stable.

3.44  Determine the stability region for the causal system

H{z) =
1

1 +  o ir -1 +  a2z~2
by computing its poles and restricting them to be inside the unit circle.

3.45 Consider the svstem

H{z) = 1 _  l --1 _L i-r-2I +  J?-
Determine:
(a) The impulse response
(b) The zero-state step response
(c) The step response if y(—1) =  1 and y (-2 )  =  2

3.46  Determine the system function, impulse response, and zero-state step response of the 
system shown in Fig P3.46.

3.47  Consider the causal system

y in ) =  - a i y i n  -  1) +  b0x(n) +  b^xin -  1)

Determine:
(a) The impulse response
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y(n)

a

Figure P3.46

(b) The zero-state step response
(c) The step response if y ( — 1) =  A /  0
(d) The response to the input

x ( n )  ~  C O S a > u f !  0 <  n  <  o o

3.48 Determine the zero-state response of the system

y(n) =  i  v(h - 1) + 4*(n) + 3x(n — 1)

to the input
jt(n) =  em 'nu{n)

What is the steady-state response of the system?
3.49 Consider the causal system defined by the pole-zero pattern shown in Fig. P3.49.

(a) Determine the system function and the impulse response of the system given that 
W U)U i =  1.

(b) Is the system stable?
(c) Sketch a possible implementation of the system and determine the corresponding 

difference equations.

Im(;)

3.50 An FIR LTI system has an impulse response h(n), which is real valued, even, and 
has finite duration of 2/V +  1. Show that if ;i =  rejaJa is a zero of the system, then 
d  =  ( l / r ) e j a *> is also a zero.

3.51 Consider an LTI discrete-time system whose pole-zero pattern is shown in Fig. P3.51.
(a) Determine the ROC of the system function H(z)  if the system is known to be

stable.
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Re<z)
-0 .5

Figure P3.51

(b ) It is possible for the given pole-zero plot to correspond to a causal and stable 
system? If so, what is the appropriate ROC?

(c) How many possible systems can be associated with this pole-zero pattern?
3.52 Let x(n) be a causal sequence.

(a) What conclusion can you draw about the value of its z-transform A’(c) at ; =  oo?
(b ) Use the result in part (a) to check which of the following transforms cannot be 

associated with a causal sequence.

3.53 A causal pole-zero system is BIBO stable if its poles are inside the unit circle. Con­
sider now a pole-zero system that is BIBO stable and has its poles inside the unit 
circle. Is the system always causal? [Hint: Consider the systems h\(n) =  anu(n) and 
ti2 (n) = anu{n +  3), |a | < 1.]

334  Let *(/i) be an anticausal signal [i.e., x (n) =  0 for n > 0]. Formulate and prove an 
initial value theorem for anticausal signals.

3.55 The step response of an LTI system is

J(w) =  +  2)

(a) Find the system function H(z) and sketch the pole-zero plot.
(b ) Determine the impulse response ft(n).
(c) Check if the system is causal and stable.

3 36  Use contour integration to determine the sequence jc(n) whose z-transform is given
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; — a
(c) X'U) =  ---------

1 — a:
1 -

<d) A'C)

3.57 Let ,v(h) be a sequence with c-transform

X d  =  —--- ---------— RO C : a < |;| < 1 ja
(1 - t;r)(l -  a ; " 1)

with 0 < a < 1. Determine ,v(«) by using contour integration

3.58 The ^-transform of a sequence .v(n) is given by

X(;> =
(: - i ) ( ;  - 2)5<- + ?): (r + 3)

Furthermore it is known that X (:) converges for |;| =  1.

(a ) Determine the R O C  of X(c).

(b) Determine xin) at n =  -18. {Hint: Use contour integration.)



34
Frequency Analysis of Signals 
and Systems

T he F o u rie r tran sfo rm  is o ne  o f severa l m ath em atica l tools th a t is useful in the 
analysis and design of L TI system s. A n o th e r  is th e  F ourie r series. T hese signal 
rep re sen ta tio n s basically involve the  decom position  o f the  signals in te rm s o f sinu­
soidal (o r com plex ex p o n en tia l)  com ponen ts . W ith such a d ecom position , a signal 
is said to  be rep re sen ted  in th e  f requency  domain.

A s we shall d em o n s tra te , m ost signals o f p ractical in te rest can  be decom posed 
into a sum of sinusoidal signal com ponen ts . F o r th e  class of p erio d ic  signals, such 
a decom position  is called  a  Fourier series.  F o r the  class o f finite en erg y  signals, the 
decom position  is called the  Fourier t ransform.  T hese  decom p o sitio n s are extrem ely  
im p o rtan t in the analysis o f L T I system s because the response  o f an  LTI system  to 
a sinusoidal inpu t signal is a sinusoid  o f the  sam e frequency  bu t o f  d iffe ren t am pli­
tude  and  phase. F u rth e rm o re , the  linearity  p ro p e rty  o f the  LTI system  im plies tha t 
a linear sum  of sinusoidal co m p o n en ts  at the  inpu t p ro d u ces a sim ilar linear sum 
of sinusoidal co m p o n en ts  a t the  o u tp u t, w hich d iffer only in the  am p litu d es and 
phases from  the inpu t sinusoids. T h is charac te ris tic  b ehav io r o f L T I system s ren­
ders th e  sinusoidal d ecom position  o f signals very im po rtan t. A lth o u g h  m any  other 
decom positions o f signals are  possib le, only the class o f sinuso idal (o r com plex ex­
ponen tia l)  signals possess th is desirab le  p ro p e rty  in passing  th ro u g h  an  L T I system.

W e begin o u r study  o f frequency  analysis o f signals w ith th e  rep resen ta tio n  
of con tinuous-tim e period ic  and  ap eriod ic  signals by m eans of th e  F o u rie r  series 
and th e  F o u rie r  tran sfo rm , respectively . T his is follow ed by a para lle l trea tm en t 
of d iscrete-tim e period ic  and  ap eriod ic  signals. T h e  p ro p e rtie s  o f th e  F ourie r 
transfo rm  are  d escribed  in deta il and  a n u m b er of tim e-freq u en cy  dualities are 
p resen ted .

4.1 FREQUENCY ANALYSIS OF CONTINUOUS-TIME SIGNALS

It is well know n th a t a prism  can be used to  b reak  up  w hite light (sun ligh t) in to  the 
colors o f th e  ra inbow  (see Fig. 4 .1a). In  a p a p e r  su b m itted  in 1672 to  th e  R oyal 
Society, Isaac N ew to n  used  th e  te rm  spect rum  to  describe th e  cont inuous  bands

230
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Glass prism

Figure 4.1 (a) Analysis and
( b )  sy n th esis  of th e  w hite  light (su n lig h t)

using  glass prism s.

of co lors p ro d u ced  by this appara tus. T o und erstan d  this p h en o m en o n , N ew ton 
p laced  an o th e r  prism  upside-dow rn with respec t to  the first, and  show ed th a t the 
co lors b lended  back into w hite light, as in Fig. 4.1b, By in serting  a slit betw een 
the tw o prism s and  blocking one o r m ore colors from  h itting  the second  prism , 
he show ed th a t the  rem ixed  light is no  longer w hite. H ence  the  light passing 
th rough  the  first prism  is sim ply analyzed into its co m p o n en t co lors w ithou t any 
o th e r change. H ow ever, only  if we mix again all o f these co lors d o  we ob ta in  the 
o rig inal w hite light.

L a te r ,  Jo s e p h  F ra u n h o fe r  ( 1 7 8 7 -1 8 2 6 ) .  in m a k in g  m e a s u re m e n ts  o f  light 
e m itte d  by  th e  sun an d  sta rs , d isco v ered  th a t th e  sp e c tru m  o f  th e  o b s e r v e d  light 
co n sis ts  o f  d is tin c t c o lo r  lin es. A  few  y ears  la te r  (m id - ]8 0 0 s )  G u s ta v  K ir c h h o f f  an d  
R o b e r t  B u n s e n  fo u n d  th a t e a c h  ch e m ic a l e le m e n t, w h en  h e a te d  to  in c a n d e s c e n c e , 
ra d ia te d  its o w n  d istin ct c o lo r  o f  light. A s  a c o n s e q u e n c e , e a c h  c h e m ic a l e le m e n t 
can  b e  id e n tifie d  by  its o w n  l in e  sp e ctru m .

F ro m  p h y sics  w e k n ow  th a t each  c o lo r  c o rre s p o n d s  to  a s p e c ific  fre q u e n c y  o f  
th e  v is ib le  s p e c tru m . H e n c e  th e  an a ly sis  o f  lig h t in to  c o lo r s  is a c tu a lly  a fo rm  o f  
fr e q u e n c y  a n a ly s is .

F re q u e n c y  a n a ly sis  o f  a  s ig n al in v o lv es  th e re s o lu tio n  o f  th e  s ig n al in to  its 
fre q u e n c y  (s in u s o id a l)  c o m p o n e n ts . In s te a d  o f  lig h t, o u r s ig n a l w a v e fo rm s are 
b a s ic a lly  fu n c tio n s  o f  tim e . T h e  ro le  o f  th e  p rism  is p lay ed  by  th e  F o u r ie r  an a ly sis  
to o ls  th a t w e w ill d e v e lo p : th e  F o u r ie r  se r ie s  and  th e  F o u r ie r  tr a n s fo rm . T h e  
re c o m b in a tio n  o f  th e  s in u so id a l co m p o n e n ts  to  re c o n s tr u c t  th e  o rig in a l s ig n al is 
b a s ica lly  a F o u r ie r  sy n th e s is  p ro b le m . T h e  p ro b le m  o f  s ig n a l a n a ly sis  is  b a s ica lly  
th e  s a m e  fo r  th e  c a s e  o f  a s ig n a l w av efo rm  an d  fo r  th e  ca se  o f  th e  lig h t fro m  h e a te d  
ch e m ic a l co m p o s it io n s . Ju s t  a s  in th e ca s e  o f  ch e m ic a l c o m p o s it io n s , d iffe re n t 
s ig n a l w a v e fo rm s h av e  d iffe re n t sp e c tra . T h u s  th e  s p e c tru m  p ro v id e s  an  “ id e n tity ”



o r  a s ig n a tu re  fo r  th e  s ig n al in th e  sen se  th a t  n o  o th e r  sig n a l h a s  th e  sa m e  sp ectru m . 
A s  w e w ill see , th is  a ttr ib u te  is re la te d  to  th e  m a th e m a tic a l t r e a tm e n t  o f  fre q u e n cy - 
d o m a in  te ch n iq u e s .

I f  w e d e c o m p o s e  a w a v e fo rm  in to  s in u so id a l co m p o n e n ts , in  m u ch  th e  sam e 
w ay th a t  a p rism  s e p a r a te s  w h ite  lig h t in to  d iffe re n t c o lo r s , th e  sum  o f  th ese  
s in u so id a l c o m p o n e n ts  re su lts  in th e  o rig in a l w a v e fo rm . O n  th e  o th e r  h a n d , if  any 
o f  th e s e  c o m p o n e n ts  is m iss in g , th e  re s u lt is a d if fe re n t  s ig n a l.

In  o u r tr e a tm e n t  o f  fre q u e n c y  a n a ly sis , w e w ill d e v e lo p  th e  p r o p e r  m a th e ­
m a tica l to o ls  ( “ p r is m s ”) fo r  th e  d e c o m p o s it io n  o f  s ig n a ls  ( “ l ig h t” ) in to  sin u soid al 
f re q u e n c y  c o m p o n e n ts  (c o lo r s ) . F u r th e r m o r e , th e  to o ls  ( “ in v e rs e  p r is m s " )  fo r  syn­
th es is  o f  a g iven  s ig n a l fro m  its  f re q u e n c y  c o m p o n e n ts  w ill a ls o  b e  d e v e lo p e d .

T h e  b a s ic  m o tiv a tio n  fo r  d e v e lo p in g  th e  fre q u e n c y  a n a ly sis  to o ls  is to  prov id e 
a m a th e m a tic a l an d  p ic to r ia l re p re s e n ta t io n  fo r  th e  fre q u e n c y  c o m p o n e n ts  th a t  are 
co n ta in e d  in an y  g iven  sig n a l. A s  in  p h y s ics , th e  te rm  spect rum  is  u se d  w h en  re fe r ­
rin g  to  th e  fre q u e n c y  c o n te n t  o f  a  s ig n a l. T h e  p ro c e s s  o f  o b ta in in g  th e  sp ectru m  
o f  a g iv en  signal using  th e  b a s ic  m a th e m a tic a l to o ls  d e s c r ib e d  in th is  c h a p te r  is 
k n ow n  as f requency  o r  spectral  analysis.  In  c o n tra s t , th e  p r o c e s s  o f  d e term in in g  
th e  sp ec tru m  o f  a s ig n al in  p r a c tic e , b a s e d  on  a c tu a l m e a s u re m e n ts  o f  th e  signal, 
is c a lle d  spectrum est imation.  T h is  d is tin c tio n  is v ery  im p o r ta n t. In  a p ra ctica l 
p ro b le m  th e  s ig n al to  b e  an a ly z ed  d o e s  n o t len d  its e lf  to  an e x a c t  m a th e m a tic a l 
d e s cr ip tio n . T h e  s ig n al is u su ally  so m e in fo r m a tio n -b e a r in g  s ig n a l fro m  w h ich  we 
a re  a tte m p tin g  to  e x tra c t  th e  re le v a n t in fo r m a tio n . I f  th e  in fo r m a tio n  th a t w e wish 
to  e x tr a c t  ca n  b e  o b ta in e d  e ith e r  d ire c tly  o r  in d ire c tly  fro m  th e  s p e c tra l c o n te n t o f 
th e  s ig n a l, w e ca n  p e rfo rm  spect rum est imation  on  th e  in fo r m a tio n -b e a r in g  signal, 
an d  th u s  o b ta in  an  e s tim a te  o f  th e  sig n a l s p e c tru m . In  fa c t , w e can  v iew  sp ec tra l 
e s t im a tio n  as a ty p e  o f  s p e c tra l an a ly sis  p e rfo r m e d  o n  s ig n a ls  o b ta in e d  fro m  physi­
ca l s o u rc e s  (e .g ., s p e e c h , E E G ,  E C G ,  e t c .) .  T h e  in s tru m e n ts  o r  s o f tw a re  p ro g ram s 
used  to  o b ta in  s p e c tra l e s t im a te s  o f  su ch  s ig n a ls  a re  k n o w n  as spect rum analyzers.

H e r e , w e w ill d ea l w ith  s p e c tra l a n a ly sis . H o w e v e r , in C h a p te r  12 w e shall 
t r e a t  th e  s u b je c t  o f  p o w e r sp e c tru m  e s tim a tio n .

4.1.1 The Fourier Series for Continuous-Time Periodic 
Signals

In  th is  se c tio n  w e p re s e n t th e  fre q u e n c y  a n a ly sis  to o ls  fo r  c o n tin u o u s -tim e  p e ­
r io d ic  s ig n a ls . E x a m p le s  o f  p e r io d ic  s ig n a ls  e n c o u n te re d  in  p r a c t ic e  a re  sq u are 
w av es, re c ta n g u la r  w av es, tr ia n g u la r  w a v es , an d  o f  c o u r se , s in u so id s  and  co m p lex  
e x p o n e n tia ls .

T h e  b a s ic  m a th e m a tic a l r e p re s e n ta tio n  o f  p e r io d ic  s ig n a ls  is th e  F o u r ie r  se ­
r ie s , w h ich  is a lin e a r  w e ig h te d  sum  o f  h a rm o n ic a lly  re la te d  s in u so id s  o r  co m p lex  
e x p o n e n tia ls . J e a n  B a p t is te  Jo s e p h  F o u r ie r  ( 1 7 6 8 - 1 8 3 0 ) ,  a F r e n c h  m a th e m a tic ia n , 
used  su ch  tr ig o n o m e tr ic  s e r ie s  e x p a n s io n s  in  d e s c r ib in g  th e  p h e n o m e n o n  o f  h eat 
co n d u c tio n  an d  te m p e r a tu re  d is tr ib u tio n  th ro u g h  b o d ie s . A lth o u g h  h is  w o rk  was 
m o tiv a te d  by  th e  p r o b le m  o f  h e a t  c o n d u c tio n , th e  m a th e m a tic a l te c h n iq u e s  that

232 Frequency Analysis of Signals and Systems Chap. 4



Sec. 4.1 Frequency Analysis of Continuous-Tim e Signals 233

h e d e v e lo p e d  d u rin g  th e  e a r ly  p a r .  o f  th e  n in e te e n th  ce n tu ry  n ow  find a p p lic a ­
tio n  in a v a r ie ty  o f  p ro b le m s  e n c o rr .r\ iss in g  m a n y  d if fe re n t f ie ld s, in clu d in g  o p tics , 
v ib ra tio n s  in m e c h a n ic a l sy ste m s, s y s te m  th e o r y , an d  e le c tr o m a g n e tic s .

F r o m  C h a p te r  1 w e re c a ll  th . i :  a  l in e a r  c o m b in a t io n  o f  h a rm o n ic a lly  re la te d  
c o m p le x  e x p o n e n tia ls  o f  th e  fo rm

x { r )  =  Y  cke j 2 * kF»‘ (4 .1 .1 )
i = -3C

is a p e r io d ic  s ig n a l w ith  fu n d a m e n ta l  p e r io d  Tp =  1/Fo. H e n c e  w e ca n  th in k  o f  
th e  e x p o n e n tia l  s ig n a ls

{ e i i x k p k = Q  ± i i± 2 l

as th e  b a s ic  “ b u ild in g  b lo c k s ” f r o m  w h ich  w e c a n  c o n stru c t  p e r io d ic  s ig n a ls  o f  
v a rio u s  ty p es  by p r o p e r  c h o ic e  o f  th e  fu n d a m e n ta l fre q u e n c y  an d  th e  c o e ff ic ie n ts  
(q ). F o d e te r m in e s  th e  fu n d a m e n ta l p e r io d  o f  x ( t )  an d  th e  c o e ff ic ie n ts  { }  sp ec ify  
th e  s h a p e  o f  th e  w a v efo rm .

S u p p o s e  th a t w e a re  g iv en  a p e r io d ic  s ig n a l x { i)  w ith  p e r io d  Tp. W e  can  
r e p re s e n t th e  p e r io d ic  sig n al by th e  s e r ie s  (4 .1 .1 ) ,  ca lle d  a  F o u r ie r  series, w 'here 
th e  fu n d a m e n ta l fre q u e n c y  Fo is s e le c te d  to  b e  th e  r e c ip r o c a l o f  th e  g iven  p e rio d  
Tp. T o  d e te r m in e  th e  e x p re s s io n  to r  th e  c o e ff ic ie n ts  ( q ) ,  we first m u ltip ly  b o th  
sid es o f  (4 .1 .1 )  by  th e  c o m p le x  e x p o n e n tia l

Fltl!

w h ere  I is an  in te g e r  and th e n  in te g r a te  b o th  s id e s  o f  th e  re su ltin g  e q u a tio n  o v e r  
a s in g le  p e r io d , say  fro m  0  to  T r , o r  m o r e  g e n e ra lly , fro m  fo to  r0 +  Tp, w h ere  i o is 
an a rb itra r y  b u t m a th e m a tic a lly  c o n v e n ie n t  s ta r t in g  v a lu e . T h u s  w e o b ta in

fh>+Tr r'o+Tr I  oc \
J' x ( t ) e - j2*IF,' 'dt  =  J' g- j toiKt  / cke+J2nkF"'J di  (4.1.2)

T o  e v a lu a te  th e  in te g ra l on  th e  r ig h t-h a n d  s id e  o f  (4 .1 .2 ) ,  w e in te r c h a n g e  th e  o rd e r  
o f  th e  s u m m a tio n  an d  in te g r a tio n  a n d  c o m b in e  th e  tw o  e x p o n e n tia ls . H e n c e

p j 2 7 r F < M - h l  - | ' n + r ,s c  rl ,, +  r .  OC

£  c* I ei2* F»{k-'"dt = £
i = — oc k= —oc

Ck
J l n F o i k  -  /)_

(4 .1 .3 )

F o r  k ^  I,  th e  r ig h t-h a n d  s id e  o f  (4 .1 .3 )  e v a lu a te d  a t th e  lo w er an d  u p p er lim its , Zo 
an d  t0 +  Tp , re s p e c tiv e ly , y ie ld s  z e r o . O n  th e  o th e r  h an d , if  k =  /, w e h av e

fJtn
di  — i

'■‘o+Tp
x ( t ) e - j2 * ,Fo'd t  =  c ,T p

Consequently, (4.1.2) reduces to

fJ /ft
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an d  th e r e fo re  th e  e x p re s s io n  fo r  th e  F o u r ie r  c o e ff ic ie n ts  in te rm s  o f  th e  g iven  
p e r io d ic  s ig nal b e c o m e s

I fto+TP
c, =  —  x ( l ) e - jlw,F"'dt

Tp

S in c e  fo is a rb itra ry , th is  in te g r a l ca n  b e  ev a lu a te d  o v e r  an y  in te r v a l o f  le n g th  Tp, 
th a t  is, o v e r  an y  in te rv a l e q u a l to  th e  p e rio d  o f  th e s ig n a l jr (r ) . C o n s e q u e n tly , th e  
in te g ra l fo r  th e  F o u r ie r  s e r ie s  c o e ff ic ie n ts  w ill b e  w ritte n  as

c, =  — f  x ( t ) e ~ j2nlF,>'d t  (4 .1 .4 )
Tp J t„

A n  im p o rta n t issu e  th a t  a r is e s  in  th e  re p re s e n ta tio n  o f  th e  p e r io d ic  s ig nal 
x (t )  b y  th e  F o u r ie r  s e r ie s  is w h e th e r  o r  n o t th e  s e r ie s  c o n v e rg e s  to  * ( f )  fo r  ev ery  
v a lu e  o f  r, th a t is, if  th e  s ig n a l x (t )  an d  its F o u r ie r  s e r ie s  re p re s e n ta t io n

OC

£  c kej2 * kFtt' (4 .1 .5 )
A=-oc

a re  e q u a l a t ev e ry  v a lu e  o f  t. T h e  s o -c a lle d  D ir ic h le t  c o n d it io n s  g u a r a n te e  th a t 
th e  s e r ie s  (4 .1 .5 )  w ill b e  e q u a l to  x (t ),  e x c e p t a t th e  v a lu es  o f  i  fo r  w h ich  jc (r) is 
d isco n tin u o u s . A t  th e s e  v a lu e s  o f  r, (4 .1 .5 )  co n v e rg e s  to  th e  m id p o in t (a v e r a g e  
v a lu e ) o f  th e  d isco n tin u ity . T h e  D ir ic h le t  c o n d itio n s  a re :

1 . T h e  s ig n al .r ( f )  h as a fin ite  n u m b e r  o f  d is c o n tin u itie s  in a n y  p e rio d .

2 . T h e  signal x (t )  c o n ta in s  a fin ite  n u m b e r  o f  m a x im a  and m in im a  d u rin g  any 
p e rio d .

3 . T h e  s ig n al x (t )  is a b s o lu te ly  in te g r a b le  in an y  p e rio d , th a t  is.

f  \x (t )\d t  <  oo (4 .1 .6 )
J Tr

A lt p e r io d ic  s ig n a ls  o f  p r a c tic a l in te r e s t  sa tis fy  th e s e  co n d itio n s .
T h e  w e a k e r  c o n d itio n , th a t  th e  sig n a l h as fin ite  e n e rg y  in o n e  p e rio d ,

j  \x ( t ) \2d i  <  o c  (4 .1 .7 )
J tp

g u a r a n te e s  th a t th e  e n e rg y  in  th e  d if fe re n c e  sig n a l
OC

e (t) =  x { t ) -  Ckej2”kF"'
k=—oc

is z e r o , a lth o u g h  * ( ; )  an d  its  F o u r ie r  s e r ie s  m ay  n o t b e  e q u a l f o r  a ll v a lu e s  o f  t. 
N o te  th a t  (4 .1 .6 )  im p lies  (4 .1 .7 ) ,  b u t n o t v ice  v e rsa . A ls o , b o th  (4 .1 .7 )  a n d  th e 
D ir ic h le t  co n d itio n s  a re  s u ff ic ie n t b u t n o t n e c e s s a ry  c o n d itio n s  ( i .e . ,  th e r e  a re  s ig ­
n a ls  th a t  h av e a  F o u r ie r  s e r ie s  re p re s e n ta t io n  b u t d o  n o t  sa tis fy  th e s e  c o n d itio n s ) .

In  su m m ary , i f  x (t )  is p e r io d ic  an d  sa tis fie s  th e  D ir ic h le t  c o n d itio n s , it  can  
b e  re p re s e n te d  in a  F o u r ie r  s e r ie s  as  in (4 .1 .1 ) , w h ere  th e  c o e f f ic ie n ts  a re  sp ec ified  
b y  (4 .1 .4 ) . T h e s e  re la t io n s  a r e  s u m m a riz e d  b e lo w .
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Synthesis equation -vU) =  ^  cke,2~kl'"' (4.1.8)

Analysis equation ct = y  j (4.1.9)
1 r Jrp

In  g e n e ra l, th e F o u r ie r  c o e ff ic ie n ts  c k a re  c o m p le x  v a lu e d . M o re o v e r , it is 
ea s ily  sh ow n  th a t  if  th e p e r io d ic  s ig n al is re a l, c k an d  a re  c o m p le x  co n ju g a te s . 
A s  a re su lt, if

ct = \ck\e}b‘

th en

C-U ~~

C o n s e q u e n tly , th e  F o u r ie r  s e r ie s  m ay a lso  b e  re p re s e n te d  in th e  fo rm

rv
a  ( M  =  (-•(, +  2  k i  I c o s 0 - 7 1  k F()t +  6 k ) (4 .1 .1 0 )

n-i

w h ere  t ,, is re a l v a lu ed  w h en  x ( i)  is re a l.
F in a lly , w e sh o u ld  in d ica te  th a t y et a n o th e r  fo rm  fo r  th e  F o u r ie r  s e r ie s  can  

be o b ta in e d  by ex p a n d in g  th e co s in e  fu n ctio n  in (4 .1 .1 0 )  as

c o s (2 jtA / v  +  0k) — c o s 2 n k F o i  c o s 0t — s i n l n k F ^ r  s in fy

C o n s e q u e n tly , w e ca n  re w rite  (4 .1 .1 0 )  in th e form

3t
ji ( r )  — ao +  Y 2 (a ic  c o $ 2 n k F o t  — bk s i n 2 -n k F o i)  (4 .1 .1 1 )

1=1

w h ere

<3() =  Co

fl* =  2|C|- [ co s  0k 

bk =  2|q| sin # *

T h e  e x p re s s io n s  in (4 .1 .8 ) ,  (4 ,1 .1 0 ) ,  and  (4 .1 ,1 1 )  c o n s t itu te  th r e e  e q u iv a le n t fo rm s 
fo r  th e  F o u r ie r  s e r ie s  r e p re s e n ta tio n  o f  a  re a l p e r io d ic  s ig n al.

4.1.2 Power Density Spectrum of Periodic Signals

A  p e r io d ic  s ig n a l h as in fin ite  en e rg y  and  a fin ite  a v e ra g e  p o w e r , w h ich  is g iven  as

Px =  ~  f  \x ( t ) \2dt (4 .1 .1 2 )
P •'T .
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I f  w e ta k e  th e  c o m p le x  co n ju g a te  o f  (4 .1 .8 )  and s u b st itu te  fo r  * * (/ )  in (4 .1 .1 2 ) .  we 
o b ta in

w h ich  is ca lle d  P a r s e v a l's  re la tio n  fo r  p o w e r sig n als .
T o  illu s tra te  th e  p h y sica l m e a n in g  o f  (4 .1 .1 4 ) ,  su p p o se  th a t  .v(r) c o n s is ts  o f  a 

s in g le  co m p le x  e x p o n e n tia l

In  th is  ca s e , all th e F o u r ie r  s e r ie s  c o e ff ic ie n ts  e x c e p t c* a re  z e r o . C o n s e q u e n tly , 
th e  a v e ra g e  p o w er in th e  signal is

It  is o b v io u s  th a t |q  |:  re p re s e n ts  th e  p o w e r in th e  Ath h a rm o n ic  c o m p o n e n t o f  th e 
sig n al. H e n c e  th e to ta l a v e ra g e  p o w er in  th e  p e r io d ic  signal is s im p ly  th e  sum  o f 
th e  a v e ra g e  p o w ers  in a ll th e  h a rm o n ic s .

I f  w e p lo t th e  |q|2 as a fu n c t io n  o f  th e  fre q u e n c ie s  kFo, k  =  0 , ± 1 ,  ± 2 ..........th e
d ia g ra m  th a t w e o b ta in  sh ow s h ow  th e  p o w e r o f  th e  p e r io d ic  s ig n a l is d is tr ib u te d  
am o n g  th e  v a rio u s  fre q u e n c y  c o m p o n e n ts . T h is  d ia g ra m , w h ich  is illu s tra te d  in 
F ig . 4 .2 , is ca lle d  th e  p o w e r d e n sity  sp ectru m *  o f  th e  p e r io d ic  s ig n a l x (t ).  S in c e  the

OC

(4 .1 .1 3 )

DC

=  E
k~ — 3C

T h e r e fo r e ,  w e h a v e  e s ta b lis h e d  th e  re la tio n

(4 .1 .1 4 )

x (t)  =  c , e j27!tFn'

Pow er density spectrum lct P

-4 F 0 -3 F 0 —2Fn —F0 0 Fn 2F0 3F0 4F0 Frequency. F

Figure 4.2 Power density spectrum of a continuous-time periodic signal.

‘ This function is also called the power spectral density or. simply, the power spectrum.
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p o w e r in a p e r io d ic  s ig n a l e x is ts  o n ly  at d is c re te  v a lu e s  o f  f re q u e n c ie s  ( i .e ..  F  — 0. 
± F o .  ± 2 F q. . . . ) .  th e  sig n a l is sa id  to  h av e  a l in e  sp ectru m . T h e  sp a c in g  b e tw e e n  
tw o c o n s e c u tiv e  s p e c tra l  lin e s  is e q u a l to  th e  re c ip r o c a l o f  th e  fu n d a m e n ta l p e rio d  
Tp. w h e re a s  th e  sh a p e  o f  th e  sp e c tru m  ( i .e ..  th e  p o w e r d is tr ib u tio n  o f  th e  s ig n a l), 
d e p e n d s  on th e  tim e -d o m a in  c h a r a c te r is t ic s  o f  th e  sig n al.

A s  in d ica te d  in  th e  p r e c e d in g  s e c t io n , th e  F o u r ie r  s e r ie s  c o e ff ic ie n ts  (q ) a re  
c o m p le x  v a lu e d , th a t  is. th e y  ca n  be re p re s e n te d  as

Ck =  \ck\eJhL
w h ere

6 k =  4-Q

In s te a d  o f  p lo tt in g  th e  p o w e r d en sity  s p e c tru m , w e can  p lo t th e  m a g n itu d e  v o lta g e  
sp e c tru m  {|ot|} an d  th e  p h ase  sp e c tru m  {(?*} as a fu n c tio n  o f  f re q u e n c y . C le a r ly , th e 
p o w e r s p e c tra l d e n sity  in th e  p e rio d ic  s ig n al is s im p ly  th e  s q u a r e  o f  th e m ag n itu d e 
s p e c tru m . T h e  p h a se  in fo rm a tio n  is to ta lly  d e s tro y e d  (o r  d o e s  n o t a p p e a r) in th e 
p o w e r s p e c tra l d e n sity .

I f  th e  p e r io d ic  sig n al is re a l v a lu e d , th e  F o u r ie r  s e r ie s  c o e ff ic ie n ts  {c * }  sa tisfy  
th e  co n d itio n

c -k =

C o n s e q u e n tly . Ki|:  =  |q|: . H e n c e  th e p o w e r sp ec tru m  is a s y m m e tric  fu n ctio n  o f  
f re q u e n c y . T h is  co n d itio n  a lso  m e a n s  th a t th e m ag n itu d e  sp e c tru m  is sy m m e tric  
(e v e n  fu n c t io n ) a b o u t th e  o rig in  and  th e  p h ase  sp ec tru m  is an odd fu n ctio n . A s 
a c o n s e q u e n c e  o f  th e  s y m m e try , it is su ffic ie n t to  sp ec ify  th e  sp ec tru m  o f a re a l 
p e r io d ic  sig n al fo r  p o sit iv e  f re q u e n c ie s  o n ly . F u r th e rm o re , th e  to ta l a v era g e  p o w er 
can  b e  e x p re s s e d  as

P x — +  2  1q | (4 .1 .1 5 )

(4 .1 .1 6 )

w h ich  fo llo w s d ire c t ly  fro m  th e  re la tio n s h ip s  given  in S e c t io n  4 .1 .1  a m o n g  {aa}, 
{bn}. an d  (q ) c o e ff ic ie n ts  in th e  F o u r ie r  s e r ie s  e x p re ss io n s .

Example 4.1.1
Determine the Fourier series and the power density spectrum of the rectangular pulse 
train sienal illustrated in Fie. 4.3.

x(t)

-T„ Figure 4 J  Continuous-time periodic 
tram of rectangular pulses.
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Solution The signal is periodic with fundamental period Tp and. clearly, satisfies the 
Dirichlet conditions. Consequently, we can represent the signal in the Fourier series 
given by (4.1.8) with the Fourier coefficients specified by (4.1.9).

Since x(t) is an even signal [i.e.. x(t) = * ( - ;) ] ,  it is convenient to select the 
integration interval from ~Tp/2 to Tp/2. Thus (4.1.9) evaluated for k = 0 yields

The term c(I represents the average value (dc component) of the signal .r (r). For k ^  0 
we have

It is interesting to note that the right-hand side of (4.1.18) has the form (sin 4>)/4>, 
where <p = n k F ^ .  In this case <t> takes on discrete values since F(, and r are fixed and 
the index k varies. However, if we plot (sin $)/</> with 0 as a continuous parameter 
over the range — oc < <t> < oc, we obtain the graph shown in Fig. 4.4. We observe 
that this function decays to zero as 0 —<■ ± x .  has a maximum value of unity at <p = 0, 
and is zero at multiples of tt (i.e., at <p =  mn.  m = ±1, ± 2 , . . . ) .  It is clear that the 
Fourier coefficients given by (4.1.18) are the sample values of the (sin <p)/<p function 
for <$> — xkFu t  and scaled in amplitude by A t/Tp.

Since the periodic function x{t) is even, the Fourier coefficients c* are real. 
Consequently, the phase spectrum is either zero, when c* is positive, or t t  when c k is 
negative. Instead of plotting the magnitude and phase spectra separately, we may sim­
ply plot |c*} on a single graph, showing both the positive and negative values ck on the 
graph. This is commonly done in practice when the Fourier coefficients {c*} are real.

Figure 4.5 illustrates the Fourier coefficients of the rectangular pulse train when 
Tp is fixed and the pulse width t  is allowed to vary. In this case Tp = 0.25 second, so 
that F() =  \ jTp =  4 Hz and t =  0.057),, t  =  0.17},, and r = 0.27),. We observe that 
the effect of decreasing r while keeping Tp fixed is to spread out the signal power 
over the frequency range. The spacing between adjacent spectral lines is F{) = 4 Hz, 
independent of the value of the pulse width r.

(4.1.17)

Tp l~j2TTkFn\ _ jri
A ej*yf-i,r _

(4.1.18)
tt F»kTp ) 2

A t sin  TrkF^r
k = ± 1 .± 2 .  . . .

Tp n k F\\T

sin <p

- I n  — 6n -57T —4n — 3jt — 2n —n n 2 n 3n 4k 5n bn In <j>
0

Figure 4.4 The function (sin <p)/<p.
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ck t  = 0.1 Tp

,mTrnit» vfffilllll I l k ,  u -itrnrm-i.
“J lU ji i" JJiLLUTT F

j  ct T = 0.05 Tr

..................rrnTfniniiin|fnijnnfiiifiii........... ...
0 F and the pulse width r  varies.

On the other hand, it is also instructive to fix t  and vary the period Tp when 
Tp > r. Figure 4 .6  illustrates this condition when T,, ~  5r. Tr =  lOr. and Tp =  2 0 t . 
In this case, the spacing between adjacent spectral lines decreases as Tp increases. In 
the limit as Tr oc, the Fourier coefficients q  approach zero due to the factor of 
Tp in the denominator of (4 .1 .1 8 ). This behavior is consistent with the faci that as 
Tp —<■ oc and r remains fixed, the resulting signal is no longer a power signal. Instead,

Cl Tp = 20r

..,.((111111 lllllllli,........ ...................IM n 1 ’ ' ' M i l l i n ' "

0 F

Figure 4.6 Fourier coefficient of a rectangular pulse train with fixed pulse width 
t  and varying period Tp .
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it becomes an energy signal and its average power is zero. The spectra of finite energy 
signals are described in the next section.

We also note that if k /  0 and sm(7ikFnx) =  0. then ct = 0. The harmonics 
with zero power occur at frequencies kF0 such that n{kFG)r =  mn,  m =  ±1, ± 2 ,. 
or at JtF0 =  mjx.  For example, if F() =  4 Hz and t  =  Q.2TP, it follows that the spectral 
components at ±20 Hz, ±40 H z , . . .  have zero power. These frequencies correspond
to the Fourier coefficients k =  ±5, ±10, ±15........On the other hand, if r  =  0.1Tp,
the spectral components with zero power are k =  ±10, ±20, ± 30 ........

The power density spectrum for the rectangular pulse train is

4.1.3 The Fourier Transform for Continuous-Time 
Aperiodic Signals

In Section 4.1.1 we developed  the Fourier series to represent a periodic signal 
as a linear com bination of harmonically related com plex exponentials. A s a con­
sequence o f the periodicity, we saw that these signals possess line spectra with 
equidistant lines. The line spacing is equal to  the fundam ental frequency, which 
in turn is the inverse o f the fundam ental period of the signal. W e can view the 
fundam ental period as providing the number of lines per unit o f  frequency (line 
density), as illustrated in Fig. 4.6.

With this interpretation in mind, it is apparent that if we allow  the period to 
increase without limit, the line spacing tends toward zero. In the limit, when the 
period becom es infinite, the signal becom es aperiodic and its spectrum  becom es  
continuous. This argument suggests that the spectrum  of an aperiodic signal will 
be the envelope of the line spectrum in the corresponding periodic signal obtained 
by repeating the aperiodic signal with som e period Tp.

Let us consider an aperiodic signal x ( t )  with finite duration as shown in 
Fig. 4.7a. From this aperiodic signal, w e can create a periodic signal * , , ( 0  with pe­
riod Tp, as shown in Fig. 4.7b. Clearly, x r (t) = x ( t ) in the limit as Tp oo, that is,

This interpretation implies that we should be able to  obtain the spectrum  of * (/) 
from the spectrum o f x p(i) simply by taking the limit as Tp -*■ oo.

W e begin with the Fourier series representation of x p(t).

x{ t )  =  lim x p(t)

xp{t)  =  £  ckej l ^ ' 1 F0 = y (4.1.20)

where

(4.1.21)
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,r(n

-T„ - T J 2  0 TJ2 TJ2 i
Figure 4.7 (a) Aperiodic signal ,v(/) 
and (b) periodic signal xrU) constructed 

(h) bv repeating x(t) with a period Tr.

S in c e  x p (t) — x (/ ) fo r  ~ T r f 2  <  t <  Tp/ 2 ,  (4 .1 .2 1 )  can  b e  e x p re s s e d  as

'Tr /21
=  —  / x ( t ) e ~ )27' kF'',d t  (4 .1 .2 2 )

Tp J-Trfl

It is a lso  tru e  th a t .* (r )  =  0  fo r  |r| > Tpj2 .  C o n s e q u e n tly , th e  lim its  on th e  in teg ra l 
in (4 .1 .2 2 )  can  b e  re p la ce d  by  — o c and  o c . H e n ce

c t =  — f  x { t ) e ~ j2 * kF"’ dt (4 .1 .2 3 )
Tp J-oc

L e t  us n ow  d efin e  a fu n ctio n  X ( F ) ,  c a lle d  th e  F o u r ie r  tra n sfo rm  o f  * {/ ) , as

X ( F )  =  f  x ( t )e ~ l l n F , d t (4 .1 .2 4 )
J-oc

A' ( F )  is a fu n c t io n  o f  th e  co n tin u o u s  v a r ia b le  F .  I t  d o e s  n o t d e p en d  o n  Tp o r  
F q. H o w e v e r , i f  w e c o m p a re  (4 .1 .2 3 )  an d  (4 .1 .2 4 ) ,  it is c le a r  th a t th e  F o u r ie r  
c o e ff ic ie n ts  ct ca n  b e  ex p re s s e d  in te rm s  o f  X ( F )  as

c* =  ^ X ( k F o )
1 p

o r  e q u iv a le n tly .

Tpc k =  X ( k F 0) =  X  ( 4 A .2 5 )

T h u s  th e  F o u r ie r  c o e ff ic ie n ts  a re  sa m p le s  o f  X ( F )  ta k e n  a t m u ltip le s  o f  fo  and  
sca le d  b y  F 0 (m u ltip lie d  b y  \ / T p). S u b s titu tio n  fo r  c t fro m  (4 .1 .2 5 )  in to  (4 .1 .2 0 )  
y ield s

V O  = ^r 'jh x ( ^ r )  er M  (4 .1 .26)
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W e  w ish  to  ta k e  th e  lim it o f  (4 .1 .2 6 )  as  T r a p p r o a c h e s  in fin ity . F ir s t , w e d efin e  
A F  =  1/7},. W ith  th is  s u b st itu tio n , ( 4 .1 .2 6 )  b e c o m e s

I t  is c le a r  th a t in th e  lim it as Tp a p p r o a c h e s  in fin ity , x p {t) re d u ce s  to  jc(/). A ls o , A F  
b e c o m e s  th e  d iffe re n tia l  d F  an d  k A F  b e c o m e s  th e  co n tin u o u s  fre q u e n c y  v a ria b le  
F .  In  tu rn , th e  su m m a tio n  in ( 4 .1 .2 7 )  b e c o m e s  an  in teg ra l o v e r  th e  fre q u e n cy  
v a r ia b le  F .  T h u s

T h is  in teg ra l re la tio n s h ip  y ie ld s  x (t )  w h en  X ( F )  is k n o w n , a n d  it is ca lle d  th e 
in  erse F o u r ie r  tra n sfo rm .

T h is  co n c lu d e s  o u r  h e u ris t ic  d e r iv a tio n  o f  th e  F o u r ie r  tr a n s fo rm  p a ir  g iven  
by ( 4 .1 .2 4 )  and (4 .1 .2 8 )  fo r  an a p e r io d ic  s ig n a l x (t ).  A lth o u g h  th e  d e riv a tio n  is 
n ot m a th e m a tic a lly  rig o ro u s , it led  to  th e  d e s ire d  F o u r ie r  tr a n s fo rm  re la tio n sh ip s  
w ith re la tiv e ly  s im p le  in tu itiv e  a rg u m e n ts . In  su m m a ry , th e  fre q u e n c y  an a ly sis  o f 
co n tin u o u s -tim e  a p e r io d ic  s ig n a ls  in v o lv es  th e  fo llo w in g  F o u r ie r  tra n s fo rm  p air.

I t  is a p p a re n t th a t  th e  e s s e n tia l  d if fe re n c e  b e tw e e n  th e  F o u r ie r  s e r ie s  an d  th e 
F o u r ie r  tra n sfo rm  is th a t th e  sp e c tru m  in th e  la t te r  ca se  is c o n tin u o u s  an d  h en ce  
th e  sy n th e s is  o f  an a p e r io d ic  s ig n a l fro m  its  sp e c tru m  is a c c o m p lis h e d  by  m e a n s  o f  
in te g ra tio n  in stead  o f  su m m a tio n .

F in a lly , w e w ish to  in d ica te  th a t th e  F o u r ie r  tr a n s fo rm  p a ir  in  (4 .1 .2 9 )  and
(4 .1 .3 0 )  can  be ex p re s s e d  in te rm s  o f  th e  rad ian  fre q u e n c y  v a r ia b le  Q  =  2 n F .  
S in ce  d F  =  d S l / l n . ( 4 .1 .2 9 )  an d  (4 .1 .3 0 )  b e c o m e

T h e  set o f  co n d itio n s  th a t  g u a r a n te e  th e  e x is te n c e  o f  th e  F o u r ie r  tr a n s fo rm  is th e

x pU )  =  Y 2  X ( k & F ) e J l x k A F i (4 .1 .2 7 )
k = - x

(4 .1 .2 8 )

FREQUENCY ANALYSIS OF CONTINUO US-TIM E APERIODIC SIGNALS

Analysis equation 
direct transform

Synthesis equation 
inverse transform

(4 .1 .30)

(4 .1 .29)

( 4 .1 .3 1 )

(4 .1 .3 2 )



D ir ic h le t  c o n d it io n s , w h ich  m ay  b e  ex p re s s e d  as:

1. T h e  s ig n al v (r) has a fin ite  n u m b e r o f  fin ite  d is c o n tin u itie s .

2 . T h e  s ig n al x ( t ) has a fin ite  n u m b e r o f  m a x im a  an d  m in im a .

3 . T h e  s ig n al x (t )  is a b s o lu te ly  in te g r a b le , th a t is .

Sec. 4.1 Frequency Analysis of Continuous-Time Signals 243

i:
\x (t )\d t  <  o c (4 .1 .3 3 )

T h e  th ird  co n d itio n  fo llo w s ea s ily  fro m  th e  d e fin it io n  o f  th e  F o u r ie r  tra n s fo rm , 
g iven  in (4 .1 .3 0 ) .  In d e e d .

\X(F)\  =  j  j  x ( t ) e - J2” F ,dt <  j  \x (t )\d t

H e n ce  ] X ( F ) !  < o c if (4 .1 .3 3 )  is sa tisfied .
A  w e a k e r  c o n d itio n  fo r  th e  e x is te n c e  o f  th e  F o u r ie r  tr a n s fo rm  is th a t x {t)  

h as fin ite  e n e re v ; th a t is.

|.v(/)|^r <  oc (4 .1 .3 4 )

N o te  th a t  i f  a s ig n al x ( i)  is a b s o lu te ly  in te g r a b le . it w ill a ls o  h a v e  fin ite  en erg y . 

T h a t is. if

£ |.v(/)!^r <  oc
J — CM

th en
r  x

|.v(/)i“^/ <  o c  (4 .1 .3 5 )

H o w e v e r , th e  co n v e rs e  is n o t tru e . T h a t  is. a s ig n a l m ay  h a v e  fin ite  e n e rg y  but 
m ay  n o t b e a b s o lu te ly  in te g r a b le . F o r  e x a m p le , th e  s ig n al

sin 2  n t
x { t ) =  — - —  (4 .1 .3 6 )

7Tt
is sq u a re  in te g ra b le  b u t is n o t a b s o lu te ly  in te g r a b le . T h is  s ig n a l h as th e  F o u r ie r  
tra n s fo rm

f 1 \ F I < 1 
* ( F ) = { o ;  (4 -1 .3 7 )

S in c e  th is  s ig n al v io la te s  (4 .1 .3 3 ) ,  it is  a p p a re n t th a t  th e  D ir ic h le t  c o n d itio n s  a re  
su ffic ie n t b u t n o t n e c e s s a ry  fo r  th e  e x is te n c e  o f  th e  F o u r ie r  tr a n s fo rm . In  an y  case , 
n e a r ly  all fin ite  en e rg y  s ig n a ls  h av e  a F o u r ie r  tr a n s fo rm , so  th a t  w e n ee d  n o t w o rry  
a b o u t th e  p a th o lo g ic a l s ig n a ls , w h ich  a re  se ld o m  e n c o u n te re d  in p ra c tic e .

4.1.4 Energy Density Spectrum of Aperiodic Signals

L e t  x (t )  b e  an y  f in ite  e n e rg y  s ig n al w ith  F o u r ie r  tr a n s fo rm  X ( F ) .  Its  en e rg y  is
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which, in turn, may be expressed in terms o f X ( F )  as follows:

E x -  f  x ( t ) x '( i) d t
J —OC

1 oo r  /*oc
X ' ( F ) d F \  / x { t ) e ~ j2 n F 'd t

'OC

\ X ( F ) \ 2d F

Therefore, we conclude that

(4.1.38)

This is P a r s e v a l ’s  re la tio n  for aperiodic, finite energy signals and expresses the 
principle o f conservation of energy in the time and frequency dom ains.

The spectrum X ( F )  of a signal is in general, com plex valued. Consequently, 
it is usually expressed in polar forms as

where |X (F ) | is the magnitude spectrum and © (F ) is the phase spectrum.

which is the integrand in (4.1.38), represents the distribution of energy in the signal 
as a function of frequency. H ence SXX( F )  is called the e n e rg y  d e n sit y  sp e ctru m  of 
x (t ).  The integral o f S XX( F )  over all frequencies gives the total energy in the signal. 
V iew ed in another way, the energy in the signal x (t )  over a band o f frequencies 
F \  <  F  <  F [  +  A F  is

From (4.1.39) we observe that S XX( F )  does not contain any phase information  
[i.e., SXX( F )  is purely real and nonnegative]. Since the phase spectrum  of ;t(r) is 
not contained in SXX( F ) ,  it is im possible to reconstruct the signal given S XX( F ) .

Finally, as in the case of Fourier series, it is easily shown that if the signal 
x (t )  is real, then

X ( F )  =  | X (F )| ^ W(f)

© (F ) -  i U ( F )

On the other hand, the quantity

SXX( F )  =  \X  ( F )  |2 (4.1.39)

\ X ( - F ) \  =  \ X ( F ) \  

± X { - F )  =  - * X ( F )

(4.1.40)

(4.1.41)



Sec. 4.1 Frequency Analysis of Continuous-Time Signals 24 5

By com bining (4.1.40) and (4.1.39), we obtain

SXX( ~ F )  =  SxA F ) (4.1.42)

In other words, the energy density spectrum of a real signal has even symmetry. 

Example 4.1.2

Determ ine the Fourier transform and the energy density spectrum of a rectangular 
pulse signal defined as

and illustrated in Fig. 4.8(a).

Solution Clearly, this signal is aperiodic and satisfies the Dirichlet conditions. Hence 
its Fourier transform exists. By applying (4.1.30), we find that

We observe that X(F)  is real and hence it can be depicted graphically using only 
one diagram, as shown in Fig. 4.8(b). Obviously, X(F)  has the shape of the (sin0)/<? 
function shown in Fig. 4.4. Hence the spectrum of the rectangular pulse is the en­
velope of the line spectrum (Fourier coefficients) of the periodic signal obtained by

(4.1.44)

A

T

~>
0 r

2

(a)

X<F)

Ar

F

(b)

Figure 4.8 (a) R ectangular pulse and (b) its Fourier transform .
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periodically repeating the pulse with period Tp as in Fig. 4.3. In other words, the 
Fourier coefficients ck in the corresponding periodic signal xp{t) are simply samples 
of X(F)  at frequencies kF0 =  k/Tp. Specifically,

From (4.1.44) we note that the zero crossings of X(F)  occur at multiples of 1 /r. 
Furthermore, the width of the main lobe, which contains most of the signal en­
ergy, is equal to 2/z.  As the pulse duration t  decreases (increases), the main 
lobe becomes broader (narrower) and more energy is moved to the higher (lower) 
frequencies, as illustrated in Fig. 4.9. Thus as the signal pulse is expanded (com­
pressed) in time, its transform is compressed (expanded) in frequency. This be­
havior, between the time function and its spectrum, is a type of uncertainty 
principle that appears in different forms in various branches of science and engi­
neering.

Finally, the energy density spectrum of the rectangular pulse is

,  /sm 7rj 
} ( ttF-S„(F)  = (At )1 ( " ~ ' ^ T ) (4.1.46)

*(r)

X  0  I  
2 2

A
x (r)

- L  0 1  
2 2

X(F)

V

A
X ( l )

Figure 4.9 F ourier transform  of a redangu lar pulse for various width values.
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4.2 FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS

In Section 4.1 we developed  the Fourier series representation for continuous-tim e  
periodic (pow er) signals and the Fourier transform for finite energy aperiodic 
signals. In this section we repeat the developm ent for the class o f discrete-time  
signals.

A s we have observed from the discussion o f Section 4.1, the Fourier series 
representation of a continuous-tim e periodic signal can consist o f an infinite num­
ber of frequency com ponents, where the frequency spacing betw een tw o successive 
harmonically related frequencies is 1 / T p, and where Tp is the fundam ental period. 
Since the frequency range for continuous-tim e signals extends from —oo to oc, it 
is possible to have signals that contain an infinite number o f frequency com po­
nents. In contrast, the frequency range for discrete-time signals is unique over the 
interval ( - r t .T i )  or (0 .2 ^ ). A  discrete-time signal o f fundam ental period N  can 
consist o f  frequency com ponents separated by 2n / N  radians or /  =  1/jV cycles. 
C onsequently, the Fourier series representation of the discrete-tim e periodic signal 
will contain at m ost N  frequency com ponents. This is the basic difference between  
the Fourier series representations for continuous-tim e and discrete-tim e periodic 
signals.

4.2.1 The Fourier Series for Discrete-Time Periodic 
Signals

Suppose that we are given a periodic sequence a (/i ) with period N ,  that is, x i n ) =  
x(n  +  N )  for all n. The Fourier series representation for x(h) consists o f  N  har­
m onically related exponential functions

k =  0 A ........ N  — 1

and is expressed as
A'-l

X („) =  Y ^ c kejlKkn/N (4.2.1)
*=o

where the {<:*) are the coefficients in the series representation.
To derive the expression for the Fourier coefficients, we use the following  

formula:

y ' 1 =  ( * =  0. ± N ,  ± 2 N,  . . .  2 2
I 0 , otherwisen=0 1

N ote the similarity o f (4.2.2) with the continuous-tim e counterpart in (4.1.3). The 
proof o f  (4.2.2) follow s im m ediately from the application of the geom etric sum ­
m ation formula

jv-i f a =  l



T h e  e x p re s s io n  fo r  th e F o u r ie r  c o e ff ic ie n ts  c* ca n  b e  o b ta in e d  b y  m ultip ly in g  
b o th  sid e s  o f  (4 .2 .1 )  by th e  e x p o n e n tia l  e ~j2nin//v an d  su m m in g  th e  p ro d u ct from  
« = 0 t o n  =  yV — 1. T h u s

A'-l N— 1 A’- ]

^ 2  x ( n ) e ~ il!rln /N  c ke J2n<k~ l)n/N (4 .2 .4 )
n=(J n=0 t=0

I f  w e p e rfo rm  th e su m m a tio n  o v e r  n first, in th e  r ig h t-h a n d  s id e  o f  (4 .2 .4 ) , 
w e o b ta in

y ^ (fj2.TU-/)n/A' _  |  N ,  k  -  I =  0 , ± N ,  ± 2 N , . . . (4  2  5)
I 0 , o th e rw ise

w h ere  w e h av e m a d e  use o f  (4 .2 .2 ) . T h e r e fo r e ,  th e  rig h t-h a n d  sid e o f  (4 .2 .4 )  
re d u ce s  to  N c /  and  h en ce

j A'-l

q  =  -  J ' x ( n ) e ~ J2*‘" /tl 1 =  0. 1 ..........N -  1 (4 .2 .6 )
/T =  (J

T h u s  w e h a v e  th e  d e s ire d  e x p re s s io n  fo r  th e  F o u r ie r  c o e ff ic ie n ts  in te rm s  o f  th e 
sig n al x (« ) .

T h e  re la tio n sh ip s  (4 .2 .1 )  and  (4 .2 .6 )  fo r  th e  fre q u e n c y  a n a ly sis  o f  d iscrete*  
tim e  s ig n a ls  a re  su m m arize d  b e lo w .

248 Frequency Analysis of Signals and Systems Chap. 4
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A'-l
Synthesis equation X(/! ) = ^  Ck(j2jTt"!r' 

*=0
(4.2.7)

Analysis equation

iW
l

-1%II (4.2.8)

E q u a tio n  (4 .2 .7 )  is o fte n  ca lle d  th e  d iscre te -t im e  F o u r ie r  s e rie s  ( D T P S ) .  T h e
F o u r ie r  c o e ff ic ie n ts  {c* }. k =  0 . 1 ..........N  — 1 p ro v id e  th e  d e s c r ip tio n  o f  jc (« ) in
th e  fre q u e n c y  d o m a in , in th e  sen se  th a t  c k re p re s e n ts  th e  a m p litu d e  an d  p h ase  
a s s o c ia te d  w ith th e  fre q u e n c y  co m p o n e n t

sk(n) =  e ^ kn^ '  =  e jWtB

w h ere  to* =  2 n k / N .

W e  re ca ll fro m  S e c tio n  1 .3 .3  th a t  th e  fu n c t io n s  sk(n ) a re  p e r io d ic  w ith  p e rio d  
N .  H e n c e  sk(n) =  sk {n +  N ) .  In  v iew  o f  th is  p e r io d ic ity , it fo llo w s  th a t  th e  F o u r ie r
c o e ff ic ie n ts  c k, w h en  v iew ed  b e y o n d  th e  ra n g e  k ~  0 , 1 , ____A ' - l ,  a lso  sa tis fy  a
p e r io d ic ity  co n d itio n . In d e e d , fro m  (4 .2 .8 ) ,  w h ich  h o ld s  fo r  e v e ry  v a lu e  o f  k , we 
hav e

Ck+ N  =  ^ J ^ x ( n ) e - ^ (k+N)n/N =  ~ J 2 x { n ) e - ^ kn/N =  c t (4 .2 .9 )
n=0 ™ n=0
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T h e r e fo r e ,  th e  F o u r ie r  s e r ie s  c o e ff ic ie n ts  { q  } fo rm  a p e r io d ic  s e q u e n c e  w h en  e x ­
te n d ed  o u ts id e  o f  th e  ra n g e  k =  0 , 1 .......... jV — 1. H e n c e

Ck + N =  <̂k

th a t is , { c t }  is  a p e r io d ic  s e q u e n c e  w ith fu n d a m e n ta l p e r io d  N.  Thus the spectrum  
o f  a signal x(n),  which is per iodic with p er iod  N , is a per iodic sequence with per iod  
N .  C o n s e q u e n tly , an y  N  c o n se c u tiv e  s a m p le s  o f  th e  s ig n a l o r  its  sp e c tru m  p ro v id e  
a  c o m p le te  d e s c r ip tio n  o f  th e  sig n a l in th e  tim e  o r  fre q u e n c y  d o m a in s .

A lth o u g h  th e  F o u r ie r  c o e ff ic ie n ts  fo rm  a p e r io d ic  s e q u e n c e , w e w ill fo c u s  o u r
a tte n tio n  o n  th e  s in g le  p e rio d  w ith  ra n g e  k =  0 , 1 .......... N  — 1. T h is  is c o n v e n ie n t,
s in ce  in  th e  fre q u e n c y  d o m a in , th is  a m o u n ts  to  c o v e r in g  th e  fu n d a m e n ta l ran g e
0  <  a>t =  2 n k / N  <  2 n ,  fo r  0  <  k <  N  — 1. In  c o n tra s t , th e  fre q u e n c y  ran g e  
—it  <  a)* =  2 7 i k / N  <  j t ,  c o rre s p o n d s  to  —N / 2  <  k <  N / 2 ,  w h ich  c r e a te s  an 
in c o n v e n ie n c e  w h e n  N  is o d d . C le a r ly , i f  w e u se a sa m p lin g  fre q u e n c y  F s , th e 
ra n g e  0  <  k <  N  — 1 c o rre s p o n d s  to  th e  fre q u e n c y  ra n g e  0  <  F  <  F , .

Example 4.2.1

Determine the spectra of the signals

(a) jr(») =  cos -Jinn
(b) x(n) =  cosnn/3
(c) x(n)  is periodic with period N = 4 and

x(n)  =  {1, 1.0.0}
T

Solution
(a) For m  =  J i n ,  we have /« =  1 j -Jl .  Since f ,  is not a rational number, the signal 

is not periodic. Consequently, this signal cannot be expanded in a Fourier series. 
Nevertheless, the signal does possess a spectrum. Its spectral content consists 
of the single frequency component at id = wo =  -Jin.

(b) In this case / (l =  |  and hence x{n) is periodic with fundamental period N =  6. 
From (4.2.8) we have

5
It = 0 .1 ........5

However, x(n) can be expressed as

x(n) =  cos "—r— =  +  \e~i2*nib
6 *

which is already in the form of the exponential Fourier series in (4.2.7). In 
comparing the two exponential terms in x{n) with (4.2.7), it is apparent that 
ci =  j .  The second exponential in x(n)  corresponds to the term Jt =  —1 in
(4.2.7), However, this term can also be written as

- j ’2 j rn /6  _  ^ j2 j r (5 n> /6

which means that c_i =  c$. But this is consistent with (4.2.9), and our previous 
observation that the Fourier series coefficients form a periodic sequence of
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period N . Consequently, we conclude that

C(, = =  C\ =  f4 =  0

c, =   ̂ i

(c) From (4.2.8). we have

1
Ck A-= 0 . 1 ,2 ,3

or

Ct = l ( l + e - i ^ ) A-= 0 . 1.2.3 

For k =  0, 1, 2, 3 we obtain

C'd =  S f'l — j ( l  — j )  f'2 =  0 Cl =  j { l  +  j }

The magnitude and phase spectra are

K'd I ki

4-Co =  0 4f| = --  2tr- =  undefined 4_o =  —
4 4

Figure 4.10 illustrates the spectral content of the signals in (b) and (c).

4.2.2 Power Density Spectrum of Periodic Signals

T h e  a v e ra g e  p o w e r o f  a d is c r e te - t im e  p e r io d ic  sig n al w ith  p e rio d  N  w as defined 
in (2 .1 .2 3 )  as

P ,  =  -  £  M » )| (4 .2 .1 0 )

W e  sh a ll now  d e riv e  an  e x p re s s io n  fo r P x in te rm s  o f  th e  F o u r ie r  c o e ff ic ie n t {c<J. 
I f  w e use th e  re la tio n  (4 .2 .7 )  in (4 .2 .1 0 ) ,  w e h av e

j v - i
P i =  — T  x ( r t ) x * ( n )

n=()

A'-l

N

N o w . w e ca n  in te r c h a n g e  th e  o rd e r  o f  th e  tw o  su m m a tio n s  an d  m a k e  u se  o f  (4 .2 .8 ) , 
o b ta in in g

p* =  Y ,  ct
*=< j 
A'-l

, A-i
-  y  x ( n ) e - j2”kn/N

IV — 1 -i A — I ( 4 .2 . 11)
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(a)

- 3

Zct

Jr 

" 4

1 5

- 2  - 1  

71
4

0 2 3 4 ... t

(c)

Figure 4.10 Spectra of the periodic 
signals discussed in Example 4.2.1 (b) 
and (c).

which is the desired expression for the average pow er in the periodic signal. In 
other words, the average power in the signal is the sum of the powers o f the 
individual frequency com ponents. W e view  (4.2.11) as a Parseval’s relation for 
discrete-tim e periodic signals. T he sequence | a  |: for k =  0, 1 , —  N  -  1 is the 
distribution o f  pow er as a function o f  frequency and is called the p o w e r  density  
spectrum  o f  the periodic signal.

If w e are interested in the energy o f  the sequ en ce Jt(n) over a single period,
(4.2.11) im plies that

/V—I N - l

(4.2.12)
n=0 k—()

which is consistent with our previous results for continuous-tim e periodic signals.
If the signal x (n )  is real [i.e., x ‘ (n) =  jr(n)], then, proceeding as in Sec­

tion 4.2.1, w e can easily show  that

ct =  c . k (4.2.13)
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or equivalently,

|c_*| =  | c * f  (even  sym m etry) (4.2.14)

- 4 c_t =  (odd sym m etry) (4.2.15)

T hese symmetry properties for the m agnitude and phase spectra o f  a periodic sig­
nal, in conjunction with the periodicity property, have very im portant implications 
on the frequency range o f discrete-tim e signals.

Indeed, by com bining (4.2.9) with (4.2.14) and (4.2.15), w e obtain

Iq I = (4.2.16)

and

4 - c *  =  — (4.2.17)

M ore specifically, we have

*IIO

4 . c 0  =  - % - c' n  -  0

| c i l  = 4 - c ' l  =  — % - C N - l

A - c N [ 2  =  o

(4.2.18)
\ c N p \  ~  k j V / 2 | , if N  is even

k ( / V - l ) / 2  =  k ( A f  +  l ) / 2 l < 4 - C ( N - 1 ) / 2  =  ~ 4 - C ( / V  +  l ) / 2 if N  is odd

Thus, for a real signal, the spectrum c*, k =  0, 1 ,. . . ,  N [ 2  for N  even, or
k =  0. 1........ (N  — l ) /2  for N  odd, com pletely specifies the signal in the frequency
domain. Clearly, this is consistent with the fact that the highest relative frequency 
that can be represented by a discrete-tim e signal is equal to n .  Indeed, if 0 < a>k = 
2 n k / N  <  jt ,  then 0 < k <  N f 2.

By making use o f these symmetry properties o f the Fourier series coefficients 
of a real signal, the Fourier series in (4.2.7) can also be expressed in the alternative 
forms

x(n )  = co + 2 £  lc*l cos (4.2.19)

=  ao +  ^  (^k  cos —  kn  -  bk sin — kn'j  (4.2.20)

where a0 =  c0. <*k =  2[ct|cos0* . bk =  2 |c*|sin0*, and L  =  N  [2 if N  is even and 
L — (N ~  l ) /2  if N  is odd.

Finally, we note that as in the case o f continuous-tim e signals, the power 
density spectrum |ct |2 does not contain any phase information. Furtherm ore, the 
spectrum  is discrete and periodic with a fundam ental period equal to that o f the 
signal itself.

Example 4.2.2 Periodic “Square-Wave” Signal
Determine the Fourier series coefficients and the power density spectrum of the 
periodic signal shown in Fig. 4.11.
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Figure 4.11 Discrete-time periodic
0 L A' n square-wave signal.

Solution By applying the analysis equation (4.2.8) to the signal shown in Fig. 4.11. 
we obtain

1 1 L~l 
=  =  -L Y  Ae-P^n/

A j— AJ i—/ k = 0. 1. N -  1

which is a geom etric summation. Now we can use (4.2.3) to simplify the summation 
above. Thus we obtain

AL
T T ’
A 1 -  e- j2*kL/s

k =  0 

k =  1.2.
I N 1 -  '

The last expression can be simplified further if we note that 

1  _  e - j 2 x k L ; S  - j z k L t N  I . i k l / K  _

N -  1

Therefore.

1 -  <-

AL

A

e -ink;'\ ( rrl. \  _  ,-jxkl.\

-jxHt.-u.'K sin(xkL. /N )
s in (7 r£ /A /

, s ininkL/N)
I A' sin(7zk/N)

The power density spectrum of this periodic signal is

/  AL_

V N

A V /  s innk L/ N

k = 0. +A'. ± 2 N , 

otherwise
(4.2.21)

k*l" =

k = 0, +N.  ± 2 A'.
(4.2.22)

otherwise
Ar / V s innk/N

Figure 4.12 illustrates the plots of jct |2 for L =  5 and 7, A' =  40 and 60. and A = 1.

4.2.3 The Fourier Transform of Discrete-Time Aperiodic 
Signals

Just as in the case o f continuous-tim e aperiodic energy signals, the frequency anal­
ysis o f d iscrete-tim e aperiodic finite-energy signals involves a Fourier transform of 
the tim e-dom ain signal. C onsequently, the developm ent in this section parallels 
to a large extent, that given in Section 4.1.3.
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L = 5, N  = 40

_xlJ I 1 II I 1 . . I I I I ■
-2 0  -1 0  0 10 20

L = 7, N  = 60

L J i l
-3 0  -  20 -1 0  0 1 0 20 30

= 5. N =

Figure 4.12 Plot of the power density 
-3 0  -  20 —10 0 10 20 30 spectrum given by (4.2.22).

The Fourier transform o f a finite-energy discrete-tim e signal x(n )  is defined as
OC

X  (co) =  x (n )e ~ Jwr (4.2.23)
FI — “ OC

Physically, X(co) represents the frequency content o f the signal x(n) .  In other 
words. X{(o) is a decom position o f x(n)  into its frequency com ponents.

W e observe tw o basic d ifferences betw een  the Fourier transform of a discrete­
time finite-energy signal and the Fourier transform o f a finite-energy analog signal. 
First, for continuous-tim e signals, the Fourier transform, and hence the spectrum  
of the signal, have a frequency range o f {—0 0 , 0 0 ). In contrast, the frequency 
range for a discrete-tim e signal is unique over the frequency interval o f (—n , n)  
or, equivalently, (0. 2tt). This property is reflected in the Fourier transform of the
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signal. Indeed. X(co) is periodic with period 2n .  that is.

X(a> + 27T k)=  2 2  x { n )e 'i{w^ 7'k)n
j{u>̂ -27ik)u

—cc 
oc

=  J 2  x ( n ) e - ' ame - JZ7,kn (4.2.24)
/ l  =  —OC

OC

=  2 2  x ( n ) e - ,Mn =  X(w)

H ence X  ( t o )  is periodic with period 2t t .  But this property is just a consequence of 
the fact that the frequency range for any discrete-tim e signal is limited to (—n ,  n )  
or (0 , 27r). and any frequency outside this interval is equivalent to  a frequency  
within the interval.

The second basic difference is also a consequence o f the discrete-tim e nature 
of the signal. Since the signal is discrete in time, the Fourier transform of the 
signal involves a sum m ation o f terms instead of an integral, as in the case of 
continuous-tim e signals.

Since X(w) is a periodic function of the frequency variable a), it has a Fourier 
series expansion, provided that the conditions for the existence o f the Fourier 
series, described previously, are satisfied. In fact, from the definition o f  the 
Fourier transform X (co) of the sequence x(n), given by (4.2.23), we observe that 
X(a>) has the form o f a Fourier series. The Fourier coefficients in this series 
expansion are the values o f the sequence x ( n ) .

T o dem onstrate this point, let us evaluate the sequence x ( n ) from X(co). First, 
we multiply both sides (4.2.23) by ej<um and integrate over the interval ( —tt, t t ) .  

Thus we have

The integral on the right-hand side o f (4.2.25) can be evaluated if we can inter­
change the order o f sum m ation and integration. This interchange can be m ade if 
the series

converges uniformly to X(o))  as A1 ->• oc. Uniform convergence m eans that, for 
every w, Xh((d)  —*■ X(ca), as /V -*• oo. The convergence o f  the Fourier transform  
is discussed in m ore detail in the follow ing section. For the m om ent, let us as­
sume that the series converges uniformly, so that we can interchange the order of 
sum m ation and integration in (4.2.25). Then

(4.2.25)

N

X N (a>) =  2 2  x ( n ) e - llon
n = - N
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Consequently,

£
rj =  — OC

x{n) fJ —71
n'da) = 2:Tx(m).

0. (4.2.26)

(4.2.27)

By combining (4.2.25) and (4.2.26). we obtain the desired result that

1 f n
x (n )  — —  I  X ( o j)e J do)

±.7T J — jt

If we compare the integral in (4.2.27) with (4,1.9), we note that this is just 
the expression for the Fourier series coefficient for a function that is periodic with 
period 2n .  The only difference betw een (4.1.9) and (4.2.27) is the sign on the 
exponent in the integrand, which is a consequence o f our definition of the Fourier 
transform as given by (4.2.23). Therefore, the Fourier transform of the sequence 
x(n) ,  defined by (4.2.23), has the form o f a Fourier series expansion.

In summary, the Fourier transform pair  f o r  discrete-time signals is as follows.

FREQUENCY ANALYSIS OF DtSCRETE-TIME APERIODIC SIGNALS

Synthesis equation 
inverse transform

Analysis equation 
direct transform

x( X <  w ) i ’ lu ' ' ' d w  (4 .2 .28)

OC
X { i o ) =  2 2  x ( n ) e ~ ,w '1 (4.2.29)

4.2.4 Convergence of the Fourier Transform

In the derivation of the inverse transform given by (4.2.28), we assumed that the 
series

Xjv(cw) =  22 xWe~ (4.2.30)

converges uniformly to X(a>), given in the integral o f (4.2.28), as N  -*  oc. By 
uniform convergence we mean that for each

lim  { s u p  X  (oj) ~ X s  (>>)'} =  0 (4.2.31)
N—> *  <*>

Uniform  convergence is guaranteed if ;c(/j) is absolutely sum m able. Indeed, if
DC

2 2  |j c ) i <  oc (4.2.32)
n=-oc

then

|X M l  = 2 2  x ( n ) e ' <  2 2  <  0 0

H ence (4.2.32) is a sufficient condition for the existence o f the discrete-tim e Fourier 
transform. W e note that this is the discrete-tim e counterpart of the third Dirich-
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let condition for the Fourier transform o f continuous-tim e signals. The first two  
conditions do not apply due to the discrete-tim e nature o f [*(«)}.

Som e sequences are not absolutely sum m able, but they are square summable. 
That is, they have finite energy

OC

E x =  ^  |jc(n) |2 <  oo (4.2.33)
n = —DC

which is a w eaker condition than (4.2.32). W e would like to define the Fourier 
transform o f finite-energy sequences, but we must relax the condition of uniform  
convergence. For such sequences we can im pose a m ean-square convergence con­
dition:

lim f  |X M  -  X N ((ti)\2dto =  0 (4.2.34)
Af—<* J-71

Thus the energy in the error X(a>) -  X/v(oj) tends toward zero, but the error 
|X(w) -  Xw(a))j does not necessarily tend to  zero. In this way we can include 
finite-energy signals in the class o f signals for which the Fourier transform exists. 

Let us consider an exam ple from the class o f finite-energy signals. Suppose
that

X M  =  ( 1’ H ^ ‘|< 7 r  (4-2.35)
[ U. <  ja>| <  7T

The reader should rem em ber that X(a>) is periodic with period 2n .  H ence (4.2.35) 
represents only one period o f X(co).  The inverse transform of X { cj) results in the 
sequence

i r
jr(«) =  —  I X{w) e ja>nda)

1 sin<u,-n
=  - ~  I  e J dm  = ------------ n ^ O

I n  Jin

For n =  0, w e have

H ence

*(0)

x ( n )  =
n
(j)c sin a)cn 
n  cocn

n =  0

(4.2.36)
n 0

This transform pair is illustrated in Fig. 4.13.
Som etim es, the sequence {*(«)) in (4.2.36) is expressed as

sin cocn
x ( n ) = ----------  — oo < n < oo (4.2.37)
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1

X(w)

1
- J T  — UJt 0  (i), 7T

(b)

Figure 4.13 Fourier transform pair in (4.2.35) and (4.2.36j.

with the understanding that at n =  0, x(n )  =  w j n . We should em phasize, however, 
that (sina)(7i)/jrfi is not a continuous function, and hence L ’H ospital's rule cannot 
be used to determ ine jr(0 ).

N ow  iet us consider the determ ination o f the Fourier transform of the se­
quence given by (4.2.37), The sequence {jr(n)j is not absolutely sum m able. Hence 
the infinite series

(4.2.38)

does not converge uniformly for all w. H ow ever, the sequence {jc(«)} has a finite 
energy Ex =  o)c/ tc as will be shown in Section 4.3. H ence the sum in (4.2.38) is 
guaranteed to converge to the X  (a>) given by (4.2.35) in the m ean-square sense. 

To elaborate on this point, let us consider the finite sum

X N(a>)= (4.2.39)

Figure 4.14 shows the function X N{w) for several values of N .  W e note that there 
is a significant oscillatory overshoot at co = coc, independent o f the value o f N .  As
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x , s(w)

5̂0<“) A"7o(ul)

Figure 4.14 Illustration of convergence of the Fourier transform and the Gibbs 
phenom enon at the point of discontinuity

N  increases, the oscillations becom e more rapid, but the size o f the ripple remains 
the same. O ne can show  that as N  -*■ oo, the oscillations converge to the point 
of the discontinuity at to — a>t . but their amplitude does not go to zero. H ow ever, 
(4.2.34) is satisfied, and therefore converges to X (w )  in the mean-square
sense.

The oscillatory behavior o f the approximation X^ico)  to the function X(a>) at 
a point o f discontinuity o f is called the Gibbs p h e n o m e n o n .  A  similar effect 
is observed in the truncation o f the Fourier series o f a continuous-tim e periodic  
signal, given by the synthesis equation (4.1.8). For exam ple, the truncation of the 
Fourier series for the periodic square-wave signal in Exam ple 4.1.1, gives rise to 
the sam e oscillatory behavior in the finite-sum  approximation o f x ( t ) .  The Gibbs 
phenom enon will be encountered again in the design o f practical, discrete-tim e 
FIR systems considered in Chapter 8 .



4.2.5 Energy Density Spectrum of Aperiodic Signals

R ecall that the energy of a discrete-tim e signal x(n )  is defined as
OC

Ex = 2 2  l*(n )l2 (4.2.40)
n = — oc

Let us n ow  ex p re ss  th e  en e rg y  E x in te rm s  o f  th e  s p e c tra l  c h a r a c te r is t ic  X  (w). First 
we h av e
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00 I" J rJT
Ex =  2 2  x ( n ) x * ( n ) =  2 2  x ( n )  —  X * 

n ------- -v  n — —-v - _ J — JT

If we interchange the order o f integration and sum m ation in the equation above, 
we obtain

dw

|X (co)\~du>

T herefore, the energy relation between x(n )  and X(a>) is

oc \ f n
E , =  2 2  \ x ^ ) \ 2 =  —  \X (c o )l2dco (4.2.41)

n = -oc

This is Parseval's relation for discrete-tim e aperiodic signals with finite energy.
The spectrum X(a>) is, in general, a com plex-valued function of frequency. 

It may be expressed as

X(u>) =  \X (c u ) \e J* M  (4.2.42)

where

Q(co) - ^X(co)

is the phase spectrum and \X (a > )\ is the m agnitude spectrum.
A s in the case o f continuous-tim e signals, the quantity

S„(o>) =  |X M |2 (4.2.43)

represents the distribution of energy as a function o f frequency, and it is called 
the energy density spectrum  o f x(n) .  Cleariy, Sxx(a>) does not contain any phase 
information.

Suppose now that the signal x(n )  is real. Then it easily follow s that

X*(o>) =  X ( - oj) (4.2.44)

or equivalently,

|X (—ti>)| =  |X(tt>)| (even symmetry) (4.2.45)
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(4.2.47)

(4.2.46)

From these sym m etry properties we conclude that the frequency range of 
real d iscrete-tim e signals can be limited further to the range 0  <  co < n  (i.e., 
one-half o f the period). Indeed, if we know X (a >) in the range 0 <  w < n ,  we 
can determ ine it for the range - n  < co <  0  using the symmetry properties given  
above. A s we have already observed, similar results hold for discrete-tim e periodic 
signals. T herefore, the frequency-dom ain description of a real discrete-tim e signal 
is com pletely  specified by its spectrum in the frequency range 0  < co < n .

U sually, we work with the fundam ental interval 0 < a > < 7r o r 0 < F <  F J  2, 
expressed in Hertz. W e sketch m ore than half a period only w hen required by the 
specific application.

Example 4.2.3

D eterm ine and sketch the energy density spectrum 5,,r (w) of the signal

Solution Since \a\ < 1. the sequence x(n)  is absolutely summable, as can be verified 
by applying the geometric summation formula.

Hence the Fourier transform of x(n)  exists and is obtained by applying (4.2.29). Thus

Note that S„(-o>) = Ss i (w) in accordance with (4.2.47).
Figure 4.15 shows the signal *(«) and its corresponding spectrum for a =  0.5 

and a =  -0 .5 . Note that for a = -0 .5  the signal has more rapid variations and as a 
result its spectrum has stronger high frequencies.

=  a"u(/i) — 1 < a < 1

Since \ae~J,Jl =  |a| < 1. use of the geometric summation formula again yields

The energy density spectrum is given by

Slx(w) =  |X(w)|2 =  X(a>)X'(w) =
(1 — ae~Ju,)( 1 — aeJW)

or, equivalently, as

1
1 —2a cos a> + a■
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x(n) -  (-0.5)"u(«!

Figure 4.15 (a) Sequence .\in) =  and mii I =  i — (b) iheir energy density
spectra.

Figure 4.16 D iscrete-tim e rectangular 
pulse.

Example 4.2.4

Determine the Fourier transform and the energy density spectrum of the sequence

xin)  =

which is illustrated in Fig. 4.16.

0 < n < L -  
otherwise

(4.2.48)

Solution Before computing the Fourier transform, we observe that

Hence xin) is absolutely summable and its Fourier transform exists. Furthermore, 
we note that Jt(n) is a finite-energy signal with =  \A\: L,

The Fourier transform of this signal is
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1 - e~’uL

= Ae- ' ,u/2'a - 11 (4.2.49)
s m( w/ 2 )

For w = 0 the transform in (4.2.49) yields X(0) =  AL,  which is easily established 
by setting w =  0 in the defining equation for X(a>), or by using L’Hospital’s rule in
(4.2.49) to resolve the indeterminate form when w =  0.

The magnitude and phase spectra of ;t(n) are
f \A\L,  w =  0

|X<«)I =

and

sin(«L/2)
sin(aj/2)

(4-2.50)
otherwise

w sin(ctiZ./2)
$X(a>) = $ A - - ( L - l )  + $  -  '■ (4.2.51)

2 sin(w/2)
where we should remember that the phase of a real quantity is zero if the quantity is 
positive and n  if it is negative.

The spectra |X(o>)| and ^.X(w)  are shown in Fig. 4.17 for the case A — 1 and 
L =  5. The energy density spectrum is simply the square of the expression given in
(4.2.50).

There is an interesting relationship that exists betw een the Fourier transform  
o f the constant am plitude pulse in Exam ple 4.2.4 and the periodic rectangular

lX(w)l

Figure 4.17 Magnitude and phase of 
Fourier transform of the discrete-time 
rectangular pulse in Fig. 4.16.
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wave considered in Exam ple 4.2.2. If we evaluate the Fourier transform as given 
in (4.2.49) at a set of equally spaced (harmonically related) frequencies

If we compare this result with the expression for the Fourier series coefficients 
given in (4.2.21) for the periodic rectangular wave, we find that

To elaborate, w e have established that the Fourier transform o f the rectangular 
pulse, which is identical with a single period of the periodic rectangular pulse
train, evaluated at the frequencies co =  I n k / N , k =  0, 1 ,___N  — 1, which are
identical to the harmonically related frequency com ponents used in the Fourier 
series representation of the periodic signal, is sim ply a m ultiple o f the Fourier 
coefficients fa )  at the corresponding frequencies.

The relationship given in (4.2.53) for the Fourier transform o f  the rectangular
pulse evaluated at co — 2 n k / N ,  k =  0. 1........ A ' - l ,  and the Fourier coefficients
of the corresponding periodic signal, is not only true for these tw o signals but, in 
fact, holds in general. This relationship is developed  further in Chapter 5.

4.2.6 Relationship of the Fourier Transform to the 
z-Transform

The z-transform o f a sequence *(«) is defined as

where ri <  |;) < rj is the region o f convergence of X (z). Let us express the 
com plex variable z in polar form as

where r =  |z| and co =  4 ;. T hen, within the region of convergence of X (z), we 
can substitute z =  re jai into (4.2.54), This yields

we obtain

(4.2.52)

k =  0. 1 , . . . ,  N  — 1 (4.2.53)

OC

ROC: r2 < \z\ < r\ (4.2.54)

(4.2.55)

(4.2.56)

From the relationship in (4.2.56) we note that X (z )  can be interpreted as 
the Fourier transform of the signal sequence x (n ) r ~ ”. The w eighting factor r~n is 
growing with n if r < 1 and decaying if r  > 1 . A lternatively, if X ( z ) converges for
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1-1 =  1 , then

X ( : ) U ,  =  X H =  2 2  x{ , ! ) e -1,0,1 (4.2.57)

T herefore, the Fourier transform can be viewed as the z-transform of the sequence 
evaluated on the unit circle. If X (z )  does not converge in the region |z| — 1 [i.e.. if 
the unit circle is not contained in the region of convergence o f X (z)], the Fourier 
transform X ( i o )  does not exist.

W e should note that the existence of the z-transform requires that the se ­
quence {jr (« )r—"} be absolutely summable for som e value o f r. that is.

OC

2 2  | < oc (4.2.58)
n~-oc

H ence if (4.2.58) converges only for values o f r > ro > 1. the z-transform exists, 
but the Fourier transform does not exist. This is the case, for exam ple, for causal 
sequences of the form jr(rc) =  a"u(n),  where jo > 1 .

There are sequences, however, that do not satisfy the requirem ent in (4.2.58). 
for exam ple, the sequence

sinavrc
x ( n ) — ----------  ~  oo < n < oc (4.2,5^)

Tin
This sequence does not have a .--transform. Since it has a finite energy, its Fourier 
transform converges in the m ean-square sense to the discontinuous function X  {(jo). 

defined as
M < * v  (4 2 6 0 )

[ (J, <w( <  \a>\ <  71 

In conclusion, the existence of the z-transform requires that (4,2.58) be sat­
isfied for som e region in the z-plane. If this region contains the unit circle, the 
Fourier transform X(cu) exists. H ow ever, the existence o f the Fourier transform, 
which is defined for finite energy signals, does not necessarily ensure the existence  
of the z-transform.

4.2.7 The Cepstrum

Let us consider a sequence {jc(/j)} having a z-transform X (z). We assume that 
(jr(n)) is a stable sequence so that X (z )  converges on the unit circle. The com plex  
cepstrum  o f the sequence {jc(«)} is defined as the sequence (cr(n)}, which is the 
inverse z-transform o f Cjj(z), where

Cjciz) =  In X (z) (4.2.61)

The com plex cepstrum exists if C^tz) converges in the annular region n  < 
\z\ < n ,  where 0 <  r\ < 1 and r2 > 1. W ithin this region o f convergence, C t (z) 
can be represented by the Laurent series

Cx(z) =  InX (z) =  c^ z ~n (4.2.62)
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where

cAn) = f  In X ( z ) z n' 1d z  (4.2.63)
Jc

C is a closed contour about the origin and lies within the region of convergence. 
Clearly, if C, (z) can be represented as in (4.2.62), the com plex cepstrum sequence 
{cr(rt)} is stable. Furthermore, if the com plex cepstrum exists, Cx (z) converges on 
the unit circle and hence we have

CC

CAat)  =  lnX(cu) =  2 2  c A n )e ~ JU,n (4.2.64)
n — -OC

where (cv(/i)} is the sequence obtained from the inverse Fourier transform of 
In X(to). that is,

1 r
c r(n) =  —  /  ln X (a >)eJwnd w  (4.2.65)

2tt J _ n

If we express X(co) in terms of its m agnitude and phase, say

X(a>) =  \X (co)\eJf>iw) (4.2.66)

then

in X(co) =  In |X(ct))| +  jd(a>) (4.2.67)

By substituting (4.2.67) into (4.2.65), w e obtain the com plex cepstrum in the form 

1 f n
cx (n) — —  I [In |X (a >)| +  j6(cL>)]eJU,ndco (4,2.68)

2jt J _n

W e can separate the inverse Fourier transform in (4.2.68) into the inverse Fourier 
transforms of In |X (w )| and 9(a>)\

cm(n) =  2 -  j  ln\X(a>)\eJl^dcL>

ce(n) =  - ^  J  6(co)eJa>ndco

In som e applications, such as speech signal processing, only the com ponent c„(n) 
is com puted. In such a case the phase o f X (a>) is ignored. T herefore, the sequence 
{*(«)} cannot be recovered from {cm(n)j. That is, the transformation from (jr(n)} 
to {cm(n)} is not invertible.

In speech signal processing, the (real) cepstrum  has been used to separate 
and thus to estim ate the spectral content o f the speech from the pitch frequency 
of the speech. The com plex cepstrum is used in practice to separate signals that 
are convolved. The process o f separating two convolved signals is called decon­
volution  and the use of the com plex cepstrum to perform the separation is called 
hom om o rp h ic  deconvolution.  This topic is discussed in Section 4.6.

(4.2.69)

(4.2.70)
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4.2.8 The Fourier Transform of Signals with Poles on the 
Unit Circle

A s was shown in Section 4.2.6, the Fourier transform of a sequence jc(h) can be 
determ ined by evaluating its z-transform X  (z) on the unit circle, provided that the 
unit circle lies within the region o f convergence of X  (z). O therwise, the Fourier 
transform does not exist.

There are som e aperiodic sequences that are neither absolutely sum m able 
nor square sum m able. H ence their Fourier transforms do not exist. O ne such 
sequence is the unit step sequence, which has the z-transform

A nother such sequence is the causal sinusoidal signal sequence x(n )  =  (coscoon) 
u(n). This sequence has the z-transform

y  , , _  1 -  Z ~ ‘ COS (at)

1 -  2 z _ i cosojo +  z -2  

N ote that both o f  these sequences have poles on the unit circle.
For sequences such as these two exam ples, it is som etim es useful to extend  

the Fourier transform representation. This can be accom plished, in a m athem ati­
cally rigorous way, by allowing the Fourier transform to contain im pulses at certain 
frequencies corresponding to the location o f  the poles o f  X (z )  that lie on the unit 
circle. The im pulses are functions o f the continuous frequency variable co and 
have infinite am plitude, zero width, and unit area. A n im pulse can be view ed as 
the limiting form of a rectangular pulse of height 1 /a  and width a, in the limit 
as a -+ 0. Thus, by allowing im pulses in the spectrum of a signal, it is possible  
to extend the Fourier transform representation to som e signal sequences that are 
neither absolutely sum m able nor square summable.

The follow ing exam ple illustrates the extension of the Fourier transform rep­
resentation for three sequences.

Example 4.2.5

Determine the Fourier transform of the following signals.

(a) x i(n) =  u(n)
(b) jr2(n) =  (-l)"« (n )
(c) jc3(n) = (coswon)u(n)

by evaluating their z-transforms on the unit circle.

Solution
(a) From Table 4.3 we find that

XiU) =  r - t - j  =  - ^ r  ROC: |c| > 1
1 -  z ' 1 z - 1

Xi(z) has a pole, p\ =  1, on the unit circle, but convenges for |z| > 1.
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If we evaluate A'l (:i on the unit circle, except at : =  1. we obtain 

X \ ( w )  =  ------ :------------  =  - —:---------— e “ to =£ 2 rr  k  k =  0 . J . . . .
2i/sin(w/2> 2sm(«j/2)

At a) =  0 and multiples of 2,t , A’|( w) contains impulses of area .t .
Hence the presence of a pole at ;  =  1 (i.e.. at w  =  0) creates a problem 

only when we want to compute A'i(w) at w =  0 .because |A’](tu)i —*■ oc as 
to —> 0. For any other value of to. X \ (to) is finite (i.e.. well behaved). Although, 
at first glance one might expect the signal to have zero-frequency components 
at all frequencies except at as = 0. this is not the case. This happens because 
the signal .\|(n) is not a constant for all —oc < « < oc. Instead, it is turned 
on at n =  0. This abrupt jump creates all frequency components existing in 
the range 0 < to  < tt. Generally, all signals which start at a finite time have 
nonzero-frequency components everywhere in the frequency axis from zero up 
to the folding frequency.

(b) From Table 3.3 we find that the .'-transform of a''uin) with a = — 1 reduces to

1
X A : )  =  ----------r =  — —  R O C :  |;i >  11 + : ! ; + l

which has a pole at : =  - 1  = c-n . The Fourier transform evaluated at frequen­
cies other than a> =  tt and multiples of 2tt is

A'lfw) =  - — —------- —  a> *  2 , t ( k  r  | )  k  =  0 .  1. . . .
2 cos (to/2)

In this case the impulses occurs at w = tt +  2rrk.
Hence the magnitude is

I X-> ( t o )  | =  — — — ---------- t!) 2 tZ k +  TT ^ = 0 . 1 . . . .
2[ cos(to/2)

and the phase is

X; (to) =  ^
if cos — < 0

Note that due to the presence of the pole at a =  — 1 (i.e.. at frequency w = tt), 
the magnitude of the Fourier transform becomes infinite. Now \X(w)\ —* oc as 
w —>■ n.  We observe that (— ])nu(n) =  (cosTrn)u(n), which is the fastest possible 
oscillating signal in discrete time.

(c) From the discussion above, it follows that A?(w) is infinite at the frequency 
component w = too. Indeed, from Table 3.3. we find that

: 1 — C_1 COS to,)
) =  (coStonfi)tt(n) <— ► A-i(;) =  --- -— ------------ ROC : |-| > 1

1 -  2:~‘ cos wo +

The Fourier transform is

1 -  e ' 1"’ cos cuo „ .
X 3(to) - —--------- :------------------------------- to ^  ito o  4- 27tk k =  0. 1 . . . .

(1 -
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The magnitude of X3M  is given by 

|1 — e~,<u cos tool
w ±wu -I- 2nk  k =  0 , 1 . . . .

Now if w = —cm or w =  tuo. |X3(a>)| becomes infinite. For all other frequencies, 
the Fourier transform is well behaved.

4.2.9 The Sampling Theorem Revisited

T o process a continuous-tim e signal using digital signal processing techniques, it is 
necessary to convert the signal into a sequence o f numbers. A s was discussed in 
Section 1.4, this is usually done by sampling the analog signal, say x a(t), periodically 
every T  seconds to produce a discrete-tim e signal x(n )  given by

The relationship (4.2.71) describes the sam pling process in the time domain. 
A s discussed in Chapter 1, the sampling frequency Fs =  l / T  must be selected large 
enough such that the sampling does not cause any loss o f spectral information (no 
aliasing). Indeed, if the spectrum  of the analog signal can be recovered from the 
spectrum of the discrete- time signal, there is no loss of information. Consequently, 
we investigate the sampling process by finding the relationship betw een the spectra 
of signals x a(t) and x(n).

If x a(t) is an aperiodic signal with finite energy, its (voltage) spectrum is given 
by the Fourier transform relation

whereas the signal x a (i) can be recovered from its spectrum by the inverse Fourier 
transform

N ote that utilization o f  all frequency com ponents in the infinite frequency range 
—00  <  F  <  00 is necessary to recover the signal x„(t)  if the signal x„(t) is not 
bandlimited.

T he spectrum o f  a discrete-tim e signal x (n ) ,  obtained by sampling x a(t), is 
given by the Fourier transform relation

x(n)  =  x a(nT)  — 00 <  n < 00 (4.2.71)

(4.2.72)

(4.2.73)

OO
(4.2.74)

or, equivalently,
OO

X ( f )  =  2 2  x ( n ) e - ^ n (4.2.75)
dc



The sequence x(n) can be recovered from its spectrum X(a>) or X ( / )  by the inverse 
transform

-*{«) - —  f  X(co)eJU,ndco 
2tt J . x

(4.2.76)

= / X {f ) e j2nJndf  
J-\/2

In order to determ ine the relationship betw een the spectra of the discrete­
time signal and the analog signal, we note that periodic sam pling im poses a rela­
tionship betw een the independent variables t and n in the signals x a{t) and x(n), 
respectively. That is,

r =  nT =  —  (4.2.77)
F,

This relationship in the time domain im plies a corresponding relationship between  
the frequency variables F and /  in Xa(F) and X( f ) . respectively.

Indeed, substitution of (4.2.77) into (4.2.73) yields

x(n) =  xa("T)= f Xtl(F)ej2,TnF/F'd F  (4.2.78)
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If we compare (4.2.76) with (4.2.78), we conclude that

•1/2

\ a

r 1/2 f  oc
/  X ( f ) e j2nf" d f =  X u(F )e )2nnFlFd F  (4.2.79)

J -oc

From the developm ent in Chapter 1 we know that periodic sampling im poses a 
relationship betw een the frequency variables F  and /  of the corresponding analog 
and discrete-time signals, respectively. That is,

/  =  —  (4.2.80)

With the aid o f (4.2.80), we can make a sim ple change in variable in (4.2,79), and 
obtain the result

y  j  ^  X  ^ - 0  ej2”nF/F' d F  =  J X a(F )e j2,,nF/F- d F  (4.2.81)

W e now turn our attention to the integral on the right-hand side o f (4.2.81)- 
The integration range of this integral can be divided into an infinite number of 
intervals o f width F,. Thus the integral over the infinite range can be expressed  
as a sum o f integrals, that is,

/ oc 3C [ { k +X f l s F ,

Xa(F )e J2,TnF/F' d F  =  /  X a( F )e J2jrnF/F’d F  (4.2.82)
x  J t= -o c  J ( k - \ f l ) F s



Sec. 4.2 Frequency Analysis of Discrete-Time Signals 271

W e observe that X a {F)  in the frequency interval (k — I ) F t to (k +  ~)FS is identical 
to X a(F  — kF s) in the interval —Fs/ 2 to Fs/2. Consequently.

oc p{k+\l2)F, x. * F\ :2
V  /  X a( F ) e i27TnF/F' d F  =  Y 2  /  X a( F  - k F , ) e p^ nF!f d F

Jk=-oc J^  — \fl\Fs k=-?c
'FJ2

J - F J 2
J 2  X a( F - k F < ) ■'~"r ! d F

(4.2.83)
where we have used the periodicity of the exponential, namely.

e j2nn{F+kFs )/Ft _ ^jTnnF/F,

Comparing (4.2.83). (4.2.82), and (4.2.81), we conclude that

or, equivalently.

X ( t )  =  F'  T .  X A F - k F . )
' * t k=--XL

OC

X ( f )  =  F  X a [ ( f - k ) F s]

(4.2.84)

(4.2.85)

This is the desired relationship between the spectrum X ( F / F , ) or X(  f )  of the 
discrete-tim e signal and the spectrum X a(F)  of the analog signal. The righl-hand  
side o f (4.2.84) or (4.2.85) consists o f a periodic repetition of the sealed spectrum  
Fs X a(F)  with period F,. This periodicity is necessary because the spectrum X ( f )  
or X ( F / F ,)  of the discrete-tim e signal is periodic with period f p =  1 or Fp =  Fs.

For exam ple, suppose that the spectrum o f a band-lim ited analog signal is 
as shown in Fig. 4.18(a). The spectrum is zero for [FI > B.  N ow. if the sam ­
pling frequency Fs is selected  to be greater than 2 5 . the spectrum X ( F / F S) of the 
discrete-tim e signal will appear as shown in Fig. 4.18(b). Thus, if the sampling  
frequency is selected such that Fv > 2 B.  where 2 B  is the Nyquist rate, then

=  FsX a(F)  | f |  <  F J 2 (4.2.86)

In this case there is no aliasing and therefore, the spectrum of the discrete-time 
signal is identical (within the scale factor F,)  to the spectrum o f  the analog signal, 
within the fundam ental frequency range |F | < Fsf 2 or [ f \  <

On the other hand, if the sampling frequency Fs is selected  such that Fs < 
2 B, the periodic continuation of X a(F)  results in spectral overlap, as illustrated 
in Fig. 4.18(c) and (d). Thus the spectrum X { F / F S) o f the discrete-tim e signal 
contains aliased frequency com ponents o f  the analog signal spectrum X a(F).  The 
end result is that the aliasing which occurs prevents us from recovering the original 
signal x „(r) from the samples.

G iven the discrete-tim e signal x(n) with the spectrum  X ( F / F S), as illustrated 
in Fig. 4.18(b), with no aliasing, it is now possible to reconstruct the original analog



Figure 4.18 Sampling of an analog bandlimited signal and aliasing of spectral 
components.
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signal from the sam ples j (n ) . Since in the absence of aliasing

*.<»-(£*(£)■ m s F ’ r -

l o ,  \ F \ > F 5/ 2

and by the Fourier transform relationship (4.2.75).

f ) - £
/  n =  - o c

the inverse Fourier transform of X a ( F )  is

f F'p-
x A D  =  / X a ( F ) e s~*F ' d F

Let us assume that F s =  2 B .  With the substitution o f (4.2.87) into (4.2.89), we 
have

y  x { n ) e ~ j2 * Fn/F‘

(4.2.87)

(4.2.88)

(4.2.89)

Xa (t ) = i  r
F, J -F J

d F

(4.2.90)

s \ n ( n / T ) ( t  -  n T )

( i r / T W - n T )

where x(n) =  xa(n T )  and where T  =  \ / F s — 1 /2 B is the sam pling interval. This 
is the reconstruction formula given by (1.4.24) in our discussion o f the sampling 
theorem.

The reconstruction formula in (4.2.90) involves the function  

s in (jr /7 );  s in 2 ^ B f
iKO = (4.2.91)

( n / T ) t  2 n B t

appropriately shifted by n T ,  n =  0 , ± 1 , ± 2 ........ and m ultiplied or w eighted by
the corresponding sam ples x„(nT)  o f the signal. W e call (4.2.90) an interpola­
tion formula for reconstructing x aU) from its sam ples, and g (f) . given in (4.2.91), 
is the interpolation function. W e note that at t = k T ,  the interpolation function  
g(t — n T )  is zero except at k =  n. Consequently. xa(t)  evaluated at t =  k T  is simply 
the sam ple x 0{kT).  A t all other times the w eighted sum of the tim e shifted versions 
of the interpolation function com bine to yield exactly x a(t). This com bination is 
illustrated in Fig. 4.19.

The formula in (4.2.90) for reconstructing the analog signal xa(t) from its 
sam ples is called the ideal interpolation formula .  It forms the basis for the sam pling  
theorem,  which can be stated as follows.

Sampling T heorem . A  bandlimited continuous-tim e signal, with highest fre­
quency (bandwidth) B Hertz, can be uniquely recovered from its sam ples provided  
that the sam pling rate Fs >  2 B sam ples per second.
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A ccording to the sampling theorem  and the reconstruction formula in (4.2,90), 
the recovery of x a(t) from its sam ples ;c(«), requires an infinite number of sam­
ples. H ow ever, in practice we use a finite number o f sam ples o f the signal and 
deal with finite-duration signals. A s a consequence, we are concerned only with 
reconstructing a finite-duration signal from a finite number of sam ples.

W hen aliasing occurs due to too  low  a sampling rate, the effect can be de­
scribed by a multiple folding o f the frequency axis o f the frequency variable F  for 
the analog signal. Figure 4.20(a) shows the spectrum X a(F)  o f an analog signal. 
A ccording to (4.2.84), sampling of the signal with a sampling frequency Fs results 
in a periodic repetition o f X a( F ) with period Fs . If Fs <  2B,  the shifted replicas of 
X g{F)  overlap. The overlap that occurs within the fundam ental frequency range 
— F.J2 <  F < Fs/2,  is illustrated in Fig. 4.20(b). The corresponding spectrum of 
the discrete-tim e signal within the fundam ental frequency range, is obtained by 
adding all the shifted portions within the range | / |  <  j , to yield the spectrum  
shown in Fig. 4.20(c).

A  careful inspection of Fig. 4.20(a) and (b) reveals that the aliased spectrum  
in Fig. 4.20(c) can be obtained by folding the original spectrum like an accordian 
with pleats at every odd m ultiple o f Fs/2. C onsequently, the frequency F J 2 is 
called the fo ld in g  frequency ,  as indicated in Chapter 1. Clearly, then, periodic 
sampling autom atically forces a folding o f the frequency axis o f  an analog signal 
at odd m ultiples o f Fs/2,  and this results in the relationship F  =  f  Fs betw een the 
frequencies for continuous-tim e signals and discrete-tim e signals. D u e to the fold­
ing of the frequency axis, the relationship F  — f  F, is not truly linear, but piecewise 
linear, to accom m odate for the aliasing effect. This relationship is illustrated in 
Fig. 4.21.

If the analog signal is bandlimited to B < Fs/2,  the relationship betw een /  
and F  is linear and one-to-one. In other words, there is no aliasing. In practice, 
prefiltering with an antialiasing filter is usually em ployed  prior to  sampling. This 
ensures that frequency com ponents o f the signal above F  > B  are sufficiently 
attenuated so that, if aliased, they cause negligible distortion on the desired signal.

T he relationships am ong the tim e-dom ain and frequency-dom ain functions 
x a (t), x (n ) ,  X„(F ),  and X ( f )  are summarized in Fig, 4.22. The relationships for
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Figure 4.20 Illustration of aliasing around the folding frequency.

/

Figure 4.21 Relationship between frequency variables F  and / .
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Sampling-, 
x(n) - x a(nT)

Fourier transform \. .

pair
Xa(t) Xa(F)

xa(t) = j ~  Xa(F)ei -^'dF

Reconstruction:

sin 7r(r -  nT)!T
= £  tfrt)

7r(t - nT)!T

x(n)

T
X (/)

a:0(F)

F,
IFI < - j

Fourier transform 
pair

x(n) = J X(f)eill,f"df

Figure 4.22 Time-domain and frequency-domain relationships for sampled sig­
nals.

recovering the continuous-tim e functions, x 0{t) and X a{F),  from the discrete-time 
quantities x(n)  and X ( f ) ,  assume that the analog signal is bandlim ited and that it 
is sam pled at the N yquist rate (or faster).

The follow ing exam ples serve to  illustrate the problem  o f  the aliasing of 
frequency com ponents.

Example 4.2.6 Aliasing in Sinusoidal Signals

The continuous-time signal

xa(r) ~ cos2nF^t LgjZxFai

has a discrete spectrum with spectral lines at F = ± F U> as shown in Fig. 4.23(a). The 

process of sampling this signal with a sampling frequency Fs introduces replicas of the 

spectrum about multiples of Fs. This is illustrated in Fig. 4.23(b) for Fs/2 < F0 < F,- 
To reconstruct the continuous-time signal, we should select the frequency com­

ponents inside the fundamental frequency range \F\ <  Fsf l .  The resulting spectrum
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Figure 4.23 Aliasing of sinusoidal signals.
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is shown in Fig. 4.23(c). The reconstructed signal is

* „ ( / )  =  c o s 2 j t ( F ,  -  F (t)i

Now. if Fv is selected such that Fs < F(l < 3F5/2, the spectrum of the sampled 
signal is shown in Fig. 4.23(d). The reconstructed signal, shown in Fig. 4.23(e). is

xu(t) =  cos2jr(F(1 -  Fs)i

In both cases, aliasing has occurred, so that the frequency of the reconstructed signal 
is an aliased version of the frequency of the original signal.

E xam  . e 4 .2 .7  Sam pling a N on b an d lim ited  Signal

Consider the continuous-time signal

*„(/) =  e -AI,i A > 0

whose spectrum is given hv

X J F )  = — ----- --------
A- 4- (2;r FY

Determine the spectrum of the sampled signal ,r(n) =  xu{nT).

Solution If we sample x„(t) with a sampling frequency F, =  1/7", we have

jr(n) — xuinT) — e~A1'"' =  (e~A1 — oc < n < oc

The spectrum of x(n) can be found easily if we use a direct computation of the Fourier 
transform. We find that

F \  1 -  e~1AT 1
T =

F, J  1 -  2e~A1 cos I n  FT  +  e~2AT Fs

Clearly, since cos2xFT  = c o s 2 t t(F/Fs ) is periodic with period Fs, so is X(F/ FS), 
Since Xa(F) is not bandlimited. aliasing cannot be avoided. The spectrum of 

the reconstructed signal i„(r) is

™ i - i .  \ F \ < ! ±
( t .Xa(F) =

[ o .  I F I > J

Figure 4.24(a) shows the original signal xa(t) and its spectrum X a( F )  for A =  1- 
The sampled signal x(n) and its spectrum X(F / FS) are shown in Fig. 4.24(b) for 

= 1 Hz. The aliasing distortion is clearly noticeable in the frequency domain. The 
reconstructed signal xa(r) is shown in Fig. 4.24(c). The distortion due to aliasing can 
be reduced significantly by increasing the sampling rate. For example, Fig. 4.24(d) 
illustrates the reconstructed signal corresponding to a sampling rate Fs =  20 Hz. It 
is interesting to note that in every case xa(nT) = xa(nT),  but x„{t) /  xa(t) at other 
values of time.
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.*,,(/) = e~A>11 .A = I x„(n: 14
A-  + (2ttF)2

(al

1.0

T ! 1 t .
-2 -1 0 [

<b)

(c} (d)

Figure 4.24 (a) Analog signal xa(i) and its spectrum Xa(Fy. (b) xin  i =  x a ( t iT)  
and the spectrum of *(n) for A =  1 and F, =  1 Hz; (c) reconstructed signal x„(i) 
for F, -  1 Hz: (dj reconstructed signal i aU) for Fs =  20 Hz.

4.2.10 Frequency-Domain Classification of Signals: The 
Concept of Bandwidth

Just as we have classified signals according to their tim e-dom ain characteristics, it 
is also desirable to classify signals according to their frequency-dom ain character­
istics. It is com m on practice to classify signals in rather broad terms according to  
their frequency content.

In particular, if a pow er signal (or energy signal) has its power density spec­
trum (or its energy density spectrum ) concentrated about zero frequency, such 
a signal is called a low-frequency signal. Figure 4.25(a) illustrates the spectral 
characteristics o f  such a signal. On the other hand, if the signal pow er density



2 8 0

Xa{F) X{a>)

Frequency Analysis of Signals and Systems Chap. 4

Xa(F)

XJF)

fa)

X(w)

(b)

X(oj)

(c)

Figure 4.25 (a) Low-frequency, (b) high-frequency, and (c) medium-frequency 
signals.

spectrum (or the energy density spectrum ) is concentrated at high frequencies, 
the signal is called a high-frequency signal. Such a signal spectrum  is illustrated 
in Fig. 4.25(b). A  signal having a power density spectrum (or an energy density 
spectrum ) concentrated som ew here in the broad frequency range betw een  low  fre­
quencies and high frequencies is called a m edium -frequency  signal  or a bandpass  
signal. Figure 4.25(c) illustrates such a signal spectrum.

In addition to this relatively broad frequency-dom ain classification o f signals, 
it is often  desirable to express quantitatively the range o f frequencies over which 
the pow er or energy density spectrum is concentrated. This quantitative measure 
is called the bandw id th  o f a signal. For exam ple, suppose that a continuous­
time signal has 95% of its power (or energy) density spectrum concentrated in the 
frequency range F\ < F < F2. Then the 95% bandwidth of the signal is F2 — F 1 . In 
a similar manner, we may define the 75% or 90% or 99% bandwidth o f the signal.
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In the case o f a bandpass signal, the term narrow band  is used to describe 
the signal if its bandwidth Fz -  F\ is much smaller (say, by a factor o f 10 or more) 
than the median frequency {Fi  +  F\) f2.  Otherwise, the signal is called wideband.

W e shall say that a signal is bandlim ited  if its spectrum is zero outside the 
frequency range > B. For exam ple, a continuous-tim e finite-energy signal x (t) 
is bandlim ited if its Fourier transform X ( F )  =  0 for m  > B.  A  discrete-tim e 
finite-energy signal x (n )  is said to be (periodically) bandlim ited  if

jX(ti>)| = 0  for a>o <  M  <  x

Similarly, a periodic continuous-tim e signal x p(r) is periodically bandlim ited if its 
Fourier coefficients c* =  0 for |£| > M , where M  is som e positive integer. A  
periodic discrete-tim e signal with fundam ental period N  is periodically bandlimited  
if the Fourier coefficients ck =  0 for kG < |£j < N .  Figure 4.26 illustrates the four 
types o f bandlim ited signals.

By exploiting the duality betw een the frequency domain and the time domain, 
we can provide similar m eans for characterizing signals in the time domain. In 
particular, a signal x( t )  will be called time-limited  if

x(r) =  0  | f |  > t

If the signal is periodic with period Tn, it will be called periodically time- limited  if 

x p i t )  =  0  r  <  \ t \  <  T p f l  

If w e have a discrete-tim e signal x(n)  o f finite duration, that is,

.r(n) =  0 In I > N

it is also called tim e-lim ited. W hen the signal is periodic with fundam ental period 
it is said to be periodically tim e-lim ited if

x ( n } =  0 no < )n\ < N

Figure 4 J 6  Some examples of bandlim ited signals.
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W e state, w ithout proof, that no signal can be time-limited and bandlimited  
simultaneously.  Furtherm ore, a reciprocal relationship exists betw een  the time 
duration and the frequency duration o f a signal. T o elaborate, if we have a short- 
duration rectangular pulse in the time dom ain, its spectrum has a width that is 
inversely proportional to the duration o f the time- domain pulse. The narrower 
the pulse becom es in the time dom ain, the larger the bandwidth of the signal 
becom es. Consequently, the product o f the time duration and the bandwidth of 
a signal cannot be m ade arbitrarily small. A  short-duration signal has a large 
bandwidth and a small bandwidth signal has a long duration. Thus, for any signal, 
the tim e-bandw idth product is fixed and cannot be m ade arbitrarily small.

Finally, we note that we have discussed frequency analysis m ethods for peri­
odic and aperiodic signals with finite energy. H ow ever, there is a family o f deter­
m inistic aperiodic signals with finite power. These signals consist o f a linear super­
position o f com plex exponentials with nonharm onically related frequencies, that is,

M
x{n) =  Y l A ke ^ n 

k= 1

where &>i, a s , . . . ,  a>m are nonharmonically related. These signals have discrete 
spectra but the distances am ong the lines are nonharm onically related. Signals 
with discrete nonharmonic spectra are som etim es called quasi-periodic.

4.2.11 The Frequency Ranges of Some Natural Signals

The frequency analysis tools that we have developed  in this chapter are usually 
applied to a variety o f signals that are encountered in practice (e.g., seismic, b io log­
ical, and electrom agnetic signals). In general, the frequency analysis is performed  
for the purpose o f extracting information from the observed signal. For exam ple, 
in the case o f biological signals, such as an EC G  signal, the analytical tools are 
used to extract information relevant for diagnostic purposes. In the case o f seism ic 
signals, we may be interested in detecting the presence o f a nuclear explosion or in 
determ ining the characteristics and location o f an earthquake. A n  electrom agnetic  
signal, such as a radar signal reflected from an airplane, contains information on 
the position of the plane and its radial velocity. T hese param eters can be estim ated  
from observation o f the received radar signal.

In processing any signal for the purpose o f measuring param eters or ex­
tracting other types o f information, one must know approxim ately the range of 
frequencies contained by the signal. For reference, Tables 4.1, 4.2, and 4.3 give 
approximate limits in the frequency dom ain for biological, seism ic, and electro­
m agnetic signals.

4.2.12 Physical and Mathematical Dualities

In the previous sections o f the chapter we have introduced several m ethods for the 
frequency analysis o f signals. Several m ethods w ere necessary to accom m odate the



Sec. 4.2 Frequency Analysis of Discrete-Time Signals 283

TABLE 4.1 FREQUENCY RANGES OF SOME BIOLOGICAL 
SIGNALS

Type of Signal Frequency Range (Hz)

Electroretinogram 8 0-20
Electronystagtnogram h 0-20
Pneum ogram ' 0-40
Electrocardiogram  (ECG ) 0-100
Electroencephalogram  (EEG ) 0-100
Electrom yogram d 10-200
Sphygmomanograme 0-200
Speech 100-^000

"A graphic recording of retina characteristics.
’’A graphic recording of involuntary movement of the eyes.
CA graphic recording of respiratory activity.
dA graphic recording of muscular action, such as muscular contraction. 
CA recording of blood pressure.

TABLE 4.2 FREQUENCY RANGES OF SOME SEISMIC SIGNALS

Type of Signal Frequency Range (Hz)

Wind noise 100-KXX)
Seismic exploration signals 10-11X1
Earthquake and nuclear explosion signals (1.01-1(1
Seismic noise 0.1-1

TABLE 4.3 FREQ UENCY RANGES OF ELECTROMAGNETIC SIGNALS

Type of Signal W avelength (m) Frequency Range (Hz)

Radio broadcast 10M 02 3 x lO4^  x JO6
Shortwave radio signals io-’- i o - : 3 x 1(^-3 x 10U1
Radar, satellite communications.

space communications.
com m on-carrier microwave 1-10 2 3 x 10^-3 x 1010

Infrared u r M o ^ 6 3 x 1011 —3 x I0 i4
Visible light 3.9 x 10_7-8.1 X 10~7 3.7 x 10w-7.7 x 1014
U ltraviolet 10-7-]O -8 3 x 1015-3  x lO16
G am m a rays and x-rays u r M o - 10 3 x 1017 —3 x 101K

different types o f signals. T o sum m arize, the follow ing frequency analysis tools 
have been introduced:

1. The Fourier series for continuous-tim e periodic signals.

2. The Fourier transform for continuous-tim e aperiodic signals.

3. The Fourier series for discrete-tim e periodic signals.

4. The Fourier transform for discrete-tim e aperiodic signals.
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Figure 4.27 summarizes the analysis and synthesis formulas for these types of 
signals.

A s we have already indicated several times, there are two tim e-dom ain char­
acteristics that determ ine the type of signal spectrum we obtain. T hese are whether 
the time variable is continuous or discrete, and whether the signal is periodic or 
aperiodic. Let us briefly summarize the results o f the previous sections.

Continuous-time signals have aperiodic spectra. A  close inspection of 
the Fourier series and Fourier transform analysis formulas for continuous-tim e 
signals does not reveal any kind of periodicity in the spectral dom ain. This lack of 
periodicity is a consequence of the fact that the com plex exponential exp(y2jr Ft) 
is a function o f the continuous variable t, and hence it is not periodic in F. Thus 
the frequency range of continuous-tim e signals extends from F  =  0 to F  =  0 0 .

Discrete-time signals have periodic spectra. Indeed, both the Fourier 
series and the Fourier transform for discrete-time signals are periodic with period 
co =  2n . A s a result o f this periodicity, the frequency range o f discrete-tim e signals 
is finite and extends from co =  —1r to w — tt radians, where w  =  n  corresponds to 
the highest possible rate o f oscillation.

Periodic signals have discrete spectra. A s we have observed, periodic 
signals are described by means of Fourier series. The Fourier series coefficients 
provide the “lines" that constitute the discrete spectrum. The line spacing A F 
or A f  is equal to the inverse o f the period Tp or N ,  respectiveiy, in the time 
domain. That is. A F  =  1/7,, for continuous-tim e periodic signals and A f  =  1 /N  
for discrete-tim e signals.

Aperiodic finite energy signals have continuous spectra. This prop­
erty is a direct consequence o f the fact that both X ( F )  and X (w )  are functions 
of exp { j 2 n F t )  and exp {jeon), respectively, which are continuous functions o f the 
variables F  and co. The continuity in frequency is necessary to break the harmony 
and thus create aperiodic signals.

In summary, we can conclude that periodic ity with “per iod  ” a  in one  domain  
automatically implies discretization with “spac ing" o f  1  jot in the o ther domain, and 
vice versa.

If w e keep in mind that “period” in the frequency dom ain m eans the fre­
quency range, “spacing'' in the time domain is the sampling period T , line spacing 
in the frequency domain is A F ,  then a  =  Tp im plies that 1 /a  =  \ j T p =  A F ,  a  =  N 
im plies that A f  =  \ / N , and a  =  Fs im plies that T =  1 /F S.

T hese tim e-frequency dualities are apparent from observation o f Fig. 4.27. 
We stress, however, that the illustrations used in this figure do not correspond to 
any actual transform pairs. Thus any com parison am ong them  should be a v o id e d .

A  careful inspection of Fig. 4 .2 7  also reveals som e m athem atical s y m m e tr ie s  
and dualities am ong the several frequency analysis relationships. In particular,
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we observe that there are dualities betw een the follow ing analysis and synthesis 
equations:

1. The analysis and synthesis equations o f the continuous-tim e Fourier trans­
form.

2. The analysis and synthesis equations of the discrete-tim e Fourier series.
3. The analysis equation o f the continuous-tim e Fourier series and the synthesis 

equation of the discrete-tim e Fourier transform.
4. The analysis equation o f the discrete-tim e Fourier transform and the synthesis 

equation o f the continuous-tim e Fourier series.

N ote that all dual relations differ only in the sign of the exponent of the 
corresponding com plex exponential. It is interesting to note that this change in 
sign can be thought o f either as a folding of the signal or a folding o f the spectrum, 
since

e - j 2nFl  _  e j2n(-FU _

If we turn our attention now to the spectral density o f signals, we recall that 
we have used the term energy density spectrum  for characterizing finite-energy 
aperiodic signals and the term p o w e r  density spectrum  for periodic signals. This 
term inology is consistent with the fact that periodic signals are pow er signals and 
aperiodic signals with finite energy are energy signals.

4.3 PROPERTIES OF THE FOURIER TRANSFORM FOR 
DISCRETE-TIME SIGNALS

The Fourier transform for aperiodic finite-energy discrete-tim e signals described  
in the preceding section possesses a number of properties that are very useful in 
reducing the com plexity o f frequency analysis problem s in m any practical appli­
cations. In this section w e develop  the important properties o f the Fourier trans­
form. Similar properties hold for the Fourier transform of aperiodic finite-energy 
continuous-tim e signals.

For convenience, we adopt the notation
OC

X(a>) =  F{x{«)} =  x (n )e ~ Jcun (4.3.1)
/J —— CC

for the direct transform (analysis equation) and

x(n )  =  F ~ 1{X(tv)] =  —  [  X{u>)ejmndoo (4.3.2)
2*  J 2n

for the inverse transform (synthesis equation). W e also refer to x (n )  and X(o))  as 
a Fourier transform pa ir  and denote this relationship with the notation
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Recall that X  (a>) is periodic with period 2 n .  C onsequently, any interval 
o f length 2 n  is sufficient for the specification of the spectrum. Usually, we plot 
the spectrum in the fundam ental interval [—jr. tt J. W e em phasize that all the 
spectral inform ation contained in the fundamental interval is necessary for the 
com plete description or characterization o f the signal. For this reason, the range 
of integration in (4.3.2) is always 2jt, independent o f the specific characteristics o f  
the signal within the fundam ental interval.

4.3,1 Symmetry Properties of the Fourier Transform

W hen a signal satisfies som e symmetry properties in the tim e domain, these prop­
erties im pose som e symmetry conditions on its Fourier transform. Exploitation  
of any symmetry characteristics leads to simpler formulas for both the direct and 
inverse Fourier transform. A  discussion o f various sym m etry properties and the 
im plications o f  these properties in the frequency domain is given here.

Suppose that both the signal x(n)  and its transform X(co)  are com plex-valued  
functions. Then they can be expressed in rectangular form as

jr(n) =  x K(n) + jXf(n)  (4.3.4)

X'(co) =  X k{(o) + jX [ ( co) (4.3.5)

By substituting (4.3.4) and e~>w — cosu> -  /  s in co into (4.3.1) and separating the 
real and imaginary parts, we obtain

OC

Xk(lo) =  2 2  costu/i -f- xj{n)  sin con] (4.3.6)
f t  =  — OC 

SC
X/(a>) =  — 2 2  [*jfOO sin a>n—.*/(«) cos&inj (4.3.7)

n=-oc

In a similar m anner, by substituting (4.3.5) and eJm =  cos co +  j sm u>  into (4.3.2), 
w e obtain

x R(n) =  -— f  [X/?(a>) cosam  — X/(co) sin con]dco (4.3.8)
2n  J2n

X/(n) — —  f  [X ft (co) sincon + X/ (w)  cos con]dco (4.3.9)
"T  J2k

N ow , let us investigate som e special cases.

Real signals. If x(n) is real, then x/t(n)  =  x(n)  and xi(n)  =  0. H ence
(4.3.6) and (4.3.7) reduce to

OC

X R(co) — 2 2  x (n )  cos con (4.3.10)



and
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Xi{w)  =  — * (« )s ino jrt (4.3.11)

Since co s(—con) =  cos ton and sin(—con) =  — sin cun, it follow s from (4.3.10) and
(4.3.11) that

X R( - w)  =  X R(co) (even) (4.3.12)

X, (-co)  =  -X /(o> ) (odd) (4.3.13)

If we com bine (4.3.12) and (4.3.13) into a single equation, we have

X*(co) =  X ( - w )  (4.3.14)

In this case we say that the spectrum of a real signal has H ermitian  symmetry.
With the aid o f Fig. 4.28, we observe that the m agnitude and phase spectra 

for real signals are

X(to)\ =  J X\{co) + Xj(co)

4 _X|oj| =  tan

(4.3.15)

(4.3.16)
X r ( co)

A s a consequence of (4.3.12) and (4.3.13), the m agnitude and phase spectra also 
possess the symmetry properties

|,Y(co)| =  \X { —co)\ (even) (4.3.17)

l iX ( - c o )  =  - & X ( t o )  (odd) (4.3.18)

In the case o f the inverse transform of a real-valued signal [i.e., Jt(n) =  jcj?(n)],
(4.3.8) im plies that

(n) =  — f  [X/f(a>) cosa>n — X/(a>)sinam ]dw (4.3.19)
Jin

R(co) cos ton

1 r
=  — I [X^(cu) cos con — X/(co) sin con]dco

x J a

Since both products X R (to) cos ton and X /(oj) sin con are even functions o f co, we 
have

(4.3.20)

Imaginary axis

functions.
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Real and even signals. If .*■<«) is real and  even  [i.e., x ( ~ n )  =  * (« )], then  
jf(/i)cosw ?i is even and  x (n )s in w n  is odd. H ence , from  (4.3.10). (4.3.11). and
(4.3.20) we o b ta in

T hus real and  even signals possess real-valued  spectra , which, in add ition , a re  even 
functions of the  frequency  variab le  a>.

Real and odd signals. If x(/i)  is real and  odd  [i.e., x ( —n) =  - x (« ) ] ,  then  
x (n )c o sw n  is od d  and .vODsinwn is even. C onsequen tly . (4.3.10). (4.3.11) and
(4.3.20) im ply tha t

T hus rea l-va lued  odd signals possess purely  im aginarv-valued  spectral ch a rac te ris­
tics. w hich, in add ition , a re  odd  funct ions  o f the  frequency  variab le  co.

Purely imaginary signals. In th is case x K(n) =  0 and  x(n)  -  j x f (n). T hus
(4.3.6). (4.3.7), and  (4.3.9) reduce  to

Xff(a>) = x (0) +  2 x ( n ) c o s w n  (even ) 

Xi ( w)  =  0 

jr(n) =  j  f *  X R (o>) cos cun da>

(4.3.21)

(4.3.22)

(4.3.23)

A'k(oi) =  0 (4.3.24)

(odd) (4.3.25)

(4.3.26)

(odd) (4.3.27)

(even) (4.3.28)

(4.3.29)

If  x / (n )  is od d  [i.e., x / ( —n) =  —x/(n)],  then

(odd) (4.3.30)

X/(a>) =  0 (4.3.31)

(4.3.32)



Sim ilarly, if xj (n)  is even [i.e.. x / ( —n)  — .v/(«)]. we have

X * M  -  0 (4.3.33)
X

X [ ( oj) =  x /(0 ) +  2 Y ^ x i ( n )  cos con (even) (4.3.34)
n =  1

1 r
x ; (n) =  — I X 1 (co) cos cun d w  (4.3.35)X Jo

A n a rb itra ry , possibly com plex-valued  signal x (n ) can be d eco m p o sed  as 

x(n)  =  Xfi(n) +  j x i ( n )  =  x eR(n) +  x ‘̂ (n)  +  j [ x ] ( n ) +  *"(«)]
(4.3.36)

=  Ar (/i) +  Jr„(rt)
w here, by defin ition ,

x f (n) = x fK(n)-h j Xf (n )  =  j[at(«) +  jr* (-n )]

x„(n) = x'x(n) +  j x/ ( r i )  -  |[ jr (n )  -  x * ( - n ) ]

T he superscrip ts e and  o d en o te  the  even and odd  signal co m p o n en ts , respectively. 
W e no te  th a t x e(n) — x e(—n) and  x r,(—n) =  - a :„(«). F rom  (4.3.36) and  the F o u rie r 
transfo rm  p ro p e rtie s  es tab lished  above, we ob ta in  the  follow ing relationsh ips:

x{n) =  [*£(«) + j x ll (n)\ +  [.i*(/0+y'A'/(n)]

] ■ ' (4.3.37)
xito) = [x(R(co) + j x f u o )  1 +  +  jx ) \w) ]

T hese  sym m etry  p ro p e rtie s  of the F o u rie r  tran sfo rm  are sum m arized  in T a­
ble 4.4 and in Fig. 4.29. T hey  are  often  used to  sim plify F o u rie r  tran sfo rm  calcu­
lations in practice.

Example 4.3.1
Determine and sketch X R(w), X , (w ), l^ioOi. and ^X(co)  for the Fourier transform

X(a>) =  1 ■ ■ -  1 < a < 1 (4.3.38)
1 — a e ~ ,w

Solution By multiplying both the numerator and denominator of (4 .3 .38) by the 
complex conjugate of the denominator, we obtain

1 — ae!w 1 — a cos co — j a  sin co
X(w) -  ----------------------------- =  ------------------ ------—

(1 — a e ~ }U,) (  1 -  a e JU>) 1 — 2 a  c o s o j  +  a "

This expression can be subdivided into real and imaginary parts. Thus we obtain
1 — a cos co
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X r (w ) —

X,(u>) =  -■

1 — 2 a cos o j  + a1 

a sin w

1 — 2a cos co + a 2

Substitution of the last two equations into (4.3.15) and (4.3.16) yields the mag­

nitude and phase spectra as

|X(<u)i -  ■■■■ 1 - ■= =  (4.3.39)
v l  — 2a cos co a2



Sec. 4.3 Properties of the Fourier Transform for Discrete-Time Signals 291

TABLE 4.4 SYMMETRY PROPERTIES OF THE DISCRETE-TIME
FOURIER TRANSFORM

Sequence DTFT

xin)
x ’ (n )

j ' l - n )
J«(n)
jx /[n )

A > ( n )  =  4 [ j r ( n }  + a ' ( —n ) ]

x „ ( n )  =  - , v ’ ( — n ) ]

A n y  real signal  

x  (n )

\ t.(n) i (a (>>) ,r( —n )] 

( r e a l  an d e v e n )  

x . A n )  —  i | . r ( n )  -  r l — n ) ]  

( r e a l  a n d  o d d )

Real Sienals

A' (w)
X ’ i - w )
X ’ (a>)

 ̂ "I- —̂ )] 
A'/jlo)) =: ^[X(t^) — -V*(—aj)j 

X R\.u» 

jX, { to)

X (w ) =  X' ( -ui )  
X r(w ) =  X r{—id) 

Xfiuj) — —
IX ( oj) |  =  ] X ( —<y)|

= - iX ( - w )
A n (to)

(real and even)

] X
(imaginary and odd)

Figure 4.29 Summary of symmetry properties for the Fourier transform.
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and

X r X ( w )  =  -  t a n  1 (4.3.40)
1 — a  c o s  w

Figures 4.30 and 4.31 show the graphical representation of these spectra foT 
a =  0.8. The reader can easily verify that as expected, all symmetry properties for 
the spectra of real signals apply to this case.

Example 4.3.2

Determine the Fourier transform of the signal
|  A.  — M  <  n < M 
10, elsewhere

Solution CleaTly, x{— n) = x{n). Thus *(«) is a T e a l  and even signal. From (4.3.21) 
we obtain

(4.3.41)

X(a>) = X K(a>) = A I 1 4- 2 ^ c o s

Xg((i>)

(a)

(b)

Figure 4 J 0  G raph of X r (o>) and X / ( w )  for the transform  in Exam ple 4,3.1.
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IXlcoM

( a )

^X{w)

Figure 4.31 Magnitude and phase spectra of the transform in Example 4.3.1.

If we use the identity given in Problem 4.13, we obtain the simpler form

sinfAf +  l)oj 
X(u>) = A . - - J -  sin(tu/2)

Since X (a>) is real, the magnitude and phase spectra are given by

sin(Af +  I
I X M I  = A

and

sin(a)/2) |

0, if X{w)  > 0
j t ,  if X(a>) < 0 

Figure 4,32 shows the graphs for X(w).

(4,3.42)

(4.3.43)
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- M O M

X(u>)

IXMI

ZX(w)

4.3.2 Fourier Transform Theorems and Properties

In th is section  we in tro d u ce  severa l F o u rie r  tran sfo rm  th eo rem s an d  illu stra te  their 
use in prac tice  by  exam ples.

Linearity. If
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and

X2(n) *— » X;(a/)
F

then

(4.3.44)

Sim ply sta ted , the F o u rie r  tran sfo rm atio n , view ed as an  o p e ra tio n  on a signal 
jt(rt), is a iin ea r  tran sfo rm atio n . T hus the F o u rie r  tran sfo rm  o f a linear com bination  
of tw o o r m o re  signals is equal to the sam e lin ear com bination  o f the  F o u rie r 
tran sfo rm s of the  indiv idual signals. T his p ro p erty  is easily p roved  by using (4.3.1). 
T h e  linearity  p ro p erty  m akes the F o u rie r tran sfo rm  su itab le  fo r the s tudy  o f linear 
system s.

Example 4.3.3

Determine the Fourier transform of the signal

which is a condition that is satisfied in this problem. Similarly, the Fourier transform

(4.3.45)

Beginning with the definition of the Fourier transform in (4.3.1), we have

Xi(a>) =  22 ■M'Oe- -""" =  22a’'e =
i=D

The summation is a geometric series that converges to

1 — ae~)w
provided that

\ae ""I =  Icij • |e ""| =  \a] <  1

of X j i n )  is
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By combining these two transforms, we obtain the Fourier transform of x(n) in the 
form

X ((i>) =
l _ a : (4.3.46)

1 -  2 a  c o s o j  +  a 2

Figure 4.33 illustrates *(n) and X(w) for the case in which a =  0.8.

Time shifting. If

x (n) X  (a))
then

x(n  -  k)  «  e - ja,kX(w)  (4.3.47)

T he p ro o f o f th is p ro p e rty  follow s im m ed ia te ly  from  (he F o u rie r  transfo rm  of 
x(n  — k) by m aking a change in the sum m ation  index. Thus

F[x{n - k ) }  =  X(a>)e~J<uk

= \X(aj) \ej[^ Xuu]- <,,k]

X(a>)

Figure 4.33 Sequence x I n )  and its Fourier transform  in Exam ple 4.3.3 with



T his re la tio n  m eans th a t if a signal is sh ifted  in th e  tim e d om ain  by k sam ­
ples, its m ag n itu d e  sp ec tru m  rem ains unchanged . H ow ever, th e  phase spectrum  is 
changed  by an am o u n t -cok.  This resu lt can easily  be exp la in ed  if we recall tha t 
the  frequency  c o n ten t o f a signal d ep en d s only on  its shape. F ro m  a m ath em atica l 
po in t o f view, we can say th a t shifting by k in the  tim e dom ain , is equ ivalen t to  
m ultip ly ing  the sp ec tru m  by e~i'ok in the  frequency  dom ain .
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T im e  r e v e r s a f .  If

j:(«) X(co)

th en

x ( - n )  X ( - a >) (4.3.48)

T his p ro p e rty  can be es tab lished  by perfo rm in g  th e  F o u rie r  tran sfo rm atio n  
o f j t (—n) and m aking  a sim ple change in the  sum m ation  index. T hus

OC

F ( x ( - n ) j  =  22 x ( l '>e>Wi =
f = — OC

If x ( n)  is real, th en  from  (4.3.17) and (4.3.18) we ob ta in  

F ( * ( - n ) |  =  X{-a>)  =

=  \X(w) \ e~/ ^ XiM'

T his m eans th a t if a signal is folded ab o u t th e  origin in tim e, its m agn itude  spectrum  
rem ains unch an g ed , and  th e  phase  sp ectrum  underg o es a change in sign (phase 
reversa l).

C o n v o lu tio n  th e o re m . If
F

x\  (n) 4— ► X](w)

and

x2 (n) X 2{oj)

th en

x(n) =  Xi (h) * X2(n) X(co) =  X] (a))X2(&>) (4.3.49)

T o  p rove (4.3.49), we recall the  convo lu tion  fo rm ula
OC

x(n)  =  ^ i(n )  * x 2(n) = Y  x \ ( k ) x 2(n -  k) 
k=—oc

By m ultip ly ing  bo th  sides o f this eq u a tio n  by the  ex p o n en tia l e x p (—jeon) and  
sum m ing over all n,  we ob ta in

OC OC " OC
X(a>)=  ^  x ( n ) e~ Jwn =  ^  ^  x \ {k ) x2(n — k) e~]a>n



A fter in terchanging  the  o rd e r  o f the sum m ations and  m aking  a sim ple change in 
the sum m ation  index, the righ t-hand  side o f this eq u a tio n  red u ces to the p roduct 
Xi(a>)X2 (io). T hus (4.3.49) is estab lished .

T he convolu tion  th eo rem  is one o f the m ost pow erful too ls in linear system s 
analysis. T hat is, if we convolve tw o signals in the  tim e dom ain , th en  this is 
equ ivalen t to  m ultip ly ing  th e ir spectra  in the frequency  dom ain . In la te r  chap ters 
we will see th a t the  convolu tion  th eo rem  p rov ides an im p o rtan t com putational 
tool fo r m any d ig ital signal p rocessing  app lications.

Example 4.3.4

By use of (4.3.49). determine the convolution of the sequences

A'l(/1) =  A:(h) =  {1. 1. 1)
t

Solution By using (4.3.21). we obtain

X i ((o) =  X2 (w ) =  1 +  2 cos w

Then

X (co) =  A't (cijjASfa)) = (1 +  2coso>)‘

=  3 +  4 cos w -i- 2 cos ho 

=  3 4- 2 (c"" + (■“ "") + ic'2"' +

Hence the convolution of with is

.v (ii) =  ( 1 2  3 2 1 )

T
Figure 4.34 illustrates the foregoing relationships.

The correlation theorem. If

x i(n ) X \(a>)

and

A‘;(« ) Xzito))

then

ri,x2(m ) S „ , ; (w) =  X\(cd)X2(—oj) (4.3.50)

T he p ro o f o f (4.3.50) is sim ilar to  the  p ro o f o f (4.3.49). In  th is case, we have
X

r ^ x A n )  =  ^  x ] ( k ) x 2( k - n )
k = ~-'X.

By m ultiplying b o th  sides o f this eq u a tio n  by th e  ex p o n en tia l exp (—jeon) and 
sum m ing over all n , we ob ta in

OC X  o c

Sxll2(w)  =  x i ( k )x 2(k -  n ) e ~ JmR
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Figure 434  Graphical representation of the convolution property.

F inally , we in te rch an g e  th e  o rd e r o f the  sum m ations and  m ake a change in the 
su m m atio n  index. T hu s we find th a t th e  r igh t-hand  side o f th e  eq u a tio n  above 
red u ces to  X\ (u) )X2(—a>). T h e  function  SXlX2(a)) is called th e  cross-energy density 
spect rum  o f the  signals x\ (n) and  x 2(n).

The Wiener-Khintchine theorem. L et jc(n) be a rea l signal. T h en

rxz(l) s „ ( a )  (4-3.51)

T h a t is, th e  en ergy  spectra l density  o f an energy  signal is th e  F o u rie r  tran sfo rm  of 
its au to co rre la tio n  seq u en ce . T his is a special case o f (4.3.50).

T h is is a very  im p o rta n t result. I t m eans th a t th e  au to co rre la tio n  sequence  
o f a signal and  its energy  spec tra l density  con tain  th e  sam e in fo rm ation  a b o u t the  
signal. Since, n e ith e r  o f these  con ta ins any phase in fo rm atio n , it is im possib le to  
un iquely  reco n stru c t the  signal from  th e  au to co rre la tio n  function  o r th e  energy 
density  spectrum .

Example 4JJ
Determine the energy density spectrum of the signal

x(n) =  tf^ufn) -  1 < a < 1
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Solution From Example 2.6.2 we found that the autocorrelation function for this 
signal is

f a i l )  = --------- oc <  / <  oo
1 — a*

By using the result in (4.3.46) for the Fourier transform of a 1' 1, derived in Exam­
ple 4.3.3. we have

=  ----- — —------ -
1 —0“ 1 —2a cos w + a-

Thus, according to the W iener-Khintchine theorem,

1
Sxx(w) =

1 — 2a cos w + a2

Frequency shifting. If

x(n)  < F > X(u) )
then

e i<onnx(n)  «  X ( c u - m )  (4.3.52)

T his p ro p e rty  is easily p roved  by d irec t su b s titu tio n  in to  th e  analysis eq uation
(4.3.1). A ccord ing  to  this p ro p erty , m u ltip lica tion  o f a seq u en ce  x(n)  by e iu>-)n is 
equ ivalen t to a frequency  tran sla tio n  o f the  sp ectrum  X(co) by co<>. T his frequency  
tran sla tio n  is illu stra ted  in Fig. 4.35. S ince th e  sp e c tru m  X(co) is period ic , the  shift 
a\) app lies to  the  spectrum  of the  signal in every period .

The modulation theorem. If

x(n)  < F > X (a>)

X(u>)

* _ -  0 1  w2 2
(a)

X(uj- cjq)

-2w -  2* + wo 2i 2» + cjo «

(b)

Figure 435  Illustration of the frequency-shifting property of the Fourier trans­
form.
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th en

x ( n )  coscoqt i  +  cuo) +  X(w — c^o)] (4.3.53)

T o  p rove th e  m o d u la tio n  th eo rem , we first express the signal coswo'J as

cos won =  + e - J^'")

U p o n  m ultip ly ing  x(n) by these  tw o exponen tia ls and  using the  frequency-sh ifting  
p ro p e rty  describ ed  in the  p reced in g  section , we o b ta in  the  d esired  resu lt in (4.3.53).

A lth o u g h  th e  p ro p e rty  given in (4.3.52) can also be v iew ed as (com plex) 
m od u la tio n , in p ractice we p re fe r to  use (4.3.53) because th e  signal j (h ) c o s a ^ ?  
is real. C learly , in this case the  sym m etry  p ro p e rtie s  (4.3.12) and (4.3.13) are 
p reserved .

T he m o d u la tio n  th eo rem  is illu stra ted  in Fig. 4.36, w hich con ta in s a plot of 
the  spec tra  o f th e  signals jr(/;). vi(n) =  ;c(n )co s0 .5 ;rn  and  y ifn ) =  .*(«)cos7n;.

2

(a)

2 2 

(b)

2 2 

(c)

Figure 4.36 Graphical representation of the m odulation theorem.
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Parseval’s theorem. If

jri(n)

X2 (n) X 2(a>)

o c  1 / ' ,7

Y  xi(n)jL*(n) =  —- / X\((i>)X* 
‘ 2jr J -*

(4.3.54)

T o prove this th eo rem , we use (4.3.1) to  elim inate  X\(<o) on the right-hand 
side o f (4.3.54). T h u s we have

h i T ,  X ] ( n ) e ' X ^ i ^ d t o

x  i r  ^
=  2 2  f  ( w ) e ~Jujnda> =  2 2

n =  - 3 c  *' 2n- n — ~  oc

In the  special case w here x 2(n) =  X](/i) =  x(n) ,  P a rsev a l’s re la tio n  (4.3.54) 
reduces to

x  1 f  y  k (« )| 2 =  r — / \X (a > )\2dw
2 TT J 2,

(4.3.55)

W e observe th a t th e  left-hand  side o f (4.3.55) is sim ply the  en erg y  E x o f the signal 
x(fj).  It is also equal to  th e  au to co rre la tio n  o f * (« ), rxx(l), e v a lu a ted  a t / =  0. 
The in teg rand  in the  r igh t-hand  side o f (4.3.55) is equal to  th e  energy  density 
spectrum , so the in teg ra l over the  in terval —it < a> < it y ields the  to ta l signal 
energy. T h e refo re , we conclude tha t

°° i  r  l c n
E x = r xA ® ) =  y  \x (n)\2 =  —  \X(a))\2d w = —  Ss x (w)da> (4.3.56) 

2jt J2n 2it

Multiplication of two sequences (Windowing theorem). If

x\ (n)  <— ► Xi(cu)

and

x 2(n) <— ► X 2(co)

then
f i r

x j in )  =  x \ {n ) x2{n) ■*— ► Xj ( w)  =  —  / X] ( k ) X 2(a) -  k ) d k  (4.3.57)
J _ n
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T he in teg ra l on the  rig h t-h an d  side of (4.3.57) rep re sen ts  th e  convo lu tion  of the 
F o u rie r tran sfo rm s Xi(cl>) and  X 2(w). T h is re la tio n  is the dual o f the  tim e-dom ain  
convolu tion . In o th e r  w ords, the  m u ltip lication  o f two tim e-dom ain  sequences is 
equ iv a len t to  the convo lu tion  of th e ir  F o u rie r transform s. O n  th e  o th e r han d , the 
convo lu tion  o f tw o tim e-dom ain  sequences is equ ivalen t to  th e  m u ltip lica tion  o f 
th e ir F o u rie r  transform s.

T o  p rove (4.3.57) we begin with the  F o u rie r  tran sfo rm  o f (n) =  jci(rt)x2(n) 
and  use the fo rm ula  for the inverse transfo rm , nam ely,

T h e  convo lu tion  in tegral in (4.3.57) is know n as th e  per iodic  convolut ion  o f 
Xi(o>) and  X 2(to) b ecause  it is th e  convo lu tion  o f tw o perio d ic  functions having  the 
sam e perio d . W e n o te  th a t the lim its o f in teg ra tion  ex ten d  o v e r a single period . 
F u rth e rm o re , w e n o te  th a t due to  the period icity  o f the F o u rie r  tran sfo rm  for 
d isc re te-tim e signals, th e re  is no  “p erfec t"  duality  be tw een  th e  tim e and  frequency  
d om ains w ith resp ec t to the convolu tion  o p e ra tio n , as in the  case o f co n tin u o u s­
tim e signals. In d eed , convolu tion  in th e  tim e dom ain  (ap erio d ic  sum m ation ) is 
equ iv a len t to m u ltip lica tion  o f con tinuous period ic  F o u rie r  transfo rm s. H ow ever, 
m u ltip lica tion  o f aperio d ic  sequences is equ ivalen t to  perio d ic  convo lu tion  o f the ir 
F o u rie r  transfo rm s.

T h e  F o u rie r  tran sfo rm  pa ir in (4.3.57) will p rove useful in o u r  tre a tm e n t of 
F IR  filter design based  on th e  w indow  techn ique.

Differentiation in the frequency domain. If

T hus, we have
CC CC

X3(oj) =  Y  x 3(n)e Jwn =  2 2  x ' ( n )x 2(n )e

J  X \ ( k )  — k)d  k

x(n)  «— ► X(a>)
F

then

n x ( n )
f  . iiX((o)

(4.3.58)
da)
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T o  prove this p rop erty , we use the  defin ition  o f the F o u rie r  transfo rm  in
(4.3.1) and  d ifferen tia te  the series te rm  by term  w ith respect to w.  T hus we 
ob ta in

d X (  u>) d 
doj du>

7 2  nx (n)e  Ju

Now  we m ultiply bo th  sides of the eq u a tio n  bv j  to o b ta in  th e  desired  result in 
(4.3.58).

T he p ro p e rtie s  derived  in this section are sum m arized  in T ab le  4.5, which 
serves as a conven ien t refe rence . T ab le 4.6 illu stra tes som e useful F o u rie r trans­
form  p airs th a t will be en co u n te red  in la te r  chap ters.

TABLE 4.5 PROPERTIES OF THE FOURIER TRANSFO RM  FOR DISCRETE-TIM E 
SIGNALS

Property Time Domain Frequency Domain

Notation ,v(«) A'(co)
A](ii) X](w)
x2(n) A'iUu)

Linearity a\X] (n) + a\X](a)) + 02X 2(01)
Time shifting x(rt ~  k) e_""l X(«)
Time reversal x ( ~ n ) X ( —a>)
Convolution x \ {n ) *x 2(n) Xi(u>)X;(oj)
Correlation r llt,(/) =  ^, (/) * j z( - / )  5,,.,, iw) = X, (w)X2(-to)

—- A j ( ul> ) X ■, (iu)
[if X2(h) is real] 

Wiener-Khmtchine r„ (/)  -S.t.r (w)
theorem

Frequency shifting eja,0"x(n) X(w — ô j)
Modulation x(n) cosa>nr \ X ( w  + tut,) +■ i X ( w  -  wn)

1 f ”
Multiplication —  I X |(/.)X’ (w — X)dk

2jr J-n
dX  (u»)

Differentiation in the nx(n) 
frequency domain du>

Conjugation x*{n) X ’ ( -w)

X\ (w)X*(io)doj
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TABLE 4.6 SOME USEFUL FO URIER TRANSFORM  PAIRS FOR DISCRETE-TIME APERIODIC  
SIGNALS

4.4 FREQUENCY-DOMAIN CHARACTERISTICS OF LINEAR 
TIME-INVARIANT SYSTEMS

In  th is section  we develop  th e  ch aracteriza tion  o f lin ear tim e-invarian t system s in 
th e  freq u en cy  dom ain . T h e  basic excita tion  signals in th is d ev e lo p m en t are  the  
com plex  ex p o n en tia ls  an d  sinusoidal functions. T h e  characteristics o f the  system  
are  d escribed  by a function  o f  th e  frequency  v ariab le  co called  th e  frequency  r e ­
sponse, w hich is th e  F o u rie r  transfo rm  o f  th e  im pulse re sp o n se  h(n)  o f th e  system .

T h e  frequency  re sp o n se  function  com plete ly  ch aracterizes a lin ear tim e- 
in v arian t system  in th e  frequency  dom ain . T h is allow s us to  d e te rm in e  the
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steady -s ta te  response  o f the system  to  any  a rb itra ry  w eigh ted  lin ea r  com bination  
o f sinusoids o r com plex exponentials . Since period ic  sequences, in p a rticu la r, lend 
them se lves to  a F o u rie r  series d ecom position  as a w eigh ted  sum  o f harm onically  re­
la ted  com plex exponen tia ls , it becom es a sim ple m a tte r  to  d e te rm in e  the  response 
o f a lin ear tim e-invarian t system  to this class o f signals. This m eth o d o lo g y  is also 
app lied  to  aperiod ic  signals since such signals can b e  view ed as a  su p e rp o sitio n  of 
infinitesim al size com plex exponentials.

4.4.1 Response to Complex Exponential and Sinusoidal 
Signals: The Frequency Response Function

In C h a p te r  2, it w as d em o n s tra ted  th a t the response  o f  any re lax ed  linear time- 
invarian t system  to  an a rb itra ry  inp u t signal jr(n), is given by the  convolu tion  sum 
form ula

X

y i n ) -  f t ( k ) x ( n - k )  (4.4.1)
£ —— OC

In this in p u t-o u tp u t re la tionsh ip , the  system  is charac te rized  in the tim e dom ain 
by its un it sam ple response  {h ( n ). - o c  < n < oo}.

T o  develop  a frequency-dom ain  ch arac te riza tio n  o f th e  system , let us excite 
the system  w ith the  com plex exponen tia l

jr(n) =  AeJam — 00 <  n < cc  (4.4.2)

w here A is th e  am plitude  and a> is any a rb itra ry  frequency  confined to  the  frequency 
in terval [ - t t . j t ] .  By substitu tin g  (4.4.2) in to  (4.4.1), we ob ta in  th e  response

v(n) =  22 h(k) [AeJb,in- k}]
X

OC

2 2  h (k)e~Juk

k~~X  (4.4.3)

=  A

W e observe th a t the te rm  in b rack e ts  in (4.4.3) is a function  o f th e  frequency 
variab le  a>. In  fact, th is te rm  is the  F o u rie r  tran sfo rm  o f th e  un it sam ple  response 
h{k)  of th e  system . H en ce  w e d en o te  th is function  as

00
H ( w ) =  22 h(k)e~ja>k (4.4.4)

C learly , the function  H(co) exists if the system  is B IB O  stab le , th a t  is, if
OC

y  |/i(rc)| <  00
n=-oc

W ith th e  defin ition  in (4.4.4), the  response  o f  th e  system  to  the  com plex 
exponen tia l given in (4.4.2) is

y(n)  =  AH(oo)eJwn (4.4.5)
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W e n o te  th a t the  response  is also in the form  o f a com plex ex p o n en tia l w ith the 
sam e frequency  as th e  inpu t, b u t a lte red  by the  m ultip licative fac to r  H ( m ).

A s a resu lt o f th is charac te ris tic  behav io r, the  ex p o n en tia l signal in (4.4.2) is 
called  an  eigenfunct ion  o f the  system . In  o th e r  w ords, an eigen function  o f a system  
is an inp u t signal th a t p ro d u ces an  o u tp u t th a t differs from  th e  inpu t by a constan t 
m u ltip licative facto r. T he m u ltip licative fac to r  is called  an eigenvalue  o f the system . 
In th is case, a com plex  ex p o n en tia l signal o f the  fo rm  (4.4.2) is an e igenfunction  of 
a linear tim e-in v arian t system , and  H(u>) ev a lu a ted  at the frequency  o f the inpu t 
signal is th e  co rre sp o n d in g  eigenvalue.

Example 4.4.1

Determine the output sequence of the system with impulse response

Solution First we evaluate the Fourier transform of the impulse response hin),  and 
then we use (4.4.5) to determine v(n). From Example 4.2.3 we recall that

T his exam ple  clearly  illu stra tes  th a t th e  only effect o f th e  system  on th e  input 
signal is to  scale th e  am plitude  by 2 /\/5  and  shift th e  phase by - 2 6 .6 “. T hu s the  
o u tp u t is also a com plex  expon en tia l o f freq u en cy  n /2 ,  am p litude  2 A /v /5. and 
phase  -2 6 .6 C.

If we a lte r  th e  frequency  of the  inpu t signal, th e  effect o f the  system  on 
the  in p u t also changes and  hence  the  o u tp u t changes. In particu la r, if the input 
se q uence  is a com plex  expon en tia l o f frequency  tt. th a t is,

k{n) =  (iY‘u(/i) 

when the input is the complex exponential sequence

xin)  = Ac^"' -  — oo < n < oc

(4.4.6)

(4.4.7 >

At ui = 7t/2, (4.4.7) yields

and therefore the output is

(4.4.8)

— oc < n < oc

x ( n ) =  A e ^ n — oo <  n < oc (4.4.9)

then, at co =  jr.

1 2
3



and the  o u tp u t o f th e  system  is

v(n) =  5 A e jnn — 00 <  n <  00 (4.4.10)

W e n o te  th a t H ( n )  is pu re ly  real [i.e., the phase  associated  w ith  H{u>) is zero  at 
co — t t ] .  H ence , the  inpu t is scaled in am p litu d e  by th e  fac to r H ( n )  =  =, bu t the 
phase shift is zero.

In g e n e ra l  H(co) is a com plex-valued  function  o f th e  freq u en cy  variable w. 
H ence  it can be expressed  in po la r form  as

H(to) =  \H(a>)\eJH{w) (4.4.11)

w here |//(a>)| is the m agnitude o f H(a>) and

@(w) — ^H(co)

which is the phase  shift im parted  on the  in p u t signal by the system  at the fre­
quency CO.

Since H(w)  is th e  F o u rie r tran sfo rm  of i/i(£)}, it follow s th a t H(to)  is a peri­
odic function  with period  2n .  F u rth e rm o re , we can view  (4.4.4) as th e  exponential 
F o u rie r  series expansion  for H(co), w ith h(k)  as the  F o u rie r  se ries coefficients. Con­
sequen tly , the un it im pulse h(k)  is re la ted  to  H(co) th ro u g h  the  in teg ra l expression

1
h(k)  =  —  H(to)elwkdco (4.4.12)
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F o r a linear tim e-invarian t system  w ith a rea l-va lued  im pulse response, the 
m agn itude  and phase  functions possess sym m etry  p ro p e rtie s  w hich  are developed 
as follow s. F rom  the defin ition  o f H(co). we have

H(co) =  h(k)e ' ju /k

— 5 2  h(k) coscok — j  5 2  h (jt)s in w £  (4 4 13)
k——Dc k=—oc

=  H R{io) -f j H 1 (to)

=  y j H l i t o )  +  Hf ( co ) e J tan-1 ["/<")/"*<-)] 

en o te  the  real and  im agina

DC

Hn(co) =  5 2  h(k)coscok

w here H K(to) and Hi(co) d en o te  the  real and  im aginary  co m p o n en ts  o f H(a>), de­
fined as

(4.4.14)

H/(co) =  — 5 2  h(k)  sin cok
k = - x

It is c lear from  (4.4.12) th a t the m agn itude  and  phase  o f H(co),  exp ressed  in term s 
of H r (co) and  Hi(co),  are

\H(co)\ =  J  H 2r(co) +  Hf(co)

©(w) =  tan  ---------
H R(to)

(4.4.15)
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W e n o te  th a t H R(a>) =  H R( - t o )  and  Hi{a>)  =  —/ / / ( —oj). so th a t Hr ( c o )  is an 
even function  o f oj and  Hi (co) is an odd function  o f  w. A s a co n seq u en ce , it follow s 
th a t is an even  function  of w  and  0(o>) is an odd fu n c tio n  o f a>. H ence ,
if we know  j / f ( a > ) J  an d  0 ( a > )  for 0  <  w  <  n .  we also know  th ese  functions for 
—jr <  w < 0.

Example 4.4.2 Moving Average Filter

Determine the magnitude and phase of H(w)  for the three-point moving average 
(MA) system

y( n)  =  f̂jc(n +  1) +  x(n)  +  x(n  -  1)] 

and plot these two functions for 0 < a> < n.

Solution Since
h{n) = [ i i i }

t

it follows that 

Hence
H ( c o )  = ^  +  1  +  =  1 ( 1  +  2cos<w)

IWMI 

B ( w )  =

i  11 + 2 cos a) 

' 0.

(4.4.16)

0 <  a> <  2?r/3 

2 j t /3  <  w  <  jt

Figure 4.37 illustrates the graphs of the magnitude and phase of H(w).  As indicated 
previously, |W(w)| is an even function of frequency and C-)(a>) is an odd function of

3tt
4

Figure 4.37 Magnitude and phase 
responses for the MA system in 
Example 4.4.2.
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frequency. It is apparent from the frequency response characteristic H(u>) that this 
moving average filter smooths the input data, as we would expect from the input- 
output equation.

The sym m etry  p ro p e rtie s  satisfied by the  m agn itude  an d  phase  functions of 
H(u>), and the  fact th a t a sinusoid can  be ex p ressed  as a sum  or d ifference of 
tw o com plex-con jugate  exponen tia l functions, im ply that th e  response  o f a linear 
tim e-invarian t system  to  a sinusoid  is sim ilar in fo rm  to th e  response  w hen the 
inpu t is a com plex exponen tia l. In d eed , if the  inpu t is

Jfi (n)  — Ae-'w'’

the o u tp u t is

vi(«) =  A\H(oj ) \ e j<rnw'eilM'

O n the o th e r hand , if the inpu t is

j::(« ) =

the response  of the  system  is

y : ( / j )  =  A \ H { ~

— A \ H  (aj) \e~j H""' e~J'l>"

w here, in the last expression , we have m ade use of the sym m etry  p roperties 
\H(to)\ =  \ H ( —cd)\ and  (~)(a;) =  — (-)(— co). N ow , by app ly ing  the superposition  
p ro p e rty  o f the  lin ear tim e-invarian t system , we find that the  response  o f the sys­
tem  to  the  input

— i[jt] (n) +  _V2(/;)] =  A cos con
is

}’(>0 =  j[v , (n) +  \’2(/r)] 

yin)  =  A\H(co) \cosjw/? +  (-)(o>)]

Sim ilarly, if the inpu t is

x i n)  = —r[ jf |(n )  — jt-*(/t) 1 =  A sin ton 
J 2

the response o f th e  system  is

v W  =  i [ v l( ,, ) (4 4 1 8 )

v(h) =  A \ H { w ) \ sin[cu« +  0 (tn )]

I t  is a p p a re n t from  th is discussion th a t H{co), o r equ ivalen tly . |//(cu )| and 
0(cw), com plete ly  ch arac te rize  the effect o f  th e  system  on a sinuso idal inp u t signal 
of any a rb itra ry  frequency . Indeed , we no te  th a t \H(a>)\ d e te rm in es  th e  am plifi­
cation  ( | / / M |  >  1) o r a tte n u a tio n  (\H(co)\ <  1) im p arted  by  th e  system  on  the 
inpu t sinusoid. T h e  phase  @(co) d e te rm in es th e  am o u n t o f p h ase  shift im parted

(4.4.17)



by th e  system  on th e  in p u t sinusoid. C onsequen tly , by know ing  H{aj), we are 
able to  d e te rm in e  th e  resp o n se  o f the system  to any  sinuso idal in p u t signal. Since 
H(w)  specifies th e  response  o f the  system  in the  frequency  dom ain , it is called the  
f requency  response  o f the  system . C orresponding ly , \H{to) \ is called  th e  magni tude  
response  and  0(o>) is ca lled  th e  phase response  o f th e  system .

I f  the  in p u t to  the  system  consists o f m o re  th an  o ne  sinusoid , th e  su p e rp o ­
sition  p ro p e rty  o f th e  lin ea r  system  can be used  to  d e te rm in e  the  response . T he 
follow ing exam ples illu stra te  th e  use o f the sup e rp o sitio n  p ro p e rty .

Example 4.43

D eterm ine the response of the system in Example 4.4.1 to the input signal

;c(n) =  10 — 5 sin — n +  20cosnn — oc < n < oc
2

Solution The frequency response of the system is given in (4.4.7) as

H(w) = ------*— -
1 -

The first term in the input signal is a fixed signal component corresponding to w =  0. 
Thus

H(  0) =  = 2

The second term in has a frequency jr/2. At this frequency the frequency 
response of the system is
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Finally, the third term in x(n ) has a frequency w =  t t ,  At this frequency

H { tt) =  |

Hence the response of the system to *(n) is

10 . / jt \  40
y(n ) =  20  — —j= . sm ^ 2̂  — 26 .6  J  +  —  costtw  — oc <  n <  oc

Example 4.4.4

A linear time-invariant system is described by the following difference equation: 

y(n) =  ay(n — 1) +  bx(n) 0 < a < 1

(a) Determine the magnitude and phase of the frequency response H(w) of the 
system,

(b ) Choose the param eter b so that the maximum value of \H{u>)\ is unity, and 
sketch fH(<d)\ and 4.H(w) for a = 0,9.
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(c) Determine the output of the system to the input signal

x ( n )  =  5  + 12 sin — 2 0 cos ( ^ z n  + —^

Solution The impulse response of the system is 

h(n) = ba"u(n)

Since |a| < 1. the system is BIBO stable and hence H(co) exists,

(a) The frequency response is
oc

H ( w )  =  2 2 ,  h ^ e ~iam 

b

Since

it follows that

and

Therefore,

1 — ae~JW 

1 — ae~,‘“ =  (1 — a cos co) 4- j a  sin co

[1 — ae J'“’| =  ^ /(l — a cos co)2 4- (a sin co)2

= y/\ + a2 — 2a cos co

osinct)
4(1 -  ae J“’) =  tan

\H(co)\ =

1 — a cos co

\b\
V l 4- a2 — 2a cos 1u

a sin co
^H(co)  =  &(co) = 4-b -  tan 1

1 — a cos (

(b) Since the parameter a is positive, the denominator of \H(w)\ attains a minimum 
at w =  0. Therefore, |//(a>)| attains its maximum value at a> =  0. At this 
frequency we have

1*1
|ff(0)| =  rU - = ' l  1 — a

which implies that b =  ±(1 — a). We choose b = 1 — a, so that

l —o
| W M I  -

■J\ +  a 2 — 2a  cos 

and
, asinoj

&(w) = — tan"
1 — a cos co

The frequency response plots for |tf(co)| and 0(o>) are illustrated in 
Fig. 4.38. We observe that this system attenuates high frequency signals.
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Figure 4.38 Magnitude and 
phase responses for the system in 
Example 4.4.4 with a =

(c) The input signal consists of components of frequencies to =  0. tt/2, and n.  For 
co =  0. |//(0)| =  1 and 0(0) =  0. For to =  jr/2,

1 — a 0.1
¥ ( - ) l  =  _________  -  ______

V 2 / 1 y/\ -f a 2 -s/1.81

© -- -  tan-1 a = -4 2

=  0.074

For co =  tt,

1 - a  0.1\H(n)\  =  ——  =  —  =0.053 
l + o  1.9

0(7r) =  0 

Therefore, the output of the system is

y(n ) =  5|ff(0)| +  1 2 | / / ( | ) | s i i i | j «  +  e ( ! ) ]

— 2 0 | / / ( j t ) |  cos ^7rn  +  — +  0 ( 7 r ) j  

= 5 + 0.888sin — 42°^ — 1.06 cos ^jrn +  —^ — oc < n < oc
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In the m ost g enera l case, if the  inpu t to  the  system  consists o f an arbitrary 
linear com bination  o f sinusoids o f the form

L

x(n)  =  52  A, cos(co,n 4• 4>i) — oc < « < oc 
1=1

w here (A, | and  {<£,} are  the am plitudes an d  phases o f the  co rre sp o n d in g  sinusoidal 
com ponents , th en  th e  response  of the  system  is sim ply

L

v{n)  =  5 2  Aj\H{a),)| cos[oj,« 4- <p, 4- 0(ci>,)] (4.4.19)
1 = 1

w here \H(u>i)\ and  ©(oj,) are  the m agn itude  and phase , respec tive ly , im p arted  by 
the system  to  the indiv idual frequency  co m p o n en ts  o f th e  in p u t signal.

It is c lear th a t dep en d in g  on the  frequency  response  H ( uj) o f th e  system , input 
sinusoids o f d ifferen t frequencies will be affec ted  d ifferen tly  by th e  system . F o r ex­
am ple, som e sinusoids m ay be com pletely  suppressed  by the  system  if H ( w ) =  0 at 
the frequencies o f these  sinusoids. O th e r  sinusoids m ay receive no  a tten u a tio n  (or 
perhaps, som e am plifica tion) by the system . In effect, we can view  the linear time- 
invarian t system  function ing  as a filter to sinusoids o f d ifferen t frequencies, passing 
som e of the frequency  com p o n en ts  to  th e  o u tp u t and  su ppressing  o r preventing 
o th e r frequency  co m p o n en ts  from  reach ing  the o u tp u t. In fact, as discussed in 
C h a p te r 8, the basic digital filter design p rob lem  involves d e te rm in in g  the param e­
ters o f a linear tim e-in v arian t system  to  achieve a desired  frequency  response  H (co).

4.4.2 Steady-State and Transient Response to Sinusoidal 
Input Signals

In the discussion in th e  p reced ing  section , we d e te rm in ed  the  re sp o n se  o f a linear 
tim e-invarian t system  to  exponen tia l and  sinusoidal inp u t signals app lied  to  the 
system  at n =  —oc. W e usually  call such signals e te rn a l ex p o n en tia ls  o r e ternal 
sinusoids, because th ey  w ere app lied  at n =  - o c .  In  such a case, th e  response  that 
we observe  a t the  o u tp u t o f the  system  is th e  stead y -s ta te  re sp o n se . T h e re  is no 
transien t response  in this case.

O n the  o th e r  hand , if the  exponentia l o r sinuso idal signal is app lied  a t some 
finite tim e instan t, say at n =  0, the response  of the system  consists of tw o term s, the 
tran sien t response  and  the s teady -sta te  response . T o  d e m o n s tra te  this behavior, 
let us consider, as an  exam ple, the system  d escribed  by the  f irs t-o rd er d ifference 
equation

y(n)  = av(n  — 1)4- j:(/i) (4.4.20)

T his system  was co n sid ered  in Section  2.4.2. Its response  to  any in p u t x(n)  applied 
at n =  0 is given by (2.4.8) as

y(n)  =  an+ly ( - l ) +  J 2 a kx (n  -  k)  n > 0  (4.4.21)
*=0

w here y ( —1) is the  in itia l condition .



N ow , let us assum e th a t th e  inpu t to  the  system  is th e  com plex  exponen tia l 

x ( n ) - A e Jan n >  0 (4.4.22)

app lied  a t n =  0. W hen  we su b stitu te  (4.4.22) in to  (4.4.21), we o b ta in
n

v(n) =  a "+1y ( —1) +
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=  a v (—1) +  A
k=0 (4.4.23)

1 _  gn+le ~juiUi + \)
=  o"+1v ( - l )  +  A ----- --------------------e jmn n > 0

1 - a e - J ”

A/jn^  A
=  an+' v ( - l ) ---------- :---eJua + ------ - e ia* n > 0

1 — ae~JW 1 ~  ae  JW

W e recall th a t th e  system  in (4.4.20) is B IB O  stab le  if |a | < 1 .  In  th is case 
th e  tw o te rm s involving ^ "+1 in (4.4.23) decay to w ard  zero  as n ap p ro ach es infinity. 
C onseq u en tly , we a re  left w ith th e  stead y -s ta te  response

A i „Vss(n) =  hm  v(«) =  ------------ — e1
l - a e - J *  (4.4.24)

=  AH(a))eJwn

T he first tw o te rm s in (4.4.23) constitu te  the tran s ien t re sp o n se  o f the  svstem , 
th a t is,

Aa n + '  I
Vlr(n) =  a n+1 v ( - l ) ------- ;----------- :----- e JU,n n > 0 (4.4.25)

1 -  a e~JW

w hich d ecay  tow ard  ze ro  as n ap p ro ach es infinity. T h e  first te rm  in th e  tran s ien t 
response  is th e  ze ro -in p u t response  o f the  system  and  th e  second  te rm  is the 
tran s ien t p ro d u ced  by the  ex p o n en tia l in p u t signal.

In  g enera l, all lin ear tim e-in v arian t B IB O  system s b eh av e  in a sim ilar fashion 
w hen  excited  by a com plex  ex p o n en tia l, o r by a s inuso id  a t n =  0  o r  at som e o th er 
finite tim e in stan t. T h a t is, th e  tran s ien t response  decays to w ard  zero  as n —► oo, 
leaving  only  the s te ad y -s ta te  response  th a t we d e te rm in ed  in th e  p reced ing  section. 
In m any  p ractical app lica tions, the tran sien t response  of th e  system  is u n im p o rtan t, 
and  th e re fo re  it is usually  igno red  in dealin g  w ith th e  resp o n se  o f th e  system  to 
sinuso idal inpu ts.

4.4.3 Steady-State Response to Periodic Input Signals

S uppose th a t th e  in p u t to  a s tab le  linear tim e-in v arian t system  is a perio d ic  signal 
x (n)  w ith  fu n d am en ta l p erio d  N.  Since such a signal exists from  —co <  n < oc,  
th e  to ta l response  o f the  system  at any  tim e in s tan t n, is sim ply  equal to  the 
s tead y -s ta te  response.



T o d e te rm in e  the response v(n) o f the  system , we m ake use o f th e  Fourier 
series rep re sen ta tio n  of th e  period ic  signal, which is

A’- l

jr(n) =  5 2  c ^ j27rkn/N k =  0, 1........ N  -  1 (4.4.26)
k=0

w here  the  {c*} are  the F o u rie r  series coefficients. N ow  the  resp o n se  of th e  system 
to  th e  com plex exponen tia l signal

Xk (n) -  ckej27rkn/N k =  0 ,  1 ............N -  1

is

v* (n ) =  t \  H k^j v fc =  0. 1.........A ' - l  (4.4.27)

w here
/Ink  \

H  ( —  J =  H ( w ) L =2, i7A- k =  0. 1 ........ A ' -  l

By using th e  supe rposition  princip le fo r linear system s, we o b ta in  the  response of 
th e  system  to  th e  period ic  signal x(n)  in (4.4.26) as

A — 1 /  ? t  k \
v(«) =  5 2  gjlxknlf* — oc < 7; < OC (4.4.28)

This resu lt im plies th a t the response  of the system  to  the  period ic  inpu t signal 
x(n)  is also p eriod ic  w ith th e  sam e period  N . T he  F o u rie r se ries coefficients for 
y(n)  a re

dk = ckH ( ^ ^ j  * =  0 ,1 .........A ' - l  (4.4.29)

H ence , the lin ear system  can change the  shape o f the  p e rio d ic  input signal by 
scaling the am plitude  and shifting th e  phase o f the  F o u rie r  se ries com ponents , but 
it does no t affect th e  period  of the perio d ic  inp u t signal.

4.4.4 Response to Aperiodic Input Signals

T he convolu tion  th eo rem , given in (4.3.49). p rov ides the d es ired  frequency-dom ain  
re la tionsh ip  fo r de te rm in in g  the o u tp u t of an LTI system  to  an aperiod ic  finite- 
energy  signal. If  {jt(n)} d en o tes th e  in p u t seq u en ce , (v(n)} d en o tes the  ou tpu t 
sequence , and  (/?(«)} d en o tes the unit sam ple  response  o f th e  system , th en  from  
th e  convolu tion  th eo rem , we have

Y(w) =  H(a>)X(w)  (4.4.30)

w here  Y(to),  X (oj), and H(co) are th e  co rre sp o n d in g  F o u rie r tran sfo rm s o f {v(«)J. 
(*(«)}, and  {h(n) ), respectively . F rom  th is re la tio n sh ip  we o b se rv e  th a t the spec­
tru m  o f th e  o u tp u t signal is equal to  th e  sp ectrum  of the in p u t signal m ultiplied 
by th e  frequency  response o f the system .
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If  we express K(cu), and X(o>) in p o la r fo rm , th e  m ag n itu d e  and  phase
of th e  o u tp u t signal can be exp ressed  as

w here |//(a>)| an d  are  th e  m agn itude  and phase respo n ses o f  th e  system .
B y its very  n a tu re , a fin ite-energy  aperiod ic  signal con ta in s a con tin u u m  of 

frequency  com p o n en ts . T h e  lin ear tim e-invarian t system , th ro u g h  its frequency  
response  function , a tte n u a te s  som e frequency  com p o n en ts  of th e  inp u t signal and 
am plifies o th e r  freq u en cy  com ponen ts . T hus the  system  acts as a fi l ter to  the  inpu t 
signal. O b se rv a tio n  o f  th e  g raph  of \H(to)\  show s w hich freq u en cy  com p o n en ts  
are  am plified  an d  w hich are  a tten u a ted . O n  the  o th e r  hand , th e  angle o f H(a>) 
d e te rm in es  th e  ph ase  sh ift im p arted  in th e  con tin u u m  o f frequency  com p o n en ts  of 
th e  in p u t signal as a function  o f frequency . If  th e  in p u t signal sp e c tru m  is changed  
by th e  system  in an  u n d esirab le  way, we say th a t the system  has caused  magni tude  
an d  phase  distortion.

W e also o b se rv e  th a t the output  o f  a l inear time-invariant  sys tem cannot  con ­
tain f re quency  componen t s  that  are not  contained in the input  signal.  I t takes e ith e r  
a lin ear tim e*variant system  o r a n o n lin ea r  system  to  c rea te  freq u en cy  com ponen ts 
th a t a re  n o t necessarily  co n ta in ed  in th e  in p u t signal.

F igure 4.39 illu stra tes th e  tim e-dom ain  and  frequen cy -d o m ain  relationsh ips 
th a t can be u sed  in th e  analysis o f B IB O -stab le  L T I system s. W e observe  tha t 
in tim e-dom ain  analysis, we deal w ith th e  convo lu tion  o f th e  inpu t signal w ith 
th e  im pulse resp o n se  o f th e  system  to  o b ta in  th e  o u tp u t se q u en ce  o f th e  system . 
O n  th e  o th e r han d , in freq u ency-dom ain  analysis, we deal w ith  the  inp u t signal 
sp ec tru m  X(a))  an d  th e  frequency  resp o n se  H(co) o f th e  system , w hich are  re la ted  
th ro u g h  m ultip lica tion , to  yield th e  spectrum  of th e  signal a t th e  o u tp u t o f the 
system .

W e can  use th e  re la tio n  in (4.4.30) to  d e te rm in e  the  sp ec tru m  Y(u>) o f the 
o u tp u t signal. T h en  th e  o u tp u t sequence  {v(«)} can b e  d e te rm in ed  from  the  inverse 
F o u rie r  tran sfo rm

H ow ev er, th is m e th o d  is se ldom  used. In stead , th e  z-transfo rm  in tro d u ced  in 
C h a p te r  3 is a s im p ler m e th o d  fo r solving th e  p ro b lem  of d e te rm in in g  th e  o u tp u t 
seq u en ce  {y(n)}.

|y M !  =  I / /M I IX M 1  

4-Y (o>) — +  4 - H( co)

(4.4.31)

(4.4.32)

(4.4.33)

X(w)
X(n) Input

Linear 
time-invariant 

system 
hin), H(a>)

Output v(n) = h(n)+x(n)
KM = ma>)X(a>) F,g“re 4 3 9  Tlme' and

frequency-domain inpul-output 
relationships in LTI systems.



L et us re tu rn  to  th e  basic in p u t-o u tp u t re la tio n  in (4,4.30) and  com pute  the 
sq u a red  m agn itude  o f bo th  sides. T hus we o b ta in

\Y(co)\2 =  \H(oj)\2 \X(co)\2
(4.4.34)

Syy(u}) = \H{ co)\2Sxx{0>)

w here Sxx(oo) and  S vv(cu) a re  the  energy  density  spec tra  o f th e  in p u t and  ou tpu t 
signals, respectively . By in teg ra ting  (4.4.34) o v er th e  frequency  range ( - n ,  n ) ,  we 
ob ta in  the energy  of th e  o u tp u t signal as
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i  r

-  — r
27r J-y,

(cu)da>

(4.4.35)

H  ( co ) |2 S j  x (co) d  co

Example 4.4.5

A linear time-invariant system is characterized by its impulse response 

h( n)  =  (y)"u(n)

Determine the spectrum and the energy density spectrum of the output signal when 
the system is excited by the signal

*(«) =  ( j )"«(«)

Solution The frequency response function of the system

OC
H ( w )  =

1
1 -  \ e - ^

Similarly, the input sequence U(n)) has a Fourier transform

1
X(w)  =

1 — - e ~ JUI

Hence the spectrum of the signal at the output of the system is

Y (co) =  H( w)X( co)

1
(1 -  1 -  

The corresponding energy density spectrum is

=  \Y(<o)\2 =  \H(o>)\2\X(o>)\2 

1
( j  -  coso))(j| -  1 cosa>)



4.4.5 Relationships Between the System Function and 
the Frequency Response Function

F rom  th e  d iscussion in Section  4.2.6 we know  th a t if th e  system  function  H(z)  
converges on th e  un it circle, we can ob ta in  the frequency  resp o n se  o f th e  system  
by evaluating  H( z)  on  the  un it circle. T hus
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In th e  case w here  H( z)  is a ra tio n a l function  of the form  H{z)  =  B(z ) / A( z ) .  we have

w here  the (fli) and  {£>*} a re  real, bu t {ct } and {pk} m ay be com plcx-valucd.
It is som etim es des irab le  to  express the m agn itude  sq u a red  of H(a>) in term s 

o f H(z) .  First, we no te  th a t

It follow s th a t H*(w)  is o b ta in ed  by evaluating  H*(1/z*)  on the unit circle, w here 
fo r a ra tio n a l system  function .

*=i

H ow ever, w hen  {*(«)} is rea l or, equ ivalen tly , the  coefficients {a*} and {bk} are  
real, com plex-valued  p o les and  zeros occur in com plex -con jugate  pairs. In  this

(4.4.36)

(4.4.37)

M

(4.4.38)

]~~[U -  pk? /<")

|f f(a O r  =  H{w)H*(u>)

F o r th e  ra tio n a l system  function  given by (4.4.38). we have

M

ft (4.4.39)

M

(4.4.40)



case. H*{  1/;*) =  H ( z ~ l ). C onsequen tly , H'(a>) =  and

| H(co)\2 =  H{oj)H*{oj)  =  H(w)H( - o>)  =  (4.4.41)

A ccord ing  to  the co rre la tio n  th e o re m  for th e  z -transfo rm  (see T ab le  3.2), the 
function  H ( z ) H ( z ~ l ) is the z -transfo rm  o f th e  au to co rre la tio n  se q uence  {rhh(m)} 
of th e  unit sam ple  response  (/i(n)J. T h en  it follow s from  th e  W ien e r-K h in tc h in e  
th eo rem  th a t \H{w)\2 is th e  F o u rie r  tran sfo rm  of \rhh(m)}.

Sim ilarly, if H( z)  = B( z ) / A( z ) ,  th e  tran sfo rm s D(z)  =  B tz JB tz -1 ) and  C(z)  =  
/4 (;)A (c“ ')  are  the  z-transfo rm s o f the  a u to co rre la tio n  se q u en ces {c/} and  \di\, 
w here

N - |J i

Q =  akak+i — N  < I < N  (4.4.42)
t=o 

M - \t \

d, =  2 2  bkbk+i ~  M  <  / < M  (4.4.43)
Jk=0

Since the system  p aram e te rs  (at) and  {£*} are  rea l valued, it follow s th a t c, — c_/ 
and di =  d-i .  By using th is sym m etry  p ro p erty , \H(u>)\2 m ay be expressed  as
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do + 2 2^2 dk cos kco

\H(co)\2 = ----------^ --------------  (4.4.44)ri
co 4- 2 ^  ' c'jt cos k.u) 

i = 1
F inally, we no te  th a t c os kw  can be exp ressed  as a p o lynom ial function  of 

cosoj. T hat is,
t

cos kco =  ^ / U c o s a , ) "  (4.4.45)
m=0

w here [j3m] a re  the coeffic ients in th e  expansion . C onseq u en tly , the n u m era to r  
and d en o m in a to r o f \H(u))\2 can be v iew ed as po lynom ial func tio n s o f coso;. The 
follow ing exam ple illu stra tes th e  fo rego ing  re la tionsh ips.

Example 4.4.6

Determine for the system

y(n) =  — 0.1 v(n — 1) +  0.2 y(n —2 ) + x (n) + x(n — 1)

Solution The system function is

1 4  : ~ l

H(Z) ~  1 4  0 . 1 - “ - 0 . 2 : - 2 
and its ROC is |z| > 0.5. Hence H{od) exists. Now

1 + z“ ‘ 1 + z

1 + 0 .1 Z '1 - 0 .2 z - 2 1 4- O.lz -  0.2z2

2 4- z +  z 1
1.05 +  0.08(z 4- z_1) -  0.2(z~2 +  z-2)



By evaluating H{z)H(z~' )  on the unit circle, we obtain

2 -j- 2 cos w
\H(u>)~ =  ---------------------------------------

1.0^ -i- 0.16cos w — 0.4 cos 2w

However, cos2w =  2cos: w — 1. Consequently. |H(u>)\2 may be expressed as

2(1 cos u>)
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1.45 4  0.16cosw -  0 .8cos:

W e no te th a t given H ( z ), it is s tra igh tfo rw ard  to  d e te rm in e  H ( z ~ l ) and  then  
|/ /{ w ) |2. H ow ever, the  inverse p rob lem  of de term in ing  H( z)  g iven 1 / / (cu)]2 or the 
co rre spond ing  im pulse response {/?(«))- is no t stra igh tfo rw ard . Since |//(a> )l: does 
no t con tain  the phase in form ation  in H(a>), it is no t possible to  uniquely  determ ine
H  ( :) .

T o  e lab o ra te  on the  point, let us assum e th a t the  N  po les and  M  zeros of 
H{z)  are  [pk] and  {;.*). respectively. T h e  co rrespond ing  poles and zeros o f H ( z ~ ]) 
are  (1 jp^  j and  ll/c*. }, respectively. G iven \H(u>)\2 o r, equ ivalen tly . H ( z ) H ( z ~ l ). we 
can d e te rm in e  d ifferen t system  functions H(z)  by assigning to  H(z) .  a pole pt  o r 
its recip rocal 1 f p k . and a zero  zt  o r its recip rocal 1 fzk- F or exam ple, if A" =  2 and  
M  =  1. the po les and zeros of H l z ) H ( : _ l ) are  [p j. p z , 1 / p \ ,  l / p z )  and  (~ i, 1 /c i}. If 
p i and  pz are real, the possible poles for H(z.) a re  {pi. 1. U /P i • 1 /P :K  i / ' i • 1 / / ’:}. 
and  [/52. 1 //>]} and  the possible zeros are {~i) o r {1 / - 1}, T h e re fo re , th e re  are eight 
possible choices of system  functions, all o f which resu lt in the sam e j//(a> )|: . Even 
if we restric t the  poles of H(z)  to be inside th e  unit circle, the re  are  still tw o 
d iffe ren t choices for H(z) .  depend ing  on w h e th er we pick  th e  zero  j;i}  o r { l/:.i). 
T h e re fo re , we canno t d e te rm in e  H{z)  uniquely  given only th e  m agn itude  response 
\ H ( w ) \ .

4.4.6 Computation of the Frequency Response Function

In evaluating  the m agn itude  response  and the  ph ase  response  as functions o f f re ­
quency, it is con v en ien t to  express H ( oj) in te rm s of its po les and zeros. H ence  
we w rite H(co) in fac to red  form  as

M
n  a - z t e - i wk)

H(co) =  -------------------- (4.4.46)

f ] (  1 -  p ke->°*) 
k = 1

or, equ ivalently , as
M

]"~[(eJ“ -  pk)

H  M  =  b0eJU’^ - M) -------------------  (4.4.47)
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L et us exp ress the com plex-valued factors in (4.4.47) in p o la r  form  as

ej a - Z k  =  Vk (co)ejB*M  (4.4.48)

and

eJ0J -  p k =  Uk (a>)e]*k(m) (4.4.49)

w here

V*(w) s  \eJW -  z*|, &k(co) =  4. (eJW -  zk) (4.4.50)

and

Uk(co) =  \eJ“ -  p kI, =  %.(eJW -  p k) (4.4.51)

T he m agn itude  o f H(w)  is equal to  th e  p ro d u c t o f m ag n itu d es of all te rm s in 
(4.4.47). T hus, using (4.4.48) th rough  (4.4.51), we ob ta in

Vi(£») ■ • ■ VM(co)
\H(co)\ =  |fr0l------ — -------  -  ■ (4.4.52)

V\ (co)U2((o) ■ ■ ■ Un(co) ’

since the  m agn itude  o f eJM(N~M) is 1.
T he phase o f H(to)  is the  sum  of the p hases o f th e  n u m e ra to r  factors, mi­

nus the phases o f the  d en o m in a to r  factors. T hus, by com bin ing  (4.4.48) through  
(4.4.51), we have

2̂ H ( c o )  — 4-bo +  co(N -  M )  +  0 i (co) +  0T(dti) +  • ■ ■ +  &m(oj)
(4.4.53)

— [<t>i(a>) +  <I>2(^) +  ■ • ■ +  $>(o>)]

T he phase o f th e  gain term  is ze ro  o r jt,  dep en d in g  on w h e th e r  bo is positive or 
negative. C learly , if we know  the  zeros and  th e  poles o f the  system  function  H(z),  
we can evaluate  th e  frequency  response  from  (4.4.52) and (4.4.53).

T h ere  is a geo m etric  in te rp re ta tio n  of th e  q u an tities  ap p ea rin g  in (4.4.52) 
and  (4.4.53). L e t us consider a po le  p k and  a ze ro  z* located  a t p o in ts A  an d  B 
o f th e  z-p lane, as show n in Fig. 4 .40(a). A ssum e th a t we w ish to  com pu te  H{io) 
a t a specific value o f  frequency  co. T h e  given value o f  co d e te rm in es  the  angle of 
ejw w ith th e  positive real axis. T h e  tip  o f th e  v ec to r e specifies a po in t L  on  the 
unit circle. T he evalu a tio n  o f the  F o u rie r  tran sfo rm  for the  g iven value of co is 
equ ivalen t to  evaluating  the  z -transfo rm  at the  p o in t L  o f the  com plex  p lane . Let 
us d raw  the  vecto rs A L  an d  B L  from  th e  po le  and ze ro  locations to  th e  p o in t L, at 
which we wish to  co m p u te  th e  F o u rie r  tran sfo rm . F rom  Fig. 4 .40(a) it follow s that

C L  =  C A  +  A L

and

C L  =  C B  +  B L

H ow ever, CL =  ej<u, C A  =  p k and  CB =  zk. T hus

and

AL =  ej * -  p k (4.4.54)

BL =  e JW -  z k (4.4.55)
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ImU)

(a)

im(r)

Figure 4.40 Geometric interpretation 
of the contribution of a pole and a zero 
to the Fourier transform (1) magnitude: 
the factor V* /  Vk, (2) phase; the factor 
©* -  <t>*-

By com bin ing  these  re la tio n s w ith (4.4.48) and  (4.4.49), we o b ta in

AL =  eJ<u -  p k =  Uk{co)eJ*kM (4.4.56)

BL =  eJ*  — Zk =  Vk (aj)ejStUu) (4.4.57)

T hus Uk(a>) is th e  length  o f AL, th a t is, th e  d istance o f th e  po le  p k from  th e  poin t 
L  co rre sp o n d in g  to  e}w, w h ereas Vk(cu) is th e  d istance  o f  the  ze ro  zk from  th e  sam e 
p o in t L.  T h e  p hases <!>*(&>) and  Q*(a>) a re  th e  angles o f  th e  v ecto rs AL and  BL
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Im(c)

Pt = e>^‘ Zt  =

m z )

Figure 4.41 A zero on the unit circle 
causes |f/((u)| -  0 and w  =  4-Zk- In 
contrast, a pole on the unit circle results 
in \H{w)\ =  00  at w = 4-Pt-

w ith the  positive rea l axis, respectively . T h e se  geom etric  in te rp re ta tio n s  are  shown 
in Fig. 4.40(b).

G eo m etric  in te rp re ta tio n s  are  very useful in u n d e rs tan d in g  how  the  location 
o f po les and zeros affects th e  m agn itude  and  phase  o f th e  F o u rie r  transform . 
Suppose th a t a zero , say z*. and  a pole, say  p k, a re  on  the  unit circle as show n in 
Fig. 4.41. W e no te  th a t at w =  4z* , Vk(co) and  co nsequen tly  |H(co)\ becom e zero. 
Sim ilarly, a t to =  4-pk th e  leng th  Uk(w) becom es ze ro  an d  h ence  \H(co)\ becom es 
infinite. C learly , the  evaluation  o f ph ase  in these  cases has n o  m eaning .

F rom  th is discussion we can easily see th a t th e  p resence  o f  a zero  close to 
the  un it circle causes the m agn itude  o f the frequency  re sp o n se , a t frequencies 
th a t co rre sp o n d  to  p o in ts o f th e  un it circle close to  th a t p o in t, to  be small. In 
co n trast, th e  p resen ce  o f a po le  close to  th e  u n it c ircle causes th e  m agn itude  of 
the  frequency  resp o n se  to  be large a t freq u en c ies close to  th a t p o in t. T hus poles 
have th e  opp o site  effect o f zeros. A lso , p lacing  a ze ro  close to  a po le  cancels 
the  effect o f th e  pole, and vice versa. T h is can b e  also  seen  fro m  (4.4.47), since 
if Zk =  Pk, th e  te rm s eJW -  z* and  ejb> — pk cancel. O bviously , th e  p resence  of 
b o th  po les and  zero s in a transfo rm  resu lts in a g re a te r  v arie ty  o f shapes for 
\H(to)\  an d  ^H(co) .  T his observ a tio n  is very im p o rta n t in th e  design  o f digital 
filters. W e conclude o u r discussion w ith th e  follow ing exam ple  illu stra ting  these 
concepts.

Example 4.4.7

Evaluate the frequency response of the system described by the system function
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S olu tion  Clearly. H(z)  has a zero at ;  =  0 and a pole at p = 0.8. Hence the 
frequency response of the system is

H (w) =
el-  -  0.8 

The magnitude response is

1
| H (to) j =

\e-lw -  0.8| Vl-64 — 1.6cose 

and the phase response is
sin oj

B(co) = ui — tan
cos oj -  0.8

The magnitude and phase responses are illustrated in Fig. 4.42. Note that the peak 
of the magnitude response occurs at as  = 0. the point on the unit circle closest to the 
pole located at 0.8.

If th e  m agn itude  response  in (4.4.52) is expressed  in decibels,
M \

\H(co)\lllt =  2 0 log ,(l |/j()| +  2 0 5 2  l°g.jci v/a M  -  2 o 5 2 logui (4.4.58)
A=1 i - l

T hus the m agn itude  response is expressed  as a sum of the  m agnitude factors in 
| H i w )!.

4.4.7 Input-Output Correlation Functions and Spectra

In Section 2.6.5 we developed  several co rre la tio n  re la tionsh ips betw een the input 
and  the o u tp u t sequences o f an LTI system . Specifically, we derived  the follow ing 
eq uations:

r vv(m) =  rhh(m) * r xx(m)  (4.4.59)

ryx( m ) =  h(m)  * rxx(m)  (4.4.60)

w here rxx(m)  is th e  au to co rre la tio n  sequence  of the  inpu t signal {-*(/?)), ryv(m) is 
the au to co rre la tio n  sequence  o f the  o u tp u t {.y(n)K rhh(m ) is the  au to co rre la tio n  se­
q u en ce  of the im pulse response  {Ai(/t)}. and  ryx(m)  is th e  c rossco rre la tion  sequence  
b e tw een  the  o u tp u t and th e  inpu t signals. Since (4,4.59) and  (4.4.60) involve the 
convo lu tion  o p e ra tio n , the z-transfo rm  of these  eq u a tio n s yields

Svvf;) =  5m ( : ) 5 „ ( c)

=  H ( z ) H ( z ~ 1)Sxx(z)
(4.4.61)

SVJr(z) =  H ( z ) S „ ( z )  (4.4.62)

If we su b stitu te  z =  eJW in (4,4.62), we ob tain

S y j c M  =  H(os)Sxx(oj)

=  H(o>)\X(o>)\2
(4.4.63)
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- T _ t  o I  r Figure 4.42 Magnitude and phase of
2 2 system with H(z)  =  1/(1 -  0 .8 ; -1).

w here Syx(u>) is the cross-energy  density  spectrum  of [y(n)} and  (jc(/7)}. Similarly, 
evaluating  Svv(z) on  the  un it circle yields the energy  d ensity  sp ec tru m  o f th e  ou tpu t 
signal as

S v v M  =  | / / ( w) |2S „ M  (4.4.64)

w here Sxx(a>) is the energy  density  spectrum  o f the  inpu t signal.
Since ryy(m)  and  Syy(co) a re  a F o u rie r  tran sfo rm  pair, it fo llow s that

ryy(m) =  ~  j  Syy(co)ejumdco (4.4.65)
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T he to ta l energy in the o u tp u t signal is sim ply

Ey — ---  f  Syy{CO)dlO = T,. v (0 >

~jT (4.4.66)
i r

=  —  I \H(to)\ '  S xx(cv)dcv
J-*

T he resu lt in (4.4.66) m ay be used to  easily prove th a t £ v > 0.
Finally , we no te  th a t if the inpu t signal has a flat sp ectrum  [i.e.. 5 v., (w) =  

£ ,  =  constan t fo r n  <  co <  — t t ] ,  (4.4.63) reduces to

5 ,v(oj) =  H { w) E x (4.4.67)

w here £ ,  is the constan t value o f the spectrum . H ence

H ( w ) =  — 5’vv(w) (4.4.68)E \
o r. e q u iv a le n tly .

h(n)  — —  r yxim)  (4.4.69)

T he re la tion  in (4,4.69) im plies that Inn)  can be dete rm in ed  by exciting the input 
to the system  by a spectrally  flat signal ja («)), and c rossco rre la ting  the inpu t with 
the o u tp u t o f the system . T his m eth o d  is usef ul in m easuring  the  im pulse response 
o f an unknow n svstem .

4.4.8 Correlation Functions and Power Spectra for 
Random Input Signals

This d ev e lo p m en t para lle ls the derivations in Section 4.4.7, w ith the excep tion  tha t 
we now  deal w ith sta tistical m om en ts o f the inpu t and  o u tp u t signals o f an LTI 
system . T h e  various sta tistical p aram e te rs  are  in tro d u ced  in A pp en d ix  A .

L et us consid er a d isc re te-tim e lin ear tim e-invarian t system  with unit sam ple 
response  (/z(n)} and frequency  response  H ( f ) .  F o r this d ev e lo p m en t we assum e 
th a t {/?(«)} is real. L et _*•(«) be a sam ple function  of a s ta tio n a ry  ran d o m  process 
X(n )  th a t excites the system  and let y(/;) d en o te  the  response  o f the system  to xin) .  

F rom  the  convolu tion  sum m ation  th a t re la tes the  o u tp u t to  the  inpu t we have

OC

v(n) =  5 2  h ( k ) x ( n — k)  (4.4.70)
Jt = -  oc

Since jc(n) is a ran d o m  inpu t signal, the  o u tp u t is also a ran d o m  sequence. In o th e r  
w ords, for each sam ple sequence  x(n)  o f the process X ( n ), th e re  is a  co rrespond ing  
sam ple seq u en ce  v(n) o f the  o u tp u t ran d o m  process Y(n) .  W e wish to  relate  
th e  sta tis tical ch aracteristics o f the  o u tp u t ran d o m  process Y(n)  to  the  statistical 
ch a rac te riza tio n  o f the  in p u t p rocess an d  the  characteristics o f the  system .



T he expected  value o f the o u tp u t y(n) is
OC

m v s= £ [y (n )] =  E[ 22 h(k)x{rt — fc)]
k ~  — rx.

oc

= 22 A (* )£ 0 (n  - * ) ]  (4.4.71)
A=^oc

cc

m y = m x 22 h(k)
k ——oc

F rom  th e  F o u rie r transfo rm  re la tionsh ip
CC

H{u>)= 22 * (*)*"-'“* (4.4.72)
k = -  oc

we have
OC

H ( 0) =  22 h (*) (4.4.73)
A — — DC

w hich is the  dc gain o f the system . T he re la tio n sh ip  in (4.4.73) allow s us to  express 
the m ean  value in (4.4.71) as

m y = m xH{  0) (4.4.74)

T he au to co rre la tio n  sequence for the  o u tp u t ran d o m  p rocess is 

yyy(m) — £ [y * (n )y (« + m )]
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-- E 2 2  h(k)x*(n ~  k) Y 2  + m -  j )
_k — — OQ 

OC OC

=  2 2  V .  h(k)h( j )E[x*{n  -  k)x(rt  -f- m  -  _/)]
(4.4.75)

£  =  — CC  _/ =  —OC

OC cc

=  22 Y2 h(k'>hU)Yxx(k -  j + m)
k= — co cc

T his is th e  general fo rm  for th e  au to co rre la tio n  o f th e  o u tp u t in term s of the 
au to co rre la tio n  o f the inp u t and  th e  im pulse response  o f the  system .

A  special fo rm  of (4.4.75) is ob ta in ed  w hen the  in p u t ran d o m  process is white, 
th a t is, w hen  m , =  0 and

Yxx(m) =  o’j S ( m)  (4.4.76)

w here ox =  ^ j(O )  is the  inpu t signal pow er. T hen  (4.4.75) red u ces  to
OC

Y y y ( m )  =  <72 22 h{k)h{k + m)  (4.4.77)
t = - o c

U n d er this cond ition  th e  o u tp u t process has the  average  pow er

M O )  =  ^  £  h ^ n)  =  (4-4.78)
n=-e» J - 1/2

w here we have ap p lied  P a rsev a l’s th eo rem .
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T he re la tio n sh ip  in (4.4.75) can be tran sfo rm ed  in to  th e  frequency  dom ain  
by dete rm in in g  th e  pow er density  spectrum  of yvv(m). W e have

r vvM  =  22 /vv

=  E E  E  h(k)h( l )Y, A k  -  I +  m)
k ^ —oo  i  =■—dc

E  E  h{k)h(l )
k =  — CC I =  — DC

=  r r, ( / )

V  Yxx(k — I +  m)e

OC

£  h { l ) e - ]wl

(4.4.79)

2 2  h{k)eJwk
^k= -c c

=  tw (tu )|-r^ .v(w)

T his is the desired  re la tio n sh ip  for the po w er density  spectrum  of th e  o u tp u t p ro ­
cess, in te rm s of th e  pow er density  spectrum  of the in p u t p rocess and the frequency  
response  o f the system .

T h e  eq u ivalen t expression  fo r con tinuous-tim e system s w ith ran d o m  inpu ts is

r vv(F ) =  \ H{ F) \ 2r xA F )  (4.4.80)

w here th e  pow er density  sp e c tra  T w ^ )  and T „ ( F )  are the F o u rie r transfo rm s 
o f the  au to co rre la tio n  functions y vv( T )  and  yJ t ( r ) ,  respectively , and  w here  H{F)  
is th e  frequency  response  of the system , w hich is re la ted  to  the  im pulse response  
by the  F o u rie r  tran sfo rm , th a t is.

H ( F ) - fJ-C
h( t )e - j2n Fi dt (4.4.81)

A s a final exercise , we d e te rm in e  the  c rossco rre la tion  o f the  o u tp u t v(n) with 
the  in p u t signal jcOi). If we m ultip ly  b o th  sides o f (4.4.70) by x*(n — m)  an d  take  
the  expected  value , we o b ta in

£ [v (n  )-**(« — wz)] =  E y  h(k)x*{n — m)x(n  — k)
=  —OC

yVJ(m) =  2 2  h(k)E[x*(n — m) x(n  — k)]
=  —CC

OC

=  2 2  h( k ) Yxx ( m -  k)

(4.4.82)

Since (4.4.82) has th e  fo rm  of a convolu tion , the frequency-dom ain  equ ivalen t 
exp ression  is

r„(w ) =  ff(<u)r„(<u) (4.4.83)
In the special case where x ( n ) is white noise, (4.4.83) reduces to

r y, M  =  a 2x H{a> ) (4.4.84)
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w here a 2 is the  inp u t noise pow er. T h is resu lt m eans th a t an u n k n o w n  system  with 
frequency  response H(w)  can be identified  by exciting the  in p u t w ith  w hite noise, 
c rosscorrelating  th e  inp u t sequence  w ith th e  o u tp u t sequence  to  o b ta in  yVjr(m), and 
finally, com puting  th e  F o u rie r  tran sfo rm  o f yyx(m).  T he  resu lt o f these  co m p u ta­
tions is p ro p o rtio n a l to  H{co).

4.5 LINEAR TIME-INVARIANT SYSTEMS AS FREQUENCY-SELECTIVE 
FILTERS

T h e  te rm  f i lter is com m only  used to  describe a device th a t d isc rim inates, accord­
ing to  som e a ttr ib u te  o f the  ob jects app lied  at its inpu t, w hat passes th ro u g h  it. 
F o r exam ple, an a ir  filter allow s a ir to  pass th ro u g h  it bu t p rev en ts  d ust p a r­
ticles th a t  are  p re se n t in th e  a ir from  passing th rough . A n  oil filter perform s 
a sim ilar function , w ith  the  excep tion  th a t oil is the  substance  allow ed to  pass 
th rough  the  filter, w hile partic les o f dirt are  co llected  a t th e  in p u t to  th e  filter 
and  p rev en ted  from  passing  th rough . In  p h o to g rap h y , an u ltra v io le t filter is of­
ten  used to  p rev en t u ltrav io le t light, which is p re sen t in sun ligh t and  which is not 
a p a rt o f visible light, from  passing  th ro u g h  and  affecting  the  chem icals on the 
film.

A s we have o b se rved  in the  p reced ing  section , a linear tim e-in v arian t system  
also p erfo rm s a type  o f d isc rim ination  o r filtering am ong the  various frequency 
com ponen ts a t its input. T h e  n a tu re  o f th is filtering action  is d e te rm in ed  by the 
frequency  response  characteristics H{co), w hich in tu rn  d ep en d s  on  th e  choice of 
the system  p a ram e te rs  (e.g., th e  coeffic ients (at ) and  [bk ] in th e  d ifference  equation  
characteriza tion  o f th e  system ). T hus, by p ro p e r  selection  o f th e  coefficients, we 
can design  frequency-selective filters th a t pass signals w ith freq u en cy  com ponen ts 
in som e bands w hile they  a tte n u a te  signals con ta in ing  freq u en cy  com p o n en ts  in 
o th e r  frequency  bands.

In  general, a lin ear tim e-invarian t system  m odifies th e  in p u t signal spec­
trum  X((o)  according to  its frequency  response  H(co) to  yield an o u tp u t signal 
w ith spectrum  Y(to) =  H(o>)X(cl>). In  a sense, H(co)  acts as a weight ing f u n c ­
tion o r a spectral  shaping funct ion  to  th e  d ifferen t frequency  co m p o n en ts  in the 
inp u t signal. W h en  view ed in th is con tex t, any lin ear tim e-in v arian t system  can 
be considered  to  be a frequency-shap ing  filter, even th o u g h  it m ay  n o t necessar­
ily com pletely  b lock any  o r  all frequency  com ponen ts . C o n seq u en tly , the  term s 
“ linear tim e-invarian t system ” and  “filte r” a re  synonym ous an d  a re  o ften  used 
in terchangeab ly .

W e use th e  te rm  f i l ter  to  describe a  linear tim e-in v arian t system  used  to 
perfo rm  spectra l shap ing  o r  frequency-selective filtering. F ilte rin g  is u sed  in dig­
ital signal processing  in a v arie ty  o f ways. F o r exam ple, rem oval o f undesirab le  
noise from  d esired  signals, sp ec tra l shap ing  such as eq u a liza tio n  o f  com m unication  
channels , signal d e tec tio n  in rad a r , sonar, an d  com m unications, an d  fo r perform ing  
spectra l analysis o f signals, an d  so on.
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4.5.1 Ideal Filter Characteristics

Filters are  usually  classified according to  th e ir  freq uency-dom ain  characteristics 
as low pass, h ighpass. bandpass, and b an d sto p  o r band -e lim in a tio n  filters. The 
ideal m agn itude  response  characteristics o f these types o f  filters are  illustrated  
in Fig. 4.43. A s show n, these ideal filters have a constan t-g a in  (usually  taken  as 
unitv-gain) passband  charac te ris tic  and  ze ro  gain in th e ir stopband .

Lowpass

I Hu»)\ 
I

\HUo) I

Hiphpa*

- n  — — a>0 — ai] 0 cu, iii(|Wi n  

t

Bandpass

~o>„ 0

Bandstop

All-pass
Figure 4.43 Magnitude responses 
for some ideal frequency-selective 
discrete-time filters.
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A n o th e r  characteristic  o f an ideal filter is a lin ear phase response . T o  dem on­
stra te  this po in t, let us assum e th a t a signal sequence  (■*(/?)} w ith  frequency  com­
p o n en ts  confined to  the  frequency  range coj < w  < un is passed  th rough  a filter 
w ith frequency  response

H(co) =  J JWnv' < c o < c ^  (4_5
[ (J, otherw ise

w here C and are  constan ts. T he signal a t th e  o u tp u t o f th e  filte r has a spectrum

Y( co) =  X(co)H(co)
(4.5.2)

-  CX(co)e }tL""’ u>\ < co < co2

By applying the  scaling and  tim e-shifting  p ro p e rtie s  o f the F o u rie r  transform , we 
ob ta in  the tim e-dom ain  o u tp u t

v(ri) =  Cx(n  -  h0) (4.5.3)

C onsequently , the filter o u tp u t is sim ply a de layed  and  am plitu d e-sca led  version  of 
the  inpu t signal. A  p u re  delay  is usually to le rab le  and  is no t co n sid ered  a distortion 
of the signal. N e ith er is am plitude  scaling. T h e re fo re , ideal filters have a linear 
phase characteristic  w ithin th e ir  passband , th a t is.

0(a>) =  —cori(i (4.5.4)

T he derivative o f the phase  w ith respec t to  frequency  has the  units o f delay. 
H en ce  we can define the  signal delay as a function  o f freq u en cy  as

d&(a>) .
1 ( o j )  = --------- ----------  (4.5.5)

aco
Zg(co)  is usually called the envelope delay  o r the  group delay  o f the filter. We 
in te rp re t zg(co) as the  tim e delay th a t a signal co m p o n en t o f freq u en cy  co undergoes 
as it passes from  the inpu t to  the  o u tp u t o f the system . N o te  th a t w hen 0(co) is 
linear as in (4.5.4), rs (a)) — no =  constan t. In th is case all freq u en cy  com ponents 
of th e  inpu t signal u n d erg o  th e  sam e tim e delay.

In conclusion , ideal filters have a co n stan t m agn itude  ch arac te ris tic  and  a 
linear phase ch aracteristic  w ith in  th e ir  passband . In  all cases, such filters are  not 
physically rea lizab le  b u t serve as a m ath em atica l idealiza tion  o f  p rac tica l filters. 
F o r exam ple, th e  ideal low pass filter has an im pulse response

sin coc7Tn
hip(n) — ------------  — 00 <  /7 <  00 (4.5.6)

n n
W e n o te  th a t th is filter is n o t causal and it is n o t abso lu te ly  su m m ab le  and  th ere fo re  
it is a lso  unstab le . C onsequen tly , this ideal filter is physically  un realizab le . N ev­
e rtheless , its frequency  response  characteristics can  be ap p ro x im a ted  very  closely 
by practical, physically  rea lizab le  filters, as will be d em o n s tra te d  in C h a p te r  8.

In  the follow ing d iscussion , we tre a t th e  design o f som e sim ple d igital filters 
by th e  p lacem en t o f po les and  zeros in th e  z-p lane. W e hav e  a lread y  described 
how  the  location  o f poles and  zeros affects the  frequency  re sp o n se  characteristics
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of the system . In p articu lar, in Section 4.4.6 we p resen ted  a g raph ica l m eth o d  for 
com pu ting  the frequency  response  characteristics from  the p o le -z e ro  p lo t. This 
sam e ap p ro ach  can be used to  design a num b er o f sim ple bu t im p o rta n t digital 
filters w ith d esirab le  frequency  response  characteristics.

T he basic princip le  underly ing  the p o le -z e ro  p lacem en t m e th o d  is to  locate 
poles n ea r po in ts  of the unit circle co rrespond ing  to  frequencies to be em phasized , 
and  to  place zeros n ea r  the  frequencies to  be deem phasized . F u rth e rm o re , the 
follow ing co n stra in ts  m ust be im posed:

1. All po les should  be p laced  inside the unit circle in o rd e r  fo r the filter to  be 
stable . H o w ev er, zeros can be p laced  anyw here in the z-p lane.

2. A ll com plex zeros and  poles m ust occur in com plex-con jugate  pairs in o rd er 
fo r th e  filter coefficients to  be real.

F rom  ou r p rev ious discussion we recall th a t for a given p o le -z e ro  p a tte rn , 
the system  function  H i : )  can be expressed  as

w here bi} is a jiain constan t selected  to norm alize the frequency  response  at som e 
specified frequency . T hat is, bo is se lec ted  such that

w here is a frequency  in the  passband  o f the filter. U sually , N  is se lec ted  to 
equal o r exceed M , so th a t th e  filter has m ore  non triv ial po les th an  zeros.

In the  next section , we illustrate  the m eth o d  o f  p o le -z e ro  p lacem en t in the 
design  of som e sim ple low pass. highpass. and  bandpass filters, d igital resonato rs, 
and  com b filters. T he design p ro ced u re  is facilita ted  w hen carried  o u t in terac tive ly  
on a d igital co m p u te r  with a graphics term inal.

4.5.2 Lowpass, Highpass, and Bandpass Filters

In the  design  of low pass digital filters, the  poles shou ld  be p laced  n e a r  the unit 
circle at po in ts  co rre sp o n d in g  to  low frequencies (n ea r  cm =  0) and zeros should 
be p laced  n ea r  o r on the  un it circle at po in ts co rre sp o n d in g  to  high frequencies 
(n ea r  co =  t t ) .  T h e  opposite  holds tru e  fo r h ighpass filters.

F igure 4.44 illustrates the p o le -z e ro  p lacem en t o f th re e  low pass and  th ree  
h ighpass filters. T h e  m agn itude  and phase  responses fo r the sing le-po /e filter with 
system  function

(4.5.7)

| H  ( cl>o ) | =  1 (4.5.8)
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Highpass

Figure 4.44 Pole-zero patterns for several lowpass and highpass fillers.

are illustra ted  in Fig. 4.45 fo r a =  0.9. T he gain G was se lec ted  as 1 — a, so that 
the  filter has unity  gain a t co =  0. T h e  gain of this filter a t h igh  frequencies is 
re latively  small.

T he add ition  o f a zero  a t z =  — 1 fu rth e r  a tte n u a te s  the re sp o n se  o f th e  filter 
a t high frequencies. T his leads to  a filter w ith a system  function

H 2 ( z )  =  1-~  ~ ~  ~l~~' . (4.5.10)
2 1 — az~

and  a frequency  response  charac te rstic  th a t is also illu stra ted  in Fig. 4.45. In  this 
case th e  m agnitude o f H2(co) goes to  zero  a t co =  n.

Sim ilarly, we can  ob ta in  sim ple h ighpass filters by reflec ting  (fo ld ing) the 
p o le -z e ro  locations o f th e  low pass filters ab o u t th e  im aginary  axis in the z-plane. 
Thus we ob tain  the  system  function

H i ( z ) = l- ~ a \  (4.5.11)
2 1 -f a z ~ [

which has th e  frequency  response  ch aracteristics illu stra ted  in Fig. 4.46 fo r a =  0.9. 

Example 4.5.1
A two-pole lowpass filter has the system function

b0
W(z) =

(1 -  p z - ' ) 2
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Figure 4.45 Magnitude and phase 
response of (1) a singie-pole filter 
and (2) a one-pole, one-zero 
filter; Wi(;) =  (1 -  a)/(  1 — a ; ' 1),
Hj(z) =  [(1 — a)/2 ][(l +  r~*)/(l -  a ; -1 )] 
and a =  0.9.

Determine the values of h{> and p such that the frequency response H(w) satisfies the 
conditions

H(0) =  1
and

I / K \  I2 1r W I = 2
Solution At o) =  0 we have

H(0) =  =  1

Hence
(1 -  p )2 

bo =  (1 -  p Y
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At w =  tt/4.

( 1 )  =  (1 ~ P?  
v 4 /  (1 — pe~i*/4)2

Figure 4.46 Magnitude and phase 
response of a simple highpass fitter;
H(C) =  [(1 -  a )/2 ][(l -  z - ' ) / ( l  +  a z - 1)] 
with a =  0.9.

(1 ~ P)2

Hence

(1 -  p  cos(;r/4) +  j p  sin (tt/4))2 

(1 -  P)2 

(1 -  pjs /2 + jp/^/2)2

(1 -  p t  1
[(1 -  p /- j2 )2 + p 212]2 2
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or, equivalently.

V ^d  -  p y  =  1 +  p1 -  y ' l p

The value of p =  0.32 satisfies this equation. Consequently, the system function for 
the desired filter is

0.46
H ( z ) (1 -  0.32c 1 )=

T he sam e princip les can be app lied  for the design  of b an dpass filters. B asi­
cally, the b an dpass filter shou ld  con tain  one o r m o re  pairs o f com plex-con jugate  
poles n ea r  the  un it circle, in the vicinity of the  frequency  band  th a t constitu tes  the 
passband  of the filter. T he follow ing exam ple serves to  illustrate  the basic ideas.

E xam p le 4.5.2

Design a two-pole bandpass filler that has the center of its passband at w =  n72. 
zero in its frequency response characteristic at w =  0 and at = n .  and its magnitude 
response is 1 /V 2  at w =  4w /9.

Solu tion  Clearly, the filter must have poles at 

P l :  =  r i b ­

and zeros at — 1 and : = —1. Consequently, the system function is

(: -  1)<: + 1)
/ z o  = a

= c -

(: -  j r)(:  +  j r)

-  1

The gain factor is determined by evaluating the frequency response H(w)  of the filler 
at u> = jr/2. Thus we have

" ( § ) - cr b - >
1 -  r2G _

The value of r is determined by evaluating H(w) at w =  4tt/9. Thus we have 

4tt \  (1 -  r1)2 2 -  2 c o s ( 8 7 t / 9 )  1
9 / |  4 1 4- r4 +  2r2 c o s (8 jt /9 )  2

or. equivalently,

1.94(1 - r 1)1 = 1 -  1 .8 8 r2 +  r 4

The value of r2 =  0.7 satisfies this equation. Therefore, the system function for the 
desired filter is

"<:l = a,5IT5&
Its frequency response is illustrated in Fig. 4.47.



338 Frequency Analysis of Signals and Systems Chap. 4

Figure 4.47 Magnitude and 
phase response of a simple 

_ T x q r  t  bandpass filter in Example 4.5.2;
~ 2  2 H(z) =  0.15[(1 - z ~ 2) / a  + 0 .7 ; - 2)].

It should  be em phasized  th a t th e  m ain  pu rpose  of the fo rego ing  m ethodology  
for designing sim ple digital filters by  p o le -z e ro  p lacem en t is to  p rov ide  insight 
into the  effect th a t po les and  zeros have on th e  frequency  resp o n se  characteristic 
o f system s. T he m ethodo logy  is no t in ten d ed  as a good m e th o d  fo r designing 
d igital filters w ith w ell-specified p assband  and  sto p b an d  characteristics . System atic 
m ethods fo r the design  of soph is tica ted  d ig ita l filters fo r p rac tica l app lica tions are 
d iscussed in C h a p te r  8.

A simple lowpass-to-highpass filter transformation. S uppose  th a t we 
have designed  a p ro to ty p e  low pass filter w ith im pulse response  h\p(n).  B y us-
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ing the frequency  tran sla tio n  p ro p erty  o f the F o u rie r  tran sfo rm , it is possib le to  
convert the p ro to ty p e  filter to  e ith e r  a b andpass or a h ighpass filter. F requency  
tran sfo rm atio n s fo r converting  a p ro to ty p e  lowpass filter in to  a filter of an o th e r  
type are d escribed  in detail in Section 8.3. In th is section  we p resen t a sim ple- 
frequency  tran sfo rm atio n  fo r converting  a low pass filter in to  a h ighpass filter, and 
vice versa.

If /i|p(n) d en o tes  the im pulse response of a low pass filter w ith frequency  
response  H\r (co). a highpass filter can be ob ta in ed  by tran sla tin g  H]P(a>) by t t  radians 
(i.e., replacing  co by co — n ). T hus

w here  H hP(w) is th e  frequency  response  o f the h ighpass filter. Since a frequency 
tran sla tio n  of t t  rad ians is equ ivalen t to  m ultip lication  o f th e  im pulse response 
/iip(;i) by e 177",  the  im pulse response o f the highpass filter is

T h e re fo re , the im pulse response of the h ighpass filter is sim ply o b ta in ed  from  the 
im pulse response  o f the low pass filter by changing the  signs o f the  odd-n u m b ered  
sam ples in inp(n).  C onversely .

^ h p ( ^ )  —  H \ p ( c o  TT ) (4.5.12)

/ihp(n) — (p7't )''/7|p (/7) =  ( — 1 )"/iip(« ) (4.5.13)

=  ( -1  )"/ihp(«)

If the  low pass filter is described  by the  d ifference eq u a tio n

(4.5.14)

(4.5.15)

its frequency  response  is
M

k— 0
(4.5.16)

N ow , if we rep lace  co by co — n ,  in (4.5.16). then

M

tfhpM = --------------
1 + £ ( - 1  )kake~iak

(4.5.17)

w hich co rre sp o n d s to  the d ifference  eq u a tio n

(4 .5 .18)
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Example 4.5.3

Convert the lowpass filter described by the difference equation 
v(n) =  0.9v(n — 1) +  0 .1x0)

into a highpass filter.

Solution The difference equation for the highpass filter, according to (4.5.18), is 
y(n) =  -0 .9v(n -  1) +0.1x(n)

and its frequency response is
0.1-  1 + Q 9e_ju

The reader may verify that H^((o) is indeed highpass.

4.5.3 Digital Resonators

A  digital resonator  is a special tw o-pole b andpass filter w ith the  p a ir  o f com plex- 
con jugate  poles located  n ea r the  unit circle as show n in Fig. 4 .48(a). T h e  m agnitude 
of the  frequency  response  of the  filter is show n in Fig. 4 .48(b). T h e  nam e reso n a to r 
refe rs to  the  fact th a t the filter has a large m agnitude  response  (i.e., it reson a tes) in 
the  vicinity o f th e  po le  location . T h e  angular positio n  of the  po le  d e te rm in es the  
reso n an t frequency  o f the  filter. D igital reso n a to rs  are  useful in m any  applications, 
including sim ple b andpass filtering  and  speech  g enera tion .

In the  design of a digital re so n a to r w ith a re so n an t peak  at o r near to — o>o, 
we se lect the com plex-con jugate  poles at

Pi .2 = r e ±ja* 0 <  r <  1 

In add itio n , we can select up  to  tw o zeros. A lth o u g h  th e re  a re  m any possible 
choices, two cases are  o f special in terest. O ne choice is to  locate  th e  zeros a t the 
origin. T h e  o th e r choice is to  locate  a ze ro  a t z =  1 and  a ze ro  a t z =  —1. This 
choice com pletely  e lim inates the response  o f the  filter a t freq u en c ies co =  0 and 
co =  n ,  and  it is usefu l in m any  practical app lications.

T h e  system  function  o f th e  digital re so n a to r w ith  zeros a t the  origin is

H( z)  = ----------- :------ r ~ -----------:-------r  (4.5.19)
(1 — r e ^ z  )(1 — re  -'“ "z-1 )

H( z)  =  -----------------(4.5.20)
1 — (2r coscwo);-1 +  r 2z ~2

Since \H(co)\ has its p eak  at o r n e a r  co =  coo, w e select th e  gain bo so th a t 
|W(too)I =  1- F ro m  (4.5.19) we ob ta in

b 0
H{(Oo) =  ---------:------- ----- -̂----------:------- :----

(1 -  re j<*,e -J°*>)0. - r e - w e - w )  (4 5 21)
_______________

(1 — r ) ( l  — r e - -'2'00)
and  hence

bo
\H(coo)\ = ------;---I — • - === = 1

(1 — r)V  1 + r 2 — 2r cos2a)o
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2 2 

(b)

— tt _ n 0 £r Tt
2 2 

(c)

Figure 4.48 (a) Pole-zero pattern and
(b) the corresponding magnitude and 
phase response of a digital resonator 
with (1) r — 0.8 and (2) r  =  0.95.
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T hus the  desired  no rm aliza tion  fac to r is

i?o =  (1 — r )> /l  +  r 2 — 2r cos2a>o (4.5.22)

T he frequency  response  o f th e  re so n a to r  in (4.5.19) can be exp ressed  as

bo
\H(a>)\ =  -----------------

Ux(to)U2((o) (4.5.23)
©(w) =  2  to — <J>i (tfj) — <t>2(co) 

w here U\(w)  and  1/2(01) are  th e  m agn itu d es of the  vecto rs from  p\  and  p 2 to  the 
p o in t w  in th e  un it circle an d  <t>i(<w) and <J>2(£d) a re  th e  co rre sp o n d in g  angles of 
these  tw o  vectors. T he m ag n itudes Ui(to) and  U2(co) m ay be ex p ressed  as

Ui(co) =  J \  +  r 2 — 2 r  cos(a>o — to)
(4.5.24)

U2 (<o) =  y / 1 +  r 2 — 2 r  co s(w q  +  co)

F o r any value o f  r ,  U\(to) tak es its m in im um  value (1 — r )  at to =  too- T he 
p ro d u c t U\((o)U2({o) reach es a m in im um  value at th e  frequency

air =  cos-1 coswo^j (4.5.25)

which defines precisely th e  re so n an t frequency  of the  filter. W e o b se rv e  th a t w hen 
r  is very close to  unity , tor a>o, w hich is th e  angu lar position  o f the  pole. W e also 
observe th a t as r  ap p ro ach es unity, the  resonance  p eak  becom es sh a rp e r  because 
U\(to) changes m o re  rap id ly  in relative size in th e  vicinity o f ojo- A  q uan tita tive  
m easu re  o f the  sharp n ess o f the  reso n an ce  is p rov ided  by the  3-dB  bandw id th  A w  
o f the  filter. F o r values o f r  close to  unity .

Aw % 2(1 -  r )  (4.5.26)

F igure 4.48 illu stra tes th e  m agn itude  and  ph ase  o f  d igital reso n a to rs  with 
coq =  n /3 ,  r =  0.8 and  too ~  *73, r  =  0.95. W e n o te  th a t th e  phase  response 
u ndergoes its g rea test ra te  o f change n e a r  th e  re so n an t frequency .

If  th e  zeros o f th e  digital re so n a to r  a re  p laced  a t z =  1 and  z =  — 1, the 
reso n a to r  has the  system  function

(1 - z - ' X l + z " 1)
H( z)  =  G 

= G

(1 — re>aK,z ~ l )( 1 — r e - -'a*»2-1 ) 

1 - z - 2
(4.5.27)

1 — (2r coscdo)z-1 +  r2z ~2 
and a frequency  resp o n se  ch aracteristic

H{w)  =  b°[ \  _  («*-->][! _  r e -n»o+*>)J (4.5.28)

W e observe  th a t th e  zeros a t z =  ± 1  affect b o th  th e  m agn itude  an d  phase  response 
o f th e  reso n a to r. F o r exam ple , th e  m ag n itu d e  response  is

\ H ( t o ) \ = b 0 ( 4 -5 ’29)U\(to)U2(to)
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Figure 4.49 Magnitude and phase 
response of digital resonator with zeros 
at 10 =  0 and to = - t  and ( I ) r =  O.N and 
(2) r =  0.95.

w here N { oj) is defined as

N(w)  — 7 2 (1  -  cos2a>)

D ue to  the  p resence  o f the  zero  fac to r, the reso n an t frequency  is a lte red  from  
that given by the expression  in (4.5.25). T h e  b andw id th  of the filter is also a ltered . 
A lth o u g h  exact values for these  tw o p aram e te rs  are  ra th e r  ted ious to  derive, we 
can easily com pute the  frequency  response  in (4.5.28) and co m p are  th e  resu lt with 
the p rev ious case in which the  zeros a re  located  at th e  origin.

F igure 4.49 illustrates th e  m agn itude  and  phase  characteristics for o>q — n /3 .  
r =  0.8 and  a>o — tt/ 3, r =  0.95. W e obse rv e  th a t th is filter has a slightly sm aller 
b andw id th  than  th e  re so n a to r, w hich has zeros a t th e  origin. In add ition , there  
ap p ea rs  to  be a very  sm all shift in th e  reso n an t frequency  d u e  to  th e  p resen ce  of 
the  zeros.

4.5.4 Notch Filters

A no tch  filter is a filter th a t con ta in s o ne  o r m ore d eep  n o tches or, ideally, p erfec t 
nulls in its frequency  response  characteristic . F igure 4.50 illu stra tes th e  frequency  
response  characteristic  o f a no tch  filter with nulls a t frequ en c ies cl>o and  . N otch 
filters are  useful in m any app lica tions w here  specific freq u en cy  co m p o n en ts  m ust 
be elim inated . F o r exam ple, in stru m en ta tio n  and  reco rd in g  system s req u ire  th a t 
the pow er-line frequency  o f  60 H z and  its h arm on ics be  e lim inated .
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Figure 4,50 Frequency response 
characteristic of a notch filter.

T o crea te  a null in the  frequency  response  o f a filter a t a frequency  ojo, we 
sim ply in troduce  a p a ir  of com plex-con jugate zeros on th e  un it circle at an  angle 
too. T h a t is,

S,.2 =  f ± j“°

T hus the  system  function  fo r an F IR  no tch  filter is sim ply

H(z)  =  boQ -  eJlo"z~] Ml -
(4.5.30)

— bo (1 — 2 C O S  tr>() c  ' z ~)

A s an illustration . Fig. 4.51 show s the m agn itude  response  fo r a no tch  filter having 
a null a t a> =  tt/4 .

T h e  prob lem  with the F IR  notch filter is th a t th e  notch  has a relatively  large 
bandw id th , which m eans th a t o th e r  frequency  com p o n en ts  a ro u n d  th e  desired  null 
are severe ly  a tten u a ted . T o reduce  the  bandw id th  o f th e  null, we can re so rt to 
a m ore soph isticated , longer F IR  filter designed accord ing  to  c r ite ria  described 
in C h a p te r  8. A lternative ly , we could, in an ad hoc m an n er, a tte m p t to  im prove 
on the frequency  response  characteristics by in troduc ing  poies in th e  system  func­
tion.

Suppose th a t we place a p a ir  o f com plex-con jugate  poles at

Ph2 =  re±im

T he effect o f the poles is to  in troduce  a resonance  in the  vicinity  o f the null and 
thus to  reduce th e  b andw id th  o f the  notch . T h e  system  function  fo r the resulting 
filter is

H  ( c )  =  bo-
1 -  2 cos wo; 1 +  z~

(4.5.31)
1 -  2 r cosojoZ-1 +  r 2z ~2 

T he m agn itude  response  \H(u>)\ o f the filter in (4.5.31) is p lo tte d  in Fig. 4.52 for 
coo =  t t /4 , r =  0.85, and  fo r ti>o = n /4 ,  r =  0.95. W hen c o m p ared  w ith  the 
frequency  response o f the  F IR  filter in Fig. 4.51, we n o te  th a t th e  effect o f the 
poles is to  reduce th e  bandw id th  o f th e  notch .

In add ition  to  reducing  th e  b andw id th  o f th e  no tch , the  in tro d u c tio n  o f a 
pole in the  vicinity o f th e  null m ay resu lt in a  sm all r ipp le  in th e  passb an d  o f the 
filter d ue  to  the resonance  c rea ted  by th e  pole. T he effect o f th e  ripp le can  be 
reduced  by in troduc ing  add itional po les an d /o r zeros in th e  system  function  o f the 
notch  filter. T he m a jo r p ro b lem  w ith th is ap p roach  is th a t it is basica lly  an  ad  hoc, 
tria l-an d -erro r m ethod .
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Figure 4.51 Frequency response 
characteristics of a notch filter with 
a notch at co =  n / 4  or /  =  1/8; 
H(z)  =  G[1 -  2cos£ooz-1 +  z-2 ]-

4.5.5 Comb Filters

In  its sim plest fo rm , a com b filter can be v iew ed as a no tch  filter in w hich  the  
nulls occur period ica lly  across the  freq u en cy  band , hence th e  analogy  to  an  o rd i­
nary  com b th a t has period ically  spaced  tee th . C om b filters find app lica tions in a 
w ide ran g e  o f  p rac tica l system s such as in th e  re jec tio n  o f pow er-line  harm onics, 
in th e  se p a ra tio n  o f so lar and  lu n ar com p o n en ts  from  iono sp h e ric  m easu rem en ts 
of e lec tro n  co n cen tra tio n , an d  in th e  suppression  o f c lu tte r from  fixed ob jec ts in 
m ov ing -ta rg e t-in d ica to r (M T I) radars.
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Figure 4.52 Frequency response 
characteristics of two notch filters with 
poles at ( I ) r =  0,85 and 12) r — (1.95: 
H(z) =  />n|(l -  -  cos tour'1 r " ")/(1 -  
2r cosgju:-1 +  r2z~~)].

T o  illustrate  a sim ple form  of a com b filler, consider a m oving average (F IR ) 
filter described  by the d ifference equation

v(«) = — x i n  -  k )

T he system  function of this F IR  filter is

H i z
+ * Jt=0
1 [ l - c - * ^ 11] 

M  + 1 ( 1 - - - ’ )

(4.5.32

(4.5.33)

and its frequency  response  is

H(a>) =
S]na)( « jd )

M +  1 sin(w /2)

F rom  (4.5.33) we observe th a t th e  filter has zeros on the  un it circle at

(4.5.34)

k =  1 ,2 .3 .........M (4.5.35)

N ote  th a t the  pole a t ;  =  1 is actually  canceled  by th e  zero  at ;  =  1, so  th a t in 
effect the  F IR  filter does not con tain  po les ou tside  z =  0.

A  plo t of the m agnitude charac te ris tic  o f (4.5.34) clearly illu stra tes  th e  ex­
istence o f the period ically  spaced  zeros in frequency  at cot =  2 n k / ( M  +  1) for 
£ =  1 , 2 , -----M.  F igure 4,53 show s \H(w)\  fo r M  =  10.
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Figure 4.53 Magnitude response 
characteristic for the comb filter given 
by (5,4.32) with M  =  10.

In  m ore  general te rm s, we can c re a te  a com b filter by tak in g  an F IR  filter 
with system  function

M
H(z)  = 2 2 h ( k ) z ~ k (4.5.36)

k=0

and rep lac ing  z by z L, w here L is a positive in teger. T hus th e  new  F IR  filter has 
a system  function

H l ( z ) =  Y , h ( k ) z (4.5.37)

(4.5.38)

If th e  frequency  response  of the  original F IR  filter is / /(w ), th e  frequency  response 
o f the  F IR  in (4.5.37) is

M
H l (u>) = 2 2 h ( k ) e ~ jkLa

k= I)
=  H(Lco)

C o nsequen tly , th e  frequency  response  ch aracteristic  H l {oj) is sim ply an  L -o rd er 
rep e titio n  of H(co) in the  range 0 <  co <  2n .  F igure 4.54 illu stra tes  th e  re la tionsh ip  
betw een  H l (co)  and  H (w) fo r L  — 5.

N ow , suppose  th a t th e  o rig inal F IR  filter w ith system  function  H( z)  has a 
spectra l null (i-e -, a zero ), at som e frequency  coo. T h en  th e  filter w ith system  
function  HL(z) has period ically  spaced nulls a t av =  coo +  I n k j L , k  =  0, 1 , 2 , . . . ,  
L — 1. A s an illu stra tion , Fig. 4.55 show s an F IR  com b filter w ith Af =  3 and 
L  =  3. T h is F IR  filter can be  v iew ed as an F IR  filter o f leng th  10, b u t only four 
of th e  10 filter coeffic ients are  nonzero .

L e t us now  re tu rn  to  th e  m oving average filter w ith system  function  given by
(4.5.33). Suppose th a t we rep lace  z by z L. T hen  the  resu lting  com b filter has the  
system  function

1 1 _  1)
H l ( z )  =  T 7 ~ ~ r  /  (4-5.39)

and a frequency response

H l ( co) =

M + 1 l - z ~ L

1 sin[a>L(M +  l ) /2 ]  
M  +  1 sin(coL/2)

(4.5.40)
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H (u> )

(a)

Hl(co)

5 5 5 5 

(b)

Figure 4.54 Comb fiJter with frequency response W/Joi) obtained from H(a>).

Figure 4.55 Realization of an FIR comb filter having M  =  3 and L ~  3.

T his filter has zeros on the  un it circle at

Zk =  e j 2*k/ Ll M+h  (4.5.41)

for alt in teger values o f k excep t k — 0, L,  2 L .........M L .  F ig u re  4.56 illustrates
\Hl {(d)\ for L =  5 and  M  =  10.

T h e  com b filter described  by (4.5.39) finds app lica tio n  in th e  se p a ra tio n  of 
so lar an d  lu n ar spectra l co m p o n en ts  in ionospheric  m e asu rem en ts  o f e lec tro n  con­
cen tra tio n  as d escribed  in the p ap e r by B e rn h a rd t e t al. (1976). T he so la r period  
is Ts =  24 hours and  resu lts in a so lar co m p o n en t o f one cycle p e r  day  and  its 
harm onics. T h e  lu n ar p erio d  is Tl =  24.84 h o u rs and  p ro v id es sp e c tra l lines at 
0.96618 cycle p e r  day  and  its harm onics. F igure 4.57a show s a p lo t o f th e  pow er 
density  spectrum  o f th e  unfiltered  ionospheric  m easu rem en ts  o f th e  e lec tro n  con-
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Figure 4.56 Magnitude response 
characteristic for a comb filter given by 
(4.5.40). with L — 3 anti M =  II).

cen tra tio n . N o te  th a t the w eak  lunar spectral co m p o n en ts  are  alm ost h idden  by 
the stro n g  so la r spec tra l com ponents .

T he tw o se ts of spectra l co m p o n en ts  can be se p a ra te d  by the  use o f com b 
filters. If  we wish to  o b ta in  the so lar com ponen ts , we can use a com b filter with 
a n arro w  p assband  a t m u ltip les of one cycle p e r  day. T his can be achieved by 
selecting  L  such th a t Fs/ L  =  1 cycle p e r  day. w here Fs is the co rrespond ing  
sam pling  frequencv . T he resu lt is a filter th a t has p eak s in its frequency  response 
at m u ltip les o f one cycle p er day. By se lecting  M  =  58. the filter will have nulls 

at m u ltip les of ( F J L ) I ( M  +  1) =  1/59 cycle p e r  day. T h ese  nulls a re  very close 
to  the  lun ar co m p o n en ts  and  result in good rejection . F igure 4.57(b) illustrates

Frequency (cycles/day) 

<c)

Figure 4.57 (a) Spectrum of unfiltered electron content data; (b) spectrum of out­
put of solar filter; (c) spectrum of output of lunar filter. [From paper by Bernhardt 
et al. (1976). Reprinted with permission of the American Geophysical Union.]



350 Frequency Analysis of Signals and Systems Chap. 4

the pow er spectral density of the output o f the com b filter that isolates the solar 
com ponents. A  com b filter that rejects the solar com ponents and passes the lunar 
com ponents can be designed in a similar manner. Figure 4.57(c) illustrates the 
power spectral density at the output o f such a lunar filter.

4.5.6 All-Pass Filters

An all-pass filter is defined as a system that has a constant m agnitude response for 
all frequencies, that is.

|ff{oj)l =  l 0 < o > < 7 r  (4.5.42)

The simplest exam ple o f an all-pass filter is a pure delay system with system func­
tion

H(z)  = z~k

This system passes all signals without modification except for a delay of k samples. 
This is a trivial all-pass system that has a linear phase response characteristic.

A more interesting all-pass filter is described by the system  function

a x  +  a /v '-i" ^ 1 +  ■ ■ ■ +  a\ Z  ;  N
n ( z )  =  -

1 +  0 \ Z  ' + • ■ ■ +  Qn Z n
(4.5.43)

, .  . - N + k

= ----- IT  a° = 1
where all the filter coefficients \ak ) are real. If we define the polynom ial /\(~) as

A (;) =  Y ^ a kz k an — 1
k=U

then (4.5.43) can be expressed as

H ( z )  =  z ~ n M ‘  ] (4.5.44)
A ( z )

Since
\H(a>)\2 =  =  1

the system given by (4.5.44) is an all-pass system. Furtherm ore, if zo is a pole 
of H(z) .  then 1/zu is a zero of H(z)  (i.e., the poles and zeros are reciprocals of 
one another). Figure 4.58 illustrates typical p o le -zero  patterns for a single-pole, 
single-zero filter and a tw o-pole, tw o-zero filter. A  plot o f the phase characteristics 
of these filters is shown in Fig. 4.59 for a =  0.6 and r =  0.9, too =  tt/4.

The m ost genera! form for the system  function o f an all-pass system with real 
coefficients, expressed in factored form in terms of poles and zeros, is

Nr

H, f ^ - T T - _____ n  Pk (4 5 45)
-  1 J  i  -  l \  a  -  A z - ’ x i  -  P i z ~ x) (4 ’5 '

where there are N R real poles and zeros and N c com plex-conjugate pairs o f  poles 
and zeros. For causal and stable system s we require that - 1  < a* < 1 and |/S*| < 1.
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(a)

10

0

-10

-20

-3 0

-4 0

Figure 4.58 Pole-zero patterns of (a) a 
first-order and (b) a second-order 
all-pass filter.

Figure 4.59 Frequency response 
characteristics of an all-pass 
filter with system functions
(1) H(z) =  (0.6 +  z - ') / ( l  + 0 .6 Z '1),
(2) H(z) = (r2 -  2tcoswqz~1 +  Z ~ 2 ) /  

(1 — 2rcoscuoz-i + r2z~2), r = 0.9, 
(jo — n/A.
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Expressions for the phase response and group delay of all-pass systems can 
easily be obtained using the m ethod described in Section 4.4.6. For a single p ole- 
single zero all-pass system we have

Manioc) ‘—

H ence

and

C-)ap(w) =  —cd — 2 tan'

Ju

r sin(a) — 6}
1 — r COS(w -  6)  

di~).Ap(ct>) 1 -  r2

ciaj 1 +  i -  — 2r cosiw  — 0)
(4.5.46)

We note that for a causal and stable system, r < 1 and hence rt, (w) > 0. Since the 
group delay of a higher-order p o le-zero  system consists o f a sum o f positive terms 
as in (4.5.46), the group delay will always be positive.

All-pass filters find application as phase equalizers. W hen placed in cascade 
with a system that has an undesired phase response, a phase equalizer is designed  
to com pensate for the poor phase characteristics of the system and therefore to 
produce an overall linear-phase response.

4.5.7 Digital Sinusoidal Oscillators

A  digital sinusoidal  oscillator  can be viewed as a limiting form o f a tw o-pole res­
onator for which the com plex-conjugate poles He on the unit circle. From our 
previous discussion of second-order system s, we recall that a system  with system  
function

H( z)  = ------------------------  (4.5.47)
1 +  a j z " 1 + aiz

and parameters

a i =  —2rcosa>o and a2 = r 2 (4.5.48)

has com plex-conjugate poles at p  = r e± m \  and a unit sample response

h(n) = —~ — sin(n +  l)fDow(n) (4.5.49)
sin cun

If the poles are placed on the unit circle (r =  1) and bo is set to A sincuo, then

h(n)  = As in(n  + l)u>ou(n) (4.5.50)

Thus the impulse response of the second-order system with com plex-conjugate 
poles on the unit circle is a sinusoid and the system is called a digital sinusoidal 
oscillator or a digital sinusoidal  generator.  A  digital sinusoidal generator is a basic 
com ponent of a digital frequency synthesizer.
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The block diagram representation o f the system  function given by (4.5.47) is 
illustrated in Fig. 4.60. The corresponding difference equation for this system is

v (n) =  —a i y0? — 1) — y(n — 2) + boS(n) (4.5.51)

where the param eters are a\ =  —2cosa>o and bo =  Asincwo, and the initial condi­
tions are y ( —1) =  v (—2) =  0. By iterating the difference equation in (4.5.51), we 
obtain

y (0) =  ^ sinw o

y ( l)  =  2cos<woy(0) -  2 A sin too cos tt>o =  Asin2tL>o 

y(2) — 2costL>oy(l) -  y(0)

=  2A  cos a»o sin 2wo — A sin loq

- A {4 cos2 coq — 1) sin wq

— 3 A  sin too ~  4 sin3 coq =  A sin Ixoq

and so forth. W e note that the application of the impulse at n =  0 serves the 
purpose o f beginning the sinusoidal oscillation. Thereafter, the oscillation is self- 
sustaining because the system has no damping (i.e., r =  1).

It is interesting to note that the sinusoidal oscillation obtained from the sys­
tem in (4.5.51) can also be obtained by setting the input to zero and setting the 
initial conditions to y ( - l )  =  0, v (—2) =  -A sina>o. Thus the zero-input response 
to the second-order system  described by the hom ogeneous difference equation

y{n)  =  -a iy (n  -  1) -  y(n -  2) (4.5.52)

with initial conditions y ( - l )  — 0 and >■(—2) =  —A sin two, is exactly the sam e as 
the response o f (4.5.51) to an im pulse excitation. In fact, the difference equation  
in (4.5.52) can be obtained directly from the trigonometric identity

a + 8 a -  B 
sin a +  sin fi =  2 sin — - —  cos — - —  (4.5.53)

where, by definition, or =  (n +  !)&*>, 0  =  (n — l)^ o , and y(n)  =  s in(n +  l)a>o-
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In som e practical applications involving m odulation of two sinusoidal carrier 
signals in phase quadrature, there is a need to generate the sinusoids A sin ojqn 
and Acosaion. These signals can be generated from the so-called  coupled- form 
oscillator, which can be obtained from the trigonometric formulas

cos(a  +  ft) =  cos a  cos ft — sin a  sin ft

sin(a +  ft) =  sin a  cos ft +  cos a  sin ft

where, by definition, a =  ft =  u>o, and

yr (n) =  COsnajoK(rc)

y , (n ) =  sinna>t)U(fj)

Thus we obtain the two coupled difference equations

)'(■(») =  (COS a>o)}■<■(« -  1) -  (s in a jo )y , (« -  1)

y.,(«) =  (sin o>o)yt-(n -  1) +  (cosw o)yr(n -  1)

which can also be expressed in matrix form as

yAn)
_ vt(n) _

cos co{) sin too 
sin £t?o cos lo{)

yt.(n -  1)
y An  ~

(4.5.54)

(4.5.55)

(4.5.56)

(4.5.57)

(4.5.58)

T he structure for the realization of the coupled-form  oscillator is illustrated in 
Fig. 4.61. We note that this is a two-output system which is not driven by any input, 
but which requires the initial conditions y<( — ]) =  /Icosaio and y.f ( —1) =  -A sina>o  
in order to begin its self-sustaining oscillations.

Finally, it is interesting to note that (4.5.58) corresponds to vector rotation  
in the two-dim ensional coordinate system with coordinates yc(n) and y.T(n). A s a 
consequence, the coupled-form  oscillator can also be im plem ented by use o f the 
so-called C O R D IC  algorithm [see the book by Kung et al. (1985)].

Figure 4.61 Realization of the
coupled-form oscillator.
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4.6 INVERSE SYSTEMS AND DECONVOLUTION

A s we have seen, a linear time-invariant system takes an input signal v(/j) and 
produces an output signal y(n), which is the convolution of * (« ) with the unit 
sample response h{n)  of the system. In many practical applications we are given 
an output signal from a system  whose characteristics are unknown and we are 
asked to determ ine the input signal. For exam ple, in the transmission of digital 
information at high data rates over telephone channels, it is well known that the 
channel distorts the signal and causes intersymbol interference am ong the data 
symbols. The intersym bol interference may cause errors when we attempt to re­
cover the data. In such a case the problem  is to design a corrective system which, 
when cascaded with the channel, produces an output that, in som e sense, corrects 
for the distortion caused by the channel, and thus yields a replica of the desired 
transmitted signal. In digital com m unications such a corrective system is called 
an equalizer.  In the general context of linear system s theory, however, we call 
the corrective system an inverse sy s t em , because the corrective system has a fre­
quency response which is basically the reciprocal o f  the frequency response o f  
the system that caused the distortion. Furthermore, since the distortivc system  
yields an output yin)  that is the convolution of the input x(n)  wiih the impulse 
response h(n).  the inverse system operation that takes y(/i) and produces a ( / i )  is 
called deconvolut ion.

If the characteristics o f the distorlive system are unknown, it is often nec­
essary, when possible, to excite the system  with a known signal, observe the 
output, compare it with the input, and in som e manner, determ ine the charac­
teristics of the system. For exam ple, in the digital com m unication problem just 
described, where the frequency response of the channel is unknown, the m ea­
surement of the channel frequency response can be accom plished by transmitting 
a set o f equal amplitude sinusoids, at different frequencies with a specified set 
of phases, within the frequency band o f the channel. The channel will atten­
uate and phase shift each o f the sinusoids. By comparing the received signal 
with the transmitted signal, the receiver obtains a m easurem ent o f the channel 
frequency response which can be used to design the inverse system. The pro­
cess o f determ ining the characteristics of the unknown system , either h(n)  or 
H(co), by a set o f m easurem ents perform ed on the system  is called system identi­

f ication.
The term “deconvolution" is often used in seism ic signal processing, and 

more generally, in geophysics to describe the operation of separating the input 
signal from the characteristics o f the system which we wish to measure. The de- 
convolution operation is actually intended to identify the characteristics o f the 
system, which in this case, is the earth, and can also be view ed as a system  iden­
tification problem . The “inverse system ,” in this case, has a frequency response 
that is the reciprocal of the input signal spectrum that has been used to excite the 
system.
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4.6.1 Invertibility of Linear Time-Invariant Systems

A system  is said to be invert ible if there is a one-to-one correspondence between  
its input and output signals. This definition im plies that if w e know the output 
sequence y(n), —oc < n < oc, of an invertible system T , we can uniqueiv determine 
its input A (n), —oc <  n < oo. The inverse system with input v(«) and output x{n) 
is denoted by T ~ l . Clearly, the cascade connection o f a system  and its inverse is 
equivalent to the identity system, since

w(n)  =  7 1 [>'(«)] =  T ~ x [T[x{n)]) -  x(n) (4.6.1)

as illustrated in Fig. 4.62. For exam ple, the systems defined by the input-output 
relations y{n) =  ax(n)  and y(n)  =  x(n  — 5) are invertible, w hereas the input-output 
relations y(n)  = x 2(n) and y{n) =  0 represent noninvertible systems.

A s indicated above, inverse systems are important in many practical appli­
cations. including geophysics and digital com munications. Let us begin by con­
sidering the problem of determ ining the inverse o f a given system . We limit our 
discussion to the class o f linear time-invariant discrete-tim e systems.

Now. suppose that the linear time-invariant system T  has an im pulse response 
h(n)  and let h t (n) denote the impulse response o f the inverse system  T _ l . Then
(4.6.1) is equivalent to the convolution equation

U’(n) = h / (n)  * h(n)  * x ( n )  =  x(n)  (4.6.2)

But (4.6.2) implies that

h(n)  * h/ (n)  = S(n)  (4.6.3)

The convolution equation in (4.6.3) can be used to solve for h/ (n)  for a given 
h(n).  H ow ever, the solution of (4.6.3) in the time domain is usually difficult. A  
simpler approach is to transform (4.6.3) into the z-domain and solve for T _1. Thus 
in the z-transform domain, (4.6.3) becom es

H{z )H, ( z )  =  1

and therefore the system function for the inverse system  is

*,(:) = ̂  (4.6.4)
If H ( z ) has a rational system function

H( z)  =  (4.6.5)
/1(c)

Identity system

T
v( n )

T - i

Direct

system

Inverse

system

n '(n ) = x(n)

Figure 4.62 System T  in cascade with 
its inverse T _1.
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then

(4.6.6)

Thus the zeros o f H( z)  becom e the poles of the inverse system , and vice versa. 
Furtherm ore, if H{z)  is an FIR  system, then Hi(z)  is an all-pole system, or if H{z)  
is an all-pole system , then H s {z) is an FIR system.

Example 4.6.1

Determine the inverse of the system with impulse response

This system is both causal and stable. Since H(z) is an all-pole system, its inverse is 
FIR and is given by the system function

h ,{z) =  i -  h - 1

Hence its impulse response is

=  &(n) — — 1)

Example 4.6.2

Determine the inverse of the system with impulse response

The inverse system has the system function

Thus H/(z) has a zero at the origin and a pole at z =  j- In this case there are two 
possible regions of convergence and hence two possible inverse systems, as illustrated 
in Fig. 4.63. If we take the ROC of Hi(z) as |j| > j, the inverse transform yields

which is the impulse response of a causal and stable system. On the other hand, if 
the ROC is assumed to be |j| < | ,  the inverse system has an impulse response

h(n) =  UyuOO 

Solution The system function corresponding to h(n) is

H(z)  -
1 -

h(n)  =  <5(n) — j<5(h — 1) 

Solution This is an FIR system and its system function is 

H(z)  =  1 -  k ~ ' ROC: |z| > 0

In this case the inverse system is anticausal and unstable.
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Figure 4.63 Two possible regions of 
(b) convergence for H(z) = z/(z -  Y>-

We observe that (4.6.3) cannot be solved uniquely by using (4.6.6) unless we 
specify the region of convergence for the system function of the inverse system.

In som e practical applications the impulse response h(n)  does not possess a 
z-transform that can be expressed in closed form. A s an alternative we may solve
(4.6.3) directly using a digital computer. Since (4.6.3) does not. in general, possess 
a unique solution, we assume that the system and its inverse are causal. Then
(4.6.3) simplifies to the equation

^  h(k)hi(rt  — k) — S(/i) (4.6.7)

By assumption, h/ (n)  =  0 for n < 0. For n =  0 we obtain

h ,(0 )  =  l / h (0 )  (4.6.8) 

The values o f hi{n)  for n > 1 can be obtained recursively from the equation

^  h ( k ) h / ( n - k ) ,

= ~£  mo) —  n21 ( A - 6 )

This recursive relation can easily be programmed on a digital computer.
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There are two problem s associated with (4.6.9). First, the m ethod does not 
work if h(0) =  0. H ow ever, this problem  can easily be rem edied by introducing 
an appropriate delay in the right-hand side o f (4.6.7), that is, by replacing <50) by 
S(n — m) ,  where m =  1 if *(0) =  0 and / i( l)  ^  0, and so on. Second, the recursion 
in (4.6.9) gives rise to round-off errors which grow with n and, as a result, the 
numerical accuracy of h(n)  deteriorates for large n.

Example 4.6.3

Determine the causal inverse of the FIR system with impulse response 

h(n) =  S(n) — aS(n — 1)

Solution Since /i(0) =  1. h(1) =  —a, and h(n) = 0 for n > a ,  we have

MO) = 1/MO) = 1
and

h/(n) =  a M n _  1 ) n — 1
Consequently,

M l) = a .  M 2) = a2..........  h,(n) = a"
which corresponds to a causal IIR system as expected,

4.6.2 Minimum-Phase, Maximum-Phase, and 
Mixed-Phase Systems

The invertibility of a linear time-invariant system is intimately related to the char­
acteristics o f the phase spectral function of the system. To illustrate this point, let 
us consider tw o FIR systems, characterized by the system functions

H\{z)  =  1 +  j ; -1 =  z_1(z +  \ )  (4.6.10)

Hj i z )  =  — z ! ( |z  +  1) (4,6.11)

The system  in (4.6.10) has a zero at z =  and an impulse response fc(0) =  1, 
/ i( l)  =  1/2. The system in (4.6.11) has a zero at z =  — 2 and an impulse response 
h(0)  =  1/2, /i(1) =  1, which is the reverse of the system  in (4.6.10). This is due to 
the reciprocal relationship betw een the zeros o f H\(z)  and

In the frequency domain, the two system s are characterized by their fre­
quency response functions, which can be expressed as

|ffi(<y)| =  |H2(o))! =  y |  +  cos to (4.6.12)

and
, sinw

©i((w) =  — to +  tan -j------------- (4.6.13)
|  +  cos OJ

_i sin to
© 2  (cl>) =  —to +  tan -------------  (4.6.14)

2 +  cos to
The m agnitude characteristics for the two systems are identical because the zeros 
of Hi(z)  and Hi(z)  are reciprocals.
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fr|I co)

94a.)

i

Figure 4.64 Phase response 
charactcnslics for the systems in (4.6.10) 
and (4.6.11).

The graphs of 0 ]  (co) and (~)2(cv) are illustrated in Fig. 4.64. W e observe that 
the phase characteristic 0i(cd) for the first system  begins at zero phase at the fre­
quency w =  0 and term inates at zero phase at the frequency cv — 7t. H ence the net 
phase change, 0 i( ;r )  -  0i(O ) is zero. On the other hand, the phase characteristic 
for the system with the zero outside the unit circle undergoes a net phase change 
0 ;(;r ) — ©2(0) =  n  radians. A s a consequence of these different phase character­
istics, we call the first system a mi ni mum- phas e  sys tem  and the second system  is 
called a ma xi mum- phase  system.

These definitions are easily extended to an FIR system  o f arbitrary length. 
To be specific, an FIR system o f length M  + 1  has M  zeros. Its frequency response 
can be expressed as

H(co) =  bQ(\ -  z \ e~ iw)( 1 -  z2e ~ n  • • ■ ( ! -  zMe~J“) (4.6.15)

where {;,} denote the zeros and bo is an arbitrary constant. W hen all the zeros 
are inside the unit circle, each term in the product o f (4.6.15), corresponding to 
a real-valued zero, will undergo a net phase change of zero betw een  a> =  0 and 
(*) = n  . A lso , each pair of com plex- conjugate factors in H(a>) will undergo a net 
phase change of zero. Therefore,

^ H ( n )  -  ^ H ( O )  =  0 (4.6.16)

and hence the system  is called a m inim um-phase system. On the other hand, when 
all the zeros are outside the unit circle, a real-valued zero will contribute a net

(b)
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phase change o f tt radians as the frequency varies from w =  0 to co — it.  and each 
pair o f com plex-conjugate zeros will contribute a net phase change of 2tt radians 
over the same range of ai. Therefore.

iL H ( jt) -  ^ H ( O )  = M tt (4.6.17}

which is the largest possible phase change for an FIR system with M  zeros. H ence 
the svstem  is called maximum phase. It follow s from the discussion above that

4-Hmax{7T) > 4 t fm,n(jr) (4.6.18)

If the FIR system  with M  zeros has som e of its zeros inside the unit circlc 
and the rem aining zeros outside the unit circle, it is called a mixed-phase  system 
or a n on mi n i mu m- ph as e  system.

Since the derivative o f the phase characteristic o f the system  is a measure 
of the time delay that signal frequency com ponents undergo in passing through 
the system , a m inim um-phase characteristic implies a minimum delay function, 
while a m aximum -phase characteristic im plies that the delay characteristic is also 
maximum.

N ow  suppose that we have an FIR system with real coefficients. .Then the 
magnitude square value of its frequency response is

| t f (w ) |: =  )|r^ , -  (4.6.19)

This relationship im plies that if we replace a zero o f the system by its inverse 
1 /zk-  the m agnitude characteristic o f the system does not change. Thus if we re­
flect a zero zt  that is inside the unit circle into a zero I/:* outside the unit circle, 
we see that the m agnitude characteristic o f the frequency response is invariant to 
such a change.

It is apparent from this discussion that if \ H ( c o ) \ 2 is the m agnitude square 
frequency response of an FIR system having M  zeros, there are 2M possible con­
figurations for the M  zeros, som e of which are inside the unit circle and the re­
maining are outside the unit circle. Clearly, one configuration has all the zeros 
inside the unit circle, which corresponds to the m inim um-phase system. A sec­
ond configuration has all the zeros outside the unit circle, which corresponds to 
the m axim um -phase system. The rem aining 2W — 2 configurations correspond to  
m ixed-phase systems. H ow ever, not all 2 M -  2 m ixed-phase configurations nec­
essarily correspond to FIR system s with real-valued coefficients. Specifically, any 
pair o f com plex-conjugate zeros result in only two possible configurations, whereas 
a pair o f real-valued zeros yield four possible configurations.

Example 4.6.4

Determine the zeros for the following FIR systems and indicate whether the system
is minimum phase, maximum phase, or mixed phase.

tf,(z) =  6 +  z_1 -  z~2 

H 2{ z )  =  1 -  r 1 -  6 ; " 2
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H:Az) =  1 -  ^c"1 -  $z~z 

HAZ) =  1 +  f r '  -

Solution By factoring the system functions we find the zeros for the four systems 
are

H]{z) — *■ Ci.: =  — *■ { — *■ minimum phase

H 2 ( z ) -— » ci,: =  -2 , 3 — ► maximum phase

H:,(z) — *■ ci.: =  -  J. 3 — * mixed phase

Hi\z) — *■ Ci.: =  —2, t  — *• mixed phase

Since the zeros of the fouT systems are reciprocals of one another, it follows that all 
four systems have identical magnitude frequency response characteristics but different 
phase characteristics.

The minimum-phase property o f F I R  systems carries over to I I R  systems that 
have rational system functions. Specifically, an I I R  system with system  function

B ( z )
H(z)  =  —  (4.6.20)

A (c)

is called m i n i mu m phase  if all its poles and zeros are inside the unit circle. For a 
stable and causal system [all roots of A(c) fall inside the unit circle] the system is 
called m a x i m u m  phase  if all the zeros are outside the unit circle, and mixed  phase  
if som e, but not all. o f the zeros are outside the unit circle.

This discussion brings us to an important point that should be emphasized. 
That is. a stable p o le-zero  system  that is minimum phase has a stable inverse which 
is also minimum phase. The inverse system  has the system function

=  (4 -6 -21) d ( z )

H ence the minimum-phase property of H( z)  ensures the stability o f the inverse 
system H ~ l (z) and the stability o f  H(z)  im plies the m inim um-phase property of 
H ~ \ z ) .  M ixed-phase systems and m aximum -phase systems result in unstable in­
verse systems.

D ecom position  of nonm inim um -phase p o le -zero  sy s tem s . Any
nonm inim um -phase p o le-zero  system  can be expressed as

« ( z )  =  / W z ) t f a p ( z )  (4.6.22)

where is a m inim um-phase system  and / / ap(z) is an all-pass system. We
dem onstrate the validity o f this assertion for the class o f causal and stable systems 
w-ith a rational system function H ( z)  =  B(z ) / A(z ) .  In general, if B(z)  has one 
or m ore roots outside the unit circle, w e factor B(z)  into the product B i(z )# 2 (z)> 
where Bi(z) has all its roots inside the unit circle and B2(z) has all its roots outside



the unit circle. T hen has all its roots inside the unit circle. W e define the
m inim um-phase system

B i i - J B j i z - 1)

Sec. 4.6 Inverse Systems and Deconvolution 363

and the all-pass system

Hw (z) =

M z )

Bi i z )
B2(z - 1)

Thus H(z)  — Fiminiz)Hap(z)■ N ote that / / ap(z) is a stable, all-pass, maximum -phase 
system.

Group delay of nonminimum-phase system. B ased on the decom posi­
tion o f a nonm inim um -phase system given by (4.6.22), we can express the group 
delay of H( z)  as

Tg(o>) =  r™in(co) +  ^apM  (4,6.23)

Since r “r (u>) > 0 for 0 <  to <  n ,  it follow s that 1 ^(0;) >  r™n(o;), 0 < a> < tt. From  
(4.6.23) w e conclude that am ong all p o le-zero  systems having the sam e m agnitude 
response, the m inim um-phase system has the smallest group delay.

Partial energy o f  nonminimum-phase system. The partial  energy  o f a 
causal system with impulse response h(n)  is defined as

£Cn) =  £ W * ) I 2 (4.6.24)
t=u

It can be shown that am ong all system s having the sam e m agnitude response and 
the sam e total energy £ ( 0 0 ), the m inim um-phase system  has the largest partial 
energy [i.e., E min(n) > E(n) ,  where Emj„(n) is the partial energy of the minimum- 
phase system].

4.6.3 System Identification and Deconvolution

Suppose that we excite an unknown linear time-invariant system  with an input se­
quence x(n)  and w e observe the output sequence y(n) .  From the output sequence  
w e wish to determ ine the impulse response o f the unknown system. This is a prob­
lem  in sys tem identification,  which can be solved by deconvolut ion.  Thus we have

y(n) =  h(n)  * *(n)

^  (4-6.25)
=  h(k)x (n  — k)

k=—oo

A n  analytical solution of the deconvolution problem  can be obtained by 
working with the z-transform of (4.6.25). In the z-transform domain we have

Y(z)  =  H( z ) X( z )
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and hence
K(;)

H r J  = - —  (4.6.26)
* ( ; )

X u )  and  are  the  ^-transfo rm s of the available input signal x(/;) and  the 
ob se rved  ou tpu t signal yin) ,  respectively . T his ap p roach  is a p p ro p ria te  only when 
th e re  are closed-form  expressions for X(z )  and  F(c).

Example 4.6.5

A causal system produces the output sequence

f 1. n = 0
yin)  =  |  . n =  1

I 0. otherwise 
when excited by the input sequence

(1 . n =  0

x(n) =  i
H i'

I 0, otherwise
Determine its impulse response and its input-outpul equation.

Solution The system function is easily determined by taking the .--transforms of ,v(n) 
and yin).  Thus we have

n o  1 + 77,:"
H( z )  = —----- =  — — -------:----- 7

1 -  17i- + i7>"~

1-r
(1 -  )(1 -

Since the system is causal, its ROC is |;| > i .  The system is also stable since its poles 
lie inside the unit circle.

The input-output difference equation for the system is

y i n ) = -jj;y(/i -  1 ) -  ^ y i n  -  2 ) +  ,r(«) + y .̂v(n -  1 )

Its impulse response is determined by performing a partial-fraction expansion of H(z) 
and inverse transforming the result. This computation yields

hin) =  [4(i)" -  3({ )n]u(n)

We observe that (4.6.26) determ ines the unknown system  uniquely if it is 
known that the system is causal. H ow ever, the example above is artificial, since 
the system response {>(«)} is very likely to be infinite in duration. Consequently, 
this approach is usually impractical.

A s an alternative, we can deal directly with the tim e-dom ain expression given 
by (4.6.25). If the system  is causal, we have

n
y(n)  =  ^ h{k)x(n  — k) n >  0 

*=o
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and hence

n-l
(4.6.27)

y { n )  -  y ~ ^ h ( k ) x ( n  -  k )

H n )  =
x(0)

n  >  1

This recursive solution requires that jr(0) ^  0. H ow ever, we note again that when  
(/i(n)) has infinite duration, this approach may not be practical unless we truncate 
the recursive solution at sam e stage [i.e., truncate {/z(«)}].

A nother m ethod for identifying an unknown system  is based on a crosscor­
relation technique. R ecall that the input-output crosscorrelation function derived  
in Section 2.6.5 is given as

where r y x ( m )  is the crosscorrelation sequence of the input {x(^)J to the system  
with the output {>’(«)} o f  the system, and r x x { m )  is the autocorrelation sequence 
o f the input signal. In the frequency dom ain, the corresponding relationship is

T hese relations suggest that the im pulse response (/?(k)1 or the frequency re­
sponse o f an unknown system  can be determ ined (m easured) by crosscorrelating 
the input sequence {*(«)} with the output sequence (y(n)}, and then solving the 
deconvolution problem  in (4.6.28) by m eans o f the recursive equation in (4.6,27). 
A lternatively, we could sim ply com pute the Fourier transform o f (4.6.28)  and d e­
term ine the frequency response given by (4.6.29). Furtherm ore, if we select the 
input sequence (jc(n)} such that its autocorrelation sequence { ^ (n ) } ,  is a unit sam­
ple sequence, or equivalently, that its spectrum  is flat (constant) over the passband 
of H(a>), the values o f the impulse response {/?(«)} are simply equal to  the values 
o f the crosscorrelation sequence {rVJ(«)}.

In general, the crosscorrelation m ethod described above is an effective and 
practical m ethod for system  identification. A nother practical approach based on 
least-squares optim ization is described in Chapter 8.

4.6.4 Homomorphic Deconvolution

The com plex cepstrum , introduced in Section 4.2.7, is a useful tool for performing 
deconvolution in som e applications such as seism ic signal processing. T o describe 
this m ethod, let us suppose that {>>(«)} is the output sequence o f a linear time- 
invariant system  which is excited by the input sequence (x(n)f. Then

oc
r y x ( r 7 7 )  =  ^  h ( k ) r ( X ( m  -  k )  =  h ( n )  *  r x ! ( m )  

t=0
(4.6.28)

H ence
S vx((d) =  J-!(io)S.fX (co) =  H  (co) \X  (u>)\2

Svi(a>) 5 Vj(w )
H ( w )  =  — ---------- =  - 1 -  — r

SX i ( w )  \ X ( a >)\2
(4.6.29)

Y(z)  =  X{ z ) H( z ) (4.6.30)
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where H(z)  is the system function. The logarithm of Y(z)  is 

C A z )  =  In Y (c)

=  in X (c) +  In H(z) (4.6.31)

=  C ,(c) +  C>,U)

Consequently, the com plex cepstrum o f the output sequence (y(n)} is expressed 
as the sum of the cepstrum of |x(n)} and {/i(n)J, that is,

Thus we observe that convolution of the tw o sequences in the tim e domain corre­
sponds to the sum m ation of the cepstrum sequences in the cepstral domain. The 
system for performing these transformations is called a h omo r mo r p h i c  sys tem  and 
is illustrated in Fig. 4.65.

In som e applications, such as seism ic signal processing and speech signal 
processing, the characteristics of the cepstral sequences (c,(/j)} and {c>(n)} are suf­
ficiently different so that they can be separated in the cepstral dom ain. Specifically, 
suppose that {c* (/?)} has its main com ponents (main energy) in the vicinity o f small 
values o f n, whereas |c r(n)} has its com ponents concentrated at large values of n. 
W e may say that |c„(n)} is “lowpass" and {cx(«)l is “highpass.” W e can then sepa­
rate {cy,(n)} from {c,(r;)) using appropriate “low pass” and “highpass” windows, as 
illustrated in Fig. 4.66. Thus

c y(n) =  cx (n) + ch( n) (4.6.32)

ch(n) =  c v(rt)wir (rr) (4.6.33)

and

cx (n) =  c_v(n )Whp(n) (4.6.34)

z-Transform logarithm c  j.) ;-iransform

Figure 4.65 Homomorphic system for obtaining the cepstrum (cv(n)} of the se­
quence (y(n)l-

Figure 4.66 Separating the two 
cepstral com ponents by “lowpass" and 
“highpass” windows.



Sec. 4.7 Summary and References 367

where

U ’)p ( J l)  =

U’hpO) = 1

1. < N,
0. otherwise

0, l«l < N\
1. \n\ >

(4.6.35)

(4.6.36)

Once we have separated the cepstrum sequences (o ,(« )} and (c,-(n)} by windowing, 
the sequences {x(n)} and {/i(n)( are obtained bypassing (o ,(» )| and (c.v(n)) through 
the inverse hom om orphic system , shown in Fig. 4.67.

In practice, a digital com puter would be used to com pute the cepstrum of the 
sequence {v(«)}. to perform the windowing functions, and to im plem ent the inverse 
hom om orphic system  shown in Fig. 4.67. In place o f  the --transform and inverse 
z-transform. we would substitute a special form of the Fourier transform and its 
inverse. This special form, called the discrete Fourier transform, is described in 
Chapter 5.

C,< M) C,(.v)
Com plex

exponential

X O | .v(n)

.--Transform
Inverse ■ 

"-rnmt l^nT> ( ir

W(c) . i /iijn

Figure 4.67 Inverse homomorphic system for recovering the sequences {.kii )| mid 
|/j(«)) from the corresponding cepstru.

4.7 SUMMARY AND REFERENCES

The Fourier series and the Fourier transform are the mathem atical tools lor an­
alyzing the characteristics o f signals in the frequency domain, The Fourier series 
is appropriate for representing a periodic signal as a w eighted sum of harmoni­
cally related sinusoidal com ponents, where the weighting coefficients represent the 
strengths o f each of the harmonics, and the magnitude squared of each weighting 
coefficient represents the pow er of the corresponding harmonic. As we have in­
dicated, the Fourier series is one o f many possible orthogonal series expansions 
for a periodic signal. Its importance stem s from the characteristic behavior o f LTI 
system s, as we shall see in Chapter 5.

The Fourier transform is appropriate for representing the spectral charac­
teristics o f aperiodic signals with finite energy. The important properties of the 
Fourier transform were also presented in this chapter.

There are many excellent texts on Fourier series and Fourier transforms. 
For reference, we include the texts by Bracew ell (1978), D avis (1963), Dvm and 
M cKean (1972). and Papoulis (1962).

In this chapter we also considered the frequency-dom ain characteristics o f  
LTI systems. W e showed that an LTI system  is characterized in the frequency 
dom ain by its frequency response function H ( ai), which is the Fourier transform
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of the impulse response o f the system. We also observed that the frequency 
response function determ ines the effect o f the system on any input signal. In fact, 
by transforming the input signal into the frequency domain, we observed that it is a 
simple matter to determ ine the effect of the system on the signal and to determine 
the system output. W hen viewed in the frequency domain, an LTI system  performs 
spectral shaping or spectral filtering on the input signal.

The design of som e simple IIR filters was also considered in this chapter from 
the viewpoint o f p o le-zero  placem ent. By m eans of this m ethod, we w ere able 
to design simple digital resonators, notch filters, com b filters, ail-pass filters, and 
digital sinusoidal generators. The design of m ore com plex IIR filters is treated in 
detail in Chapter 8. which also includes several references. D igital sinusoidal gen­
erators find use in frequency synthesis applications. A  com prehensive treatment of 
frequency synthesis techniques is given in the text edited by G orski-Popiel (1975).

Finally, we characterized LTI system s as either m inim um -phase, maximum- 
phase, or m ixed-phase, depending on the position of their poles and zeros in the 
frequency domain. Using these basic characteristics of LTI system s, we considered 
practical problems in inverse filtering, deconvolution, and system  identification. 
W e concluded with the description of a deconvolution m ethod based on cepstral 
analysis of the output signal from a linear system.

A  vast am ount o f technical literature exists on the topics o f inverse filter­
ing. deconvolution, and system identification. In the context o f communications, 
svstem identification, and inverse filtering as they relate to channel equalization 
are treated in the book by Proakis (1995). D econvolution techniques are widely 
used in seismic signal processing. For reference, we suggest the papers by Wood 
and Treitel (1975), Peacock and Treitel (1969), and the books by Robinson and 
Treitel (1978, 1980). H om om orphic deconvolution and its applications to speech 
processing is treated in the book by O ppenheim  and Schafer (1989).

P R O B L E M S

4.1 Consider the full-wave rectified sinusoid in Fig. P4.1.
(a) Determine its spectrum Xa(F).
(b) Compute the power of the signal.

Xa(! )

Figure P4.1
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(c) Plot the power spectral density.
(d) Check the validity of Parseval's relation for this signal.

4.2 Compute and sketch the magnitude and phase spectra tor the following signals (a > 0).
Ae~a' , i > 0

la) V- , ' , =  '0 . , < 0
(b) xu(t) =  Ae~“'r

4.3 Consider the signal
1 -  l r |h .  | r |  <  t

^  ' 0. elsewhere
(a) Determine and sketch its magnitude and phase spectra. |X„(F)| and 2̂ X a(F), 

respectively.
(b)  Create a periodic signal x,.(t) with fundamental period Tr > 2r. so that ,v(/) =  

.v,,(n for |f| < T;,/2. What are the Fourier coefficients ci for the signal x;,u)?
(c) Using the results in pans (a) and (b). show that a  =  (1/X;,)X„(k/Tr ).

4.4 Consider the following periodic signal:

xin)  =  { ..., I. (I. 1.2. 3.2. 1.0. I. . . ,| 
t

(a) Sketch the signal vt/i) and its magnitude and phase spectra.
(b)  Using the results in pari (a), verily Parseval's relation by computing the power 

in the time and frequency domains.
4.5 Consider the signal

rr/i nn  1 3 nn
xin ) =  2 -f- 2 cos ------H cos —  h—  c o s-----

4 2 2 4
(a) Determine and sketch its power density spectrum.
(b)  Evaluate the power of the signal.

4.6 Determine and sketch the magnitude and phase spectra of the following periodic 
signals.

n(n -  2)
(a) ,v<(t)=4sin

3
I n  . I n(b) ,v(n) =  cos — n +  sin — n
3 ^

2 n  . 2 n
(c) x(n)  =  cos — n sin —  n

(d) x(n)  =  { . . . ,  - 2 .  - 1 . 0 . 1 . 2 .  - 2 .  - 1 . 0 .  1 . 2 . . . . )
t

(e)  x in)  =  ( . . . .  - 1 . 2 .  1 .2.  - 1 . 0 .  - 1 . 2 . 1 . 2 .  . . . J

(f) x(n)  =  ( . . . . 0 , 0 . 1 . 1 . 0 .  0 . 0 .  1. 1 . 0 . 0 , . . . )
t

(g) xin)  =  1 . —oc < n < oc
(h)  x(n)  =  ( - 1 ) " .  -o c  < n <  oc

4.7 Determine the periodic signals * 0 ), with fundamental period N = 8. if their Fourier 
coefficients are given by: 

kn 3kn
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kn
(b) c *=  { Slny -  Q < k < 6  

0, k = 7
(c) {c*} =  { . . . . O . i . i . l . 2 . 1 . i , i . O .

t

4.8 Two DT signals. j*(«) and s{(n), are said to be orthogonal over an interval [N\, A^] if 

Y2st (n)s?(n)  =  j 0 *'
k = t
k /  I

If At =  1. the signals are called orthonormal,
(a) Prove the relation

N ' ' N, k =  0, ±jV, ±2N,
ej2*kn/* =

0. otherwise

(b) Illustrate the validity of the relation in part (a) by plotting for every value of
k ~  1 ,2 ........ 6. the signals st (n) =  eJI2,,/('}k" , n = 0, 1 ,___ 5. [Aro/e: For a given k,

n the signal can be represented as a vector in the complex plane.]
(c) Show that the harmonically related signals

i*(n) =  ejan,K'kB 

are orthogonal over any interval of length N.
4.9 Compute the Fourier transform of the following signals.

(a) x(n) = u(n) — u(n — 6)
(b) x(n) =  2"u{-n)
(c) x(n) =  (j)"u(n +  4)
(d) x(n) =  (a" sina>on)u(n) |a | < 1
(e) x(n) = laTsiniuiin jar| < 1 

2 - U ) n .  |«| 5 4(f) x(n) =
0, elsewhere

(g) xin) = { -2 . - 1 . 0. 1 . 2 )
t

^  . U ( 2 A / +  l - | n | ) .  \ n \ <M(h) x(n) =  . .
| 0. |n| > M

Sketch the magnitude and phase spectra for parts fa), (f), and (g).
4.10 Determine the signals having the following Fourier transforms.

0, 0 < \a>| < <U()
(a) X(a>) =  ,

I .  W() <  \a>\ <  7T

(b) X (u>) =  cos2 a>
(n\ Yt \ -  \ O* -  &i»/2 < M  < O*) +  to /2

W 1 0, elsewhere
(d) The signal shown in Fig. P4.10.

4 .11 Consider the signal
x{n) = {1 , 0, - 1 ,2 .3 }  

t
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3tt j t  0 7r 3n 6 j t  7tt tt

Figure P4.10

with Fourier transform Xtw)  =  X's (ct>) +  j ( X t (a>)). Determine and sketch the signal 
y(n) with Fourier transform

Y(w) = X,(o>) + X R(^)ei2,il

4.12 Determine the signal jc(h) if its Fourier transform is as given in Fig. P4.12.

8k
10

0

(a)

8rr 971 7T
10 To

X(ai)

(b)

X(u>)

( c )

Figure P4.12
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4.13 In Example 4.3.3. the Fourier transform of the signal

1, - M  < n < M
x(n)  =

0. otherwise
was shown to be

M
X (a>) =  1 +  2 2 2  cos am 

f!= 1
Show that the Fourier transform of

and

are, respectively.

Thus prove that

and therefore.

4.14 Consider the signal

X|(n) =

x2(n) =

Xi(a>) = 

X2{to) =

1 . 0 < n < M
0. otherwise

1. —M < n < — 1
0, otherwise

] _  I

X  (to) -— X 1 (tt>) +  X 2 (tt)} 

sin(M +  \ )w 
sintw/2)

sin(M + \ )w
coswn =

sin(a»/2 j

x(n) = ( -1 ,2 , -3 ,2 ,  -1}
t

with Fourier transform X((u). Compute the following quantities, without explicitly 
computing X(a>):
(a) X(0) (b) AX(co) (c) f * n X(w) dw (d) X(jt)
(e) f *JX(co) \2 dco

4.15 The center of gravity of a signal x(w) is defined as

T ,  nx(n)

y x ( n )
7I = —OC

and provides a measure of the “time delay” of the signal.
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2 2 Figure P4.15

(a) Express c in terms of X{<o).
(b) Compute c for the signal x(n) whose Fourier transform is shown in Fig. P4.15.

4.16 Consider the Fourier transform pair

a"u(n) ------------  |ti) < 1
1 — a t ’

Use the differentiation in frequency theorem and induction to show that

< « + / - ! > !  i 1
_v(/i) =  --------------- a ‘u(n} -— * \  Uo) — -----------------

/ i ! ( f - l ) !  ( 1 - f
4.17 Let vUil he an arbitrary signal, not necessarily real-valued, with Fourier transform

Express the Fourier transforms of the following signals in terms of X(a>).
(a) _v‘ i«)
(h )  x ' ( - n )
(f) yin) = vf/1 ) -  ,v(/; -  1 )

(d) v(fi I =  ' y xik i

(L‘) V|H)=.V(2«)
_ I x(n/2).  n even

(0  v(n) =  L  , .( 0. n odd
4.18 Determine and sketch the Fourier transforms Xiiw), X2(co). and Xi(a>) of the following 

signals.
(a) -V! (fi) =  (1. 1. 1. 1.1)

(b) x2(n) =  (1. 0. 1 . 0. 1 , 0. 1 . 0, 1 )

(c) x:j n )  =  (1 . 0. 0. 1 . 0. 0. 1 . 0. 0, 1 , 0 . 0. 1 )
t

(d) Is there any relation between Xi(w). X:(g;). and X3(w)? What is its physical 
meaning?

(e) Show that if

**(«) =

then |
, ( r ) .  if njk  integer 

0. otherwise

Xt(a>) = X (ka>)

4.19 Let x(n) be a signal with Fourier transform as shown in Fig. P4.19. Determine and 
sketch the Fourier transforms of the following signals.
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2 2 Figure P4.19

(a) jri(fl) =  jr(n) cos(;rn/4) (b) A;(n) =  x(n)  sin(jrn/2)
(c) xy(n) = x(n)cos(nn/2)  (d) a4(/7) =  x(n)  cos nn
Note that these signal sequences are obtained by amplitude modulation of  a carrier 
coswrn or sinw,,/! by the sequence x(n).

4.20 Consider an aperiodic signal *(n) with Fourier transform X(u>). Show that the Fourier 
series coefficients CA' of the periodic signal

are eiven bv

4.21 Prove that

c; I .
N

—  k
N

k =  0. 1........A '- l

sin w,n

may be expressed as

X  v  ( o j )

X  v (w ) — ^  '
£—' nnn = ~ N

1 r ° ‘ sinf(2Â +  1 ){w — 8f l j \

= ^  .L ,
db

-  0)/2\

4.22 A signal jfn )  has the following Fourier transform:

1
X  (oj) =  ---------------

1 -  ae~JW
Determine the Fourier transforms of the following signals:
(a) x(2n + \)  (b) e*nf2x(n +  2 )

(b) x{—2n) (d) x(n) cos(0.37rn)
(c) jt(«) * x(n — 1 ) (0 x(n) * x (—n)

4.23 From a discrete-time signal x(n ) with Fourier transform X(cv),  shown in Fig. P4.23, 
determine and sketch the Fourier transform of the following signals:
, „ 1 x(n). n even(a )v i(n )  =

I 0, n odd
(b) yiiri) -  x(2n)

[ x(nj2 ). n even
(c) y,(«) =  „ , ,

I 0, n odd
Note that vj (n) =  x(n)s(n), where s(n) = {... 0, 1. 0, 1. 0. 1. 0. 1. ...}

t



Chap. 4 Problems 375

Xlw)

ai

4 4 Figure P4.23

4.24 The following inpul-output pairs have been observed during the operation of various 
svstems:

Determine their frequency response if each of the above systems is LTI.
4.25 (a) Determine and sketch the Fourier transform W/ffw) of the rectangular sequence

[ I .  (I < n < M
1 0. otherwise

(b) Consider the triangular sequence

Determine and sketch the Fourier transform Wr (a)) of u'70)) by expressing it as 
the convolution of a rectangular sequence with itself.

(c) Consider the sequence

4.26 Consider an LTI system with impulse response hi n ) =  u(n).
(a) Determine and skctch the magnitude and phase response \H(co)\ and 

respectively.
(b) Determine and sketch the magnitude and phase spectra for the input and output 

signals for the following inputs:

(2) jr(n) =  ( . . . .  1 .0 .0 . 1. 1. 1.0. 1. 1. 1,0, 1. ...}
r

4.27 Determine and sketch the magnitude and phase response of the following systems:
(a) y(n) =  ^[.v(/i) + xin -  1 )]

(b) yfn) =  4[v(/i) -  xin -  1 )]
(c) v(n) = + 1) -  x(n -  1)]

(C) .t(H) — C‘ ‘ --- *• V(IJ) = _V' " '
■a s  ,(d) .v(u) =  en  ■ u(ii) — ► yin) — j r '  "

7*
(e) ,v(/i» =  ,v(/i +  Ar’i ) —— vin) =  yin 4- N21 A', A;. A't. N2 prime

( ) < / i<  M/2 
M j 2 < 2 < M 
otherwise

«■, in) =   ̂ (l -t- cos ^f-)  u'R{n) 

Determine and skctch Wricu) by using
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(d) y(n) = +  1 ) + x(n -  1 )]

(e) v (n )=  i[jr(rt) +  jc(/t - 2 ) ]
(f) y(n) =  -  x(n -  2 )]

(g) v(n) =  j[jr(n) +  x(n -  1 ) +  x{n -  2 )]
(h) y(n) =  x(n) — x(n — 8)
(i) y(n) =  2x(n — 1 ) — x(n — 2 )
(j) v(n) =  +  x(n -  1) +  x(n -  2) +  x(« -  3)]

(k) y(«) =  + 3x(n -  1) +  3x(n -  2) + x(n -  3)]
(I) y(n) =  x(n -  4)

(m) y(n) =  x(n +  4)
(n) y(n) =  j[x(n) -  2x(n -  1 ) + xin -  2 )]

4.28 An FIR filter is described by the difference equation

y(n) =  x(n) +  xin -  10)

(a) Compute and sketch its magnitude and phase response.
(b) Determine its response to the inputs

TT „  . /  TT IT '

(1) x(n) =  cos — n + 3sm \ ^-n + — ̂ — oc < n < oc

(2 ) jr(n) =  10 +  5 cos ( ^ - n  +  y — OO < < oc

4.29 Determine the transient and steadv-statc responses of the FIR filler shown in Fig. P4.29 
to the input signal A(n) =  10ejr"',~uin). Let b =  2 and v ( - l )  =  v (-2 ) =  v(—3) = 
v(—4) = 0.

Figure P4.29

4.30 Consider the FIR filter

v(n) =  x ( n ) + x ( n  -  4)

(a) Compute and sketch its magnitude and phase response.
(b) Compute its response to the input

x (n) = cos —n + cos —n
2 4

— oc < n < oc

(c) Explain the results obtained in part (b) in terms of the magnitude and phase 
responses obtained in part (a).

4.31 Determine the steady-state and transient responses of the system

y(n) =  j [•*(«) — x(n  -  2)]
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to the input signal

x(n)  =  5 +  3 cos +  60“^ — oo < n < oc

4.32 From our discussions it is apparent that an LTI system cannot produce frequencies 
at its output that are different from those applied in its input. Thus, if a system 
creates “new" frequencies, it must be nonlinear and/or time varying. Determine the 
frequency content of the outputs of the following systems to the input signal

(a) v (/i) =  .v(2n)
(b) y(n) =  x 2(n)
<c) y(n) = (cos nn)x(n)

4.33 Determine and sketch the magnitude and phase response of the systems shown in 
Fig. P4.33(a) through (c).

4

(a)

(b)

— l 8

(c)

Figure P4J3

4.34 Determine the magnitude and phase response of the multipath channel

y(n) =  x (n) +  xfn — M)

At what frequencies does H(co) = 0?
4.35 Consider the filter

v(«) =  0.9v(n -  1) +  bx(n)

(a) Determine b so that |H(0)| =  1.
(b) Determine the frequency at which j/ / (cu)| =  l/%/2.
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(c) Is this filter lowpass, bandpass, or highpass?
(d) Repeat parts (b) and (c) for the filter v(n) =  —0.9y(n -  1) +  O.l.r(n).

4.36* Harmonic distortion in digital sinusoidal generators An ideal sinusoidal generator 
produces the signal

x(n) =  cos 2nf)n — oc < n < cc 

which is periodic with fundamental period N if /<i =  ki,/N and ky, N are relatively 
prime numbers. The spectrum of such a “pure" sinusoid consist of two lines at k =  ko 
and k = N — ka (we limit ourselves in the fundamental interval 0 < k < N  -  1). 
In practice, the approximations made in computing the samples of a sinusoid of 
relative frequency f t result in a certain amount of power falling into other frequencies. 
This spurious power results in distortion, which is referred to as harmonic distortion. 
Harmonic distortion is usually measured in terms of the total harmonic distortion 
(THD), which is defined as the ratio

spurious harmonic power
THD =

(a) Show that 

where

total power

iQn t2THD == 1 -  2—— - 
P,

* - j
n =  (I

(b) By using the Taylor approximation

COS 0 =  1 -------- ---------—
2! 4! 6!

compute one period of jr(n) for / 0 =  1/96, 1/32, 1/256 by increasing the number 
of terms in the Taylor expansion from 2 to 8.

(c) Compute the THD and plot the power density spectrum for each sinusoid in 
part (b) as well as for the sinusoids obtained using the computer cosine function. 
Comment on the results.

4.37* Measurement o f  the total harmonic distortion in quantized sinusoids Let x(n)  be a 
periodic sinusoidal signal with frequency fo = k / N,  that is,

x(n) = sin 2 jr/on

(a) Write a computer program that quantizes the signal x(n) into b bits or equivalently 
into L = 2h levels by using rounding. The resulting signal is denoted by xq(n).

(b) For f a =  1/50 compute the THD of the quantized signals xq(n) obtained by using 
b =  4, 6, 8, and 16 bits.

(c) Repeat part (b) for /« =  1/100.
(d) Comment on the results obtained in parts (b) and (c).

438* Consider the discrete-time system

y(n) =  ay(n — 1 ) +  (1 — a)x(n) n > 0 

where a — 0.9 and y(—1) =  0.
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(a) Compute and sketch the output y, (n) of the system to the input signals

.v,(n) =  s in2 jT /,n  0 £  ft <  100

where / ,  =  ./? =
(b) Compute and sketch the magnitude and phase response of the system and use 

these results to explain the response of the system to the signals given in part (a).
4.39* Consider an LTI system with impulse response h{n) =  ( t )1"1

(a) Determine and sketch the magnitude and phase response Hi m)  and 
respectively.

(b) Determine and sketch the magnitude and phase spectra for the input and output 
signals for the following inputs:

3,t ii
( 1 ) .v (n ) =  cos — . — rc < n < cc

(2) .xin) =  (....-1, 1. - 1 . 1 . - 1 . 1 . - 1 . 1 . -I. 1, -1. 1...-I

T

4.40* Time-domain sampling Consider the continuous-time signal

(a) Compute analytically the spectrum X„(F) of a „ U ) -

(b) Compute analytically the spectrum of the signal a (/?> = x„{nT). T =  1 /F ,.
(c) Plot the magnitude spectrum |X„(F)| for Ft, =  K) Hz.
(d) Plot the magnitude spectrum (X(F)I for F, =  10. 20, 40. and 100 Hz.
(e) Explain the results obtained in part (d) in terms ol the aliasing effect.

4.41 Consider (he digital filter shown in Fig. P4.41.
(a) Determine the input-output relation and the impulse response h(n).
(b) Determine and sketch the magnitude ]W(w)| and the phase response 2̂ H( a »  of 

the filter and find which frequencies are completely blocked by the filter.
(c) When w,, =  t /2 ,  determine the output yin) to the input

.v(n) =  3 cos +  30 ^ — cc < n < oc

y(n>

Figure P4.41

4.42 Consider the FIR filter

y(n) =  xin) -  xin - 4 )

(a) Compute and sketch its magnitude and phase response.
(b) Compute its response to the input

n n
x(n) = cos — n +  cos —n — cc < n < oc

2 4

-*—— 1 ---- —( +

u -  -2  cos aif,
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(c) Explain the results obtained in part (b) in terms of the answer given in part (a).
4.43 Determine the steady-state response of the system

4.44 Recall from Problem 4.32 that an LTI system cannot produce frequencies at its output 
that are different from those applied in its input. Thus if a system creates “new” 
frequencies, it must be nonlinear and/or time varying. Indicate whether the following 
systems are nonlinear and/or time varying and determine the output spectra when the 
input spectrum is

(a) _v(n) =  j:(2nt
(b) y ( « )= x :(n)
(c) v(n) =  (cos nn)xin)

4.45 Consider an LTI svstem with impulse response

(a) Determine its system function H(z).
(b) Is it possible to implement this system using a finite number of adders, multipliers, 

and unit delays? If yes. how?
(c) Provide a rough sketch of \H(w)| using the pole-zero plot.
(d) Determine the response of the system to the input

y(n) = i[.v(n) -  x(n - 2 )]

to the input signal

— oc < n < oc

x(n) =  (

4.46 An FIR filter is described by the difference equation

yin) =  x(n) — xin — 10)

(a) Compute and sketch its magnitude and phase response.
(b) Determine its response to the inputs

— oc < n < oc

— oc < n < oc-

4.47 The frequency response of an ideal bandpass filter is given by
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(a) D eterm ine its impulse response
(b) Show that this impulse response can be expressed as the product of cos(n7t / 4) 

and the impulse response of a lowpass filter.
4.48 Consider the system described by the difference equation

v(n) = jy(n — I ) +  .r(n) 4- |.r(n -  1 >

(a) D eterm ine its impulse response.
(b) D eterm ine its frequency response:

(1) From the impulse response
(2) From the difference equation

(c) D eterm ine its response to the input
I T T  .T \

x {n > =  cos y — r +  j -  oc < n < oc

4.49 Sketch roughly the magnitude |A"u<>)! of the Fourier transforms corresponding to the 
pole-zero patterns given in Fig. P4.49.

Figure P4.49

4.50 Design an FIR  filter that completely blocks the frequency a*, =  rr/4 and then compute 
its output if the input is

x ( n )  =  ^ s i n  j u ( n )  

for n = 0, 1 , 2, 3, 4. Does the filter fulfill your expectations? Explain.
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4.51 A digital filter is characterized by the following properties:
(1) It is highpass and has one pole and one zero.
(2) The pole is at a distance r  =  0.9 from the origin of the ; -plane.
(3) Constant signals do not pass through the system.

(a) Plot the pole-zero pattern of the filtei and determine its system function H(z).
(b) Compute the magnitude response \H(cu}\ and the phase response ^H( tn)  of the 

filter,
(c) Normalize the frequency response H( cd) so that = 1.
(d) Determine the input-output relation (difference equation) of the filter in the time 

domain.
(e) Compute the output of the system if the input is

(You can use either algebraic or geometncal arguments.)
4.52 A causal first-order digital filter is described by the system function

(a) Sketch the direct form I and direct form II realizations of this filter and find the 
corresponding difference equations.

(b) For a = 0.5 and b — —0.6, sketch the pole-zero pattern, is the system stable? 
Why?

(c) For a =  —0.5 and b =  0.5, determine bu. so that the maximum value of \H(w)\ is 
equal to 1 .

(d) Sketch the magnitude response \H{co)\ and the phase response 2t//(o>) of the 
filter obtained in part (c).

(e) In a specific application it is known that a — 0.8. Does the resulting filter amplify 
high frequencies or low frequencies in the input? Choose the value of b so as to 
improve the characteristics of this filter (i.e., make it a better lowpass or a better 
highpass filter).

4.53 Derive the expression for the resonant frequency of a two-pole filter with poles at 
Pi  =  r e ’6 and p 2 =  p*x. given by (4.5.25).

4.54 Determine and sketch the magnitude and phase responses of the Hanning filter char­
acterized by the (moving average) difference equation

— ex: < n < oc

y(n) ~  jx (n) +  \x(n  -  1 ) +  j*(« -  2 )

4.55 A causal LTI system excited by the input

x(rt') = (j)"«(n) +  u(—n -  1) 

produces an output v(n) with r-transform
_ 3  „- l

(a) Determine the system function H(z)  and its ROC.
(b) Determine the output y(n) of the system.

(Hint: Pole cancellation increases the original ROC.)



Chap. 4 Problems 383

4.56 Determine the coefficients of a linear-phase FIR filter

v(n) =  b^x(n) + btx(n — 1) +  thx(n — 2)

such that:
(a) It rejects completely a frequency component at a* =  2jt/3.
(b) Its frequency response is normalized so that H{0) ~  1.
(c) Compute and sketch the magnitude and phase response of the filter to check if 

it satisfies the requirements.
4.57 Determine the frequency response H(w)  of the following moving average filters.

-v(") =  2F t t X > - * )

1 1 J
(b) y(ff) =  —r-x(n +  Af) +  —  Y  x(n -  k) + ~r~rzx(n -  M)

AM 2M AMk=-M + i

Which filter provides better smoothing? Why?
4.58 The convolution *(r) of two continuous-time signals *((/) and x2(t), from which at 

least one is nonperiodic, is defined by

x(t) = X] (/) * xj(t) — j  x\ {X)x2(t — k)dk

(a) Show that X(F)  =  X\ (F)X2(F),  where X, (F) and X2(F) are the spectra of *1 (r) 
and a:(/), respectively.

<b> Compute .r(r) if jrt(r) =  =  ( I' < Xp '  ■
10. elsewhere

(c) Determine the spectrum of x(t) using the results in part (a).
4.59 Compute the magnitude and phase response of a filter with system function

H(z) = l +  c“ ‘

If the sampling frequency is F, =  1 kHz, determine the frequencies of the analog 
sinusoids that cannot pass through the filter.

4.60 A second-order system has a double pole at p li2 =  0.5 and two zeros at

Z\.2 = e±s3*,A

Using geometric arguments, choose the gain G of the filter so that |tf(0 )| =  1.
4.61 In this problem we consider the effect of a single zero on the frequency response of 

a system. Let ; =  re’9 be a zero inside the unit circle (r < 1). Then

H,(w) =  1 — re]0e~iu>

=  1 — r cos(a) — B) + j r  sin(ti) — (?)

(a) Show that the magnitude response is

\HZ((D)\ = [ 1 - 2  r cosito - 6 )  + r2f n

201og10 |/ / :(cd)| =  101og10[l — 2r cos{ct> — 6) + r2]

or, equivalently,



384 Frequency Analysis of Signals and Systems Chap. 4

(b) Show that the phase response is given as

-i rsin(w  -  8) 
0 : (ct>) =  tan -------------------

1 -  r cos(ct) -

(c) Show that the group delay is given as

r  -  rcos(w -  8)
1 +  r1 — 2r COS(oj — ■

(d) Plot the magnitude («)]dB. the phase ©(oj) and the group delay for r = 0.7 
and 0 =  0, n j 2, and n.

4.62 In this problem we consider the effect of a single pole on the frequency response of 
a system. Hence, we let

«'•<»> =  '  ■=1

Show that

[Wr (a>)ljB =  ~ |W-(fi))|dD 

4 //„ (u> ) =  - Z -H . (c o )

where H:(<x>) and are defined in Problem 4.61.
4.63 In this problem we consider the effect of complex-conjugate pair of poles and zeros 

on the frequency response of a system. Let

H.{u>) = (1 -  reJ*'e~J'")(l -  re~il'e~-"“)

(a) Show that the magnitude response in decibels is

| W - M | d B  —  1 0 1 o g 1 ( ) [ l  +  -  2 r  c o s ( o )  -  # ) ]

+ 101og,„[l + r 2 -  2r cos(a) +  6)]

(b) Show that the phase response is given as 

rsinUo — 8) _■ Asin(w +  fi)
®:(co) = tan '

l - r c o s ( t u - # )  l-r c o s(o >  +  0)

(c) Show that the group delay is given as

r2 — r cos(o> — 8) r2 — r co s (c j  + 8)
= — — r— — — ------ — +

1 +  r2 -  2r cos(to — 9 ) 1 4- r2 -  2r cos(a> +

(d) If Hp(w) = l /H: (a>), show that

&p(w) - -© .(oj)

Tg(a>) =

(e) Plot ®p(ci>) and (w) for r =  0.9, and 8 — 0, jt/2.
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4.64 D e te rm in e  th e  3-dB b a n d w id th  of the f ilte rs  (0 < a < 1)

Which is a better lowpass filter?
4.65 Design a digital oscillator with adjustable phase, that is. a digital filter which produces 

the signal

y(n)  =  cos(<W|,« + f t )u(n)

4.66 This problem provides another derivation of the structure for the coupled-form os­
cillator by considering the system

y i n ) =  a v ( r i  — 1 ) 4  x i / i  )

for a — e'“".
Let xi/ i) be real. Then yin} is complex. Thus

y i n )  =  +  . / ' / ( « )

(a) Determine the equations describing a system with one input xi n)  and the two 
outputs y t i U t )  and y f Ui ) .

(b) Determine a block diagram realization
(c) Show that if ,v(«) = bin), then

y^in) = (cosw()'i ii/tn I 

y/ {ti) =  (sin mull )u(n)

(d) Compute ynin), \/in). n = 0. 1....... 9 for &j(, =  tt/6. Compare these with the true
values of the sine and cosine,

4.67 Consider a filter with system function

(1 -  1 -  
H(Z) = h\ —--------:------j--- ;-------------- —r-

(1 — reJUI"z )(1 — re~,w"z )

(a) Sketch the pole-zero pattern.
<b) Using geometric arguments, show that for r  ^  1,  the system is a notch filter and 

provide a rough sketch of its magnitude response if ttx> =  60 .
(c) For (i>n = 60 , choose bo so that the maximum value of \Hia>)\ is 1.
(d) Draw a direct form II realization of the system
(e) Determine the approximate 3-dB bandwidth of the system.

4.68* Design an FIR digital filter that will reject a very strong 60-Hz sinusoidal interference 
contaminating a 200-Hz useful sinusoidal signal. Determine the gain of the filter so 
that the useful signal does not change amplitude. The filter works at a sampling 
frequency F, =  500 samples/s. Compute the output of the filter if the input is a 60-Hz 
sinusoid or a 200-Hz sinusoid with unit amplitude. How does the performance of the 
filter compare with your requirements?

4.69 Determine the gain bo for the digital resonator described by (4.5.28) so that 
I//(«n) I =  1.
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4.70 Demonstrate that the difference equation given in (4.5.52) can be obtained by apply­
ing the trigonometric identity

where a — (n-t-Dwu, ~  (n — l)a>o, and v(n) =  coswon. Thus show that the sinusoidal 
signal x(n) — A coscô n can be generated from (4.5.52) by use of the initial conditions 
v(— 1) =  A cos an) and y(— 2) =  j4cos2a>o.

4.71 Use the trigonometric identity in (4.5.53) with a = na>o and (i = (n — 2)a^t to derive the 
difference equation for generating the sinusoidal signal y(n) = A sin no*,. Determine 
the corresponding initial conditions.

4.72 Using the --transform pairs 8 and 9 in Table 3.3. determine the difference equations 
for the digital oscillators that have impulse responses h(n) = A cosna>it«(n) and h(n) =  
A sin ncDf>u(n), respectively.

4.73 Determine the structure for the coupled-form oscillator by combining the structure 
for the digital oscillators obtained in Problem 4.72.

4.74 Convert the highpass filter with system function

into a notch filter that rejects the frequency a*, =  tt/4  and its harmonics.
(a) Determine the difference equation.
(b) Sketch the pole-zero pattern.
(c) Sketch the magnitude response for both filters.

4.75 Choose L and M for a lunar niter that must have narrow passbands at (k ±  AF) 
cycles/dav. where k =  i. 2, 3 , . . .  and A F  = 0.067726.

4.76 (a) Show that the systems corresponding to the pole-zero patterns of Fig. 4.58 are

(b) What is the number of delays and multipliers required for the efficient implemen­
tation of a second-order all-pass system?

4.77 A digital notch filter is required to remove an undesirable 60-Hz hum associated with 
a power supply in an ECG recording application. The sampling frequency used is 
Fs =  500 samples/s. (a) Design a second-order FIR notch filter and (b) a second- 
order pole-zero notch filter for this purpose. In both cases choose the gain by so that 
\H(w)\ =  1 for w =  0.

4.78 Determine the coefficients {/?(«)} of a highpass linear phase FIR filter of length M =
4 which has an antisymmetric unit sample response h{n) =  — h(M -  I -  n) and a 
frequency response that satisfies the condition

4.79 In an attempt to design a four-pole bandpass digital filter with desired magnitude 
response

a + [i a — 
cos or +  cos p = 2 cos —-—  cos —-—

H(z) = a < 1
— az

all-pass.

0, elsewhere
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we select the four poles at

/>,, =  0 .8e-MT"
and four zeros at

(a) Determine the value of the gain so that

H D b
(b) Determine the system function H(:).
(c) Determine the magnitude of the frequency response H(a>) for 0 < a> < tt and 

compare it with the desired response \Hd(w)[.
4.80 A discrete*time system with input and output v ( n )  is described in the frequency 

domain by the relation
d X i u j )

V (oj) — v ~ 1 X  (as) -t- —— •—  
das

(a) Compute the response of the svstem to the input x i n )  =
(b ) C heck if the system  is LTI and stable.

4.81 Consider an ideal lowpass filter with impulse response It in) and frequency response

I 1. K"! 5  a),
Hiw)  =  |

I 0 ,  CIJ, <  |<D| <  TT

What is the frequency response of the iiher defined by

h , n even
X<n) =

f). n odd

4.82 Consider the system shown in Fig. P4.S2. Determine its impulse response and its 
frequency response if the system H(a>) is:
(a) Lowpass with cutoff frequency w,.
(b) Highpass with cutoff frequency oj ,  .

xin)
Hiw)

I ' 1
4.83 Frequency inverters have been used for many years for speech scrambling. Indeed, 

a voice signal x(n) becomes unintelligible if we invert its spectrum as shown in 
Fig. P4.S3.
(a) Determine how' frequency inversion can be performed in the time domain.
(b) Design an unscrambler. (Hint: The required operations are very simple and can 

easily be done in real time.)
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X(a>)

- x  0 n  Figure P4.83 (a) Original spectrum;
(b) (b) frequency-inverted spectrum.

4.84 A lowpass filter is described by the difference equation

v(n) =  0.9v(/i -  1) +  0.1x(n)

(a) By performing a frequency translation of n f l .  transform the filter into a bandpass 
filter.

(b) What is the impulse response of the bandpass filter?
(c) What is the major problem with the frequency translation method for transform­

ing a prototype lowpass filter into a bandpass filter?
4.85 Consider a system with a real-valued impulse response h(n) and frequency response

H(w)  =  \H (a>)\em -’'

The quantity

D  =  2 2  ” 2^ ( n )
n = ~  oc

provides a measure of the “effective duration” of h(n).
(a) Express D in terms of H(w).
(b) Show that D is minimized for 0(a>) =  0.

4.86 Consider the lowpass filter

v(n) =  ay{n  — 1) +  fejr(n) 0  <  a <  1

(a) Determine b so that |//{0)| =  1.
(b) Determine the 3-dB bandwidth an, for the normalized filter in part (a).
(c) How does the choice of the param eter a affect uyf!
<d) Repeat parts (a) through (c) for the highpass filter obtained by choosing -1  < 

a <  0 .

4.87 Sketch the magnitude and phase response of the multipath channel

y (n ) =  x ( n ) +  a jr(n  — M ) a  >  0

fo r a  < < 1.
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4.88 Determine the system functions and the pole-zero locations for the systems shown in 
Fig. P4.88(a) through (c). and indicate whether or not the systems are stable.

l

lc)

Figure P4.88

4.89 Determine and sketch the impulse response and the magnitude and phase responses 
of the FIR filter shown in Fig. P4.89 for b = 1 and b = -1 .

4.90 Consider the system

v(n) =  x(n) -  0.95.r(fl -  6)

(a) Sketch its pole-zero pattern.
(b) Sketch its magnitude response using the pole-zero plot.
(c) Determine the system function of its causal inverse system.
(d) Sketch the magnitude response of the inverse system using the pole-zero plot.

4.91 Determine the impulse response and the difference equation for all possible systems 
specified by the system functions



(a) H(Z) =  1 _ rZ_ ' _  ,_2

0 »  " W  =  ! _ eL z-4 0 < « < 1

4.92 Determine the impulse response of a causal LTI system which produces the response

v(n) =  {1. -1 .3 .  -1 ,6 )  
t

when excited by the input signal

x(n) =  (1,1,2} 
t

4.93 The system
y(n) = i_v(n -  1) +  x(n)

is excited with the input

x(n) =  (j)"«(n)

Determine the sequences aj t (/), rhh(l), r,y(i). and rvy(l).
4.94 Determine if the following FIR systems are minimum phase.

(a) h(n) =  {10,9. - 7 , - 8 ,0 ,5 .  3}
r

(b) h(n) = (5,4, - 3 . -4 , 0 ,2 ,1)
t

4.95 Can you determine the coefficients of the all-pole svstem

*=i
if you know its order N  and the values /?(0), / i( l) ........h ( L - l )  of its impulse response?

How? What happens if you do not know N1
4.96 Consider a system with impulse response

h(n) =  baS(n) + bi$(n — D) +  ^<5(n — 2D)

(a ) Explain why the system generates echoes spaced D samples apart.
(b) Determine the magnitude and phase response of the system.
(c) Show that for \b0 + b2\ < <  |£>]|, the locations of maxima and minima of \H(a>) 

are at
k

w =  ±  — n k =  0 . 1 , 2 . . . .
D

(d) Plot |//(w )| and for b$ — 0.1, b\ =  1, and b2 =  0.05 and discuss the results.
4.97 Consider the pole-zero system

B(z) 1 +  bz * v—'
W(z) =  =  T T ------r = Y l h^ zA(z) 1 +  a z  1 “

(a) Determine >i(0), >i(l), h(2), and h(3) in terms of a and b.
(b) Let rhH(l) be the autocorrelation sequence of h(n). Determine rkh{0), /-^(l), rw,(2), 

and r/,h(3) in terms of a and b.
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4.98 Let be a real-valued minimum-phase sequence. Modify xin I to obtain another 
real-valued minimum-phase sequence y(/i) such that y(0) =  x(0) and y(n) =  |jr(n)|.

4.99 The frequency response of a stable LTI system is known to be real and even. Is the 
inverse system stable?

4.100 Let h(n) be a real filter with nonzero linear or nonlinear phase response. Show that 
the following operations are equivalent to filtering the signal x(n)  with a zero-phase 
filter.
(a) g(n) — Ji(n) * ,v(n)

/ (h  ) =  h (/ t  ] *  g t - i i )  

yon  =  f( ~n)
(b) g(n) — h(n) *

/ (r?) =  h{n) * x ( —n) 
y(nl  =  ain) +  / ( - i i )

(Hint: Determine the frequency response of the composite system _v(/i) =  //[.v(«)].)
4.101 Cheek the validity of the following statements:

(a) The convolution of two minimum-phase sequences is always mimmum-phase se­
quence.

(h) The sum of two minimum-phase sequences is always minimum phase.
4.102 Determine the minimum-phase syslem whose squared magnitude response is given 

by:

4.103 Consider an FIR syslem with the following system function:

H(z)  =  (1 - 0 . 8 r '7V 'K l  -  l..v "T,V 1 HI -  L S ^ ' V 1)

(a) Determine all systems that have the same magnitude response. Which is the 
minimum-phase system?

(b) Deiermine the impulse response of al) systems in part (a).
(c) Plot the partial energy

-  cos w
(a) iH(</)}'- =  ^

(b )  I H (u>)',:  =
( i a - ) -  2a cos w

i=t>

for every system and use il lo identify the minimum- and maximum-phase systems.
4.104 The causal system

//(.-) = ,v
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(a) Show that by properly choosing A we can obtain a new stable system.
(b) What is the difference equation describing the new system?

4.105* Given a signal x(n), we can create echoes and reverberations by delaying and scaling 
the signal as follows

>’(«) =  22 Skx (n ~ kD)

where D is positive integer and gk > g i — i > 0.
(a) Explain why the comb filter

H(z) =
1 - a z - °

can be used as a reverberator (i.e.. as a device to produce artificial reverberations). 
(Hint: Determine and sketch its impulse response.)

(b) The all-pass comb filter

- a
H(z) =

1 -  a z - 1’

is used in practice to build digital reverberators by cascading three to five such 
filters and properly choosing the parameters a and D. Compute and plot the 
impulse response of two such reverberators each obtained by cascading three 
sections with the following parameters.

UNIT 1 UNIT 2

Seclion I) a Section D a

1 50 0.7 1 50 0.7
2 40 0.665 2 17 0.77
3 32 0.63175 3 6 0.847

(c) The difference between echo and reverberation is that with pure echo there are 
clear repetitions of the signal, but with reverberations, there are not. How is this 
reflected in the shape of the impulse response of the reverberator? Which unit 
in part (b) is a better reverberator?

(d) If the delays D\, D2, Dj in a certain unit are prime numbers, the impulse response 
of the unit is more “dense." Explain why.

(e) Plot the phase response of units 1 and 2 and comment on them.
(f) Plot h(n) for D |, D2, and being nonprime. W hat do you notice?
More details about this application can be found in a paper by J. A. Moorer, “Signal
Processing Aspects of Computer Music: A Survey," Proc, IEEE,  vol. 65, No. 8, Aug.
1977, pp. 1108-1137.

4.106* By trial-and-error design a third-order lowpass filter with cutoff frequency at wc =  Jt/9
radians/sample interval. Start your search with
(a) zi =  Z2 =  Z3 =  0, pi = r, p2J = re±,tu' . r = 0.8
(b) r = 0.9, zi =  Z2 =  Z3 =  -1
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4.107* A speech signal with bandwidth B =  10 kHz is sampled at F2 = 20 kHz. Suppose 
that the signal is corrupted by four sinusoids with frequencies

F, =  10, 000 Hz. F3 =  7778 Hz

F2 = 8889 Hz, F4 = 6667 Hz

(a) Design a FIR filter that eliminates these frequency components.
(b) Choose the gain of the filter so that |H(0)| =  1 and then plot the log magnitude 

response and the phase response of the filter.
(c) Does the filter fulfill your objectives? Do you recommend the use of this filter in 

a practical application?
4.108* Compute and sketch the frequency response of a digital resonator with co =  t t / 6  and 

r =  0.6, 0.9, 0.99. In each case, compute the bandwidth and the resonance frequency 
from the graph, and check if they are in agreement with the theoretical results. 

4.109* The system function of a communication channel is given by

H(z) =  (1 - 0 . 9 f - 'u4'T;;-1)(l -  1.5^'afor; - 1)(l -  1.5<’- '" tez - 1)

Determine the system function Ht.(;) of a causal and stable compensating system so 
that the cascade interconnection of the two systems has a flat magnitude response. 
Sketch the pole-zero plots and the magnitude and phase responses of all systems in­
volved into the analysis process. [Hint: Use the decomposition H(z)  =  Wap(;) Wn,in(;)-]



The Discrete Fourier 
Transform: Its Properties and 
Applications

Frequency analysis of discrete-time signals is usually and most conveniently per­
formed on a digital signal processor, which may be a general-purpose digital com ­
puter or specially designed digital hardware. To perform frequency analysis on a 
discrete-time signal we convert the tim e-dom ain sequence to an equivalent
frequencv-dom ain representation. We know that such a representation is given by 
the Fourier transform X(cu) of the sequence |a(>;)). H ow ever, A'u<j) is a contin­
uous function of frequency and therefore, it is not a com putationally convenient 
representation of the sequence {.v(/i)).

In this section we consider the representation of a sequence by samples
of its spectrum X (uj). Such a frequency-dom ain representation leads to the discrete 
Fourier transform (D FT ), which is a powerful com putational tool for performing 
frequency analysis o f discrete-time signals.

5.1 FREQUENCY DOMAIN SAMPLING: THE DISCRETE FOURIER 
TRANSFORM

B efore we introduce the DFT, we consider the sampling of the Fourier transform of 
an aperiodic discrete-time sequence. Thus, we establish the relationship between  
the sampled Fourier transform and the DFT.

5.1.1 Frequency-Domain Sampling and Reconstruction of 
Discrete-Time Signals

W e recall that aperiodic finite-energy signals have continuous spectra. Let us 
consider such an aperiodic discrete-tim e signal x(n)  with Fourier transform

(5.1.1)

394
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Suppose that we sam ple X(a>) periodically in frequency at a spacing of Sco radians 
betw een  successive sam ples. Since X(a>) is periodic with period 2tt, only sam ples 
in the fundam ental frequency range are necessary. For convenience, we take N  
equidistant sam ples in the interval 0 < w  <  2tt with spacing Sco =  2ttf N , as shown  
in Fig. 5.1. First, we consider the selection of N,  the num ber o f sam ples in the 
frequency domain.

If we evaluate (5.1.1) at u> = 2 n k / N , we obtain

The sum m ation in (5.1.2) can be subdivided into an infinite num ber of summations, 
where each sum contains N  terms. Thus

If we change the index in the inner sum m ation from n to n — I N  and interchange 
the order of the sum m ation, we obtain the result

obtained by the periodic repetition o f x{n)  every N  sam ples, is clearly periodic 
with fundam ental period N.  Consequently, it can be expanded in a Fourier

(5.1.2)

- i N - 1

oc I N  +  N - 1

-)2nkn/\

}=-~yL f}=i A‘

(5.1.3)

for k =  0, 1, 2 .........N  — 1.
The signal

OC

(5.1.4)

0 kSa) tt Swh

Figure 5.1 Frequency-dom ain sampling of the Fourier transform .
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series as
A'-l

x p(n) =  Y ^ c ke,2nkn/N n =  0 ,1 .........N -  1 (5.1.5)
k=Q

with Fourier coefficients
l  A '-l

ck =  - - ' £ x p( n) e - j2,rkn/N k =  0 ,1 ........ N  — 1 (5.1.6)
N  n=0

U pon comparing (5.1.3) with (5.1.6), we conclude that 

1 f 2*  \ck = — X l — k )  k =  0 . 1.........A ' - l  (5.1.7)
N  \  N  J J

Therefore,

1 ^ ~ ̂  /  ̂ 7T \
x.,(n) = — ' y  *  ( — * ) ellnkntN n =  0, 1........ A ' - l  (5.1.8)

\ N  /

The relationship in (5.1.8) provides the reconstruction of the periodic signal 
x r (u) from the sam ples of the spectrum X ( oj). H ow ever, it does not imply that 
we can recover X(u>) or x{n)  from the sam ples. T o accomplish this, we need to 
consider the relationship betw een x p(n) and j:(«).

Since x p(n) is the periodic extension of x{n)  as given by (5.1.4). it is clear 
that x (/j) can be recovered from x p (n) if there is no aliasing in the time domain, 
that is, if x(n)  is tim e-lim ited to less than the period N  of x p(n).  This situation is 
illustrated in Fig. 5.2, where without loss of generality, we consider a finite-duration

rtn)

Hitt,....
0 L

xp(n)
N > L

I T I i t t t t I I T I t t t . . J T T T T t t t

0 L N

•
N < L

I T I T t t t I T T t T T T t 1 -
- N O N

Figure 5.2 Aperiodic sequence x(n) of length L and its periodic extension for 
N  > L (no aliasing) and N < L  (aliasing).
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sequence x(n) ,  which is nonzero in the interval 0 < n < L — 1. W e observe that 
when N  > L.

x(ti) = Xp(n) 0 < n < N  — 1

so that x(n)  can be recovered from x r (n) without ambiguity. On the other hand, 
if N  < L,  it is not possible to recover from its periodic extension due to t ime-  
domai n  aliasing.  Thus, we conclude that the spectrum of an aperiodic discrete-time  
signal with finite duration L . can be exactly recovered from its sam ples at frequen­
cies tot: =  2jrk/N.  if N  > L.  The procedure is to com pute x p(n). n =  0, 1.........N -  1
from (5.1.8); then

0 < n < N  
elsewhere

and finally, X(io)  can be com puted from (5.1.1).
A s in the case o f continuous-tim c signals, it is possible to express the spectrum

X(w)  directly in terms o f its sam ples X Q n k / N ) ,  k =  0. 1........ N — 1. T o derive
such an interpolation formula for X{co), we assume that N > L and begin with 
(5.1.8). Since x(n)  = x,,(n) for 0 < /; < A' -  1,

A
k ] ( ) < / / <  N -  I (5.1.1(1)

If we use (5.1.1) and substitute for v(/;), we obtain

A'-I

X(a>) =
n = ( l 

A'-l 

= 2>

(5.1.11)

The inner summation term in the brackets o f (5.1.11) represents the basic 
interpolation function shifted by 2ttk / N  in frequency. Indeed, if we define

v/tuA-'

sin(o>Ar/2)  

N  sin(w/2)

N  1 -  e-J°‘

jiuiN
(5.1.12)

then (5.1.11) can be expressed as
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The interpolation function P(co) is not the familiar ( s in8) /6  but instead, it 
is a periodic counterpart of it, and it is due to the periodic nature of A’(co). The 
phase shift in (5.1.12) reflects the fact that the signal j:(n) is a causal, finite-duration 
sequence of length N. The function sln(a>N/2)/ (N  sin(a>/2)) is plotted in Fig. 5.3 
for N  =  5. We observe that the function P(to) has the property

Consequently, the interpolation formula in (5.1,13) gives exactly the sample val­
ues X ( 2 j r k / N )  for oj  =  2 i rk /N .  At all other frequencies, the formula provides a 
properly weighted linear com bination o f the original spectral sam ples.

The following exam ple illustrates the frequency-dom ain sampling of a 
discrete-time signal and the tim e-dom ain aliasing that results.

Example 5.1.1

Consider the sisinal

The spectrum of this signal is sampled at frequencies a>t = l i r k / S . k — 0. 1....... A '- l .
Determine the reconstructed spectra for a = 0.8 when A' =  5 and N = 50.

Solution The Fourier transform of the sequence x(n)  is

Suppose thai we sample X(w)  at N equidistant frequencies w*. =  2x k / N,  k =  0,

Xiw)

1.0

k =  0
* =  1 .2 .........A ' - l

(5.1.14)

xin ) =  a"uin) 0 < a < 1

A' -  1. Thus we obtain the spectral samples

JV = 5
Figure S.3 Plot o f the function
[sin(ct>W/2)]/[jty sin(tu/2)].
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The periodic sequence xp(n), corresponding to the frequency samples X(2nk /N) ,  
k =  0, 1 , . . . .  N  — 1, can be obtained from either (5.1.4) or (5.1.8). Hence

where the factor 1/(1 - a N) represents the effect of aliasing. Since 0 < a < 1, the 
aliasing error tends toward zero as N -+ oo.

For a =  0.8, the sequence x(n) and its spectrum X{w) are shown in Fig. 5,4a 
and b, respectively. The aliased sequences xp(n) for N  =  5 and N  =  50 and the 
corresponding spectral samples are shown in Fig. 5.4c and d, respectively. We note 
that the aliasing effects are negligible for N  =  50.

If we define the aliased finite-duration sequence x(n) as

Note that although X(ou) ^  X(a>), the sample values at a>t =  I n k f N  are identical.

5.1.2 The Discrete Fourier Transform (DFT)

The developm ent in the preceding section is concerned with the frequency-dom ain  
sam pling of an aperiodic finite-energy sequence j:(n). In general, the equally
spaced frequency sam ples X (2n k / N ) ,  k =  0 ,1 ____ N  — 1, do not uniquely represent
the original sequence x(n)  when x(n) has infinite duration. Instead, the frequency
sam ples X ( 2 n k / N ) ,  k =  0, 1........ N  -  I,  correspond to a periodic sequence x p(n)
o f period N,  where x p (n) is an aliased version of *{«), as indicated by the relation  
in (5.1.4), that is,

W hen the sequence x(n)  has a finite duration of length L  <  N , then x p{n) 
is sim ply a periodic repetition o f x(n) ,  where xp (n) over a single period is

oc 0
xp(n) =  ^  jc(n -  IN)  =  ^  a”~IN

0 < n < N -  1

xp{n), 0 < n < N  — 1 
0, otherwise

then its Fourier transform is

X(w) =  y ^ i (n ) e

1 1
1 — aN 1 — ae~,w

That is,

1 - a N l - a e - ' 2”1"
1 1 - a N

(5.1.15)
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1.0?

Tfrrmnx.

(a)

IAWH

(b)

T

x(n)
1.0*

1W

x \ f k)

50 (1 

fdi

50

Figure 5.4 (a) Plot of sequence xin) = (0.X)"h(h): (b) its Fourier transform (magnitude 
only): (c) effect of aliasing with A' =  5: (d) reduced effect of aliasing with A' =  50.

given as

x r (n) =
x(n) .
0.

0 < n < L  — 1 
L  <  n < N  — 1

(5.1.16)

Consequently, the frequency sam ples X ( 2 i r k / N ) ,  k =  0. 1.........N  — 1, uniquely
represent the finite-duration sequence *{/;)■ Since x (n)  = x p (n) over a single pe­
riod (padded by N — L zeros), the original finite-duration sequence x(n)  can be 
obtained from the frequency sam ples \ X ( 2 n k / N  \ by m eans o f the formula (5.1.8)- 

It is important to  note that zero pad d in g  does not provide any additional 
information about the spectrum X(a>) o f the sequence \x(n)}.  The L  equidis-
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tant sam ples o f  X(u>) are sufficient to reconstruct X(co) using the reconstruction  
formula (5.1.13). H ow ever, padding the sequence {jc(« )} with N  — L zeros and 
com puting an A'-point D FT  results in a “better display" of the Fourier transform  
X(o>).

In summary, a finite-duration sequence x(n)  of length L [i.e., x(n) =  0 for 
n < 0 and n > L\  has a Fourier transform

JL —1
X(u>) = ^ 2 x ( n ) e ~ Jwn 0 < a> < 2jt (5.1.17)

n=0

where the upper and lower indices in the sum m ation reflect the fact that x(n)  =  0 
outside the range 0 < n < L — 1. W hen we sam ple X{a>) at equally spaced
frequencies u>k =  2 n k / N .  k ~  0, 1, 2 ........ N  — 1, where N  > L.  the resultant
samples are

X (k )  =  X = J 2 x ( n ) e ^ j27,k"/N
N_)  N  7 "=° (5.1.18)

X(k )  = y  x ( n ) e - p̂ h,IN k =  0, 1, 2, , . . ,  N  -  1
n=<l

where for convenience, the upper index in the sum has been increased from L — 1 
to /V -  1 since x(n)  =  0 for n > L.

The relation in (5.1.18) is a formula for transforming a sequence {jc(«)} of 
length L  < N  into a sequence o f frequency sam ples (X(£))  o f  length N.  Since 
the frequency sam ples are obtained by evaluating the Fourier transform X  (a>) 
at a set o f  N  (equally spaced) discrete frequencies, the relation in (5.1.18) is 
called the discrete Fourier  t rans form (D FT ) of jc («). In turn, the relation given 
by (5.1.10), which allows us to recover the sequence jr(n) from the frequency 
samples

1 A'-l
x ( n)  =  -  £  X f c ) e ,23tknlN n =  0 .1 .........N ~  1 (5.1.19)

is called the inverse D F T  (ID F T ). Clearly, when x( n)  has length L < N,  the Ap­
point ID FT yields x(n ) =  0 for L < n <  N — 1. T o summarize, the formulas for 
the D F T  and ID FT  are

DFT
A'-l

X ( k )  =  J ^ x ( n ) e - j2nkn/N k = 0 , 1,2,  (5.1.18)
7̂—0

IDFT
, A'-l

x(n)  =  — Y *  X ( k ) e JZnkn/N n =  0 , 1 , 2 .........N  -  1 (5.1.19)
N *=o
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Example 5.1.2

A finite-duration sequence of length L is given as

x(n)  — I 0 < n < L - l
1 0, otherwise

Determine the /V-point DFT of this sequence for N  > L. 

Solution The Fourier transform of this sequence is

£-1

The magnitude and phase of X (w) are illustrated in Fig. 5.5 for L = 10. The Appoint 
DFT of x (n) is simply X(w) evaluated at the set of N  equally spaced frequencies 
wt =  2it k /N,  k =  0, 1........N — 1. Hence

L - l

p-jkrkLiN

s m( * k L/ N )
sm(i tk/N)

, - j x k l L -  1 I/A/

IX(w)l

1"

2
7C —

2
2 n

0(a>)
TT

ID

Figure SS  Magnitude and phase
characteristics of the Fourier transform
for signal in Example 5.1.2.
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If N  is selected such that N = L, then the DFT becomes 

L, k = 0
* (*) = 10. * =  1 .2 ........L - l

Thus there is only one nonzero value in the DFT. This is apparent from obser­
vation of X(w), since X(a>) =  0 at the frequencies an = I n k f L ,  k ^  0. The 
reader should verify that x(n) can be recovered from X(k)  by performing an Z.-point 
IDFT.

Although the L-point DFT is sufficient to uniquely represent the sequence x{n) 
in the frequency domain, it is apparent that it does not provide sufficient detail to yield 
a good picture of the spectral characteristics of x(n).  If we wish to have better picture, 
we must evaluate (interpolate) X(a>) at more closely spaced frequencies, say wt, = 
2n k / N ,  where N > L. In effect, we can view this computation as expanding the size 
of the sequence from L points to N points by appending A '- L  zeros to the sequence 
x(n ). that is, zero padding. Then the A*-point DFT provides finer interpolation than 
the L-point DFT.

Figure 5.6 provides a plot of the Appoint DFT, in magnitude and phase, for 
L =  10, N  =  50, and N =  100. Now the spectral characteristics of the sequence 
are more clearly evident, as one will conclude by comparing these spectra with the 
continuous spectrum XUo).

5.1.3 The DFT as a Linear Transformation

The formulas for the D FT  and ID FT given by (5.1.18) and (5.1.19) may be ex­
pressed as

N - 1

X(k)  =  J ^ jr O i)^ "  A- =  0 , 1 , . . . ,  A/ — 1 (5.1.20)
FT—(I

] JV-1
x(n)  =  — J ] x a ) ^ in n =  0 ,1 .........N -  1 (5.1.21)

^  k= o

where, by definition,

WN =  e ~ ^ IN (5.1.22)

which is an N th root o f unity.
W e note that the com putation of each point o f the D F T  can be accom plished  

by N  com plex m ultiplications and (N ~  1) com plex additions. H ence the W-point 
D F T  values can be com puted in a total o f N 2 com plex m ultiplications and N ( N  — 1) 
com plex additions.

It is instructive to view  the D F T  and ID FT  as linear transformations on  
sequences {jc(«)} and {X(fc)}, respectively. Let us define an Af-point vector %N o f  
the signal sequence x(n) ,  n — 0, 1 , . . . ,  N  — 1, an N -point vector X N o f frequency
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Figure 5.6 Magnitude and phase of an N-poini DFT in Example 6.4.2; (a) L = 
N = 50; (b) L = 10, N =  100.

sam ples, and an N  x N  matrix as

- *(0) 1 ■ x ( 0 )  -I
x ( l ) X (l)

X *  = , X,v =
. x ( N - l ) . - X ( N -  1 ) .

' 1 1 1 . . .  1

1 w * K  • • • N

3 * 1! w *  ■■■ y y 2 ( N —1)

. 1 < _1 W % N ~ 0  • • • (* -!)<  A '-l)

Chap. 5

(5.1.23)
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W ith these definitions, the W-point D F T  may be expressed in matrix form as

X *  =  (5.1.24)

w here is the matrix o f  the linear transformation. W e observe that Wjv is a 
sym m etric matrix. If  w e assum e that the inverse o f  W * exists, then (5.1.24) can 
be inverted by prem ultiplying both sides by W ^1. Thus we obtain

x/v =  (5.1.25)

B ut this is just an expression for the ID FT .
In fact, the ID FT as given by (5.1.21), can be expressed in matrix form as

* *  =  (5.1.26)
N
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where denotes the com plex conjugate o f the matrix W A . Comparison of 
(5.1.26) with (5.1.25) leads us to conclude that

W *1 =  -W * w (5.1.27)

which, in turn, im plies that

W „W ;, =  N l N (5.1.28)

where I*  is an N x N  identity matrix. T herefore, the matrix in the trans­
formation is an orthogonal (unitary) matrix. Furtherm ore, its inverse exists and 
is given as W *n / N .  O f course, the existence o f  the inverse o f W,v was established  
previously from our derivation o f the IDFT.

Example 5.L3

Compute the DFT of the four-point sequence

x(n) = (0 1 2 3 )

Solution The first step is to determine the matrix W4. By exploiting the periodicity 
property of W4 and the symmetry property

=  -v v ‘

the matrix W4 may he expressed as

W< =

~w" w" < 1 '1 1 1 I "
w" w1

1 w4‘ M'i

Wl w44 w1. 1 W; W? W4-

-W« w; w9 J  w*
-1 1 1 1 “

1 -j - 1 j
1 -1 1 -1

.1 j - j -

X4 =  W4X4 =

Then

T 6 
-2  + 2;
-2

L - 2 - 2 J J

The IDFT of X4 may be determined by conjugating the elements in W4 to obtain WJ 
and then applying the formula (5.1.26).

The D FT  and ID FT  are com putational tools that play a very important role 
in many digital signal processing applications, such as frequency analysis (spectrum  
analysis) o f signals, power spectrum estim ation, and lineaT filtering. T he impor­
tance o f  the D FT  and ID FT in such practical applications is due to  a large extent 
on the existence o f com putationally efficient algorithm s, known co llectively  as fast



Fourier transform  (FFT ) algorithm s, for com puting the D F T  and ID FT . This class 
o f  algorithm s is described in Chapter 6.

5.1.4 Relationship of the DFT to Other Transforms

In this discussion we have indicated that the D F T  is an im portant com putational 
tool for perform ing frequency analysis o f  signals on digital signal processors. In 
view  o f  the other frequency analysis tools and transforms that we have d evel­
oped , it is im portant to  establish the relationships betw een the D F T  to these other  
transforms.

Relationship to the Fourier series coefficients of a periodic sequence.
A  periodic sequence with fundam ental period N  can be represented in a
Fourier series o f  the form

iV~l
x p(n) — ^  £kei2l,nk,N — oo < n <  oo (5.1.29)

t=o

w here the Fourier series coefficients are given by the expression
1 A'-l

Ct =  ~ J 2 XP(/1 )r~j2”"k/N Jt =  0 ,1 .........AT -  1 (5.1.30)
^  n=(l

If w e com pare (5.1.29) and (5.1.30) with (5.1.18) and (5.1.19), we observe that the 
formula for the Fourier series coefficients has the form o f a D FT . In fact, if we 
define a sequence x(rt) =  xp(n), 0 <  n < N  - 1 ,  the D F T  o f  this sequence is sim ply

X(k )  =  N c k (5.1.31)

Furtherm ore, (5.1.29) has the form of an ID FT. Thus the N -point D FT  provides 
the exact line spectrum  o f  a periodic sequence with fundam ental period N.

Relationship to the Fourier transform of an aperiodic sequence. W e
have already show n that if  -t(n) is an aperiodic finite energy sequence with Fourier 
transform  X(a>), which is sam pled at N  equally spaced frequencies =  2n k / N ,  
k =  0 , 1 , . . . ,  N  — 1, the spectral com ponents

OO
X(k)  =  =  £  x( n) e - j2*nk,N k =  0 , 1 , . . . ,  N  -  1 (5.1.32)

n « —oo

are the D F T  coefficients o f the periodic sequence o f  period N,  g iven by
OO

J;p (n) =  ^  x ( n - l N )  (5.1.33)
/* — OO

Thus x p (n)  is determ ined by aliasing {jc(n)J over the interval 0 <  n <  N  -  1. The  
finite-duration sequence

Sec. 5.1 Frequency Domain Sampling: The Discrete Fourier Transform 407
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bears no resem blance to the original sequence {x(n)), unless ;c(n) is o f finite dura­
tion and length L <  N,  in which case

x( n)  =  x{n)  0 <  n <  N  — 1 (5.1.35)

Only in this case will the ID FT  of {X(jfc)} yield the original sequence {*(«)}.

Relationship to the z*transform. Let us consider a sequence x(n)  having 
the ^-transform

(5.1.36)

with a RO C that includes the unit circle. If X ( z ) is sam pled at the N  equally 
spaced points on the unit circle zt =  e i2*k/N, 0, 1, 2 , . . . ,  N  — 1, w e obtain

X(k)  =  X(z)U=,i»«t» k =  0, 1 , . . . ,  N -  1 

=  £  x ( n)e ~ j2nnk/N
(5.1.37)

The expression in (5.1.37) is identical to the Fourier transform X(io)  evaluated at
the N  equally spaced frequencies <ot =  2 n k / N ,  k =  0, 1 , ___ N  ~  1, which is the
topic treated in Section 5.1.1.

If the sequence x(n)  has a finite duration of length N  or less, the sequence can 
be recovered from its /V-point DFT. H ence its z-transform is uniquely determ ined  
by its N -point D FT. Consequently, X(z )  can be expressed as a function o f the 
D FT  fX(k)} as follow s

N~ 1
* (Z ) =  ^ * ( « ) 2 “ n

n=0
/V-l

X( z )  =  £
Nn=0 L *=0

(5.1.38)

-N N- 1
X ( Z) =

N
X(k)

ej2*k/Nz - i

W hen evaluated on the unit circle, (5.1.38) yields the Fourier transform o f the 
finite-duration sequence in terms o f its D FT, in the form

k=0 1
This expression for the Fourier transform is a polynom ial (Lagrange) interpolation  
formula for X ( w )  expressed in terms o f  the values {X  (Jt)) o f  the polynom ial at a 
set o f equally spaced discrete frequencies <ok =  2 n k / N ,  k =  0, 1.........N  -  1. With



som e algebraic m anipulations, it is possible to reduce (5.1.39) to  the interpolation  
formula given previously in (5.1.13).

Relationship to the Fourier series coefficients of a continuous-time 
signal. Suppose that xa(t) is a continuous-tim e periodic signal with fundamental 
period Tp =  1 /F 0. The signal can be expressed in a Fourier series

OC

xaU) = CteJ2,TkF" (5-1-40)
t = —3C

where {q ) are the Fourier coefficients. If we sam ple xc,(t) at a uniform rate 
Fs =  N / T p =  1 / T,  we obtain the discrete-tim e sequence
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x(n)  =  x a(nT)  =  y  Cl;ej2,rkF"’,T = ckej2nt,l/N
k= — '\, k = — cc
N - 1

- E
J 2 x k n / N

E
l~~CX.

It is clear that (5.1.41) is in the form o f  an ID FT formula, where
rv

X{k)  =  N j 2  Ck-iN =  N c t (5.1.42)
/=--v

and
•V

Q =  y  t'k-iN (5.1.43)
/=-ac

Thus the {q } sequence is an aliased version of the sequence (cA}.

5.2 PROPERTIES OF THE DFT

In Section 5.1.2 we introduced the D F T  as a set o f N  sam ples {X(Jt)} of the 
Fourier transform X(a>) for a finite-duration sequence |jr(n)} o f length L < N.  
The sampling o f X  (to) occurs at the N  equally spaced frequencies cd* =  2 n k / N ,
k — 0, 1, 2 .........N  — 1. W e dem onstrated that the N  sam ples (X(A)} uniquely
represent the sequence (;c(n)} in the frequency domain. R ecall that the D F T  and 
inverse D F T  (ID F T ) for an //-p o in t sequence {*(«)} are given as

N- 1
DFT: X(k)  =  J ^ x  ̂ n )WN * -  0 ,1 .........A ' - l  (5.2.1)

n=0

1 N- 1
IDFT: jc(n) =  — £  X(k)  W~ kn n =  0 ,1 .........N  -  1 (5.2.2)

i=0

where Wn is defined as
WN =  e~j2n,N (5.2.3)
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In this section we present the important properties o f the D FT . In view o f the 
relationships established in Section 5.1.4 betw een  the D F T  and Fourier series, 
and Fourier transforms and --transform s o f d iscrete-tim e signals, we expect the 
properties o f the D F T  to resem ble the properties o f these other transforms and 
series. H ow ever, som e important differences exist, one o f which is the circular 
convolution property derived in the follow ing section. A  good understanding of  
these properties is extrem ely helpful in the application o f the D F T  to practical 
problem s.

T he notation used below  to denote the N -point D F T  pair x ( n )  and AT (Jt) is

*(„) S  x(k)
N

5.2.1 Periodicity, Linearity, and Symmetry Properties

Periodicity. If x(n)  and X (k) are an Af-point D F T  pair, then

x(n +  N)  =  x(n)  for all n (5.2.4)

X(k +  N)  =  X(k)  for all k (5.2.5)

T hese periodicities in .r(n) and A' (A:) follow  im m ediately from formulas (5.2.1) and
(5.2.2) for the D F T  and ID FT, respectively.

We previously illustrated the periodicity property in the sequence x (n) for a 
given DFT. H ow ever, we had not previously view ed the D FT  X(k)  as a periodic 
sequence. In som e applications it is advantageous to do this.

Linearity. If
DFT* ,(„ )  «—  X l (k)

N

and

x2(n) K  X 2(k)
N

then for any real-valued or com plex-valued constants a\  and a2,

DFT
a\X](n)  + a 2x 2(n) <— + a {X\ (k)  +  a2X 2(k) (5.2.6)

This property follow s im m ediately from the definition o f the D F T  given by (5.2.1).

Circular Symmetries of a Sequence. A s we have seen, the Appoint DFT  
o f a finite duration sequence, x(n)  o f length L <  N  is equivalent to the W-point 
D F T  o f a periodic sequence xp (n), o f period N,  which is obtained by periodically 
extending jc(n), that is,

OO

xp(n) =  £  x(n  -  IN)  (5.2.7)
/=—OO



N ow  suppose that we shift the periodic sequence xp(n) by k units to  the right. 
Thus w e obtain another periodic sequence

OC

x'p (n) =  xp(n -  k) =  ^  x(n -  k -  IN)  (5.2.8)
/=-OC

T he finite-duration sequence (5.2.9)
1 0, otherwise

is related to the original sequence x (n ) by a circular shift. T his relationship is 
illustrated in Fig. 5.7 for N  =  4.

In general, the circular shift of the sequence can be represented as the index 
m odulo N. Thus w e can write

x'(n) =  x(n — k, m odulo N)
(5.2.10)

s  x((n ~  k))N 

For exam ple, if k =  2 and N =  4, we have

x'(n)  =  * ((«  -  2))4

which im plies that
jc'(0) =  x ( ( - 2 ) ) 4 = x ( 2 )

x' { l )  =  jc ( ( - 1))4 =  ;c (3)

* '(2 )  =  jt<(0))4 = j (0)

x '(3) =  j t ( (1))4 =  j t (1 )

H en ce x'(n) is sim ply x (n) shifted circularly by tw o units in tim e, where the coun­
terclockw ise direction has been arbitrarily selected as the positive direction. Thus 
we conclude that a circular shift o f  an -point sequence is equivalent to  a linear 
shift o f  its periodic extension , and vice versa.

T he inherent periodicity resulting from the arrangem ent o f  the Af-point se­
quence on the circum ference o f  a circle dictates a different definition o f even  and 
odd sym m etry, and tim e reversal o f a sequence.

A n  Af-point sequence is called circularly even if it is sym m etric about the 
point zero on the circle. This im plies that

x ( N  — n ) = x ( n )  1 <  n <  N  — 1 (5.2.11)

A n  W-point sequence is called circularly o d d  if it is antisym m etric about the point 
zero on the circle. This im plies that

x ( N  — n) =  —x(n)  1 <  n <  N  — 1 (5.2.12)

T he tim e reversal o f  an Af-point sequence is attained by reversing its sam ples 
about the point zero  on the circle. Thus the sequence jc((—n) )#  is sim ply given as

* ( ( - « ) ) *  = x ( N - n )  0 < n < N - l  (5.2.13)

This tim e reversal is equivalent to  plotting j:(/i) in a clockw ise direction on a circle.
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Figure 5.7 Circular shift o f a sequence.



A n  equivalent definition o f even and odd sequences for the associated peri­
odic sequence xp(n) is given as follow s

even: x„(n)  =  =  xp(N  -  n)
(5.2.14)

odd: xp(n) =  - x p(—n) -  - x p (N  -  n)

If the periodic sequence is com plex-valued, w e have

conjugate even: x „(n) =  x U N  — n)
P (5.2.15)

conjugate odd: xp(n) =  —x*(N  — n )

These relationships suggest that we decom pose the sequence xp (n) as

xp (n) =  xP'(n) +  x ^ i n )  (5.2.16)

where

xPAn)  =  \ [ x p (n) +  xp(N  -  n)]
, P (5.2.17)

x p„{n) =  \ [ xP(n) -  x*(N  - n ) ]

Symmetry properties of the DFT. The sym m etry properties for the D FT  
can be obtained by applying the m ethodology previously used for the Fourier 
transform. Let us assume that the N -point sequence jc(n) and its D F T  are both 
com plex valued. Then the sequences can be expressed as

jr(n) =  XR(n) +  j x / (n )  0 < n < N  — 1 (5.2.18)

X(k)  =  Xg(k)  +  j X , ( k )  0 <  k <  N  -  1 (5.2.19)

By substituting (5.2.18) into the expression for the D F T  given by (5.2.1), w e obtain

* * (* )  =  £  j*J?(") cos +  x , (n)  sin j (5.2.20)

X , ( k ) =  “ E  [•**(")sin ~ J p '  — -*■/(«) cos (5-2.21)
n=0 L J

Similarly, by substituting (5.2.19) into the expression for the ID FT  given by (5.2.2), 
w e obtain

x K(n) =  i  £  [”* * ( * ) cos -  X , ( f c ) s i n ^ ^ j  (5.2.22)
*=0 L J

1 f  . . 2nkn 2nkn  "I
* /(n ) =  — sin —^ — h cos —^ —J (5.2.23)

Real-valued sequences. If the sequence jc(n) is real, it follow s directly 
from (5.2.1) that
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X( N - k )  =  X m(k) =  X(-Jfc) (5.2.24)
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C onsequently, \ X ( N ~  jfc)| =  |AT(A:)| and I X ( N  -  k) =  —l X ( k ) .  Furthermore, 
xi(n)  =  0 and therefore ;r(rj) can be determ ined from (5.2.22). which is another 
form for the ID FT.

Real and even sequences. If x (n) is real and even, that is, 

x(n) — x ( N  — n) 0 < n < N — 1 

then (5.2.21) yields X/ (k)  =  0. H ence the D F T  reduces to

C y  2nkn
X ( k ) = y x ( n ) c o s -------  0 <  k < N — \ (5.2.25)

^  N

which is itself real-valued and even. Furtherm ore, since X/ (k )  =  0, the IDFT  
reduces to

jc («) — — ^  X  (k ) c o s -------- 0 < n < N — 1 (5.2.26)
*=o

Real and odd sequences. If x( n )  is real and odd, that is, 

x(n)  =  —x ( N  — n) 0 < n < N  ~  1 

then (5.2.20) yields X R(k) =  0. H ence

X(k)  — — j  Y  x (n ) sin o < k <  N  — 1 (5.2.27)
t z  N

which is purely imaginary and odd. Since X K(k) =  0, the ID FT  reduces to

* (« ) =  j ~ y  X (k ) sin 0 <  n <  N -  1 (5.2.28)
N N

Purely imaginary sequences. In this case, x(n)  =  j x f (n). Consequently, 
(5.2.20) and (5.2.21) reduce to

**<*) -  E JC,(n)sin (5.2.29)
n=0 N

x >(k) -  £ * / ( " ) 0 0 8 —77-  (5.2.30)
n=0

W e observe that Xn(k)  is odd and X } (k) is even.
If x/ (n ) is odd, then X/ (k)  = 0  and hence X(Jt) is purely real. On the other 

hand, if  x r (n )  is even, then X  * (Jt) =  0  and hence X(i fc) is purely imaginary.
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TABLE 5.1 SYMMETRY PROPERTIES OF THE DFT

yV-Point Sequence x(n).
0 < n < N -  1 /V-Point DFT

x(n) X(k)
x*(n) X ’ (N — k)

x*(N - n ) X' (k)
xx(n) Xt, *)]
JXj (n) X,-,„<*) =  HX(k)  -  X ' ( N - *)]

xcf(n) =  i[jr(n) +  x*(N -  «)] X K(k)
xcJ n )  =  |[T(n) -  x*(N -  /j)]

Real Signals
j X/ ( k )

Any real signal X(k)  =  X*(N - k )
jr{n) X K(k) = X „ W  - k )  

X, (k)  = - X , i N - k )  
\X(k)\ = \ X(N - k ) \  

IX(k)  =  - I X { N  -  k)
x,An)  =  j[*(n) +  x( N  -  n)] X K{k)
x„.(n) =  5(a-(») -  x(N -  »)] j X / t t )

The symmetry properties given above may be summarized as follows:

Mu) -  xjf(n) +  x 'kOi) +  j x ‘j{n) +  jx' / in)

I ’ \  (5-2-3D
x(k) =  x ‘H(k) +  x ‘;(k) + j x t;(k) + j x <l,(k)

AH the sym m etry properties o f  the D FT  can easily be deduced from (5.2.31). For 
exam ple, the D F T  o f the sequence

x pr(n) =  j ^ f n )  +  x * ( N  -  n)]
is

* * (* )  =  X'K(k) +  X°K(k)

T he sym m etry properties of the D F T  are sum m arized in Table 5.1. E x­
ploitation o f these properties for the efficient com putation o f  the D F T  o f  special 
sequences is considered in som e of the problem s at the end o f the chapter.

5.2.2 Multiplication o f Two DFTs and Circular Convolution

Suppose that w e have two finite-duration sequences o f length N,  Jti(n) and 
Their respective Appoint D F T s are

JV-1
X, (k ) =  Y L  jc, (n)e~i2* HklN k =  0 , 1 , . . . ,  N  — 1 (5.2.32)

iV-1
X 2(k) =  Y  x2(n)e - j2*nk/N k =  0 , 1 , . . . ,  N  -  1 (5.2.33)

n=0
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If we multiply the tw o D FT s together, the result is a D FT , say of a se­
quence jf3(n) o f length N.  Let us determ ine the relationship betw een  x3(n) and 
the sequences X](n)  and jr2(n).

W e have

Xi(k)  =  X t (k)X2(k)

T h e  ID FT o f {X3(Jt)} is
1 N-1

x 3(m) =  ~  E X j ( k ) e i2* km/N

k = 0 , 1 .........N  -  1

*=o
A'-l

(5.2.34)

(5.2.35)

Suppose that we substitute for X\(k)  and X 2(k) in (5.2.35) using the D FTs given 
in (5.2.32) and (5.2.33). Thus we obtain

k=0 
Af-l

—j27rkn/N -j2nkl/N

/=0

„j2nkm/N

(5.2.36)

(5.2.37)

The inner sum in the brackets in (5.2.36) has the form  

« - i  f N.  a =  1
y > A= l l - a "
*-« 0 7 5 1  

where a is defined as
Q _  e j2n(m-n-l)/N

W e observe that a =  1 w hen m — n — I is a m ultiple o f N.  O n the other hand, 
a N =  1 for any value o f  a =£ 0. C onsequently, (5.2.37) reduces to

/V- 1  ,

E t I N,  I =  m -  n +  p N  =  ((m -  n) ) N, p  an integer 2 381
a 1 0, otherwisek s=0 1

If we substitute the result in (5.2.38) into (5.2.36), w e obtain the desired expression 
for ^ (m ) in the form

xi(m)  =  Y  x\ (n)x2((m -  n) )N m =  0 , 1 , . . . ,  N  -  1 (5.2.39)

The expression in (5.2.39) has the form  o f a convolution sum . H ow ever, it is 
not the ordinary linear convolution that was introduced in Chapter 2, which relates 
the output sequence y(n)  o f  a linear system  to the  input sequence x(n)  and the 
im pulse response h(n).  Instead, the convolution  sum  in (5.2.39) involves the index
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((m — fl))w and is called circular convolution.  Thus w e conclude that m ultiplication  
o f the D FT s o f  tw o sequences is equivalent to the circular convolution o f the tw o  
sequences in the tim e domain.

T he follow ing exam ple illustrates the operations involved in circular convo­
lution.

Example Si.1
Perform the circular convolution of the following two sequences:

*!(«) =  {2,1,2( 1} 
t

x2(n) = {1,2,3,4} 
t

Solution Each sequence consists of four nonzero points. For the purposes of illus­
trating the operations involved in circular convolution, it is desirable to graph each 
sequence as points on a circle. Thus the sequences x\{n) and x 2(n) are graphed as 
illustrated in Fig. 5.8(a). We note that the sequences are graphed in a counterclock­
wise direction on a circle. This establishes the reference direction in rotating one of 
the sequences relative to the other.

Now, xi(m)  is obtained by circularly convolving jci<«) with J 2(«) as specified by 
(5.2.39). Beginning with m =  0 we have

jrj(O) =  y ^ j r i ( n ) j r 2( ( - n ) ) y
n=U

jc2((—«)>4 is simply the sequence x2(n) folded and graphed on a circle as illustrated in 
Fig. 5.8(b). In other words, the folded sequence is simply xz(n) graphed in a clockwise 
direction.

The product sequence is obtained by multiplying jci(h) with * j( ( -n ))4, point by 
point. This sequence is also illustrated in Fig. 5.8(b). Finally, we sum the values in 
the product sequence to obtain

*3(0) =  14
For m = 1 we have

3

*3(1) =  ^ x l (n)x2( ( l  - « » 4  
«*0

It is easily verified that *2((1 — n))4 is simply the sequence *2((~ n ))4 rotated coun­
terclockwise by one unit in time as illustrated in Fig. 5.8(c). This rotated sequence 
multiplies x\ (n) to yield the product sequence, also illustrated in Fig. 5.8(c). Finally, 
we sum the values in the product sequence to obtain *3(1). Thus

*3d) =  16
For m =  2 we have

3

*3(2) =  E Xl (n )*2((2 - n ))«
n«0

Now *2 ((2 — n))4 is the folded sequence in Fig. 5.8(b) rotated two units of time in 
the counterclockwise direction. The resultant sequence is illustrated in Fig. 5.8(d)



*|0) = 1 jr2( l)  = 2

jri(2> -  2

jc2(2 )  = 3

*,(0) = 2

*2(0) = 1

jc2(I) = 2 
Folded sequence

x2(0) = 1

jr2(3 )= 4 x2(l)  = 2

jc2(2> = 3
Folded sequence rotated by one unit in time 

x 2( l )  = 2

*2(0) = 1 *2(2)= 3

*2(3) = 4
Folded sequence rotated by two units in time 

*j(2) = 3

*2(3) = 4

*j(0)=l
Folded sequence rotated by three units in time

(a)

(b)

(c)

(d)

■*2(2) = 3

Product sequence

(e)
Product sequence

Figure 5.8 Circular oonvolutioa of two sequences.

*2(0) =1

2
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6
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along with the product sequence x l (n)xi((2 -  n))A. By summing the four terms in the 
product sequence, we obtain

* j(2) =  14

For m = 3 we have
3

X3 0) = y^xi(n)x;((3 -n ) )4
i,=Q

The folded sequence X2((—n))4 is now rotated by three units in time to yield jc2(<3—n))4 
and the resultant sequence is multiplied by *j(n) to yield the product sequence as 
illustrated in Fig. 5.8(e). The sum of the values in the product sequence is

x 3(3) =  16

We observe that if the computation above is continued beyond m =  3, we 
simply repeat the sequence of four values obtained above. Therefore, the circular 
convolution of the two sequences x \ ( n )  and x2(n) yields the sequence

xi(n) =  {14,16,14,16) 
t

From this exam ple, we observe that circular convolution involves basically 
the sam e four steps as the ordinary linear convolution  introduced in Chapter 2: 
fo ld in g  (tim e reversing) one sequence, shifting  the folded sequence, multip ly ing  the 
two sequences to obtain a product sequence, and finally, s u m m in g  the values o f the 
product sequence. T he basic difference betw een these tw o types o f convolution  
is that, in circular convolution, the folding and shifting (rotating) operations are 
perform ed in a circular fashion by com puting the index o f  one o f  the sequences  
m odulo N .  In linear convolution, there is no m odulo N  operation.

T he reader can easily show  from our previous developm ent that either one  
o f the two sequences may be folded and rotated w ithout changing the result o f the  
circular convolution. Thus

N- 1
x$(m) =  Y ' X 2(n )x i( (m  — n ) ) s  m  =  0 , 1 , . . .  t N  — 1 (5.2.40)

n=0

The follow ing exam ple serves to illustrate the com putation o f  x 3 (n) by m eans 
of the D F T  and ID FT.

Example SJJ1

By means of the DFT and IDFT, determine the sequence xj(n)  corresponding to the 
circular convolution of the sequences x\ (n) and X2(n) given in Example 5.2.1.

Solution First we compute the DFTs of xi(n) and *2(0). The four-point DFT of 
xi(n) is

3

Xi<*) = Y Xl k =  0 ,1 ,2 ,3
ft-0



Thus

*1(0) =  6 JCid) =  0 Jlf,(2) =  2 A'1(3) =  0 

The DFT of Jt2(n) is

3

X 2(.k) =  Y  k =  0 ,1 ,2 ,3
fl«0

=  1 +  2 e - iltkri +  3e~>*k +  4e~Ĵ kri

Thus

X2(0) =  10 X2a )  = - 2  + j 2  X2( 2 ) = - 2  X 2Q) = - 2 - j 2  

When we multiply the two DFTs, we obtain the product 

X3(*) =  X t (k)X2(k)

or, equivalently,

X3(0) =  60 * 3(1) = 0  X3( 2 ) = - 4  Xj (3) =  0 

Now, the IDFT of X 3(k) is
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jr3(n) =  Y  X3(Jt)cj7,rn*/4 n =  0, 1, 2, 3
£*41

=  j(60  -  4eJ”n)

Thus

j 3(0> =  14 jc3(1) =  16 x3(2) =  14 ;c3(3) =  16 

which is the result obtained in Example 5.2.1 from circular convolution.

W e conclude this section  by formally stating this im portant property o f the
DFT.

Circular convolution . If

and

DFT
* i(n ) x m

then
DFT

*1 (H) (g> *2(n) ^  (*)X 2(Jt) (5.2.41)

where x\  (n) (N) x2(n) denotes the circular convolution o f the sequence x i(n ) and 
x% (n).
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* 6 )

*(6) jt(2)

Figure 5.9 Time reversal of a sequence.

5.2.3 Additional DFT Properties 

Time reversal of a sequence. If

DFT

then

x ( ( - n ) ) v  = x ( N - n )  X ( ( - k ) ) N =  X ( N  -  k) (5.2.42)

H ence reversing  th e  /V-point sequence  in tim e is eq u ivalen t to  reversing  the  D F T  
values. T im e reversal of a seq u en ce  x(rt) is illu stra ted  in Fig. 5.9.

Proof .  F rom  th e  defin ition  of the  D F T  in (5.2.1) we have

JV-I
D F T { * W  -  «)} =  £  x ( N  ~  n)e~j2nkn/N

n=0

I f  w e chan g e  th e  index  from  n  to  m  =  N  -  n,  then

N-l
D F T [ x ( N - n ) }  =  £ x ( m ) < T j7,r*(* - m)/,v

=o

A '-l
=  Y , x ( m ) e > 2*kmIN

m=0

=  Y x ( m ) e - i2*m(N- k)/N =  X ( N  — k)
m=0

W e n o te  th a t X ( N  -  k) =  X { ( - k ) ) N, 0 < k < N - l .

Circular time shift of a sequence. If



th en

* « n  -  l ) )N «  X(k)e~j2* k!/N (5.2.43)

Proof.  From the definition o f  the D F T  we have

N - 1
D F T {*((# i- / ) ) * }  =  £ * ( ( n - / ) ) „ e - ' ' 2ir*"/N

n=0

=  £ > ( ( «  -  l ) )Ne ~ * * k”/N
n=0

+  Y x ( n - l ) e - j ”kn/N
n=l

But x((n -  1))h =  x ( N  - l  +  n). C onsequently,

£ x( (n  -  l ) )Ne~j2*kn/N =  ] T ~  1 +  n ) e ' j2jrkn/N
n—0 rr=s()

=  £  x ( m ) e ' ^ k^ N
m=N-l

Furthermore,

y x { n - l ) e - J2,Tkn/N =  Y  x ( m ) e - j2”kim+IWN
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/»=/

Therefore,

N~ 1
DFT{jc((« - / ) ) }  =  ^  x{m)e~-'2xk(m+,)/N

m=0

=  X ( k ) e ' ^ u/N

Circular frequency shift. If

DFT
x(n)  «  X(k)

then

x(n)e j2*In/N £ 5 -  X((k  -  / » *  (5.2.44)

H ence, the m ultiplication o f the sequence jc(/i) with the com plex exponential se­
quence eP***1*  is equivalent to the  circular shift o f the D F T  by I units in frequency. 
This is the dual to  the circular tim e-shifting property and its p roof is similar to the  
latter.



C om plex-conjugate properties. If

jr(n) K  X( k)

then
DFT

x \ n )  «  * * ( ( - * ) ) *  =  * * ( *  -  k)  (5.2.45)
N

T h e  p ro o f  o f th is p ro p e rty  is left as an exercise fo r th e  read e r. T h e  ID F T  o f  X m(k) 
is

— Y  X*(k ) eJ2nkn/N =

T h ere fo re ,

x * ( ( - n ) ) N =  x+(N  -  b) «  X ' ( k )  (5.2.46)
A/

Circular correlation. In  g enera l, fo r com plex-valued  sequen ces x(n)  and 
V(n), if

DF!'
x(n)  «  X(A-)

/v

and

v(«) y<*)N

then

FJV(/) «  R „ ( k )  =  X ( k ) Y r (k) (5.2.47)
n

w here r ,,.(/)  is th e  (u n n o rm alized ) c ircu lar crossco rre la tio n  seq u en ce , defined  as

N- 1
^ v ( 0  =  ^ * ( n ) / ( ( n  -  l ) )N

F r o o /  W e can  w rite  f*v(/) as th e  circu lar convo lu tion  o f  x(n)  w ith y*(—n), 
th a t is,

T h en , w ith  th e  a id  o f  the  p ro p e rtie s  in (5.2.41) an d  (5.2.46), th e  W -point D F T  o f
rxy(l) is

Ri y (k) =  X (k)F*(k)

In  th e  specia l case w h ere  y (n ) =  x(n) ,  w e hav e  th e  co rre sp o n d in g  expression  
fo r th e  c ircu la r a u to c o rre la tio n  o f x(n) ,
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— £ x ( J k ) e '2**(A'- " )' A' 
^  *=o



Multiplication of two sequences. If

jr,(n ) «  * , ( * )
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and

then

x 2(n) «  X 2(k)

x A n ) x 2(n) K  ^ X ,(J t )(N )X 2(*) (5.2.49)

This property is the dual o f  (5.2.41). Its p roof follow s sim ply by interchanging  
the roles o f time and frequency in the expression for the circular convolution of 
two sequences.

Parseval’s theorem. For com plex-valued sequences *(n) and _y(n), in gen­
eral, if

and

then
N- 1/V — 1 A /V — 1

£  Jt(n)y*(n) =  -  £  X ( J t ) r  (/:) (5-2 ‘50)Nn=0 *=0

Proof.  The property follow s im m ediately from the circular correlation prop­
erty in (5.2.47). W e have

N-1
^ x ( n ) y * ( n )  =  r JV(0)

and

k~0

H ence (5.2.50) follow s by evaluating the ID FT  at I =  0.
The expression in (5.2.50) is  the general form  o f Parseval’s theorem . In the  

special case where ;y(n) =  x (n ) ,  (5.2.50) reduces to

£  \x{n)\2 =  i  £  |X ( * ) | 2 (5.2.51)
/11=0 JtseO
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TABLE 5.2 PROPERTIES OF THE DFT

Property Time Domain Frequency Domain

Notation x(n), yOi) *<*), Y(k)
Periodicity x (n) =s x(rt +  iV) X(k)  =  X(k  +  N)
Linearity a]Xi(n) +  a2x2(n) 0\Xi (k)  +  a2X 2(k)
Time reversal x ( N —n) X ( N  - k )
Circular time shift *((" -  D) n X(k)e~J2*kl/N
Circular frequency shift x(n)ei2jr,n/N X ( ( k - l ) ) N
Complex conjugate x "(n) X*(N — k)
Circular convolution xi (n )@ jr2(n) x m x i i k )
Circular correlation x (n )® y * ( -n ) X(k)Y' (k)

Multiplication of two sequences jri(n)x2(n)

Parseval’s theorem
/V— 1

n=(! *3=0

which expresses the energy in the finite-duration sequence x(n)  in terms o f the 
frequency com ponents {X(£)l-

The properties o f the D FT  given above are sum m arized in Table 5.2.

5.3 LINEAR FILTERING METHODS BASED ON THE DFT

Since the D F T  provides a discrete frequency representation of a finite-duration  
sequence in the frequency domain, it is interesting to  explore its use as a com ­
putational tool for linear system  analysis and, especially, for linear filtering. We 
have already established that a system  with frequency response H{ w) y when ex ­
cited with an input signal that has a spectrum  X(a>), p ossesses an output spectrum  
Y(a>) =  X ( oj) H ( w ). The output sequence y(n)  is determ ined from  its spectrum  via 
the inverse Fourier transform. C om putationally, the problem  with this frequency- 
domain approach is that X(a>), H(a>), and Y(a>) are functions o f the continuous 
variable o>. A s a consequence, the com putations cannot be don e on a digital com ­
puter, since the com puter can only store and perform  com putations on quantities 
at discrete frequencies.

O n the other hand, the D F T  d oes lend itself to com putation on a digital 
com puter. In the discussion that follow s, w e describe how  the D F T  can be used  
to  perform  linear filtering in the frequency dom ain. In particular, w e present 
a com putational procedure that serves as an alternative to  tim e-dom ain convo­
lution. In fact, the frequency-dom ain approach based on  the D FT , is com pu­
tationally m ore efficient than tim e-dom ain convolution due to the existence o f  
efficient algorithm s for com puting the D FT . T hese algorithm s, which are d e­
scribed in Chapter 6, are collectively called fast Fourier transform (FFT) algo­
rithms.
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5.3.1 Use of the DFT in Linear Filtering

In the preceding section it was dem onstrated that the product o f tw o D F T s is 
equivalent to  the circular convolution o f  the corresponding tim e-dom ain sequences. 
Unfortunately, circular convolution is o f  no use to  us if our objective is to deter­
mine the output o f a linear filter to  a given input sequence. In this case w e seek  
a frequency-dom ain m ethodology equivalent to  linear convolution.

Suppose that we have a finite-duration sequence x(n)  o f length L which 
excites an FIR  filter o f  length Af. W ithout loss o f  generality, let

jc(n) =  0, n <  0 and n >  L

h(n)  =  0, n <  0  and n >  M

where h(n)  is the im pulse response o f  the FIR  filter.
The output sequence y ( n )  o f the FIR filter can be expressed  in the time 

domain as the convolution o f  x(n)  and h(n),  that is

M- 1
y (n) =  h(k)x(n — k ) (5.3.1)

Since h(n)  and jc(n) are finite-duration sequences, their convolution is also finite 
in duration. In fact, the duration o f y(n)  is L +  M  — 1.

The frequency-dom ain equivalent to  (5.3.1) is

Y(co) =  X(w)H((o)  (5.3.2)

If the sequence y(n) is to be represented uniquely in the frequency domain by 
sam ples o f its spectrum  Y (to) at a set o f discrete frequencies, the num ber o f distinct 
sam ples must equal or exceed  L +  M -  1. Therefore, a D F T  o f size N  >  L +  M  — I, 
is required to represent [y(n)\  in the frequency dom ain.

N ow  if

Y(k)  =  Y{a>)\m 2 ,tkfN k =  0 , 1 , . . . ,  N  — 1 

=  X M H M U h t/N  it =  0 ,1 ....... N -  1

then

Y(k) =  X( k) H(k )  Jfc =  0 , l , . . . , t f - 1  (5.3.3)

w here {X(Jfc)} and {f/(Jt)} are the N -point D FT s o f  the corresponding sequences 
x(n)  and h(n),  respectively. Since the sequences x(n)  and h (n ) have a duration 
less than N,  w e sim ply pad these sequences with zeros to increase their length to 
N.  This increase in the size o f  the sequences d oes not alter their spectra X(o>) and 
H(a>), which are continuous spectra, since the sequences are aperiodic. H owever, 
by sam pling their spectra at N  equally spaced points in frequency (com puting the 
JV-point D FT s), w e have increased the num ber o f  sam ples that represent these 
sequences in the frequency dom ain beyond the m inim um  num ber (L or M,  re­
spectively).
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Since the N  =  L +  M  — 1-point D F T  of the output sequence y ( n ) is sufficient 
to represent y(n)  in the frequency domain, it follow s that the m ultiplication o f the 
N -point D FT s X(k)  and H{k) ,  according to (5.3.3), follow ed by the com putation  
o f  the Appoint ID FT , must yield the sequence {,v(n)J. In turn, this im plies that 
the Appoint circular convolution o f x(n)  with h(n)  must be equivalent to  the linear 
convolution o f  x ( n ) with h(n).  In other words, by increasing the length o f the 
sequences x(n)  and h(n)  to  N  points (by appending zeros), and then circularly 
convolving the resulting sequences, we obtain the sam e result as w ould have been  
obtained with linear convolution. Thus with zero padding, the D F T  can be used  
to perform linear filtering.

The follow ing exam ple illustrates the m ethodology in the use o f the D F T  in 
linear filtering.

Example 5.3.1

By means of the DFT and IDFT, determine the response of the FIR filter with impulse

Solution The input sequence has length L =  4 and the impulse response has length 
M =  3. Linear convolution of these two sequences produces a sequence of length 
N  =  6. Consequently, the size of the DFTs must be at least six.

For simplicity we compute eight-point DFTs. We should also mention that the 
efficient computation of the DFT via the fast Fourier transform (FFT) algorithm is 
usually performed for a length N that is a power of 2. Hence the eight-point DFT of 
jr(n) is

response

h(n) =  11.2.3} 
t

to the input sequence

x(n) = |1. 2, 2.1) 
t

7
Jkn/8

= 1 +  2e~W  + le->*k’2 -I- e~‘**k,A k =  0 .1 ........7

This computation yields

X(4) =  0

X t o - i + J  XC7 +
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The eight-point DFT of h(n) is
7

H(k) =

=  1 +  2e~J*k/* +  3>e- jnkr2
Hence

H(0) =  6, H (l) =  l + V 2 - >  (3 +  V 5 ) , H(2) = - 2 - j 2

HO)  =  1 -  ^ 2  +  > (3  -  V2 ) , H(  4) =  2

H(5) =  1 -  7 2  -  y (3 -  J 2)  , H(6) =  ~2 +  >2

W(7) =  1 +  V2 + j ( 3  + J 2)

The product of these two DFTs yields Y{k), which is 

Y (0) =  36, y (l)  = -1 4 .0 7 -> 1 7 .4 8  Y (2) =  >4 X(3) =  0.07 +  ,0.515 

y(4) =  0, V(5) =  0.07 — y 0.515 Y(6) = ~ j 4  Y(7) = -14.07 +  >17.48 

Finally, the eight-point IDFT is
7

v(n) =  Y  y(k)ej2nk"/H n =  0, 1........7
*=■0

This computation yields the Tesult

>(«) =  (1 ,4 ,9 ,1 1 .8 ,3 ,0 ,0 }
t

We observe that the first six values of y(rt) constitute the set of desired output 
values. The last two values are zero because we used an eight-point DFT and IDFT, 
when, in fact, the minimum number of points required is six.

A lthough the multiplication o f two D F T s corresponds to circular convolution  
in the time domain, we have observed that padding the sequences x ( n ) and h(n)  
with a sufficient number o f  zeros forces the circular convolution to  yield the same 
output sequence as linear convolution. In the case o f  the FIR  filtering problem  
in Exam ple 5.3.1, it is a sim ple m atter to  dem onstrate that the six-point circular 
convolution of the sequences

h(n)  =  {1, 2 , 3 , 0 ,  0, 0}  (5.3.4)
t

x(n)  =  {1 ,2 , 2 , 1 , 0 ,  0} (5.3.5)
t

results in the output sequence

y(n)  =  {1, 4, 9 , 1 1 , 8 ,  3} (5.3.6)
t

which is the sam e sequence obtained from linear convolution.



I t  is im p o rta n t fo r  us to  u n d e rs tan d  th e  aliasing th a t resu lts  in  th e  tim e dom ain  
w hen  th e  size o f th e  D F T s is sm a lle r th a n  L + M  —I. T h e  fo llow ing exam ple focuses 
on  th e  aliasing p rob lem .

Example 5.3.2

Determine the sequence v(n) that results from the use of four point DFTs in Exam­
ple 5.3.1.

Solution The four-point D FT of h(n) is
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H(k) = ^ A ( n ) e '.-jink*!*
fi \t* jr

ff-0

H(k) = \ + 2 e - ink/1 + 3 e - ikn k =  0 ,1 ,2 , 3

Hence

H(0) =  6, H(\ )  = - 2 - j 2 ,  H(  2) =  2, H ( 3 ) = - 2  + j 2  

The four-point DFT of x («} is

X(k) = \ +  2c~jnk/2 +  2e~,7,k +  3e~J%7,t/2 k = 0, 1, 2, 3

Hencc

*(()) =  6, X (l) =  - l - j ,  X(2) =  0, Jf(3) =  — 1 +  y 

The product of these two four-point DFTs is

K(0) =  36, f ( l )  =  ;4 , Y( 2) =  0. K(3) =  ~ j 4  

The four-point IDFT yields

y(n) = \ Y ^ k^eJ2xk”,A « =  0 ,1 ,2 ,3  
*=o

=  1(36 +  j4eJn"^ -  j4eJ1*na)

Therefore,

v(n) =  {9,7, 9,11} 
t

The reader can verify that the four-point circular convolution of h(n) with x(n) 
yields the same sequence y(n).

I f  we com pare  th e  re su lt y(n), o b ta in e d  from  fo u r-p o in t D F T s w ith th e  se ­
q uence  y (n) o b ta in e d  from  th e  use o f e igh t-po in t (o r  six -po in t) D F T s, th e  tim e- 
d o m ain  aliasing effects d erived  in Section  5.2.2 a re  clearly  ev iden t. In  particu la r, 
>(4) is a liased  in to  y (0) to  yield

y(0) =  y((»  +  y(  4) =  9

Sim ilarly, _y(5) is a liased  in to  _y(l) to  yield

?(1) =  ?(!) + ?(5) =  7



A ll other aliasing has no effect since y(n) =  0 for n > 6 . C onsequently, we have

y (  2) =  y (  2) =  9 

y(3) =  y(3) =  1 1

Therefore, only the first tw o points o f y(n )  are corrupted by the effect o f  aliasing 
[i.e., y(0) 7  ̂ y(0) and v( l )  ^  y (l)] . This observation has im portant ramifications 
in the discussion o f  the follow ing section, in which w e treat the filtering o f long  
sequences.

5.3.2 Filtering of Long Data Sequences

In practical applications involving linear filtering o f signals, the input sequence  
x (n )  is often a very long sequence. This is especially true in som e real-tim e signal 
processing applications concerned with signal m onitoring and analysis.

Since linear filtering performed via the D F T  involves operations on a block 
of data, which by necessity must be lim ited in size due to lim ited m emory of a 
digital com puter, a long input signal sequence m ust be segm ented  to fixed-size 
blocks prior to processing. Since the filtering is linear, successive blocks can be 
processed one at a time via the D F T  and the output blocks are fitted together to 
form the overall output signal sequence.

W e now describe tw o m ethods for linear FIR  filtering a long sequence on a 
block-by-block basis using the DFT. T he input sequence is segm ented  into blocks 
and each block is processed via the D F T  and ID F T  to  produce a block o f output 
data. The output blocks are fitted together to form an overall output sequence  
which is identical to  the sequence obtained if the long block had been processed  
via tim e-dom ain convolution.

The two m ethods are called the overlap-save m e th o d  and the overlap-add  
method.  For both m ethods w e assume that the F IR  filter has duration M .  The 
input data sequence is segm ented into blocks o f L  points, w here, by assumption, 
L  »  M  without loss o f generality.

Overlap-save method. In this m ethod the size o f the input data blocks is 
N  — L  4- M  — 1 and the size o f the D F T s and ID F T  are o f  length N .  Each data 
block consists o f  the last M  - 1  data points o f  the previous data block follow ed by 
L  new data points to  form a data sequence o f length N  =  L  4- M  — 1. A n N -point 
D F T  is com puted for each data block. The im pulse response o f  the FIR  filter is 
increased in length by appending L - l  zeros and an Appoint D F T  o f  the sequence  
is com puted once and stored. The m ultiplication of the tw o Af-point D F T s {//(Jt)} 
and {Xm(Jt)} for the mth block o f data yields

Ym(k) =  H ( k ) X m(k) k  =  0 ,1 .........N  -  1 (5.3.7)

Then the Appoint ID F T  yields the result
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L ( n )  =  {^ (0 )y ffl( l)  • • ■ ym(M  -  1 )ym{M ) • ■ ■ ym(N  -  1)} (5.3.8)
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Since the data record is o f length N, the first Af — 1 points o f  >m (n) are corrupted  
by aliasing and must be discarded. The last L points o f y„(n)  are exactly the same 
as the result from linear convolution and, as a consequence,

>«(n) =  y»(n) ,  n =  M,  M  +  1.........N  -  1 (5.3.9)

T o  avoid loss o f  data due to aliasing, the last Af — 1 points o f each data record 
are saved and these points becom e the first Af — 1 data points o f  the subsequent 
record, as indicated above. T o  begin the processing, the first Af — 1 points o f  the  
first record are set to zero. Thus the blocks o f data sequences are

jci(n) =  (0, 0 ........ 0, x(0),  x ( l ) ..........x( L  -  1)} (5.3.10)

M — 1 points

x2(n) =  {x (L  -  M  +  1).........x(L  — 1 ) , x ( L ) , . . . ,  x (2L  -  l ) j  (5.3.11)

M - 1 data points L new data points
from i|(n)

x3(rt) =  {x ( 2 L - M  +  l ) .........x(2L  — 1), x(2  L ) ..........x ( 3 L - l } )  (5.3.12)

M - 1 data points I  new data points
from

and so  forth. The resulting data sequences from the ID F T  are given by (5.3.8), 
w here the first M — 1 points are discarded due to aliasing and the remaining L 
points constitute the desired result from linear convolution. This segm entation o f  
the input data and the fitting o f  the output data blocks together to form the output 
sequence are graphically illustrated in Fig. 5.10.

Overlap-add method. In this m ethod the size o f  the input data block is L 
points and the size o f the D F T s and ID FT  is N  ~  L +  Af -  1. T o each data block 
w e append Af — 1 zeros and com pute the N -point D FT . Thus the data blocks may 
be represented as

jti(n) =  {jc (0), jc(1 ).........jc( £ - 1 ) , 0 , 0 _____0} (5.3.13)

M - l  zeros

X2(n) =  [x(L) ,  x (L  +  1), • . . ,  X(2L -  1), 0,  0 , . . . ,  0} (5.3.14)

M-1 zeros

jt3(n) =  {x(2L) .........x(3L  -  1), 0 , 0 , . . . ,  0) (5.3.15)

M - \  zeros

and so  on. T he tw o Appoint D FT s are m ultiplied together to  form

Ym(k) =  H ( k ) Xm(k) * =  0 ,1 .........N - 1 (5.3.16)

The ID F T  yields data blocks o f length N  that are free o f  aliasing since the size o f  
the D F T s and ID F T  isW  =  Z, +  Af — 1 and the sequences are increased to N -points  
by appending zeros to each  block.
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Output signal

points /
Discard

Figure 5.10 Linear F IR  filtering by the 
P°ints overlap-save m ethod.

Since each data block is term inated with M  — 1 zeros, the last M  — 1 points 
from each output block must be overlapped and added to the first M  - 1  points of 
the succeeding block. H ence this m ethod is called the overlap-add m ethod. This 
overlapping and adding yields the output sequence

y(« ) =  {y i(0 ), ^ i ( l ) ,  . . . , y \ ( L  -  l ) , y i ( L )  +  y2(0), ^ ( L  +  1) +
(5.3.17)

>■2(1 ) .........y \ ( N  -  1) +  y i ( M  — 1), y2( M ) , . . . }

The segm entation o f the input data into blocks and the fitting o f  the  output data 
blocks to  form the output sequence are graphically illustrated in Fig. 5.11.

A t this point, it may appear to the reader that the use o f  th e  D F T  in linear 
FIR filtering is not only an indirect m ethod o f  com puting the output o f an FIR  
filter, but it may also be m ore expensive com putationally since th e  input data must 
first be converted to  the frequency dom ain via the D I T , m ultiplied by the D FT  
o f  the FIR  filter, and finally, converted back to  the tim e dom ain via the IDFT. 
O n the contrary, how ever, by using the fast Fourier transform algorithm , as will 
be shown in Chapter 6, the D F T s and ID F T  require few er com putations to  com ­
pute the output sequence than the direct realization o f the F IR  filter in the time
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Input data

\
MA

Output data

M-1 point.*;/ PZJ 
add —  V/y 

together
M-l points^ 

add —  
together

Figure 5.11 Linear FIR filtering by the 
overlap-add method.

dom ain. This com putational efficiency is the basic advantage o f  using the D FT to  
com pute the output o f  an FIR filter.

5.4 FREQUENCY ANALYSIS OF SIGNALS USING THE DFT

T o com pute the spectrum o f either a continuous-tim e or discrete-tim e signal, the 
values o f the signal for all tim e are required. H ow ever, in practice, we observe  
signals for only a finite duration. C onsequently, the spectrum  of a signal can 
only be approxim ated from  a finite data record. In this section  w e exam ine the  
im plications o f a finite data record in frequency analysis using the D FT.

If the signal to  be analyzed is an analog signal, w e w ould first pass it through  
an antialiasing filter and then sam ple it at a rate F,  >  2 5 ,  w here B  is the band­
width o f  the filtered signal. Thus the highest frequency that is contained in the 
sam pled signal is Fsf l .  F inally, for practical purposes, w e lim it the duration of  
the signal to the tim e interval To — L T,  w here L is the num ber o f  sam ples and T



434 The Discrete Fourier Transform: Its Properties and Applications Chap. 5

is the sample interval. A s we shall observe in the follow ing discussion, the finite 
observation interval for the signal places a limit on the frequency resolution; that 
is, it limits our ability to distinguish two frequency com ponents that are separated  
by less than 1 /To =  1/Z-7" in frequency.

Let {*(«)} d enote the sequence to  be analyzed. Lim iting the duration of the 
sequence to L  sam ples, in the interval 0 < n < L  — 1, is equivalent to  multiplying 
{jc(/i)} by a rectangular window w (n ) o f length L.  That is,

where

x  (n) =  x(n )w (n )

u;w  =  {J ;

(5.4.1)

(5.4.2)0 < n < L  -  1 
, v,, otherwise

Now  suppose that the sequence x(n )  consists o f a single sinusoid, that is,

x(n)  =  coscoon (5.4.3)

Then the Fourier transform o f  the finite-duration sequence x (n )  can be expressed

X(£u) =  $[W'(cu-<u0) + W 'to  +  wo)] (5.4.4)

where W(a>) is the Fourier transform o f the w indow sequence, which is (for the 
rectangular window)

W{0}) =  D/2
sin(df/2 )

(5.4.5)

T o com pute X(a>) we use the D FT. By padding the sequence x (n )  with N  — L  zeros, 
we can  co m p u te  the N -point D FT  of the truncated (L points) sequence {Jt(n)J. 
The magnitude spectrum  |A W I =  |X(£t»*) | for o* =  2 n k / N ,  k  =  0, l , . . . , A f ,  is 
illustrated in Fig. 5.12 for L =  25 and N  =  2048. W e note that the windowed  
spectrum X((o) is not localized to a single frequency, but instead it is spread out 
over the w hole frequency range. Thus the pow er o f  the original signal sequence  
{jr(n)} that was concentrated at a single frequency has been  spread by the window  
into the entire frequency range. W e say that the pow er has “leaked  ou t” into the 
entire frequency range. Consequently, this phenom enon, which is a characteristic 
o f windowing the signal, is called leakage.

Frequency

Figure 5.12 Magnitude spectrum for
I  = 25 and n =  2048, illustrating the 
occurrence of Leakage.
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W indow ing  n o t only  d isto rts  the  spectral estim ate  d u e  to  th e  leakage effects, 
it also  red u ces  sp ec tra l reso lu tion . T o  illu stra te  th is p rob lem , let us consid er a 
signal se q u en ce  consisting  o f tw o  frequency  com ponen ts ,

x(n)  =  cos co\ n +  co sa ^n  (5.4.6)

W h en  th is seq u en ce  is tru n c a te d  to  L  sam ples in th e  ran g e  0  <  n <  L — 1, the  
w indow ed sp e c tru m  is

X( w)  — \ [ W  (to — u>i) +  W  (a> — a>2) +  W((o +  ati) +  W(a> +  a>2)] (5.4.7)

T h e  sp e c tru m  W (to) o f  th e  rec tan g u la r  w indow  seq u en ce  has its first ze ro  crossing 
a t co =  2 n / L .  N ow  if |<yi — a^l <  2n / L ,  th e  tw o w indow  functions W(co — a>\) and  
V/(o) — an)  o v e rlap  and , as a consequence , the tw o spectra l lines in x ( n ) a re  no t 
d is tingu ishab le . O nly  if (a>\ — a>i) > 2 n / L  will w e see tw o  se p a ra te  lobes in the  
sp ec tru m  X(a>). T h u s  o u r  ab ility  to  reso lve spectra l lines o f d iffe ren t frequencies 
is lim ited  by  th e  w indow  m ain lobe w idth. F igure 5.13 illu s tra te s  th e  m agn itude  
sp ec tru m  |X(a»)|, co m p u ted  via th e  D F T , fo r the  sequence

x(n)  =  costuo n +  cos +  co sa ^n  (5.4.8)

Frequency Frequency
(a) <b)

(c)

Figure 5.13 Magnitude spectrum for the signal given by (5.4.8), as observed through a 
rectangular window.
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where ato =  0.2n ,  =  0.22n,  and coi =  0.6jt. The w indow lengths selected  are 
L  =  25, 50, and 100. N ote that o>o and are not resolvable for L =  25 and 50, 
but they are resolvable for L =  100.

T o  reduce leakage, w e can select a data w indow w(n)  that has low er sidelobes 
in the frequency dom ain com pared with the rectangular window . H ow ever, as we 
describe in m ore detail in Chapter 8, a reduction o f  the sidelobes in a window  
W(w)  is obtained at the expense o f an increase in the width o f  the main lobe o f  
W(a>) and hence a loss in resolution. T o illustrate this point, let us consider the 
Hanning window, which is specified as

Figure 5.14 shows |A"(<y)| for the window o f  (5.4.9). Its sidelobes are significantly 
smaller than those o f  the rectangular window , but its main lobe is approximately  
twice as wide. Figure 5.15 show s the spectrum  o f  the signal in (5.4.8), after it is 
windowed by the H anning window, for L =  50, 75, and 100. The reduction o f  
the sidelobes and the decrease in the resolution, com pared with the rectangular 
window, is clearly evident.

For a general signal sequence ljr(n)}, the frequency-dom ain relationship be­
tw een the windowed sequence i ( n )  and the original sequence x ( n ) is given by the 
convolution formula

The D F T  o f the w indow ed sequence x(n)  is the sam pled version o f  the spectrum  
X(a>). Thus we have

X(k)  =  X ( » ) U W

Just as in the case o f  the sinusoidal sequence, if the spectrum  o f the w indow is 
relatively narrow in width com pared to the spectrum  X  (to) o f  the signal, the win­
dow function has only a sm all (sm oothing) effect on the spectrum  X  (w).  O n the 
other hand, if  the w indow  function has a wide spectrum  com pared to the width of

w(n)  = ^(1 -  cos jTTj-n), 0  <  n <  i. — 1
(5.4.9)

0, otherw ise

(5.4.10)

(5.4.11)
k =  0 , 1 , . . . ,  N  -  1

6

25

0
—  r r 0 r

2
Frequency

2 Figure 5.14 Magnitude spectrum of tbe 
Hanning window.
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9
8
7

«; 6

L = 100

- r  -  T 0 I  *
2 2 

Frequency

(O

Figure 5.15 Magnitude spectrum of the signal in (5.4.8) as observed through a Hanning 
window.

X(a>), as would be the case when the number o f  sam ples L  is small, the window  
spectrum masks the signal spectrum and, consequently, the D F T  o f  the data re­
flects the spectral characteristics o f the w indow  function. O f course, this situation  
should be avoided.

Example 5.4.1

The exponential signal

*..(0 H r
t > o  
t < 0

is sampled at the rate F, =  20 samples per second, and a block of 100 samples is used 
to estimate its spectrum. Determine the spectral characteristics of the signal x„(t) by 
computing the DFT of the finite-duration sequence. Compare the spectrum of the 
truncated discrete-time signal to the spectrum of the analog signal.

Solution The spectrum of the analog signal is

1
Xa(F) =

1 +  ;2 jtF

The exponential analog signal sampled at the rate of 20 samples per second yields
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the sequence
x(n) = <r"r =  c - '/20, n > 0

Now, let
(0.95)",
0,

0 < n <  99 
otherwise

The A/-point D FT of die L =  100 point sequence is
99

X(k) = Y i<-n '>e~i2*k/N * =  0 ,1 ........A ' - l

To obtain sufficient detail in the spectrum we choose N  =  200. This is equivalent to 
padding the sequence x(n) with 100 zeros.

The graph of the analog signal xa(t) and its magnitude spectrum |Xa(F)| are 
illustrated in Fig. 5.16(a) and (b), respectively. The truncated sequence xin)  and its 
N  =  200 point DFT (magnitude) are illustrated in Fig. 5.16(c) and (d), respectively.

1.0

0.8

0.6

0.4

0.2

0 0 2 3 4 5

(a)

_■ ■ ■ ■ i ■ ■
-5 0  -4 0  -3 0  -2 0  -1 0  0 10 20 30 40 50

(b)

JL F

Figure 5.1ti Effect o f windowing (truncating) the sampled version o f the analog
signal in Example 5.4.1.
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(d)

(*)

Figure 5.16 Continued

In this case the DFT {X (Jt)} bears a close resemblance to the spectrum of the analog 
signal. The effect of the window function is relatively small.

On the other hand, suppose that a window function of length L =  20 is selected. 
Then the truncated sequence x(n) is now given as

.£(„) _  [ (° -95)"- 0 < n < 19 
1 0, otherwise
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Its N = 200 point DFT is illustrated in Fig. 5.16(e). Now the effect of the wider 
spectral window function is dearly evident. First, the main peak is very wide as a 
result of the wide spectral window. Second, the sinusoidal envelope variations in the 
spectrum away from the main peak are due to the large sidelobes of the rectangular 
window spectrum. Consequently, the DFT is no longer a good approximation of the 
analog signal spectrum.

5.5 SUMMARY AND REFERENCES

T he m ajo r focus o f th is c h a p te r  w as o n  th e  d isc re te  F o u rie r  tran sfo rm , its p ro p erties  
and  its applications. W e deve lo p ed  th e  D F T  by sam pling  th e  sp e c tru m  X  (&>) o f 
th e  sequence x(n').

F requency-dom ain  sam pling  o f  th e  sp ec tru m  o f  a d isc re te -tim e  signal is p a r­
ticularly  im p o rtan t in th e  p rocessing  o f d ig ita l signals. O f  p a r tic u la r  significance 
is th e  D F T , w hich w as show n to  un iquely  rep re sen t a  fin ite -d u ra tio n  se q uence  in 
th e  frequency  dom ain . T h e  ex istence o f  co m p u ta tio n a lly  effic ient a lgo rithm s fo r 
th e  D F T , w hich a re  describ ed  in C h a p te r  6, m ak e  it possib le  to  d ig itally  p rocess 
signals in the frequency  d om ain  m uch faste r th an  in the  tim e dom ain . T h e  p ro ­
cessing m eth o d s in w hich th e  D F T  is especially  su itab le  include lin ea r  filtering as 
d escribed  in th is c h a p te r  and  co rre la tio n , and  sp ectrum  analysis, w hich  are  tre a te d  
in C hap te rs  6 and  12. A  particu la rly  lucid and  concise tre a tm e n t o f  th e  D F T  and 
its app lication  to  frequency  analysis is given in th e  b o o k  by B righam  (1988).

P R O B L E M S

5.1 The first five points of the eight-point DFT of a real-valued sequence are (0.25,
0.125 -  j 0.3018, 0, 0.125 -  y0.0518, 0}. Determine the remaining three points.

5.2 Compute the eight-point circular convolution for the following sequences.
(a) *,(«) = (1,1,1,1,0,0,0,0}

. 3jt „ _ 
x2(n) = sin — -n 0 < n < 7 

8
(b) *,(») =  (i)" 0 < n  < 7

3n . _
*2(n) =  cos —  n 0 < n < 7

O
(c) Compute the DFT of the two circular convolution sequences using the DFTs of 

*i(n) and X2 (n).
S 3  Let X (Jt), 0 < Jt < N  — 1, be the Appoint DFT of the sequence *(n), 0 < n < N  — 1. 

We define
y /ia  _  f 0 < k < k c, N - k c < k < N - 1

{ )  10, kc < k < N —ke

and we compute the inverse //-point DFT of X(k),  0 <  k <  N - 1. What is the effect 
of this process on the sequence x («)? Explain.
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5.4 For the sequences

jci(n) =  cos ^ - n  jc2(«) =  sin n 0 < n < N  -  1 
N  N

determine the N -point:
(a) Circular convolution jc^n) (N)x2(n)
(b) Circular correlation of *i(n) and x2(n)
(c) Circular autocorrelation of xi(n)
(d) Circular autocorrelation of x2(n)

5.5 Compute the quantity
N-l
y ^ x ](n)x2(n)
»=0

for the following pairs of sequences.

(a) JC](n) =  x2(n) = cos ~ n  0 < n < N  — 1
N

(b) Xi (n) =  cos — n x 2(n) = sin — n 0 < n < N  — 1
N N

(c) *](n) =  6(n) +  5(n -  8) *2(«) =  « ( « ) -  u(n -  N)
5.6 Determ ine the A/-point DFT of the Blackman window

if(n) =  0.42 — 0.5 cos —— -  -I- 0.08co s------ - 0 < n < N — 1
Ar — 1 A ' - l

5.7 If X  (Jt) is the DFT of the sequence *(n), determine the Af-point DFTs of the sequences

2nkn . . .
xc(n) — x(n) c o s------- 0 < n < N  -  1

N
and

. 2nkn
x,(n) = x (n ) sin ——  0 < n < N — 1 

Ar
in terms of X (Jt).

5.8 Determine the circular convolution of the sequences

*i(n) =  {1,2,3,1} 
t

x2 (n) =  {4,3,2,2} 
t

using the time-domain formula in (5.2.39).
5.9 Use the four-point DFT and IDFT to determine the sequence

X3 (n) =  *i(n)(§)*2(*)

where xi(n)  and x2(n) are the sequence given in Problem 5.8.
5.10 Compute the energy of the N -point sequence
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5.11 Given the eight-point DFT of the sequence

1. 0 < n < 3
0, 4 < n < 7*(«) =

compute the DFT of the sequences:
1, n = 0

(a) x\(n) =  0, 1 < n < 4
1. 5 < n < 7
0, 0 < n < 1

(b) jr2(n) = 1 ,  2 < n < 5
0, 6 < n < 7

5.12 Consider a finite-duration sequence

jc(n) =  {0 ,1 .2 ,3 .4) 
t

(a) Sketch the sequence .t(n) wilh six-poini DFT

£(*) =  Wj’ XOfc) k =  0 .1 ........6

(b) Determine the sequence y(n) with six-point DFT K(jt) =  Re |X(A)|.
(c) Determine the sequence u(w) with six-point DFT V(k) =  Im |X(A-)|.

5.13 Let x p(n) be a periodic sequence with fundamental period N. Consider the following 
DFTs:

DFTxp(n) *— *• *,(*)
N

DFT
x („) X,(k)

3^
(a) What is the relationship between Xi(^) and XiOt)?
(b) Verify the result in part (a) using the sequence

xp(n) =  {■ ■ • 1. 2 ,1 ,2 ,1 ,2 ,1 .2  - ■] 
t

5.14 Consider the sequences

X] (n) =  {0,1, 2,3,4} x2(n) = {0 ,1 ,0 ,0 .0 ] s(n) = {1. 0, 0 .0 ,0 ) 
t  t  t

and their 5-point DFTs.
(a) Determine a sequence y(n) so that Y(k) =  A-! fJt).
(b) Is there a sequence x3(n) such that S(k) = X̂ (k)X̂ (k)'!

5.15 Consider a causal LTI system with system function

The output y(n) of the system is known for 0 < n < 63. Assuming that H(z) is 
available, can you develop a 64-point DFT method to recover the sequence x{n),
0 < n < 63? Can you recover all values of x(n) in this interval?

5.16* The impulse response of an LTI system is given by h(n) = S(n) -  ji(n - /to). To 
determine the impulse response g(n) of the inverse system, an engineer computes the 
Af-point DFT H(k), N = 4ko, of h(n) and then defines g(n) as the inverse DFT of
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G(k) =  1 jH (k) ,  k =  0,1,  2 , . . . ,  A' - l .  Determine g(n) and the convolution h(n)*g(n), 
and comment on whether the system with impulse response g(n) is the inverse of the 
system with impulse response h(n).

5.17* Determine the eight-point DFT of the signal

*(«) =  [1 , 1 , 1 . 1 . 1 , 1 , 0 , 0 }

and sketch its magnitude and phase.
5.18 A linear time-invariant system with frequency response H(u>) is excited with the 

periodic input
OO

jc(n) =  ^  S(n — kN)
*=-oo

Suppose that we compute the Af-point DFT Y(k) of the samples >■(«), 0 < it < N  -  1 
of the output sequence. How is (̂Jt) related to //(w)?

5.19 D F T  o f  real sequences with special symmetries
(a) Using the symmetry properties of Section 5.2 (especially the decomposition prop­

erties), explain how we can compute the DFT of two real symmetric (even) and 
two real antisymmetric (odd) sequences simultaneously using an W-point DFT 
only.

(b) Suppose now that we are given four real sequences *,(«), i =  1, 2, 3, 4, that are 
all symmetric [i.e., X j ( n )  =  x j ( N  — n ), 0 <  n  <  N  — 1], Show that the sequences

j,-(n) =  Xj ( n  +  1) — X j ( n  — 1)

are antisymmetric [i.e., s, (n) =  —s;(N -  n) and 5, (0 ) =  0].
(c) Form a sequence *(/i) using Jti(n), JC2(n), ^(n), and ^(n) and show how to compute 

the DFT Xj(k) of x,(n), i =  1, 2, 3, 4 from the N-point DFT X(k) of x(n).
(d) Are there any frequency samples of X, (k) that cannot be recovered from X(k)? 

Explain.
5.20 D F T  o f  real sequences with odd harmonics only Let x(n) be an A' -point real sequence 

with Af-point DFT X(k) (N  even). In addition, x(n) satisfies the following symmetry 
property:

/  N \  N 
x ( n +  y  j  =  -x (n ) n = 0 , 1 ........y  -  1

that is, the upper half of the sequence is the negative of the lower half.
(a) Show that

X (k) =  0 k even

that is, the sequence has a spectrum with odd harmonics.
(b) Show that the values of this odd-harmonic spectrum can be computed by evaluat­

ing the A”/2-point DFT of a complex modulated version of the original sequence 
x(n).

5.21 Let x„(t) be an analog signal with bandwidth B =  3 kHz. We wish to use a N  =  2"- 
point DFT to compute the spectrum of the signal with a resolution less than or equal 
to 50 Hz. Determine (a) the minimum sampling rate, (b) the minimum number of 
required samples, and (c) the minimum length of the analog signal record.
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5.22 Consider the periodic sequence
2x

x p(n) =  COS —  n — oo < n <  oo

with frequency /o =  ^  and fundamental period N  =  10. Determine the 10-point 
DFT of the sequence x (n)  =  x p(n), 0 < n < Af -  1.

5.23 Compute the W-point DFTs of the signals
(a) ■>:(") =  ^(«)
(b) x(n)  =  S(n — no) 0 < fiq < N
(c) Jt(n) =  a "  0  <  n <  N  — 1

1, 0 <  n < N/2  -  l ( N  even)
(d) x(n) , Q N p . < n < N

(e) x(n) =  e’a*IN)k<> 0 < n < N  -  1
2x

(I) x(n) =  cos — kon 0 < n < N — 1 
N

(g) j:(/i) =  sin -j k̂ort 0 < n < N  -  1

i I n even
)  ̂ 10, « odd 0 < n < Af — 1

5.24 Consider the finite-duration signal

x(n) =  {1,2,3,1}

(a) Compute its four-point DFT by solving explicitly the 4-by-4 system of linear 
equations defined by the inverse DFT formula.

(b) Check the answer in part (a) by computing the four-point DFT, using its defini­
tion.

5.25 (a) Determine the Fourier transform X (tu) of the signal

x ( n )  =  { 1 ,2 ,3 ,2 ,1 ,0 1  
t

(b) Compute the 6-point DFT V (k) of the signal

i»(n) =  { 3 ,2 ,1 ,0 ,1 ,2 }

(c) Is there any relation between X(w)  and V(Jt)? Explain.
5.26 Prove the identity

Y & ( n + l N )  =  ± Y eJQ*/,'*K
J—OC kmC

(Hint: Find the DFT of the periodic signal in the left-hand side.)
5J7  Computation o f  the even and odd harmonics using the DFT  Let x(n) be an Appoint 

sequence with an Appoint DFT X(k) (N even)
(a) Consider the time-aliased sequence

x (n + IM ), 0 <  n < M  — 1
fv-00
0, elsewhere

What is the relationship between the Af-point DFT K(Jt) of y(/i) and the Fourier 
transform X(w)  of x(n)?
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(b) Let

and

(-*?)■— J x (n) +  x ( n +  ~ l '  0 < n < N — 1

I 0, elsewhere

DFT
y(n) K(Jt)

N/l

Show that AT(Jt) =  Y(k/2),  k = 2, 4 , . . . ,  N -  2.
(c) Use the results in parts (a) and (b) to develop a procedure that computes the 

odd harmonics of X(k)  using an jV/2-point DFT.
5•28"' Frequency-domain sampling Consider the following discrete-time signal

C( n ) = h '" '
} 0, |n| > L

where a = 0.95 and L =  10
(a) Compute and plot the signal x(n).
(b) Show that

X (w )=  x(n)e =  x(0) +  2 ^ ^  x(n) cos wn

Plot X{i») by computing it at w =  jri/100, k =  0, 1........100.
(c) Compute

N \ N  )
for N  =  30.

(d) Determine and plot the signal

x(n)  =
*=o

What is the relation between the signals x(n) and x(n)l  Explain.
(e) Compute and plot the signal ii(n ) =  X x(n -  IN),  - L  < n < L for N = 30. 

Compare the signals x(rt) and X](n).
(f) Repeat parts (c) to (e) for N  =  15.

5.29* Frequency-domain sampling The signal x(n) =  a 1"1, - 1  < a < 1 has a Fourier 
transform

1 —
X(w) =

1 —2a cos <o + a2

(a) Plot X(w)  for 0 < w < 2jt, a =  0.8.
Reconstruct and plot X(w)  from its samples XQjrk /N) ,  0 < k < N -  1 for:

(b) N = 20
(c) N = 100
(d) Compare the spectra obtained in parts (b) and (c) with the original spectrum 

X(a>) and explain the differences.
(e) Illustrate the time-domain aliasing when N =  20.
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5J0* Frequency analysis o f  amplitude-modulated discrete-time signal The discrete-time

(a) Sketch the signals jr(n), xc(/i), and *»m(n), 0 < n < 255.
(b) Compute and sketch the 128-point DFT of the signal 0 < n < 127.
(c) Compute and sketch the 128-point DFT of the signal xtm(n), 0 < n < 99.
(d) Compute and sketch the 256-point DFT of the signal jcani{n), 0 < n < 179.
(e) Explain the results obtained in parts (b) through (d), by deriving the spectrum of 

the amplitude-modulated signal and comparing it with the experimental results.
5.31* The sawtooth waveform in Fig. P5.31 can be expressed in the form of a Fourier series

(a) Determine the Fourier series coefficients c*.
(b) Use an N -point subroutine to generate samples of this signal in the time domain 

using the first six terms of the expansion for N  «  64 and N =  128. Plot the signal 
x(f)  and the samples generated, and comment on the results.

532 Recall that the Fourier transform of x (r) =  eJ0* is X ( j i 2) =  2jtS(£2 -  i2o) and the 
Fourier transform of

as

)

Figure P531

0 < t < To 
otherwise

is

e-jOT<i/l

(a) Determ ine the Fourier transform Y( j n )  of

y(r) =  p(t)eja°'

and roughly sketch |K0 '£2)| versus £2.
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(b)

(c)

(d>
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Now consider the exponential sequence

jr(n) =

where <uo is some arbitrary frequency in the range 0 < ojo < tt radians. Give the 
most general condition that a>o must satisfy in order for x(n)  to be periodic with 
period P (P is a positive integer).
Let y(n) be the finite-duration sequence

v (n ) =  x ( n ) w N ( n )  =  e iw ° " u i s ( n )

where w^(n)  is a finite-duration rectangular sequence of length N  and where 
x(n)  is not necessarily periodic. Determine Y(a)) and roughly sketch \Y(a>)\ for 
0 < to < 2n.  What effect does N  have in | y (o j ) | ? Briefly comment on the 
similarities and differences between jY(a>)\ and ]y(j'S2)|.
Suppose that

*(n) =  e>{1' !p)n p  a positive integer

and

y(n) =  wN(n)x(n)

where N  =  IP,  I a positive integer. Determine and sketch the N-point DFT of 
y(n). Relate your answer to the characteristics of |K{w)|.
Is the frequency sampling for the DFT in part (d) adequate for obtaining a rough 
approximation of |K(w)| directly from the magnitude of the DFT sequence |K(/t)|? 
If not. explain briefly how the sampling can be increased so that it will be possible 
to obtain a rough sketch of |K(£o)| from an appropriate sequence |y (Jt) | .



Efficient Computation of the 
DFT: Fast Fourier Transform 
Algorithms

A s we have o b se rved  in the p reced ing  c h ap te r , th e  D isc re te  F o u rie r  T ransfo rm  
(D F T ) plays an im p o rtan t ro le  in m any app lica tions o f digital signal processing, 
including lin ear filtering , co rre la tio n  analysis, an d  spectrum  analysis. A m ajor 
reason  fo r its im portance  is the  existence o f efficient a lgorithm s fo r com puting  the 
D FT .

T h e  m ain  top ic  o f this ch a p te r  is th e  descrip tion  o f com pu ta tionally  efficient 
a lgorithm s fo r evaluating  th e  D F T . Tw o d iffe ren t a p p ro ach es  are  described . O ne is 
a  d iv id e-and -conquer ap p ro ach  in which a D F T  o f  size N,  w h ere  jV is a com posite  
num b er, is red u ced  to  th e  co m p u ta tio n  o f sm a lle r D F T s from  w hich the  larger 
D F T  is com pu ted . In  p a rticu la r, we p re se n t im p o rtan t co m p u ta tio n a l algorithm s, 
called  fast F o u rie r  transfo rm  (F F T ) a lgorithm s, fo r  com p u tin g  th e  D F T  w hen the 
size N  is a pow er o f  2 and  w hen  it is a p o w er o f 4.

T h e  second ap p ro ach  is based  o n  th e  fo rm u la tio n  o f the  D F T  as a linear 
filtering o p e ra tio n  o n  th e  data . T h is ap p ro ach  leads to  tw o a lgo rithm s, the  G oertzel 
a lgo rithm  and  th e  chirp-z tran sfo rm  algo rithm  fo r com pu ting  th e  D F T  via linear 
filtering o f the  d a ta  sequence .

6.1 EFFICIENT COMPUTATION OF THE DFT: FFT ALGORITHMS

In  th is section w e p resen t severa l m e th o d s  fo r com p u tin g  th e  D F T  efficiently. 
In  view  o f th e  im p o rtan ce  o f th e  D F T  in v arious d ig ita l signal p rocessing  ap­
plications, such as lin ear filtering, c o rre la tio n  analysis, and  sp e c tru m  analysis, its 
efficient com p u ta tio n  is a  to p ic  th a t h as received  co n sid erab le  a tte n tio n  by m any 
m athem atic ians, eng ineers, and  app lied  scientists.

B asically , th e  co m p u ta tio n a l p rob lem  fo r th e  D F T  is to  c o m p u te  th e  sequence 
{X(*)} o f N  com plex-valued  n u m b ers g iven  a n o th e r  seq u en ce  o f  d a ta  (x(n)} of
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leng th  N ,  accord ing  to  th e  fo rm ula

N- 1
* (* )  =  V  Jt(n) W kNn 0 < k < N - l  (6.1.1)

w here

WN =  e - }7* ,N (6.1.2)

In  g en era l, th e  d a ta  sequence  x ( n ) is also  assum ed  to  b e  com plex  valued . 
Sim ilarly , th e  ID F T  becom es 

1 n - i
jr(n) =  — ^ X (J k )W ^ " *  0 < n < N  — I  (6.1.3)

^  *=o

Since th e  D F T  and  ID F T  involve basically  th e  sam e ty p e  o f  co m p u ta tio n s, o u r 
d iscussion  o f  efficient co m p u ta tio n a l a lgo rithm s fo r  th e  D F T  ap p lies  as w ell to  the  
efficient co m p u ta tio n  o f th e  ID F T .

W e o b se rv e  th a t for each  value o f k , d irec t co m p u ta tio n  o f  X ( k )  involves 
N  com plex  m ultip lica tions ( 4 N  real m u ltip lica tions) an d  N  — 1 com plex ad d itio n s 
(4 JV -2  rea l add itions). C onsequen tly , to  co m p u te  all N  values o f  th e  D F T  req u ires 
jV2 com plex  m ultip lications and  N 2 — N  com plex  additions.

D irec t co m p u ta tio n  o f th e  D F T  is basically  inefficient p rim arily  b ecause  it 
does n o t exp lo it th e  sym m etry  and  p eriod ic ity  p ro p e rtie s  o f th e  ph ase  fac to r WV 
In  p a rticu la r, these  tw o  p ro p e rtie s  are:

Sym m etry  p ro p erty : W kN+N/2 =  — W LN (6.1.4)

Period ic ity  p ro p erty : W#+N =  W kN (6.1.5)

T h e  co m p u ta tio n a lly  efficient a lgo rithm s d escribed  in th is sec tion , know n collec­
tively as fast F o u rie r  tran sfo rm  (F F T ) a lgo rithm s, exp lo it these  tw o basic p ro p e rtie s  
o f th e  p h ase  factor.

6.1.1 Direct Computation of the DFT

F o r  a com plex -valued  seq u en ce  x ( n ) o f  N  p o in ts, th e  D F T  m ay  be expressed  as 

X R{k) =  Y  |* * ( n ) c o s ^ ~ p -  +  x / ( n ) s i n ^ ^ - j  (6.1.6)

X i ( k )  =  -  Y  |x ,f (n ) s in  -  x , ( n)  cos (6.1.7)

T h e  d irec t co m p u ta tio n  o f  (6.1.6) an d  (6.1.7) requ ires :

L  2 N 2 eva lu a tio n s o f tr ig o n o m etric  functions.
2. 4 N 2 rea l m ultip lications.
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3. AN( N — 1) real additions.
4. A  number o f indexing and addressing operations.

These operations are typical o f D F T  com putational algorithms. The operations 
in item s 2 and 3 result in the D F T  values X K(k) and X i( k) .  T he indexing and 
addressing operations are necessary to fetch the data x(n'), 0  <  « <  Ar — 1, and 
the phase factors and to store the results. T he variety o f  D F T  algorithm s optimize 
each o f these com putational processes in a different way.

6.1.2 Divide-and-Conquer Approach to Computation of 
the DFT

The developm ent o f com putationally efficient algorithm s for the D F T  is made pos­
sible if we adopt a divide-and-conquer approach. This approach is based on the 
decom position o f an Af-point D F T  into successively sm aller D F T s. This basic ap­
proach leads to a family o f  com putationally efficient algorithm s known collectively  
as FFT algorithms.

T o illustrate the basic notions, let us consider the com putation o f an Appoint 
D FT, where N  can be factored as a product o f tw o integers, that is,

N  =  L M  (6.1.8)

T he assumption that N  is not a prime number is not restrictive, since we can pad 
any sequence with zeros to ensure a factorization o f  the form ( 6 .1 .8 ).

N ow  the sequence j (n ) ,  0 <  n <  N — 1, can be stored in either a one­
dimensional array indexed by n or as a tw o-dim ensional array indexed by I and 
m, where 0 < / <  L — 1 and 0 < m < A / - l a s  illustrated in Fig. 6.1. N ote that / is 
the row index and m  is the colum n index. Thus, the sequence x (n ) can b e  stored 
in a rectangular array in a variety o f  ways, each o f  which depends on the mapping 
of index n to  the indexes (/, m).

For exam ple, suppose that we select the mapping

n =  M l  +  m  (6.1.9)

This leads to an arrangem ent in which the first row consists o f  the first M  elem ents 
of x (n ) ,  the second row consists o f the next M  elem ents o f  x ( n ) ,  and so  on, as 
illustrated in Fig. 6.2(a). O n the other hand, the m apping

n — l +  m L  (6.1.10)

stores the first L  e lem ents o f x ( n ) in the first colum n, the next L  elem ents in the 
second colum n, and so  on, as illustrated in Fig. 6.2(b).

A  similar arrangem ent can be used to  store the com puted D F T  values. In 
particular, the m apping is from the index it to  a pair o f indices (p , q) ,  where 
0 <  p  < L  — 1 and 0 <  q <  M  — 1. If w e se lect the m apping
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k — Mp  +  q (6 .1 .1 1 )



n ---------- 0 1 ... N - 1

Sec. 6.1 Efficient Computation of the DFT: FFT Algorithms 451

row index

m x ( \ ) M 2 ) JcCW-1)

K

(a)

column index 

0 1 Af-1

0 *(0,0) x(0,1)

1 * 1 .0 ) * 1 ,1 )

2 *(2,0) *2,1)

L- 1

(b)

Figure 6.1 Tw o dim ensional data array for storing the sequence x ( n ) .  0 < n £  
N - l .

the D F T  is stored on a row -w ise basis, where the first row contains the first M 
elem ents o f the D F T  X(k) ,  the second row contains the next set of M elem ents, 
and so  on. On the other hand, the mapping

k =  q L  +  p (6 .1.12)

results in a colum n-w ise storage o f X  (Jt), where the first L elem ents are stored in 
the first colum n, the second se t o f L  elem ents are stored in the second colum n, 
and so  on.

N ow  suppose that x(n)  is m apped into the rectangular array x ( l , m ) and X(k)  
is m apped into a corresponding rectangular array X( p ,  q) .  T hen  the D F T  can be 
expressed as a double sum over the elem ents o f the rectangular array m ultiplied  
by the corresponding phase factors. T o be specific, let us adopt a colum n-wise  
m apping for x ( n ) given by (6.1.10) and the row-wise m apping for the D F T  given  
by (6.1.11). Then

X ( p , q)  =  Y  Y x{1' m ) W <“ p+qHmL+t)
rrtacO 1=0

But
p + q ) { m L + i )  _ ^ M L r n p ^ m L q

(6.1.13)

(6.1.14)

H ow ever, W%mp =  1, W%*L =  W $ L =  W**,  and W * pl =  W?'  =  W [ l



Row-wise n  = M l  +  m
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M -  1

0 *0) M D *2) M M  -  1)

1 M M ) M M  + 1) M M +  2 ) M 2 M  -  1)

2 M 2 M ) M 2 M  +  1) M 2 M  + 2) M ' i M -  1)

L -  1 x((L-  IW) M(L - 1  )Af + 1) x«L-l)M +2) x { L M -  1)

(a)

Column-wise

M -  1

0 MO ) M L ) M 2 L ) x ( ( M  — 1 )L )

1 jt(1) M L +  1) x ( 2 L  + 1) x ( ( M -  I )L + 1)

2 M 2 ) M L +  2 ) M 2 L  +  2 ) M ( M - l ) L + 2 )

L - l x ( L  -  I) M U -  1) M I L  -  1) M L M  -  1)

(b)

Figure <L2 Two arrangements for the data arrays.

W ith these sim plifications, (6.1.13) can be expressed as
L-l

X ( p , q )  =  Y  
/■*0 |̂R«0

(6.1.15)

The expression in (6.1.15) involves the com putation o f D FTs o f  length M  and 
length L.  T o elaborate, let us subdivide the com putation into three steps:

L  First, we com pute the M -point D FT s
M-l

F ( l ,q )  =  £ x ( / , m ) W ^ \  0  <  q <  M  -  1 (6 .1 .1 6 )

for each of the rows I =  0 ,1 ........L - l .
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2 . Second, w e com pute a new rectangular array G ( l , q )  defined as

(6.1.17)

3. Finally, we com pute the L-point D FT s
L-l

X ( p , q )  =  J 2 G l̂ ' ^ WL (6.1.18)

for each colum n q =  0 , 1 , . . . ,  M  — 1, o f  the array G(l,  q).

On the surface it may appear that the com putational procedure outlined  
above is m ore com plex than the direct com putation o f  the D FT. H ow ever, let 
us evaluate the com putational com plexity o f (6.1.15). T he first step involves the 
com putation o f L  D FTs, each o f  M  points. H ence this step requires L M 2 com ­
plex m ultiplications and L M { M  — 1) com plex additions. The second step requires 
L M  com plex m ultiplications. Finally, the third step in the com putation requires 
M L 2 com plex m ultiplications and M L ( L  — 1) com plex additions. Therefore, the 
com putational com plexity is

where N  =  M L .  Thus the number o f m ultiplications has been reduced from N 2 
to  N ( M  +  L  + 1 )  and the number of additions has been reduced from N ( N  — 1) to
N ( M  +  L — 2).

For exam ple, suppose that N  =  1000 and we select L  =  2 and M  =  500. 
T hen, instead of having to perform  106 com plex m ultiplications via direct com pu­
tation o f  the D FT , this approach leads to  503,000 com plex m ultiplications. This 
represents a reduction by approxim ately a factor o f  2. T he num ber o f  additions is 
also reduced by about a factor o f  2.

W hen N  is a highly com posite num ber, that is, N  can be factored into a 
product o f prime numbers o f the form

then the decom position above can be repeated (v - 1 )  m ore tim es. This procedure 
results in smaller D FTs, which, in turn, leads to a m ore efficient com putational 
algorithm .

In effect, the first segm entation o f the sequence x (n )  into a rectangular array 
of M  colum ns with L  elem ents in each colum n resulted in D F T s o f  sizes L  and M.  
Further decom position o f the data in effect involves the segm entation o f each row  
(or colum n) into sm aller rectangular arrays which result in sm aller DFTs. This 
procedure term inates w hen N  is factored into its prim e factors.

Example 6.1.1
To illustrate this computational procedure, let us consider the computation of an 
N =  15 point DFT. Since N =  5 x 3 =  15, we select L =  5 and M =  3. In other

Com plex multiplications: N ( M  +  L  +  1) 

Com plex additions: N ( M  +  L — 2)
(6.1.19)

N  =  r\r2 ■ ■ -rv (6.1.20)



words, we store the 15-point sequence *(n) column-wise as follows:

Row 1: *(0, 0) =  *(0) *(0.1) = * (5 )  *(0, 2) =  *(10)
Row 2: *(1,0) = * (1 ) *(1, 1) =  jc(6) *(1,2) =  *(11)
Row 3: *(2,0) = * (2 )  x ( 2 , 1) = x(7) x ( 2 , 2 )=x ( 12 )
Row 4: *(3,0) = * (3 ) *(3,1) = * (8 )  *(3,2) =  .r{13)
Row 5: *(4,0) = * (4 )  *(4,1) = * (9 )  *(4,2) =  *(14)

Now. we compute the three-point DFTs for each of the five rows. This leads 
to the following 5 x 3  array:
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F(0, 0) F(O .l) F(  0.2)
F a ,  o) F O .l) F (1.2)
F(2. 0) F(  2,1) F( 2.2)
F(3, 0) FO.  1) FO-  2)
F(4. 0) F(4.1) F( 4.2)

The next step is to multiply each of the terms F(l ,q)  by the phase factors 
=  M/jj. 0 < / < 4 and 0 < q < 2. This computation results in the 5 x 3  array:

Column 1 Column 2 Column 3

G(0.0) C(0. 1) C(0.2)
G (1,0) C ( l . l )  G (l. 2)
G(2, 0) C(2. 1) C (2 .2)
G(3.0) G (3 ,1) G (3 .2)
G (4 .0) G (4 .1) G(4.2)

The final step is to compute the five-point DFTs for each of the three columns. 
This computation yields the desired values of the DFT in the form

X (0.0) =  X(0) X (0 ,1) =  X (l) X (0,2) =  X(2)
X (1,0) =  X(3) X  (1.1) =  X (4) X (1,2) =  X(5)
X (2.0) =  X (6) X (2 .1) =  X(7) X(2,2) =  X(8>
X  (3,0) =  X (9) X(3,1) =  X(10) X (3 ,2) =  X (ll)
X (4,0) =  X (12) X (4,1) =  X (13) X (4 ,2) =  X(14)

Figure 6.3 illustrates the steps in the computation.
It is interesting to view the segmented data sequence and the resulting DFT in 

terms of one-dimensional arrays. When the input sequence x(n)  and the output DFT 
X(jfc) in the two-dimensional arrays are read across from row 1 through row 5, we 
obtain the following sequences:

INPUT A RRA Y
*(0) x{5) *(10) *(1) *(6) *(11) x(2) *(7) *(12) *(3) *(8) *(13) x(4) *{9) *(14) 

O UTPUT A RR A Y
X(0) X (l) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X (ll)  X(12) X(13) X(14)

We observe that the input data sequence is shuffled from the normal order 
in the computation of the DFT. On the other hand, the output sequence occurs in 
normal order. In this case the rearrangement of the input data array is due to the
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Figure 63  Computation of N = 15-point DFT by means of 3-point and 5-point 
DFTs.

segmentation of the one-dimensional array into a rectangular array and the order in 
which the DFTs are computed. This shuffling of either the input data sequence or 
the output DFT sequence is a characteristic of most FFT algorithms.

T o sum m arize, the algorithm  that we have introduced involves the follow ing  
com putations:

Algorithm 1

1. Store the signal colum n-w ise.
2. Com pute the Af-point D F T  o f  each row.

3. M ultiply the resulting array by the phase factors
4. C om pute the L -point D F T  o f  each colum n
5. R ead the resulting array row-wise.

A n additional algorithm  with a similar com putational structure can be ob­
tained if the input signal is stored row -w ise and the resulting transformation is. 
colum n-w ise. In this case w e select as

n =  M l  +  m
(6.1.21)

k =  q L  + p

This choice o f indices leads to  the form ula for the D F T  in the form  

X { p , q )  =  £ £ * ( / ,

(6.1.22)msO 1*0
M-l

=  E > c urmpW N

Thus w e obtain a second algorithm.



A lg o rith m  2

1. S tore th e  signal row -w ise.
2. C o m p u te  th e  L -po in t D F T  a t each  colum n.

3. M ultip ly  th e  resu lting  a rray  by th e  fac to rs  W%m.
4. C o m pute  th e  A f-point D F T  o f  each  row.

5. R e ad  th e  resu lting  array  colum n-w ise.

T h e  tw o a lgo rithm s given above hav e  th e  sam e com plex ity . H ow ever, they 
d iffer in th e  a rra n g em en t o f th e  com pu ta tions. In  th e  follow ing sec tions we exploit 
the  d iv ide-an d -co n q u er ap p ro ach  to  deriv e  fast a lgo rithm s w h en  th e  size o f the 
D F T  is restric ted  to  be a pow er o f 2 o r a  po w er o f  4.

6.1.3 Radix-2 FFT Algorithms

In  th e  p reced in g  section  w e d escribed  fo u r a lgo rithm s fo r effic ient com p u ta tio n  of 
th e  D F T  based on th e  d iv id e-and -conquer app ro ach . Such an a p p ro ach  is applica­
ble w hen th e  n u m b er N  o f d a ta  p o in ts is no t a p rim e . In  p a rticu la r, the  approach 
is very efficient w hen  N  is highly com posite , th a t is, w hen N  can be fac to red  as 
N  =  r\r2ry • ■ ■ rv, w here  th e  {r,} are prim e.

O f p articu la r  im portance  as the  case in w hich r i =  r2 — ■ ■ • =  rv =  r ,  so  that 
N  =  r ' \  In such a case th e  D F T s a re  o f size r ,  so  th a t th e  co m p u ta tio n  o f the 
N -po in t D F T  has a  reg u la r p a tte rn . T he n u m b er r  is called  th e  radix  o f th e  FFT 
algorithm .

In  th is sec tion  w e describe rad ix-2  a lgo rithm s, w hich a re  by far th e  most 
w idely used F F T  algorithm s. R adix-4  a lgo rithm s a re  describ ed  in th e  following 
section .

L e t us consid er th e  co m p u ta tio n  o f  th e  N  — 2 V p o in t D F T  by the  divide- 
an d -co n q u er ap p ro ach  specified by (6.1.16) th ro u g h  (6.1.18). W e select M  =  N/ 2  
an d  L  =  2. This se lection  resu lts in a sp lit o f th e  N -poin t d a ta  seq u en ce  in to  two 
/ / /2 -p o in t  d a ta  sequences f \ (n )  an d  f 2(ri), co rre sp o n d in g  to  th e  even-num bered  
and  o d d -n u m b ered  sam ples o f x ( n ), respectively , th a t is,

/ i ( n )  =  x ( 2n)
N  (6.1.23)

f i (n )  =  x(2n +  1), n =  0 , 1 , . . . ,  — ~  1

T hu s f i (n)  and  f j ( n )  a re  o b ta in e d  by decim ating  x(n)  by a  fa c to r  o f  2, an d  hence 
th e  resu lting  F F T  a lgo rithm  is called  a decim atio n -in -tim e  a lgo rithm .

N ow  th e  Af-point D F T  can  be exp ressed  in te rm s o f  th e  D F T s o f  the  deci­
m ated  sequences as follows:

A'-l
X ( k )  =  Y x ^ w n * =  0 , 1 , . . . ,  A f - 1

n*0
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=  £  x ( n ) H #  +  5 3  (6.1.24)
n even n odd

<W/2)-l (Af/2)-l
=  J !  x ( 2 m ) W ] f k 4- 5 3  *(2m  +  l)W *(2'n+1>

m=0 m=0

B ut =  W ^/2- W ith  this substitu tio n , (6.1.24) can  be  exp ressed  as

(N/Zi-i (N/2)—l
x ( k ) =  5 3  M m ) w * r a  +  K  £

=  fi(Jfc) +  W * f2(*) it =  0 , 1 , . . . ,  W - l

w here  F i(it) an d  F2(k) a re  th e  N /2 -p o in t D F T s o f th e  sequen ces f \ ( m )  and  f 2(m),  
respectively .

Since F\(k)  and  F2(k) a re  period ic , w ith  p erio d  N  f l ,  we hav e  F](A -f N / 2) =  
F i(* ) an d  /^(jfc + N  f l )  =  / i t* ) -  1° add itio n , th e  fac to r W ^ Nfl =  —Wfa. H ence  
(6.1.25) can  be exp ressed  as

X ( k )  =  f i(J t)  +  W* F2(fc) * =  0 ,1 .........~  — 1 (6.1.26)

+  =  F , ( * ) - < F 2(/:) * =  0 ,1 ....... y - 1  (6.1.27)

W e obse rv e  th a t th e  d irec t co m p u ta tio n  o f F\(k)  req u ires ( N /2 )2 com plex 
m ultip lica tions. T h e  sam e app lies to  th e  co m p u ta tio n  o f F2(k). F u rth e rm o re , there  
a re  N f l  ad d itio n a l com plex  m ultip lica tions req u ired  to  co m p u te  W kNF2(k).  H ence 
th e  co m p u ta tio n  o f  X (k )  req u ire s  2 (N  f l )1 4- N  f l  =  N 2/ 2 +  N  f l  com plex  m u ltip li­
ca tions. T h is first s te p  resu lts in a red u c tio n  o f the  n u m b e r  o f m u ltip lica tions from  
N 2 to  N 1 f l  +  N f l ,  w hich is a b o u t a fac to r  o f  2 fo r N  large.

T o  be  consisten t w ith o u r  prev ious n o ta tio n , w e m ay  define

</!(*) =  F l(* ) * = 0 , l , . . . , y - l

G 2(k) =  W lN F2(k) * =  0 , l , . . . , y  — 1 

T h en  th e  D F T  X  (it) m ay be exp ressed  as

X (k )  =  G x(k) +  G 2(k)  it =  0 ,1 ____ y - 1
(6.1.28)

X ( k  +  j )  =  G x( k ) - G 2(k)  * =  0 ,1 .........y - 1

T his co m p u ta tio n  is illu stra ted  in  Fig. 6.4.
H av in g  p e rfo rm ed  th e  d ecim ation -in -tim e once, w e can  re p e a t th e  p rocess 

fo r each  o f  th e  sequen ces f \ ( n )  an d  f 2(n).  T h u s f \ ( n )  w ould  re su lt in th e  tw o
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Figure 6.4 First step in the decimation-in-time algorithm .

/V/4-point sequences

v n (n ) =  / ] ( 2n)
N

« =  0 ,1 ................... 1
4

v\2(n) =  f \ Q n  +  1) n =  0, 1.........j  -  1

and f 2(n) w ould yield

V2\ (n)  =  f 2(2n)
N

n =  0, 1.........— - 1
4

N

(6.1.29)

V22(n) =  /2(2n +  1) n = 0 , 1.........— -  1

By com pu ting  jV /4-point D F T s, we w ould  o b ta in  th e  // /2 -p o in t  D F T s 
F2(k) from  th e  re la tio n s

FiOfc) =  V„(Jfc) +  W kNf2 Vn (k) k =  0 ,1 , 1

Fx (* + t ) = Vl1 {k) - KpynW k = 1.....7  - 1

F2(k) =  V21(*) +  W kN/2 V22(k) k  =  0 , 1 , . . . ,  J  -  1

F2
N

( *  +  j )  =  V2i (*) -  k =  0, . , , , j - l

where the (Vi; (jt)} are the ///4 -p o in t D F T s o f  the sequences {u,;(n)}.

(6.1.30) 

Fi(Jfc) and

(6.1.31)

(6.1.32)
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TABLE 6.1 COMPARISON OF COMPUTATIONAL COMPLEXITY FOR THE 
DIRECT COMPUTATION OF THE DFT VERSUS THE FFT ALGORITHM

Number of 
Points,

N

Complex Multiplications 
in Direct Computation, 

N2

Complex Multiplications 
in FFT Algorithm, 

(JV/2) log2 N

Speed
Improvement

Factor

4 16 4 4.0
8 64 12 5.3

16 256 32 8.0
32 1,024 80 12.8
64 4,096 192 21.3

128 16,384 448 36.6
256 65,536 1,024 64.0
512 262.144 2,304 113.8

1,024 1,048,576 5,120 204.8

W e observe  th a t th e  co m p u ta tio n  o f {V(J(*)} req u ire s  4{W /4)2 m ultip lica tions 
and  h ence  th e  c o m p u ta tio n  o f F\(k)  an d  F2(Jt) can be accom plished  w ith  N 2/4  +  
N  f l  com plex  m u ltip lica tions. A n  ad d itio n a l N  f l  com plex m u ltip lica tions a re  re ­
q u ired  to  co m p u te  X ( k )  from  F i(it) and  Fi{k),  C onsequen tly , th e  to ta l n u m b er o f  
m u ltip lica tions is red u ced  ap p rox im ate ly  by a fac to r o f  2 again  to  N 2/4  +  N.

T h e  decim atio n  o f th e  d a ta  seq u en ce  can be rep e a te d  again  and  again  until 
th e  resu lting  seq u en ces a re  red u ced  to  o ne-po in t sequences. F o r N  =  2V, this 
decim ation  can be p e rfo rm ed  v =  log2 N  tim es. T hus the  to ta l n u m b e r  o f  com plex 
m u ltip lica tions is red u ced  to  {N f l )  log2 N . T he n u m b er o f com plex  ad d itio n s is 
N  log2 N.  T ab le  6.1 p re sen ts  a com parison  o f  th e  n u m b er o f  com plex  m ultip lica­
tions in  th e  F F T  an d  in th e  d irec t co m p u ta tio n  o f  th e  D FT.

F o r  illu stra tive  p u rp o ses , Fig. 6.5 dep ic ts th e  c o m p u ta tio n  o f  an  N  =  8 po in t 
D F T . W e o b se rv e  th a t th e  co m p u ta tio n  is p erfo rm ed  in th re e  stages, beg inn ing  
w ith th e  co m p u ta tio n s  o f  fo u r tw o-po in t D FT s, th e n  tw o fo u r-p o in t D F T s, and

Figure <L5 Three stages in the computation of an N =  8-point DFT.
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Stage Stage 2 Stage 3
X(0)

X ( l )

X ( 2 )

X(3)

X(4)

X { 5 )

*(6)

X p )

finally, on e eight-point DFT. The com bination of the smaller D F T s to form the 
larger D F T  is illustrated in Fig. 6. 6  for N  =  8 .

O bserve that the basic com putation perform ed at every stage, as illustrated 
in Fig. 6 .6 , is to take two com plex numbers, say the pair (a, b), m ultiply b by WrN, 
and then add and subtract the product from a to form two new com plex numbers 
(A, B).  This basic com putation, which is shown in Fig. 6.7, is called a butterfly 
because the flow graph resem bles a butterfly.

In general, each butterfly involves one com plex m ultiplication and tw o com­
plex additions. For N  =  2V, there are N  f l  butterflies per stage o f  the computation 
process and log2 N  stages. Therefore, as previously indicated the total number of 
com plex m ultiplications is (N  f l )  log2 N  and com plex additions is Arlog2 N .

O nce a butterfly operation is perform ed on a pair o f com plex numbers (a, b) 
to produce ( A , B ) ,  there is no need to 'save the input pair (a ,b ) .  H ence w e can

>A = a + Ŵ  b

B=a-Wt/b

Figure 6.7 Basic butterfly computation 
in  th e  decimation-in-time FFT 
algorithm.
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store the result (A, B)  in the sam e locations as (a ,b ) .  C onsequently, we require 
a fixed am ount o f storage, nam ely, 2 N  storage registers, in order to store the 
results ( N  com plex num bers) o f  the com putations at each stage. Since the sam e  
2 N  storage locations are used throughout the com putation o f the JV-point D FT, 
w e say that the com putations are done in place.

A  second important observation is concerned with the order o f  the input 
data sequence after it is decim ated (v -  1 ) tim es. For exam ple, if w e consider  
the case where N  =  8 , we know that the first decim ation yields the sequence  
jc(0), x(2) ,  x (4 ), * (6 ) , * (1 ), Jt(3), jr(5), jc(7), and the second decim ation results in 
the sequence jc(0), x (4), x(2), x ( 6 ), jt(1), x (5 ), jc(3), jc(7). This shuffling  o f the 
input data sequence has a w ell-defined order as can be ascertained from observing  
Fig. 6 .8 , which illustrates the decim ation o f the eight-point sequence. B y expressing  
the index n, in the sequence x(n ) ,  in binary form, w e note that the order o f the  
decim ated data sequence is easily  obtained by reading the binary representation  
o f the index n in reverse order. Thus the data point jt(3) =  *(011) is placed in 
position m =  110 or m =  6  in the decim ated array. Thus w e say that the data x(n )  
after decim ation is stored in bit-reversed order.

W ith the input data sequence stored in bit-reversed order and the butterfly 
com putations perform ed in place, the resulting D F T  sequence X (k )  is obtained  
in natural order (i.e., k  =  0 , 1 , . . . ,  N  — 1). On the other hand, w e should indi­
cate that it is possible to arrange the FFT algorithm such that the input is left 
in natural order and the resulting output D F T  will occur in bit-reversed order. 
Furtherm ore, we can im pose the restriction that both the input data x(n )  and the 
output D F T  X (k )  be in natural order, and derive an FFT algorithm  in which the 
com putations are not done in place. H en ce such an algorithm requires additional 
storage.

A nother important radix-2 FFT algorithm , called the decim ation-in-frequency  
algorithm, is obtained by using the divide-and-conquer approach described in Sec­
tion 6.1.2 with the choice o f M  =  2 and L  =  N  f l .  This choice o f  param eters 
im plies a colum n-w ise storage o f the input data sequence. T o derive the algo­
rithm, w e begin by splitting the D F T  form ula into tw o sum m ations, one o f  which 
involves the sum  over the first N t2  data points and the second sum  involves the 
last N I2  data points. Thus w e obtain

W 2 > -1 N- 1
X (k )  =  £  x(n)W*? + Y  x ( n )W %

(6.1.33)

Since W„N/2 =  (—1)*, the expression (6.1.33) can b e  rewritten as

(6.1.34)
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Data
decimation 1

Memory address 
(decimal) (binary) 

0 0 0 0

Memory

(ninino) - (/To"2« () — (nnn in ;)

(0 0  0) (0 00) (0 0 0 )
(0 0 1) -» (1 0 0 ) -► (1 0  0)
(0 1 0) —*■ (0 0  1) -► (0 10)
(0 1 1) -► (1 0 1 ) -► (t 10)
(10  0) -► (0 10) ” * (0 0  1)
(1 0 ! ) -*> (1 1 0 ) -► (1 0  1)
(1 1 0) -*> (0 1 1) -► (0 1 1)
(1 1 1) —4 (1 1 1 )  

(b)
(1 1 ))

Figure 6Jt Shuffling of the data and bit reversal.

N ow , let us split (d ec im ate ) X ( k )  in to  th e  even- an d  o d d -n u m b e re d  sam ples. Thus 
w e ob ta in

(W /2)-l r
x(n)  +  x

K )
v tr k n

N/2 k  =  Q, 1 , . . . ,  y - 1  (6.1.35)

and
(A72)-l ,  r  /  JV \"1 1 N

X {2 k  +  \ )  =  £  +  * =  0 ,1 ......y - 1

"“ ° (6.1.36) 
w here we have u sed  th e  fact th a t Wf,  =  'Wsp.-



If  w e define  th e  N /2 -po in t sequen ces gi (n)  and  gz(n)  as 

g i(n )  =  * ( « ) + *
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g2 (n) =  |* ( n )  -  x  +  y ^ ) K  n = 0 , 1 , 2 .........J  -  1

th en
(N/2)-l

x ( 2k)  =  Y  s m K )2
n=0

(AT/2)—1

X (2* +  l )  =  & W WN/2
n= 0

(6.1.37)

(6.1.38)

T h e  c o m p u ta tio n  o f  th e  se q u en ces g i(n )  and  g2(n) accord ing  to  (6.1.37) an d  th e  
su b seq u en t use o f  th ese  seq u en ces to  co m p u te  the N /2-po in t D F T s a re  dep ic ted  in 
Fig. 6.9. W e o b se rv e  th a t th e  basic co m p u ta tio n  in th is figure involves the  b u tterfly  
o p e ra tio n  illu stra ted  in Fig. 6.10.

T his co m p u ta tio n a l p ro c e d u re  can be  rep e a te d  th ro u g h  decim ation  o f the 
N /2 -po in t D F T s, X ( 2 k )  and  X ( 2 k  +  1). T h e  en tire  p rocess involves v =  log2 N
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wi,

A  = a  +  b

B = ( a  — b ) W f /

Figure 6.10 Basic butterfly com putation 
in the decim ation-in-frequency FFT 
algorithm.

-  1

stages o f decim ation, where each stage involves N t l  butterflies o f  the type shown in 
Fig. 6.10. Consequently, the com putation o f the Af-point D F T  via the decim ation- 
in-frequency FFT algorithm, requires ( N / 2) iog2 N  com plex m ultiplications and 
N  log2 N  com plex additions, just as in the decim ation-in-tim e algorithm. For il­
lustrative purposes, the eight-point decim ation-in-frequency algorithm  is given in 
Fig. 6.11.

W e observe from Fig. 6.11, that the input data x (n )  occurs in natural order, 
but the output D F T  occurs in bit-reversed order. W e also note that the com puta­
tions are perform ed in place. H ow ever, it is possible to reconfigure the decim ation- 
in-frequency algorithm so that the input sequence occurs in bit-reversed order 
while the output D F T  occurs in normal order. Furtherm ore, if w e abandon the 
requirement that the com putations be done in place, it is also possible to  have 
both the input data and the output D F T  in normal order.

Figure 6.11 N =  8-point decimation-in-frequency FFT algorithmn.
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6.1.4 Radix-4 FFT Algorithms

W hen  th e  n u m b e r  o f d a ta  po in ts N  in the  D F T  is a pow er o f  4 (i.e., N  =  4 l ), we 
can , o f course, alw ays use a radix-2 a lgo rithm  fo r the  co m p u ta tio n . H ow ever, fo r 
th is case, it is m o re  efficient co m pu ta tionally  to  em ploy a  radix-4  F F T  algorithm .

L et us beg in  by describ ing  a radix-4  d ec im ation -in -tim e F F T  a lgo rithm , w hich 
is o b ta in ed  by se lecting  L  =  4 and  M  =  N / 4  in the  d iv id e-an d -co n q u er ap p roach  
d escrib ed  in S ection  6.1.2. F o r this choice o f L  and  M , we have /, p  — 0 ,1 ,  2, 3: m,
q =  0, 1.........N  J4 -  1; n =  4m +  /; and  k =  ( N / 4) p  +  q.  T h u s we split o r  decim ate
the  W -point inp u t se q uence  in to  fo u r su bsequences, x ( 4n), jc(4n +  1), x(4n  +  2),
x(4n  -f 3), n =  0, 1.........N  /4  — 1-

By app ly ing  (6.1.15) we ob ta in

3

* ( /> .« )  =  £  [ w ^ F i l ' q ^ W ?  0 ,1 .2 .3  (6.1.39)

w here F (I . q )  is given by (6.1.16), th a t is.

(iV /4 |—!

F ( l . q ) =  £  x ( l - n i )W mq
N/A

I =  0 .1 , 2. 3.
N

« =  .........4 - 1

and

x(l .  m ) =  x ( 4m  -j- /) 

( N
X ( p . q )  =  X  / — p  + q

(6.1.40)

(6.1.41)

(6.1.42)

T hus, th e  fo u r ///4 -p o in t D F T s o b ta in ed  from  (6.1.40) a re  com bined  according 
to  (6.1.39) to  yield the W -point D F T . T he exp ression  in (6.1.39) fo r com bin ing  
th e  ///4 -p o in t D F T s defines a radix-4  d ec im ation -in -tim e bu tterfly , w hich can be 
exp ressed  in m atrix  fo rm  as

~X(Q , q ) ‘ - 1 1 1 1
X ( \ , q ) 1 ' j  - 1  j
X ( 2 , q ) 1 - 1 1 - 1

- X ( 3 , q ) J L i  j  - i  - j

W °F(0,<7)

W « F ( L q )

W % F ( 2 , q )

w l qF { X q )

(6.1.43)

T h e  rad ix -4 bu tterfly  is dep ic ted  in Fig. 6 .12(a) and  in a m o re  com pact form  
in Fig. 6 .12(b). N o te  th a t since W® =  1, each  b u tterfly  involves th re e  com plex 
m u ltip lica tio n s , and  12 com plex  add itions.

T h is decim atio n -in -tim e  p ro ced u re  can b e  rep e a te d  recursively  v tim es. H ence  
th e  resu lting  F F T  algo rithm  consists o f  v stages, w h ere  each  stage  con ta in s A74 
bu tterflies . C onseq u en tly , th e  co m p u ta tio n a l b u rd e n  fo r th e  a lgo rith m  is 3 v N / 4  =  
(3jV/8) lo g ; N  com plex  m u ltip lica tions and  O N  f l )  log2 N  com plex  add itions. W e 
n o te  th a t th e  n u m b e r  o f  m u ltip lica tions is red u ced  by 25% , b u t th e  n u m b e r  o f 
ad d itio n s h as increased  by  50%  fro m  N  log2 N  to  O N  f l )  log2 N.
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Figure 6.12 Basic butterfly computation in o radix-4 FFT algorithm.

It is in te restin g  to  n o te , how ever, th a t by perfo rm in g  th e  add itions in two 
steps, it is possib le to  reduce  the  n u m b er o f add itions p e r  bu tte rfly  from  12 to  8. 
This can be accom plished  by expressing  the m atrix  o f th e  lin ear tran sfo rm a tio n  in 
(6.1.43) as a  p ro d u c t o f tw o  m atrices as follows:

• m ? n -1 0 1 0 - ‘ 1 0 1 0
X ( l ,9 ) 0 1 0 - j 1 0 - 1 0
X ( 2 , q ) 1 0 - 1 0 0 1 0 1

. 0 1 0 j  - . 0 1 0 - 1

w j j m g )
W q F ( \ , q )

W % F ( 2 . q )

l W * F ( 3 , q ) .

(6.1.44)

N ow  each  m atrix  m u ltip lica tion  involves fo u r ad d itions fo r a to ta l o f e ig h t add i­
tions. T hus th e  to ta l n u m b er o f com plex add itions is redu ced  to  N  log2 N ,  which 
is iden tical to  th e  rad ix -2 F F T  a lgorithm . T h e  co m p u ta tio n a l savings resu lts  from  
the  25%  redu c tio n  in th e  n u m b er o f com plex m ultip lications.

A n  illu stra tion  o f a radix-4  d ec im ation -in -tim e F F T  a lg o rith m  is show n in 
Fig. 6.13 fo r N  =  16. N o te  th a t  in  th is a lgorithm , th e  inp u t se q u en ce  is in norm al 
o rd e r  w hile th e  o u tp u t D F T  is shuffled. In  th e  radix-4  F F T  a lgo rithm , w here 
th e  decim ation  is by  a fac to r  o f  4, th e  o rd e r  o f th e  d ec im a ted  seq u en ce  can be 
d e te rm in ed  by reversing  th e  o rd e r  o f  th e  n u m b e r  th a t re p re se n ts  th e  index  n 
in a q u a te rn a ry  n u m b e r  system  (i.e., th e  n u m b er system  b ased  o n  th e  digits 0,
1, 2, 3).

A  radix-4 d ecim ation -in -frequency  F F T  a lg o rith m  can  be o b ta in e d  by se lect­
ing L  =  N/ 4 ,  M  =  4; /, p  =  0, 1.........N / 4  -  1; m,  q  =  0, 1, 2, 3; n =  {N / 4 ) m  +  /;
and  k  =  4 p  +  q.  W ith  th is cho ice o f  p aram e te rs , th e  genera l e q u a tio n  g iven by



Efficient Computation of the DFT: FFT Algorithms 467

Figure 6.13 Sixteen-point radix-4 decimation-in-time algorithm with input in nor­
mal order and output in digit-reversed order.

(6.1.15) can be expressed as

(A y 4 )- l

X ( p , q )  =  £  C( l , q)W' l 
1=0

Ip
NfA

where

and

G ( l ,q )  =  w ‘h F(l,  q)

F ( l , q )  =  Y x ( l , m ) W ?

q = 0 , 1 ,  2,  3

i - 0 . 1 .........£ - 1
4

q = 0 , 1 , 2 , 3
N

/ =  0 , 1 , 2 ,  3 .........- - 1
4

(6.1.45)

(6.1.46)

(6.1.47)

W e n ote  that X ( p ,  q )  =  X (4  p  +  q), q =  0, 1, 2, 3. Consequently, the Af-point 
D F T  is decim ated into four N  /4-point D FT s and hence w e have a decim ation- 
in-frequency FFT algorithm . The com putations in (6.1.46) and (6.1.47) define
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Figure 6.14 Sixteen-point, radix-4 decimation-in-frequency algorithm with input 
in normal order and output in digit-reversed order.

the basic radix-4 butterfly for the decim ation-in-frequency algorithm . N ote  that 
the m ultiplications by the factors W% occur after the com bination o f the data 
points x (/, m), just as in the case o f the radix-2 decim ation-in-frequency algo­
rithm.

A  16-point radix-4 decim ation-in-frequency FFT algorithm  is shown in 
Fig. 6.14. Its input is in normal order and its output is in digit-reversed order. 
It has exactly the sam e com putational com plexity as the decim ation-in-tim e radix- 
4 FFT  algorithm.

For illustrative purposes, let us rederive the radix-4 decim ation-in-frequency 
algorithm by breaking the jV-point D F T  formula into four sm aller D FTs. We 
have

N- 1
X(k)  =  T x ( n ) W kNn

n=0

JV/4-1 N/Z-1 3N/4-1 fif-l
=  £  x { n ) W kNn +  £  x{n)W%' +  £  * ( * ) < "  +  £  x ( n ) W kNn 

n=0 n=N/4 n=Nfi n=JN/4
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/ » / * ♦ -  J A / t - i  /  A /  N

=  £ , < „ , < ■  +  < «  E*(" +  t
h = ( I  « = o  '

A'/4 — 1 /  \ i  \  N / A —\ /  ' l  \ !  \

+  < V/2 E  *  ( «  +  y )  <  +  < A'/4 E  A ( "  +  t )

From  th e  defin ition  o f  th e  tw iddle factors, we have

w\lNk/4
N ( j f

A fte r  su b stitu tio n  o f (6.1.49) in to  (6.1.48). we ob ta in

N/ 4-1

x a ) =  E x ( » )  +  (

N
+  {-1  f x  [n  +  -  J +  ( ;)

(6.1.48)

(6.1.49)

(6.1.50)

W\

T h e  re la tio n  in (6.1.50) is no t an N /4 -po in t D F T  because  the tw iddle facto r 
d ep en d s on  N  and  not on N/4 .  T o convert it in to  an A '/4-point D F T , wc subdivide 
the  D F T  sequence  in to  four /V /4-point subsequences, X(4k ) .  X(4k  +  !), X(4£ +  2),
and X{4k  +  3), k — 0, 1........ N / 4  — 1. T hus we ob ta in  the radix-4  decim ation-in -
frequency  D F T  as

x(n)  +  .v

0 urknw"w

X (4k

X(4k

N  r r  N  /4
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r  /  n \

X (4 k  + 3) =  E  x (n '> +  J x  ( "  +  J

~ x (n ~hj ) - Jx (b + t ) ] ŵ
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(6.1.51)

(6.1.52)

(6.1.53)

(6.1.54)
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w here we have used  the  p ro p e rty  W^kn =  W^"4. N o te  th a t th e  in p u t to  each  N/4-  
p o in t D F T  is a  lin ear com bination  o f four signal sam ples scaled  by  a  tw iddle factor. 
This p ro ced u re  is re p e a te d  v tim es, w here v =  log,, N.

6.1.5 Split-Radix FFT Algorithms

A n inspection  o f th e  radix-2 d ecim ation -in -frequency  flow graph show n in Fig. 6.11 
ind icates th a t th e  ev en -n u m b ered  po in ts  o f  the  D F T  can b e  co m p u ted  indep en ­
den tly  o f the o d d -n u m b ered  poin ts. T h is suggests the  possib ility  o f  using d ifferen t 
co m p u ta tio n a l m e th o d s fo r in d e p e n d e n t p a rts  o f  th e  a lgo rith m  w ith  th e  objective 
o f reducing  th e  n u m b er o f com pu ta tions. T he sp lit-rad ix  F F T  (S R F F T ) algorithm s 
exp lo it this idea by using b o th  a radix-2 and  a radix-4 deco m p o sitio n  in th e  sam e 
F I T  algorithm .

W e illustra te  th is ap p ro ach  with a  d ec im ation -in -frequency  S R F F T  algorithm  
d ue to  D u h am el (1986). F irst, we recall th a t in th e  rad ix-2  decim ation -in -frequency  
F F T  algorithm , th e  ev en -n u m b ered  sam ples o f the /V-point D F T  a re  given as

N ote  th a t these D F T  p o in ts can be o b ta in ed  from  an  N /2 -p o in t D F T  w ithou t any 
add itional m ultip lications. C onsequen tly , a radix-2 suffices fo r th is com pu ta tion .

T he o d d -n u m b ered  sam ples {X{2k +  1)) o f the  D F T  req u ire  th e  p rem ultip li­
cation  o f the in p u t sequence  with the  tw iddle fac to rs  W nN. F o r  these  sam ples a 
radix-4 decom position  p roduces som e com p u ta tio n a l efficiency because  th e  four- 
po in t D F T  has th e  largest m u ltip lica tion -free  bu tterfly . In d e e d , it can b e  shown 
th a t using a radix g re a te r  th an  4, does n o t resu lt in a significant red u c tio n  in com ­
p u ta tio n a l com plexity .

I f  we use a  radix-4 d ecim ation -in -frequency  F F T  a lg o rith m  fo r th e  odd- 
n u m b ered  sam ples o f the  /V-point D F T , we o b ta in  th e  fo llow ing N /4 -p o in t DFTs:

T h u s th e  N -po in t D F T  is d ecom posed  in to  o ne  N  /2 -p o in t D F T  w ith o u t add itional 
tw iddle factors an d  tw o N /4 -p o in t D F T s w ith tw idd le  facto rs . T h e  /V -po in t D FT  
is o b ta in ed  by successive use  o f th ese  decom p o sitio n s up  to  th e  last stage. Thus 
we ob ta in  a d ec im ation -in -frequency  S R F F T  algorithm .

F igure 6.15 show s th e  flow g rap h  fo r an  in -p lace 3 2 -p o in t decim ation- 
in-frequency  S R F F T  algo rithm . A t stage A  of th e  co m p u ta tio n  fo r N  =  32, the

N/4-1

(6.1.56)

-  j [x (n  + N / 4 ) -  x(n  +  3 N / 4 )]}

A74-1
(6.1.57)

+  j [ x (n  +  N / 4 )  -  x{n  +  3 N / 4 ) ] } W ^
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A B

Figure 6,15 Length 32 split-radix FFT  algorithms from paper by D uham el (1986); reprinted 
with perm ission from the IE E E .

to p  16 p o in ts  co n s titu te  th e  se quence

go(«) =  x(n)  + x (n  +  N  /2)  0 <  n <  15 (6.1.58)

T h is is th e  se q u en ce  req u ired  fo r th e  co m p u ta tio n  o f  X(2k) .  T h e  nex t 8 p o in ts 
c o n s titu te  th e  seq u en ce

gi(n) =  x(n) -  x(n +  N/2)  0 < n < 7  (6.1.59)
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T h e  b o tto m  eigh t po in ts  co n stitu te  th e  seq u en ce  j g 2(71). w here

82(n) =  x (n  + N / 4 )  — x( n  + 3 N / 4 )  0 < « < 7  (6.1.60)

T he sequences gj (n)  and  gi (n)  a re  used in the co m p u ta tio n  o f X(4k  4- 1) and 
A'(4 * +  3). T hus, a t stage A  we have co m p le ted  th e  first dec im atio n  fo r the  radix-2 
co m p o n en t o f  the algorithm . A t stage  B , the  b o tto m  eight po in ts  constitu te  the 
com pu ta tio n  o f [# i(n ) +  7 ( ” )]^32 -> 0 < /i <  7, w hich is used to  com pu te  X(4A-f 3),
0 <  k <  7. T h e  next e igh t po in ts from  th e  b o tto m  co n stitu te  th e  co m p u ta tio n  of 
[tfi(n) — j g 2(h)] VVjj, 0 < n <  7, w hich is used  to  co m p u te  X( 4k  4-1 ), 0  <  k <  7. 
T hus a t stage B, we have com p le ted  th e  first decim ation  fo r th e  rad ix -4 algorithm , 
w hich resu lts in tw o  8 -po in t sequences. H en ce  th e  basic  bu tte rfly  co m p u ta tio n  for 
th e  S R F F T  algo rithm  has th e  “L -sh a p e d ” form  illu stra ted  in Fig. 6.16.

N ow  we re p e a t th e  steps in th e  c o m p u ta tio n  above. B eg inn ing  w ith  th e  top  
16 p o in ts a t stage A , we re p e a t the decom p o sitio n  fo r  the  16-point D FT . In  o th er 
w ords, we d ecom pose  th e  c o m p u ta tio n  in to  an  e ig h t-p o in t, rad ix -2  D F T  and  tw o 
fou r-po in t, radix-4 D FT s. T hus a t stag e  B, th e  to p  eigh t po in ts  co n stitu te  the 
sequence  (w ith N  =  16)

g'o(*) =  8o(n) +  go(n 4- N / 2) 0 < n < 7 (6.1.61)

and  th e  next eight po in ts  co n s titu te  th e  tw o  fo u r-p o in t se q u en ces g[(n)  and  jg'2(n), 
w here

g[ (n) =  go(n) ~  go(n + N  f l )  0 <  n < 3
(6.1.62)

82(«) =  8o(n +  N / 4 )  -  g0(n + 3 N / 4 )  0 < n  <  3

T h e  b o tto m  16 po in ts  o f  stage  B are  in th e  fo rm  o f tw o  e ig h t-p o in t D FTs. H ence 
each  e ig h t-p o in t D F T  is decom p o sed  in to  a fou r-p o in t, radix-2  D F T  an d  a four- 
po in t, radix-4 D F T . In  th e  final stage, th e  co m p u ta tio n s  involve th e  com bination  
o f tw o-po in t sequences.

T ab le  6.2 p re se n ts  a com parison  o f  th e  n u m b e r  o f nontrivial  rea l m ultip li­
ca tions an d  ad d itio n s req u ired  to  p e rfo rm  an  jY-point D F T  w ith  com plex-valued
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TABLE 6.2 NUMBER OF NONTRIVIAL REAL MULTIPLICATIONS AND 
ADDITIONS TO COMPUTE AN N-POINT COMPLEX DFT

N

Real M ultiplications Real Additions

Radix Radix
4

Radix
8

Split
Radix

Radix
2

Radix
4

Radix
8

Split
Radix

16 24 20 20 152 148 148
32 88 68 408 388
64 264 208 204 196 1.032 976 972 964

128 712 516 2.504 2308
256 1,800 1.392 1.284 5,896 5,488 5.380
512 4.360 3.204 3.076 13.566 12,420 12.292

1,024 10.248 7,856 7,172 30.728 28.336 27,652

Source: Extracted from D uham el (1986).

d a ta , using a radix-2 , rad ix -4, radix-8, and  a sp lit-radix  F F T . N o te  th a t th e  S R F F T  
algo rithm  req u ires  the  low est n u m b e r  o f  m ultip lica tion  an d  add itions. F o r this 
reaso n , it is p re fe rab le  in m any  p ractica l app lications.

A n o th e r  ty p e  o f S R F F T  algo rithm  has b een  d ev e lo p ed  by Price (1990). Its 
re la tio n  to  D u h a m e l’s a lgo rithm  describ ed  prev iously  can be seen  by n o ting  th a t 
th e  radix-4  D F T  term s X ( 4 k  4- 1) and  X (4 k  +  3) involve th e  N /4 -p o in t D F T s o f the  
sequ en ces [g i(n ) -  and  [# i( '0  +  ,/£2(« )]W $ \ respectively . In effect, th e
sequen ces g i(/i) and  g2 (n) are  m u ltip lied  by the fac to r  (v ec to r)  (1, —j )  =  (1, H ^ )  
and  by WJJ fo r the  co m p u ta tio n  o f X ( 4 k  +  1), w hile the  co m p u ta tio n  o f X (4k +  3) 
involves th e  fac to r  (1 , j )  =  (1, W{2*) and  Wj f .  In s tead , o n e  can re a rran g e  the  
co m p u ta tio n  so th a t th e  fac to r  fo r X (4 k  +  3) is (—j ,  —1) =  — (W £8, 1). A s a resu lt 
o f th is ph ase  ro ta tio n , th e  tw iddle fac to rs  in th e  co m p u ta tio n  o f X  (4k -f 3) becom e 
exactly  the  sam e as those  fo r  X(4 k  +  1), excep t th a t  th ey  o ccu r in m irro r  im age 
o rd e r. F o r exam ple, at stage B of Fig. 6.15, the  tw idd le fac to rs  W21, W 18, . . . ,  W3 
are  rep laced  by (V1, W 2, . . . ,  W 1, respectively . T h is m irro r-im age sym m etry  occurs 
a t every  su b seq u en t stage  o f th e  algo rithm . A s a conseq u en ce , the  n u m b er o f 
tw idd le  facto rs th a t m ust b e  co m p u ted  an d  s to red  is red u ced  by a fac to r o f 2 in 
com parison  to  D u h a m e l’s a lgorithm . T h e  resu lting  a lgo rith m  is called  th e  “m irro r” 
F F T  (M F F T ) algorithm .

A n add itional facto r-of-2  savings in s to rag e  o f tw iddle fac to rs  can  be ob ta in ed  
by in tro d u c in g  a 90° p h ase  offset a t th e  m id p o in t o f  each  tw idd le  array , w hich can 
b e  rem oved  if necessary  a t th e  o u tp u t o f th e  S R F F T  co m p u ta tio n . T h e  incor­
p o ra tio n  o f  th is im p ro v em en t in to  th e  S R F F T  (o r  th e  M F F T ) resu lts in an o th e r 
a lgo rithm , also  d ue  to  P rice (1990), ca lled  th e  “p h a se ” F F T  (P F F T ) algorithm .

6.1.6 Implementation of FFT Algorithms

N ow  th a t w e have describ ed  th e  basic radix-2  and  rad ix-4  F F T  a lgorithm s, let 
us consid er som e o f  th e  im p lem en ta tio n  issues. O u r  re m a rk s  app ly  d irec tly  to



radix-2  a lgorithm s, a lthough  sim ilar com m en ts m ay  b e  m ad e  a b o u t radix-4  and  
h igher-rad ix  algorithm s.

B asically, th e  radix-2  FFT  a lgo rith m  consists o f  tak ing  tw o  d a ta  po in ts a t a 
tim e fro m  m em ory , p e rfo rm in g  th e  bu tterfly  co m p u ta tio n s  a n d  re tu rn in g  th e  re ­
su lting  num bers to  m em ory . T h is p ro ced u re  is re p e a te d  m any  tim es ( (N  log2 N)[2  
tim es) in th e  co m p u ta tio n  o f an  JV-point D F T .

T h e  bu tterfly  co m p u ta tio n s req u ire  th e  tw idd le fac to rs {W^} a t various stages 
in e ith e r  n a tu ra l o r  b it-rev ersed  o rd er. In  an efficient im p lem en ta tio n  o f th e  algo­
rithm , th e  phase fac to rs  a re  com pu ted  once an d  s to re d  in a tab le , e ith e r  in norm al 
o rd e r  o r in b it-rev ersed  o rd e r, d ep en d in g  o n  th e  specific im p lem en ta tio n  o f th e  
algorithm .

M em ory  req u irem en t is an o th e r  fac to r  th a t m u st be  co n sid ered . If  th e  com ­
p u ta tio n s are  p e rfo rm ed  in p lace, th e  n u m b er o f m em ory  lo ca tio n s req u ired  is 2 N  
since th e  n um bers a re  com plex. H ow ever, we can  in stead  d o u b le  th e  m em ory  to 
4N, thus sim plifying th e  indexing an d  co n tro l o p e ra tio n s  in th e  F F T  a lgorithm s. In 
this case we sim ply a lte rn a te  in the  use o f th e  tw o se ts o f m em o ry  locations from  
o ne stage o f th e  F F T  a lgo rithm  to  th e  o th e r . D o u b lin g  o f the  m em o ry  also  allows 
us to  have b o th  th e  inp u t sequence  an d  th e  o u tp u t seq u en ce  in n o rm al o rd er.

T h e re  are  a n u m b er o f o th e r  im p lem en ta tio n  issues reg a rd in g  indexing, bit 
reversal, and  th e  deg ree  o f paralle lism  in the com pu ta tio n s. T o  a  large exten t, 
these  issues a re  a  function  o f  th e  specific a lg o rith m  and  the  ty p e  o f im p lem en ta ­
tion , nam ely , a h ard w are  o r  softw are im p lem en ta tio n . In  im p lem en ta tio n s  based  
on a  fixed-point arith m e tic , o r  floating-po in t a rith m e tic  on  sm all m ach ines, th e re  
is also th e  issue o f ro u n d -o ff e rro rs  in th e  co m p u ta tio n . T h is  to p ic  is considered  
in Section  6.4.

A lth o u g h  th e  F F T  a lgorithm s d escribed  p rev iously  w ere  p re se n te d  in the 
con tex t o f  com pu ting  the  D F T  efficiently, th ey  can  also  be u se d  to  com pu te  the 
ID F T , w hich is

j  A '- l

* (" )  =  7 T ] C * ( (6' ll63)
*=0

T h e  only  d ifference  b etw een  th e  tw o tran sfo rm s is th e  n o rm a liz a tio n  fac to r  l / N  
and  th e  sign o f th e  phase  fac to r  WN. C onseq u en tly , an  F F T  a lg o rith m  fo r com ­
pu ting  th e  D F T , can  be co n v erted  to  an  F F T  a lg o rith m  fo r co m p u tin g  th e  ID F T  
by changing th e  sign on  all th e  phase  fac to rs an d  d iv id ing  th e  final o u tp u t o f the 
algo rithm  by N.

In  fact, if w e tak e  th e  d ec im ation -in -tim e a lg o rith m  th a t  w e d escribed  in 
Section  6.1.3, reverse  th e  d irec tio n  o f th e  flow g rap h , change th e  sign on  th e  phase 
factors, in te rch an g e  the  o u tp u t an d  inpu t, an d  finally, d iv ide th e  o u tp u t by  N ,  we 
ob ta in  a  d ec im ation -in -frequency  F F T  a lgo rithm  fo r  co m p u tin g  th e  ID F T . O n  the  
o th e r  hand , if we beg in  w ith  th e  d ec im ation -in -frequency  F F T  a lg o rith m  described  
in Section  6.1.3 and  re p e a t th e  changes describ ed  above, w e d b ta in  a  decim ation- 
in-tim e F F T  a lg o rith m  fo r co m pu ting  th e  ID F T . T h u s it is a sim p le  m a tte r  to  devise 
F F T  a lgorithm s fo r  com pu ting  th e  ID F T .

474 Efficient Computation of the DFT: Fast Fourier Transform Algorithms Chap. 6
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Finally , we n o te  th a t th e  em phasis in ou r discussion o f  F F T  a lgo rithm s was 
on  radix-2, radix-4 , and  sp lit-rad ix  a lgorithm s. T hese  are  by  fa r  th e  m ost w idely 
used  in p rac tice . W hen  th e  n u m b er o f d a ta  p o in ts is no t a p o w er o f 2 o r  4. it is a 
sim ple m a tte r  to  p ad  th e  seq u en ce  x(n)  with zeros such th a t /V =  21’ o r  N  =  4 '.

T h e  m easu re  o f com plex ity  fo r F F T  algorithm s th a t we have em phasized  
is the re q u ire d  n u m b er o f a rith m e tic  o p era tio n s (m u ltip lica tions and  add itions). 
A lth o u g h  this is a very  im p o rtan t b enchm ark  fo r co m p u ta tio n a l com plex ity , th e re  
are  o th e r  issues to  be co n sid ered  in p ractical im p lem en ta tio n  o f F F T  a lgorithm s. 
T h ese  include th e  a rch itec tu re  o f  th e  processor, the  availab le  in struction  set, the  
d a ta  s tru c tu res fo r s to rin g  tw iddle factors, and  o th e r  considera tions.

F o r g en e ra l-p u rp o se  com p u te rs , w here  the  cost o f  th e  n um erica l o p e ra tio n s  
d o m in a te , radix-2, radix-4, and  split-radix  F FT  a lgorithm s a re  good cand idates . 
H ow ever, in th e  case o f  specia l-pu rpose  digital signal p rocesso rs , fea tu rin g  sing le­
cycle m u ltip ly -and-accum ulate  o p e ra tio n , b it-reversed  add ressing , and  a high d e ­
gree o f  in struction  para lle lism , the  stru c tu ra l regu larity  o f th e  a lgo rithm  is equally  
im p o rtan t as a rith m e tic  com plexity . H ence  for D S P  p rocesso rs , rad ix-2  o r  radix- 
4 decim atio n -in -freq u en cy  F F T  a lgorithm s are  p re fe rab le  in te rm s o f  sp eed  and 
accuracy. T he irreg u la r  s tru c tu re  o f the  SR F F T  m ay re n d e r  it less su itab le  fo r 
im p lem en ta tio n  on  d igital signal processors. S tru c tu ra l regu la rity  is also im p o rtan t 
in the  im p lem en ta tio n  o f F F T  a lgorithm s on vec to r p rocesso rs, m u ltip rocesso rs , 
and  in V LSI. In te rp ro cesso r com m unication  is an im p o rtan t co n sid era tio n  in such 
im p lem en ta tio n s on  paralle l processors.

In conclusion , we have p re sen ted  several im p o rtan t co n sid era tio n s in the  
im p lem en ta tio n  o f  F F T  a lgorithm s. A dvances in digital signal p rocessing  tech n o l­
ogy, in h a rd w are  an d  softw are, will con tinue  to  influence th e  choice am ong  F F T  
a lgo rithm s fo r vario u s practical applications.

6.2 APPLICATIONS OF FFT ALGORITHMS

T h e  F F T  a lg o rith m s describ ed  in th e  p reced ing  section  find ap p lica tion  in  a variety  
o f areas , includ ing  lin ear filtering, co rre la tion , and  sp e c tru m  analysis. B asically, 
th e  F F T  a lgo rithm  is used as an  efficient m eans to  co m p u te  th e  D F T  and  th e  ID F T .

In  th is sec tion  we co n sid er th e  use o f th e  F F T  a lgo rithm  in lin e a r  filtering  
a n d  in th e  co m p u ta tio n  o f th e  crosscorrelation  o f  tw o  sequences. T h e  use o f  th e  
F F T  in sp e c tru m  analysis is considered  in C h a p te r  12. In  ad d itio n  we illustrate  
how  to  e n h an ce  th e  efficiency of th e  F F T  a lgo rithm  by fo rm ing  com plex -valued  
sequen ces fro m  rea l-va lued  sequences p rio r  to  th e  co m p u ta tio n  o f  th e  D F T .

6.2.1 Efficient Computation of the DFT of Two Real 
Sequences

T h e  F F T  a lgo rith m  is designed  to  perfo rm  com plex m ultip lica tions an d  add itions, 
even  th o u g h  th e  in p u t d a ta  m ay b e  rea l valued. T h e  basic  reaso n  fo r  th is  s itu a tio n  is



th a t  th e  phase  fac to rs  are  com plex and  hence , a fte r th e  first stag e  o f th e  algorithm , 
all variab les a re  basically  com plex-valued.

In  view  o f  th e  fact th a t th e  a lgorithm  can  han d le  com plex -valued  inp u t se­
quences, we can  exploit th is capability  in th e  co m p u ta tio n  o f  th e  D F T  o f two 
rea l-va lued  sequences.

Suppose th a t * i(n )  and  x 2(n) are  tw o rea l-va lued  se q u en ces o f leng th  N , and 
let x(n)  be  a com plex -valued  sequence  defined  as

x(n)  =  X] (n) +  j x 2(n) 0 <  n <  N  — 1 (6.2.1)

T h e  D F T  o p e ra tio n  is lin ear and  hence the D F T  o f x ( n )  can  be exp ressed  as

X(k )  =  X ](k) +  j X 2(k)  (6.2.2)

T he sequen ces ^ i(« )  and J 2OO can be exp ressed  in te rm s o f x( n )  as follows:

, 4 ac(H) +  J:*(n)
* i(« ) =  -------- 2--------  (6.2.3)

x ( n ) - x * ( n )
•*:(«) =  ------- tt.-------- (6.2.4)

H ence th e  D F T s o f  jri(n) and  x 2(n) are

* ,(* )  =  ]- \ D F T [ x { n ) }  + D F T [ x \ n ) } )  (6.2.5)

X 2(k) =  j - \ D F T [ x ( n )] -  DFT[ x*(n)] )  (6.2.6)

R ecall th a t th e  D F T  o f x*(n)  is X*(N — k).  T h e re fo re ,

X] (k) =  i[X (*r) +  X * ( N  -  jt)] (6.2.7)

X 2(k) =  -^ [X (* >  -  X * ( N  -  *)] (6.2.8)
;2

T hus, by p e rfo rm in g  a single D F T  on  the  com plex -valued  seq u en ce  x ( n ), we 
have o b ta in ed  th e  D F T  o f the  tw o rea l sequen ces w ith  only a sm all a m o u n t of 
add itio n a l co m p u ta tio n  th a t is involved in com pu ting  Xi (Jt) an d  X 2(k) from  X(k) 
by use o f (6.2.7) an d  (6.2.8).

6.2.2 Efficient Computation of the DFT of a 2/V-Point 
Real Sequence

S uppose th a t g(n)  is a rea l-va lued  sequence  o f 2 N  po in ts. W e now  d em o n s tra te  
how  to  o b ta in  th e  2 N -poin t D F T  o f g(n)  from  co m p u ta tio n  o f o n e  A ppoint D F T  
involving com plex-valued  data . F irst, we define

* i ( n )  =  g ( 2 n )
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(6.2.9)
*2(n) =  g(2n  +  1)
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T hu s we have subd iv ided  the  2 N -p o in t rea l sequence  in to  tw o W -point real se ­
quences. N ow  w e can app ly  th e  m e th o d  described  in th e  p reced in g  section .

L et jc(n) b e  th e  A7-po in t com plex-valued  sequence

A-(n) =  * i (n )  +  j x i i n )  (6 .2 .10)

F ro m  th e  re su lts  o f  the  p reced in g  section , we have

x m  =  ^ [* ( * )  + * * ( * - * ) ]
j (6.2.11) 

X 2(k) =  — [X(k)  -  X * ( N  -  k)]

Finally, we m ust exp ress th e  2/V-point D F T  in term s o f  the tw o /V-point D FT s, 
Xi(A) and  X 2(k).  T o  accom plish  this, we p ro ceed  as in th e  d ec im ation -in -tim e F F T  
a lgo rithm , nam ely ,

N - 1  N- 1

C(k)  =  £ s < 2 h ) H $ *  +  J 2 s(2n  + ^ W7 N ^ k
n=tl n=0
N-l  N-1

«=() n=()

C onseq u en tly ,

G(k)  = X t (k) + W i N X 2(k) k =  0 .1 ..........N  -  1

G(k  +  N )  =  X i ( k )  -  W%NX2(k) k =  Q . \ ..........N - l

T h u s we have co m p u ted  the  D F T  o f  a 2/V-point real sequence  from  o ne jV-point 
D F T  and  som e add itio n a l co m p u ta tio n  as ind icated  by (6.2.11) and  (6.2.12).

(6 .2 .12)

6.2.3 Use of the FFT Algorithm in Linear Filtering and 
Correlation

A n im p o rta n t app lica tion  o f th e  F F T  a lgorithm  is in F IR  linear filtering  o f long 
d a ta  sequences. In C h a p te r  5 we d escribed  tw o m ethods, th e  o v erlap -add  and  th e  
overlap -save  m e th o d s  fo r  filtering  a  long d a ta  se quence  w ith an F IR  filter, based  
on  th e  use o f  th e  D F T . In  th is section  we consider the  use o f these  tw o  m eth o d s 
in con ju n c tio n  w ith  the  F F T  a lgo rithm  fo r com pu ting  th e  D F T  and  th e  ID F T .

L e t h(n),  0 <  n <  M  - 1 ,  be th e  un it sam ple resp o n se  o f  th e  F IR  filter and let 
x ( n ) d e n o te  th e  inp u t d a ta  sequence . T h e  block size o f  th e  F F T  algorithm  is N,  
w h ere  N  =  L  +  M  — 1 and  L  is the n u m b er o f new  d a ta  sam ples being  processed  
by th e  filter. W e assum e th a t fo r any  given value o f Af, th e  n u m b er L  o f da ta  
sam ples is se lec ted  so  th a t N  is a p o w er o f 2. F o r  pu rp o ses o f th is discussion, w e 
co n sid er o n ly  rad ix-2  F F T  algorithm s.

T h e  /V-point D F T  o f  h(n),  w hich is p ad d ed  by  L — 1 zeros, is d e n o te d  as H(k) .  
T h is  c o m p u ta tio n  is p e rfo rm ed  o n ce  via the  F F T  and  th e  resu lting  N  com plex  
n u m b ers a re  s to red . T o  be specific w e assum e th a t th e  d ec im ation -in -frequency



F F T  algorithm  is used  to  co m p u te  H(k) .  T his y ields H ( k )  in b it-rev erse d  o rder, 
w hich is the way it is s to red  in m em ory.

In th e  overlap-save m eth o d , the  first M  — 1 d a ta  po in ts o f each  d a ta  b lock  are 
the  last M  — 1 d a ta  po in ts  o f th e  p rev ious d a ta  b lock . E ach  d a ta  b lo ck  con ta in s L  
new  d a ta  po in ts, such th a t N  =  L  + M  — 1. T h e  N  -po in t D F T  o f  each  d a ta  block 
is p erfo rm ed  by th e  F F T  algorithm . If  th e  decim atio n -in -freq u en cy  algo rithm  is 
em ployed , th e  in p u t d a ta  b lock  req u ires  no  shuffling and  the  valu es o f th e  D F T  
occur in b it-reversed  o rd e r. Since th is is exactly  th e  o rd e r  o f  H( k) .  we can m ultiply 
th e  D F T  o f th e  d a ta , say Xm(fc), w ith //(Jt) an d  th u s th e  resu lt

Ym(k) =  H ( k ) X m(k)
is also  in b it-reversed  o rd er.

T h e  inverse D F T  (ID F T ) can  be co m p u ted  by use o f  an  F F T  algorithm  th a t 
tak es the  inpu t in b it-rev ersed  o rd e r  and  p ro d u ces an o u tp u t in norm al o rder. 
T hus th e re  is no  n eed  to  shuffle any b lock o f d a ta  e ith e r  in co m p u tin g  th e  D F T  
o r  th e  ID F T .

If th e  overlap -ad d  m e th o d  is used to  perfo rm  th e  linear filtering , the com pu­
ta tio n a l m eth o d  using  the  F F T  a lgo rithm  is basically th e  sam e. T h e  only difference 
is th a t the  N -po in t d a ta  b locks consist o f L  new  d a ta  p o in ts an d  M  — 1 add itional 
zeros. A fte r  the  ID F T  is com pu ted  fo r each  d a ta  b lock , th e  W -point filtered  blocks 
a re  overlap p ed  as in d ica ted  in Section  5.3.2, and  th e  M  -  1 o v erlap p in g  d a ta  po in ts 
b e tw een  successive o u tp u t reco rd s are  ad d ed  tog e th er.

L et us assess th e  com p u ta tio n a l com plexity  o f the  F F T  m e th o d  fo r linear fil­
tering . F o r th is pu rp o se , th e  on e-tim e  com pu ta tio n  o f H(k)  is insignificant and  can 
be ignored . E ach  F F T  req u ires ( N /2)  log2 N  com plex m ultip lica tions and  N  Iog2 N  
add itions. Since th e  F F T  is p erfo rm ed  tw ice, once fo r  th e  D F T  an d  once fo r the 
ID F T , th e  co m pu ta tional b u rd en  is N  log2 N  com plex  m u ltip lica tions and  2 N  log2 N  
add itions. T h ere  are  also N  com plex  m u ltip lica tions and  N  — 1 ad d itio n s requ ired  
to  co m p u te  ym(Jfc). T h e re fo re , we have ( N \ o g 2 2 N ) / L  com plex m ultip lica tions per 
o u tp u t d a ta  p o in t and  app rox im ate ly  ( 2 N \ o g 2 2 N ) / L  ad d itio n s p e r  o u tp u t data  
po in t. T he o v erlap -add  m e th o d  req u ires  an increm en ta l increase  o f (M — \  ) / L  in 
th e  n u m b er o f add itions.

By way o f com parison , a d irec t fo rm  rea liza tion  o f  th e  F IR  filter involves M  
real m ultip lications p e r  o u tp u t p o in t if th e  filter is n o t lin ear p h ase , and  M / 2  if it 
is lin ear phase (sym m etric). A lso , th e  n u m b er o f  ad d itio n s is M  -  1 p e r  o u tp u t 
po in t (see Sec. 8.2).

I t  is in teresting  to  com pare  th e  efficiency o f th e  F F T  a lgo rith m  w ith th e  direct 
form  rea liza tion  o f th e  F IR  filter. L e t us focus on  the  n u m b er o f  m ultip lications, 
w hich a re  m o re  tim e consum ing  th an  add itions. S uppose  th a t M  =  128 =  27 and 
N  =  2V. T h en  th e  n u m b e r o f com plex m ultip lica tions p e r  o u tp u t p o in t fo r an  FFT  
size o f N  =  2V is

478 Efficient Computation of the DFT: Fast Fourier Transform Algorithms Chap. 6



Sec. 6.3 A Linear Filtering Approach to Computation of the DFT 479

TABLE 6.3 COMPUTATIONAL COMPLEXITY

Size of FFT 
i) — log2 N

f(v)
Number of Complex Multiplications 

per Output Point

9 13.3
10 12.6
11 12.8
12 13.4
14 15.1

T h e  values o f c(v)  fo r d iffe ren t values o f i> are  given in T ab le  6.3. W e observe 
th a t th e re  is an op tim um  value  o f i< w hich  m inim izes c(u). F o r  the  F IR  filter of 
size M  =  128, the  op tim u m  occurs at d =  10.

W e shou ld  em phasize th a t c ( f )  rep re sen ts  th e  n u m b er o f com plex m ultip lica­
tions fo r th e  F F T -b ased  m ethod . T h e  n u m b er o f  rea l m u ltip lica tions is fo u r tim es 
th is num b er. H ow ever, even  if the F IR  filter has lin ear ph ase  (see Sec. 8.2), the  
n u m b er o f co m p u ta tio n s p e r  o u tp u t po in t is still less with th e  F F T -based  m ethod . 
F u rth e rm o re , th e  efficiency of th e  F F T  m eth o d  can be im proved  by com puting  
th e  D F T  of tw o successive d a ta  b locks sim ultaneously , acco rd ing  to  th e  m ethod  
ju st d escribed . C onsequen tly , the  F F T -b ased  m e th o d  is in d eed  su p e rio r  from  a 
co m p u ta tio n a l p o in t o f view w hen th e  filter length  is re latively  large.

T h e  co m p u ta tio n  o f  th e  cross co rre la tio n  betw een  tw o sequen ces by m eans o f 
th e  F F T  a lgo rithm  is sim ilar to  the lin ea r  F IR  filtering p ro b lem  just described . In 
p ractical app lica tions involving c ro ssco rre la tion , a t least o ne  o f the  sequen ces has 
finite d u ra tio n  and  is ak in  to  the im pulse response  o f th e  F IR  filter. T h e  second 
seq u en ce  m ay be a long sequence  w hich con ta in s th e  d es ired  se q uence  co rru p ted  
by  add itiv e  noise. H en ce  th e  second se q uence  is ak in  to  th e  in p u t to  the  F IR  filter. 
By tim e  reversing  th e  first sequence  and  com puting  its D F T , we have red u ced  th e  
cross c o rre la tio n  to  an equ ivalen t convo lu tion  p ro b lem  (i.e.. a  lin ear F IR  filtering 
p ro b lem ). T h e re fo re , th e  m ethodo logy  w e d ev e lo p ed  fo r lin ea r  F IR  filtering  by 
use o f  th e  F F T  app lies directly .

6.3 A LINEAR FILTERING APPROACH TO COMPUTATION OF THE 
DFT

T h e  F F T  algo rithm  tak es N  po in ts o f in p u t d a ta  an d  p ro d u ces  an o u tp u t sequence  
o f  N  po in ts  co rre spond ing  to  the  D F T  o f th e  in p u t d a ta . A s we have show n, 
th e  radix-2  F F T  a lgo rithm  p erfo rm s th e  co m p u ta tio n  of th e  D F T  in ( N  f l )  log2 N  
m u ltip lica tio n s an d  N  log2 N  add itions fo r  an  N -po in t sequence .

T h e re  a re  som e app lica tions w h ere  only  a se lec ted  n u m b er o f values o f 
th e  D F T  a re  des ired , bu t th e  en tire  D F T  is n o t req u ired . In  such a  case, th e  
F F T  a lg o rith m  m ay no  longer be m o re  efficient th an  a d irec t co m p u ta tio n  o f 
th e  d es ired  values o f th e  D F T . In  fact, w hen  th e  des ired  n u m b e r o f  values o f



the D F T  is less th a n  log2 N ,  a d irec t co m p u ta tio n  o f th e  d es ired  values is m ore 
efficient.

T h e  d irect co m p u ta tio n  o f the D F T  can be fo rm u la ted  as a lin ear filtering 
o p e ra tio n  on  th e  in p u t d a ta  sequence. A s we will d em o n s tra te , th e  lin ear filter 
tak es th e  fo rm  o f  a para lle l b an k  o f reso n a to rs  w h ere  each  re so n a to r  se lects one 
o f th e  frequencies a>k =  2 n k / N ,  k =  0, 1 , . . . ,  N  — 1, co rre sp o n d in g  to  th e  N  
frequencies in th e  D F T .

T h ere  a re  o th e r  app lica tions in w hich we re q u ire  the  ev a lu a tio n  o f th e  z- 
tran sfo rm  of a f in ite -d u ra tio n  sequence  a t p o in ts o th e r  th an  th e  un it circle. If  
th e  se t o f  desired  p o in ts  in  th e  z-p lane possesses som e reg u la rity , it is possible 
to  also express the  co m p u ta tio n  o f  th e  z-tran sfo rm  as a  lin ear filte ring  opera tio n . 
In th is co nnection , w e in tro d u ce  an o th e r  a lgo rithm , called  th e  ch irp -z  transfo rm  
algorithm , w hich is su itab le  fo r evaluating  th e  z-tran sfo rm  o f a se t o f d a ta  on  a 
variety  of co n to u rs in th e  z-p lane. T h is a lgo rithm  is also  fo rm u la te d  as a  linear 
filtering o f  a set o f inp u t da ta . A s a  consequence , the F F T  a lg o rith m  can be used 
to  co m p u te  th e  chirp-z tran sfo rm  and  thus to  ev a lu a te  th e  z -tran sfo rm  at various 
co n to u rs in the  z -p lane , including the  u n it circle.

6.3.1 The Goertzel Algorithm

T he G oertze l a lgo rithm  explo its the period icity  o f th e  phase fac to rs  {W£} and 
allow s us to  exp ress th e  co m p u ta tio n  o f the  D F T  as a  lin ear filtering  opera tion . 
Since W # kN =  1, we can m ultip ly  the  D F T  by th is fac to r. T hus
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W e no te  th a t (6.3.1) is in th e  form  of a  convolu tion . In d eed , if we define the 
sequence  yk(n) as

m=0

th en  it is c lear th a t » (n ) is th e  convo lu tion  o f th e  fin ite -d u ra tio n  inp u t sequence 
x(n)  o f leng th  N  w ith  a filter th a t has an  im pulse response

T h e  o u tp u t o f th is filter a t n =  N  y ields th e  value o f th e  D F T  a t th e  frequency 
an =  h r  k / N . T h a t is,

(6.3.1)

(6.3.2)

h k(n) =  W ~ knu( n) (6.3.3)

X (k )  =  >*(n)|n=JV

as can be verified by  co m p arin g  (6.3.1) w ith  (6.3.2).
T h e  filter w ith  im pulse re sp o n se  hk(n) has th e  system  function

(6.3.4)

(6.3.5)
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T his filter has a  po le  on  the  u n it circle a t the  frequency  cd* =  2n k / N . T hus, the 
en tire  D F T  can be co m p u ted  by passing  the  block o f  inp u t d a ta  in to  a p a ra l­
lel b a n k  of N  single-pole filters (re so n a to rs) , w here each filter has a po le at the 
co rre sp o n d in g  freq u en cy  o f th e  D FT.

In s tead  o f  p e rfo rm in g  th e  com p u ta tio n  o f th e  D F T  as in (6.3.2), via convo lu ­
tion , w e can use th e  d ifference  eq u a tio n  co rre spond ing  to  the  filter given by (6.3.5) 
to  co m p u te  y k(ir) recursively . T hus we have

y t (n) =  W ^ kyt (n  -  1) +  x in)  V i-(-l) =  0 (6.3.6)

T he desired  o u tp u t is X (k )  =  y k(N) ,  fo r k =  0, 1 , . . . ,  N  — 1. T o  perfo rm  this 
co m p u ta tio n , we can co m p u te  once and  sto re  the  phase  facto rs W # k.

T h e  com plex  m u ltip lica tions and  add itions in h eren t in (6.3.6) can be avoided 
by com bin ing  th e  pairs o f reso n a to rs  possessing  com plex-con jugate  poles. T his 
leads to  tw o-po le  filters w ith system  functions o f the  form

] _  iy*

HkL ) ~  1 -  2 c o s ( 2 t i k / N ) : ~ l + C '2 (6 '3 '7)

T h e  d irect form  II rea liza tion  o f the system  illu stra ted  in Fig. 6.17 is d escribed  by 
the d ifference  eq u a tio n

2:rk
vk(n) =  2 cos —  v*.(zi — 1) -  vk(n -  2) +  x( i t )  (6.3.8)

N

Vi(h) =  vk in) -  W kNvk (n -  1) (6.3.9)

w ith initial co nd itions iv - (- l)  =  vk{ - 2 )  =  0.
T he recursive re la tion  in (6.3.8) is ite ra ted  for n =  0, 1.........N,  b u t th e  eq u a ­

tion in (6.3.9) is co m p u ted  only  once a t tim e n =  N.  E ach  ite ra tio n  req u ire s  one 
real m u ltip lica tion  an d  tw o add itions. C onsequen tly , fo r a rea l inp u t sequence  
x(n) .  th is a lgo rithm  req u ires  N  +  1 rea l m ultip lica tions to  yield no t only  X ( k )  but 
also, d ue  to  sym m etry , the  value  o f X ( N  — k).

T he G o ertze l a lgo rithm  is particu la rly  a ttrac tive  w hen th e  D F T  is to  be com ­
p u ted  at a re latively  sm all n u m b er M  o f values, w h ere  M  <  Iog2 N.  O therw ise, 
th e  F F T  a lg o rith m  is a m o re  efficient m eth o d .

Figure 6.17 Direct form It realization 
of two-pole resonator for computing the 
DFT.
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6.3.2 The Chirp-z Transform Algorithm

The D F T  of an W-point data sequence x(n) has been  view ed as the z-transform  
o f x i n ) evaluated at N  equally spaced points on the unit circle. It has also been  
view ed as N  equally spaced sam ples o f the Fourier transform o f the data sequence  
x(n). In this section we consider the evaluation o f X (z )  on other contours in the 
z-plane, including the unit circle.

Suppose that w e wish to com pute the values o f the z-transform o f jc(n) at a 
set o f points {z*}. Then,

A '- l

X i z k) = J 2 x ( n ) z r  * =  0 ,1 .........L - 1 (6.3.10)
n=0

For exam ple, if the contour is a circle o f radius r and the z* are N  equally spaced 
points, then

Zk =  re j2”*"/" k =  0,1,2.....N - 1

2=1 (6.3.11) 
X ( z k) =  J 2 i x M r ~n}e n/N k =  0 , 1 , 2 .........N - 1

n=0

In this case the FFT algorithm can be applied on the modified sequence x{n )r~n.
M ore generally, suppose that the points z* in the z-plane fall on an arc which 

begins at som e point
Zo =  r0eJlk’

and spirals either in toward the origin or out away from the origin such that the 
points are defined as

zk =  rQe je°(Roei *‘)i k =  0 , 1 , . . . ,  L  -  1 (6.3.12)

N ote that if R0 < 1, the points fall on a contour that spirals toward the origin and if 
R0 > 1, the contour spirals away from the origin. If Ro — 1, the contour is a circular 
arc of radius ro. If r0 =  1 and Ro =  l ,  the contour is an arc o f  the unit circle. The 
latter contour would allow us to com pute the frequency content o f the sequence 
x( n)  at a dense set o f L  frequencies in the range covered by the arc without having 
to com pute a large D FT , that is, a D FT  o f  the sequence x( n)  padded with many 
zeros to  obtain the desired resolution in frequency. Finally, if r0  =  Ro =  1, =  0,
0o =  2n / N ,  and L = N ,  the contour is the entire unit circle and the frequencies 
are those o f the D FT. The various contours are illustrated in Fig. 6.18.

W hen points {z*J in (6.3.12) are substituted into the expression for the z- 
transform, we obtain

* ( z t )  =  X !-* (” > z r i
n=0

=  j > ( n ) ( r 0 ej * ) ~ ”V

n=° (6.3.13)
N - 1



Sec. 6.3 A Linear Filtering Approach to Computation of the DFT 483

lm(r) ImU)

n=0

l m ( ; l Im(;)

Figure 6.18 Some examples of contours on which we may evaluate the z- 
transform.

where, by definition.
V =  RveJ^  (6.3.14)

W e can express (6.3.13) in the form of a convolution, by noting that

nk  =  j[n 2 +  k 2 — (k — n)2] (6.3.15)

Substitution o f (6.3.15) into (6.3.13) yields
N - 1

X(C*) =  V - l 'Z /2  J 2 [ x ( n ) ( r 0eJlk' ) - nV - n2f2] V (k- n)2fZ (6.3.16)

Let us define a new  sequence g (n ) as

g(n) =  x (n)(r^e j<hr nV - n^  

Then (6.3.16) can be expressed as

X ( z k) =  V - k2/2y g ( n ) V {k-' ,)1/2

(6.3.17)

(6.3.18)
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The sum m ation in (6.3.18) can be interpreted as the convolution o f  the sequence  
g(n)  with the im pulse response h(n)  o f a filter, where

W e observe that both h(n)  and g(n) are com plex-valued sequences.
The sequence h(n)  with R0 =  1 has the form o f a com plex exponential with 

argument (on =  n2<(>o/2 =  (n0o /2 )n. The quantity represents the frequency
of the com plex exponential signal, which increases linearly with tim e. Such signals 
are used in radar system s and are called chirp signals.  H ence the z-transform  
evaluated as in (6.3.18) is called the chirp-z t ransform.

The linear convolution in (6.3.21) is m ost efficiently done by use o f the FFT 
algorithm. The sequence g(n)  is o f length N.  H ow ever, h{n)  has infinite du­
ration. Fortunately, only a portion h{n)  is required to com pute the L  values 
o f X (z).

Since we will com pute the convolution in (6.3.1) via the FFT, let us consider 
the circular convolution o f  the W-point sequence g{n)  with an M -point section of 
/i(n), where M  > N .  In such a case, we know  that the first N  — 1 points contain  
aliasing and that the rem aining M  — N  +  1 points are identical to  the result that 
would be obtained from  a linear convolution o f h(n)  with g(n).  In view  o f this, we 
should select a D F T  o f size

which would yield L  valid points and N - 1  points corrupted by aliasing.
The section o f  h(n)  that is needed  for this com putation corresponds to the 

values o f h{ri) for — ( N  -  1) < n < (L — 1), which is o f  length M  =  L  +  N  — 1, as 
observed from (6.3.21). Let us define the sequence h\{n)  o f length M  as

and com pute its Af-point D F T  via the FFT algorithm  to  obtain H \(k) .  From  x(n)  
we com pute g (n ) as specified by (6.3.17), pad g(n) with L — 1 zeros, and com ­
pute its Af-point D F T  to  yield G(Jfc). The ID FT  o f the product y i(* )  =  G (k)H \(k )  
yields the Af-point sequence > i(n), n =  0, 1 , . . . ,  Af — 1. T he first N  — 1 points of 
yi(« ) are corrupted by aliasing and are discarded. T he desired values are yi(n) 
fo r N  — 1 < n < M  — 1, which correspond to the range 0 < n < L  — l i n  (6.3.21),

h(n) =  V n2/2 

Consequently, (6.3.18) may be expressed as 

X ( z t )  =  V - * V y ( k )

(6.3.19)

(6.3.20)

where y(Jt) is the output o f the filter

s —1
y(k)  =  Y ' g ( n ) h ( k  — n) k =  0. 1.........L — 1 (6.3.21)

n=0

M - L + N - 1

/ii(n )  =  h(n — N  -f 1) n — 0 ,1 .........M  — 1 (6.3.22)
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that is,

y(n) =  y t(n  +  N  — 1) n =  0, 1.........L — 1 (6.3.23)

A lternatively, w e can define a sequence ft2 (n) as

h(n),  0  < n < L  — 1
h2(n) = h ( n ~ N - L  +  l ) ,  L < t i  < M  — 1 (6.3.24)

The Af-point D F T  o f h 2{n) yields H2(k),  which when m ultiplied by G(k)  yields 
Y2(k) =  G(k)Hz(k) .  The ID F T  o f  Y2(k) yields the sequence y2(n) for 0 < n < A f-1 .  
N ow  the desired values o f  >’2 (") are in the range 0 <  n <  L — 1, that is,

y(n)  =  y 2(n) n =  0, 1 , . . . ,  L — 1 (6.3.25)

Finally, the com plex values X(Zi) are com puted by dividing y(k)  by h ( k ),
k =  0, 1.........L — 1, as specified by (6.3.20).

In general, the com putational com plexity o f the chirp-z transform algorithm  
described above is o f the order of Af log 2 M  com plex m ultiplications, where M  =  
N  +  L ~  1. This number should be com pared with the product, N  ■ L,  the number 
of com putations required by direct evaluation o f the z-transform. Clearly, if L  is 
small, direct com putation is m ore efficient. H ow ever, if L  is large, then the chirp-z 
transform algorithm is m ore efficient.

The chirp-z transform m ethod has been im plem ented in hardware to com pute 
the D FT  of signals. For the com putation of the DFT, we select ro =  /?(i =  1, 6\j =  0, 
</>o =  2n / N , and L  =  N.  In this case

y - i r / 2  _  e - j j i n - / N

n n 2 . Tin2 <6 '3 '26>
=  c o s --------- j  s in -------

N  N
The chirp filter with im pulse response 

h(n)  =  V nlfl

t 2 . n n 2 
— (- / sin —

N  N

=  h r(n) +  jh ,{n )

has been im plem ented as a pair o f  FIR  filters with coefficients hr (n) and A,(n), 
respectively. B oth  surface acoustic wave  (SAW) devices and charge coupled  de­
vices (C C D ) have been  used in practice for the FIR  filters. The cosine and sine 
sequences given in (6.3.26) needed  for the prem ultiplications and postm ultiplica­
tions are usually stored in a read-only m em ory (R O M ). Furtherm ore, we note that 
if only the m agnitude o f  the D F T  is desired, the postm ultiplications are unneces­
sary. In this case,

|X(z*)l =  \y(k)\ k =  0 , 1 , . . . ,  n - 1  (6.3.28)

as illustrated in Fig. 6.19. Thus the linear FIR  filtering approach using the chirp-z 
transform  has been  im plem ented for the com putation o f the DFT.

=  c o s -------- (- j  s in -----  (6.3.27)
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Chirp Fillers

Figure 6.19 Block diagram illustrating the implementation of the chirp-z transform for com­
puting the DFT (magnitude only).

6.4 QUANTIZATION EFFECTS IN THE COMPUTATION OF THE DFT*

A s w e have observed in our previous discussions, the D F T  plays an important role 
in many digital signal processing applications, including FIR  filtering, the com pu­
tation o f the correlation betw een signals, and spectral analysis. For this reason 
it is important for us to know  the effect o f quantization errors in its com puta­
tion. In particular, we shall consider the effect o f  round-off errors due to  the 
multiplications perform ed in the D F T  with fixed-point arithmetic.

The m odel that we shall adopt for characterizing round-off errors in multi­
plication is the additive white noise m odel that we use in the statistical analysis 
of Tound-off errors in IIR  and FIR  filters (see Fig. 7.34). A lthough the statistical

*It is recommended that the reader review Section 7.5 prior to reading this section.
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analysis is perform ed for rounding, the analysis can be easily m odified to apply to 
truncation in tw o's-com plem ent arithmetic (see Sec. 7.5.3).

O f particular interest is the analysis o f round-off errors in the com putation  
of the D F T  via the FFT algorithm. H ow ever, we shall first establish a benchmark  
by determ ining the round-off errors in the direct com putation o f  the DFT.

6.4.1 Quantization Errors in the Direct Computation of 
the DFT

G iven a finite-duration sequence (jt(n)], 0 < n < N  — 1, the D F T  o f {jc(h)1 is 
defined as

A/-1

* (* )  =  Y l x ( n ) w " '  £ =  0 ,1 ........ N - 1  (6.4.1)
j,=0

where IVyv =  c~)2r,/N. We assume that in general, {*(«)] is a com plex-valued se­
quence. We also assume that the real and imaginary com ponents o f {a (h)I and 
{VV̂ "] are represented by b bits. Consequently, the com putation o f  the product 

requires four real m ultiplications. Each real m ultiplication is rounded  
from 2b bits to  b bits, and hence there are four quantization errors for each 
com plex-valued multiplication.

In the direct com putation o f the D FT , there are N  com plex-valued m ultiplica­
tions for each point in the DFT. Therefore, the total number o f real m ultiplications 
in the com putation of a single point in the D FT  is 4 N.  C onsequently, there are 
4 N  quantization errors.

Let us evaluate the variance o f the quantization errors in a fixed-point com ­
putation of the DFT. First, we make the follow ing assum ptions about the statistical 
properties o f the quantization errors.

1. The quantization errors due to rounding are uniformly distributed random  
variables in the range (—A /2 , A /2 )  where A =  2~b.

2. The 4 N  quantization errors are mutually uncorrelated.
3. The 4 N  quantization errors are uncorrelated with the sequence |jc{«}}.

Since each o f  the quantization errors has a variance

A 2 7~2b

" ' = 1 2 = 1 2 <6A2> 
the variance o f the quantization errors from  the 4 N  m ultiplications is

<r2 =  4 N o ]

(6A3)
3

H en ce the variance o f  the quantization error is proportional to  the size o f  DFT. 
N ote that when Af is a pow er o f 2 (i.e., N  =  21’), the variance can be expressed
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2—2(h—1*/2»
a]  =  ------------- (6.4.4)

This expression im plies that every fourfold increase in the size N  o f the D FT  
requires an additional bit in com putational precision to offset the additional quan­
tization errors.

T o prevent overflow, the input sequence to the D F T  requires scaling. Clearly, 
an upper bound on | X (A:) | is

A ' - l

[*(£)! < Y  |*(n)| (6.4.5)
n=0

If the dynamic range in addition is ( - 1 ,1 ) ,  then |X (/:)| <  1 requires that
A '-l
Y  |jr(/i)| <  1 (6.4.6)
n = 0

If U (/i)| is initially scaled such that |a (/j)| < 1 for all n, then each point in the 
sequence can be divided by N  to ensure that (6.4.6) is satisfied.

T he scaling implied by (6.4.6) is extrem ely severe. For exam ple, suppose  
that the signal sequence {*(«)} is white and. after scaling, each value |.r(n)l o f the 
sequence is uniformly distributed in the range (-1 /7V , I/ N ) .  Then the variance of 
the signal sequence is

2 <2 /* > 2 1 t z A - no , = ----------  =  — - (6.4.7)
12 3N1 >

and the variance o f the output DFT coefficients |Jf(/t)l is

a l  =  N a 2

1

~  3 ~N
Thus the signal-to-noise power ratio is

W e observe that the scaling is responsible for reducing the SN R  by N  and 
the com bination o f scaling and quantization errors result in a total reduction that 
is proportional to  N 2. H ence scaling the input sequence (j(n )}  to  satisfy (6.4.6) 
im poses a severe penalty on the signal-to-noise ratio in the D FT.

Example 6.4.1

Use (6.4.9) to determine the number of bits required to compute the DFT of a 1024- 
point sequence with a SNR of 30 dB.

Solution The size of the sequence is N  = 210. Hence the SNR is

(6.4.8)

(6.4.9)
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For an SNR of 30 dB, we have

3(2* -  20) =  30

b =  15 bits

N ote that the 15 bits is the precision for both multiplication and addition.

Instead o f scaling the input sequence {Jt(n)}, suppose w e sim ply require that 
|x(n)l <  1. T hen w e m ust provide a sufficiently large dynamic range for addition  
such that |* (* ) l  <  N .  In such a case, the variance o f the sequence {|jc(n)|) is 
a 2 =  5 , and hence the variance o f |X (*)| is

If we repeat the com putation in Example 6.4,1, we find that the number of 
bits required to achieve a SN R  of 30 dB is b =  5 bits. H ow ever, w e need an 
additional 1 0  bits for the accum ulator (the adder) to accom m odate the increase 
in the dynamic range for addition. A lthough we did not achieve any reduction  
in the dynamic range for addition, we have managed to reduce the precision in 
m ultiplication from 15 bits to 5 bits, which is highly significant.

6.4.2 Quantization Errors in FFT Algorithms

A s w e have show n, the FFT algorithms require significantly few er m ultiplications 
than the direct com putation o f the DFT. In view o f this we might conclude that the 
com putation o f the D F T  via an FFT algorithm will result in sm aller quantization  
errors. U nfortunately, that is not the case, as we will dem onstrate.

L et us consider the use o f fixed-point arithmetic in the com putation o f a 
radix-2 FFT algorithm. T o be specific, w e select the radix-2, decim ation-in-tim e 
algorithm  illustrated in Fig. 6.20 for the case N  =  S. The results on quantiza­
tion errors that w e obtain for this radix-2 FFT algorithm are typical o f  the results 
obtained with other radix - 2  and higher radix algorithms.

W e observe that each butterfly com putation involves one com plex-valued  
m ultiplication or, equivalently, four real m ultiplications. W e ignore the fact that 
som e butterflies contain a trivial multiplication by ± 1 . If w e consider the but­
terflies that affect the com putation o f  any one value o f  the D FT , we find that, 
in general, there are N  /2  in the first stage of the FFT, N / 4  in the second stage, 
N / 8  in the third state, and so  on, until the last stage, where there is on ly one. 
C onsequently, the num ber o f  butterflies per output point is

(6.4.10)

C onsequently, the SN R  is

(6.4.11)

2 " - '+ 2 " -2 +  --- +  2 + l  =  2v“ ‘ [ l + ( ! )  +  ■ • +  ( j ) ” ']  

=  2”[ l - ( j n  =  W - l
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Stage 1 Stage 2 Stage 3

For exam ple, the butterflies that affect the com putation o f A"(3) in the eight-point 
FFT algorithm of Fig. 6.20 are illustrated in Fig. 6.21.

The quantization errors introduced in each butterfly propagate to the output. 
N ote that the quantization errors introduced in the first stage propagate through 
(v -  1 ) stages, those introduced in the second stage propagate through (v -  2 ) 
stages, and so on. A s these quantization errors propagate through a number of 
subsequent stages, they are phase shifted (phase rotated) by the phase factors 
W^n. T hese phase rotations do not change the statistical properties o f the quan­
tization errors and, in particular, the variance o f each quantization error remains 
invariant.

If w e assume that the quantization errors in each butterfly are uncorrelated 
with the errors in other butterflies, then there are 4(W -  1 ) errors that affect the 
output o f  each point o f the FFT. C onsequently, the variance o f  the total quanti­
zation error at the output is

A  2 A  2
f f | =  4 (A r- ! ) — « —  (6.4.13)
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Figure 6.21 Butterflies that affect the computation o f X  (3).

where A  =  2 h. H ence

a 2 =  j  ■ 2"“  (6.4.14)

This is exactly the sam e result that we obtained for the direct com putation o f the 
DFT.

The result in (6.4.14) should not be surprising. In fact, the FFT algorithm  
d oes not reduce the number o f  m ultiplications required to com pute a single point 
o f  the D FT . It does, how ever, exploit the periodicities in W^n and thus reduces 
the num ber o f m ultiplications in the com putation o f  the entire block o f  N  points 
in the D FT.

A s in the case o f the direct com putation o f the D FT , we m ust scale the 
input sequence to prevent overflow. R ecall that if |jc(n) | <  \ / N , 0 < n <  N  —
1, then |X (*)| <  1 for 0 <  k < N  — 1. Thus overflow is avoided. W ith this 
scaling, the relations in (6.4.7), (6.4.8), and (6.4.9), obtained previously for the 
direct com putation o f  the D F T , apply to the FFT algorithm  as well. C onsequently, 
the sam e SN R  is obtained for the FFT.

Since the FFT algorithm consists o f  a sequence o f  stages, w here each stage 
contains butterflies that involve pairs o f  points, it is possible to  devise a differ­
ent scaling strategy that is not as severe as dividing each input point by N .  This
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alternative scaling strategy is m otivated by the observation that the interm edi­
ate values [Xn(/r)| in the n =  1, 2,..., u stages o f the FFT algorithm  satisfy the 
conditions (see Problem  6.35)

m ax[|X n+1 ( * )U X n+1(/)|] > m ax[|X n(* )U X B(0 |]
(6.4.15)

m ax[|X n+1 (* ) |, |X B+1(/)|] <  2 m ax[jX„(Jt)|,|Xn(/)|]

In view of these relations, we can distribute the total scaling o f 1 /N  into each  
of the stages o f the FFT algorithm. In particular, if |jr(n)| <  1, w e apply a scale 
factor o f 5  in the first stage so that |jr(n)| <  Then the output o f  each subsequent 
stage in the FFT algorithm  is scaled by | ,  so  that after v stages we have achieved  
an overall scale factor o f ( j ) 1' =  1 //V. Thus overflow in the com putation o f the 
D F T  is avoided.

This scaling procedure does not affect the signal level at the output o f  the 
FFT algorithm, but it significantly reduces the variance o f the quantization errors 
at the output. Specifically, each factor o f  ̂ reduces the variance o f  a quantization  
error term by a factor o f Thus the 4 (N/ 2 )  quantization errors introduced in 
the first stage are reduced in variance by (^V -1 , the 4 ( N/ 4 )  quantization errors 
introduced in the second stage are reduced in variance by ( j ) 1’-2 . and so on. Con­
sequently, the total variance o f the quantization errors at the output o f the FFT  
algorithm is

where the factor (^ )tJ is negligible.
W e now observe that (6.4.16) is no longer proportional to  N .  On the other 

hand, the signal has the variance a \  =  1 /3 N ,  as given in (6.4.8). H en ce the SN R  is

f l  = _ L . 2 ^
2 N  (6.4.17)

_ 22b—v—\

Thus, by distributing the scaling of l / N  uniformly throughout the FFT algorithm, 
we have achieved an SN R  that is inversely proportional to  N  instead o f N 2.

Example 6.4.2

Determine the number of bits required to compute an FFT of 1024 points with an 
SNR of 30 dB when the scaling is distributed as described above.



Solution The size of the FFT is N  = 210. Hence the SNR according to (6.4.17) is 

101°gio 22h~v~l =  30 

3(2b -  11) =  30

b =  bits)

This can be compared with the 15 bits required if all the scaling is performed in the 
first stage of the FFT algorithm.
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6.5 SUMMARY AND REFERENCES

The focus o f this chapter was on the efficient com putation o f the DFT. W e dem on­
strated that by taking advantage of the symmetry and periodicity properties o f  the 
exponential factors W#", we can reduce the number o f com plex m ultiplications 
needed  to com pute the D F T  from N 2 to  N  log2 N  when Af is a pow er o f 2. A s we 
indicated, any sequence can be augm ented with zeros, such that N  — 2''.

For decades, FFT-type algorithms were o f interest to  m athem aticians who  
were concerned with com puting values o f Fourier series by hand. H ow ever, it 
was not until C ooley  and Tukey (1965) published their well-know n paper that the 
impact and significance o f the efficient com putation of the D F T  was recognized. 
Since then the C oo ley -T u k ey  FFT algorithm  and its various forms, for exam ple, 
the algorithm s o f Singleton (1967, 1969), have had a trem endous influence on the 
use o f  the D F T  in convolution, correlation, and spectrum analysis. For a historical 
perspective on the FFT algorithm , the reader is referred to the paper by Cooley  
et al. (1967).

T he split-radix FFT (SR FFT) algorithm  described in Section 9.3.5 is due 
to  D uham el and H ollm ann (1984 ,1986). The “mirror” FFT  (M FFT) and “phase” 
FFT (PFFT) algorithm s w ere described to the authors by R. Price. The exploitation  
o f sym m etry properties in the data to  reduce the com putation time are described 
in a paper by Swarztrauber (1986).

O ver the years, a num ber o f tutorial papers have been  published on FFT  
algorithm s. W e cite the early papers by Brigham and M orrow (1967), Cochran et 
al. (1967), Bergland (1969), and C ooley et al. (1967, 1969).

T he recognition that the D FT  can be arranged and com puted as a linear 
convolution is also highly significant. G oertzel (1968) indicated that the D FT  
can be com puted via linear filtering, although the com putational savings o f this 
approach is rather m odest, as we have observed. M ore significant is the work 
o f B luestein  (1970), who dem onstrated that the com putation o f the D F T  can be 
form ulated as a chirp linear filtering operation. This work led  to the developm ent 
o f  the chirp-z transform algorithm  by R abiner et al. (1969).

In addition to the FFT algorithm s described in this chapter, there are other  
efficient algorithm s for com puting the D FT, som e o f which further reduce the
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num ber of m ultiplications, but usually require m ore additions. O f particular im­
portance is an algorithm  due to R ader and Brenner (1976), the class o f prime factor 
algorithms, such as the G ood algorithm (1971), and the W inograd algorithm (1976, 
1978). For a description of these and related algorithm s, the reader may refer to  
the text by Blahut (1985).

P R O B L E M S

6.1 Show that each of the numbers

eja*/NH o < /t < W -  1

corresponds to an Wth root of unity. Plot these numbers as phasors in the complex 
plane and illustrate, by means of this figure, the orthogonality property

- j a i r / N M n  _  |  N,  if k ~  1
I 0, if k ^ ln=<) I 1

6.2 (a) Show that the phase factors can be computed recursively by

W$  =

(b) Perform this computation once using single-precision floating-point arithmetic 
and once using oniy four significant digits. Note the deterioration due to the 
accumulation of round-off errors in the later case.

(c) Show how the results in part (b) can be improved by resetting the result to the 
correct value -  j .  each time gl =  N/4.

6 3  Let x(n) be a real-valued N -point (N  =  2' ) sequence. Develop a method to compute 
an N -point DFT X ’(k), which contains only the odd harmonics [i.e., X'(k) =  0 if Jt is 
even] by using only a real A,/2-spoint DFT.

6.4 A designer has available a number of eight-point FFT chips. Show explicitly how he 
should interconnect three such chips in order to compute a 24-point DFT.

6.5 The ^-transform of the sequence x(n) = u(n) -  u(n -  7) is sampled at five points on 
the unit circle as follows

x(k) = X(z)  1- =  eJ'2jr*/5 J t *  0 ,1 ,2 ,3 ,4

Determine the inverse DFT x'(n) of X (Jt). Compare it with *(/t) and explain the 
results.

6.6 Consider a finite-duration sequence x(n),  0 < n < 7, with z-transform X(z).  We wish 
to compute X (:) at the following set of values:

zk =  0.8ejf|(2)r*/*,+(’' /8)] 0 < Jfc < 7

(a) Sketch the points {z*} in the complex plane.
( b )  Determine a sequence s ( n )  such that its D FT provides the desired samples of

*(z).
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6.7 Derive the radix-2 decimation-in-time FFT algorithm given by (6.1.26) and (6.1.27) 
as a special case of the more general algorithmic procedure given by (6.1.16) through 
(6.1.18).

6.8 Compute the eight-point DFT of the sequence

1. 0 < n < 7
X^  I 0, otherwise 

by using the decimation-in-frequency FFT algorithm described in the text.
6.9 Derive the signal flow graph for the N = 16 point, radix-4 decimation-in-time FFT 

algorithm in which the input sequence is in normal order and the computations are 
done in place.

6.10 Derive the signal flow graph for the N  =  16 point, radix-4 decimation-in-frequency 
FFT algorithm in which the input sequence is in digit-reversed order and the output 
DFT is in normal order.

6.11 Compute the eight-point DFT of the sequence

x { n )  =  U .  i  1 , 0 .  0 , 0 . 0  
1 2 2 2 2

using the in-placc radix-2 dccimation-in-time and radix-2 decimation-in-frequency al­
gorithms. Follow exactly the corresponding signal flow graphs and keep track of all 
the intermediate quantities by putting them on the diagrams,

6.12 Compute the 16-point DFT of the sequence

x(n)  =  cos 0 < n < 15

using the radix-4 decimation-in-time algorithm.
6.13 Consider the eight-point decimation-in-time (DIT) flow graph in Fig. 6.6.

(a) What is the gain of the “signal path” that goes from x(7) to X(2)7
(b) How many paths lead from the input to a given output sample? Is this true for 

every output sample?
(c )  Compute X (3) using the operations dictated by this flow graph.

6.14 Draw the flow graph for the decimation-in-frequency (DIF) SRFFT algorithm for 
N  =  16. What is the number of nontrivial multiplications?

6.15 Derive the algorithm and draw the N = 8 flow graph for the D IT  SRFFT algorithm. 
Compare your flow graph with the D IF radix-2 FFT flow graph shown in Fig. 6.11.

6.16 Show that the product of two complex numbers (a + j b ) and ( C + j d )  can be performed 
with three real multiplications and five additions using the algorithm

x R =  ( a  -  b ) d  +  (c -  d ) a

x i  =  ( a  -  b ) d  +  (c +  d ) b

where

X  =  x R +  j x ,  =  (a +  j b ) ( c  +  j d )

6.17 Explain how the DFT can be used to compute N  equispaced samples of the z- 
transform, of an iV-point sequence, on a circle of radius r.
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6.18 A real-valued A/-point sequence Jt(n) is called DFT bandlimited if its DFT X(k) = 0 
for ko < k < N  — An. We insert (L — 1)N zeros in the middle of A'(Jt) to obtain the 
following L N -point DFT

X(k),  0 < i  < Ao — 1
X'(k) = { 0, Jt0 < Jk < LN -  kt,

X(k +  N -  LN) .  LN  - J t „ +  1 < Jt < L N  — 1
Show that

where

Lx'(Ln) = x(n) 0 < n < N  — 1

x \ n )  X (k)
L N

Explain the meaning of this type of processing bv working out an example with N = 4, 
L =  1.  and A ( J t )  =  { 1 , 0 . 0 . 1 ) .

6.19 Let X(k) be the A'-point DFT of the sequence .v(n). 0  < n < A’ -  1. What is the 
A-point DFT of the sequence s(n) = X(n).  0  < n < N -  1?

6.20 Let X(k) be the A-point DFT of the sequence \(n), (I < » < N — 1. We define a 
2 N -point sequence _v(«) as

V{;I) 1 - v ^ V  ««--vcn
n odd

Express the 2 Appoint DFT of y(n) in terms of X(k).
6.21 (a) Determine the ^-transform W (-) of the Hanning window w («) =  (1 -  cos f l .

(b) Determine a formula to compute the JV-point DFT X„(k) of ihe signal .r„.(n) =
w(n)x(n)< 0 < n < N — 1. from the JV-point DFT A'(A ) of the signal .r(n).

6.22 Create a DFT coefficient table that uses only N/4 memory locations to store the first 
quadrant of the sine sequence (assume N  even).

6.23 Determine the computational burden of the algorithm given by (6.2.12) and compare 
it with the computational burden required in the 2N -point DFT of g(n). Assume that 
the FFT algorithm is a radix-2 algorithm.

6.24 Consider an IIR  system described by the difference equation
S ' M

v(n) =  -  ^ ai-v<n ~  +  y , b k x ( n  -  k)
*= 1

Describe a procedure that computes the frequency response H  Jt =  0, 1........

A ' - l  using the FFT algorithm (N  =  2‘).
6.25 Develop a radix-3 decimation-in-time FFT algorithm for N  =  3’ and draw the corre­

sponding flow graph for N  = 9. What is the number of required complex multiplica­
tions? Can the operations be performed in place?

6.26 Repeat Problem 6.25 for the D IF case.
6.27 FFT input and output pruning In many applications we wish to compute only a few 

points M of the Appoint DFT of a finite-duration sequence of length L (i.e., M «  N  
and I  < <  N).
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(a) Draw the flow graph of the radix-2 D IF FFT algorithm for N = 16 and eliminate 
[i.e., prune] all signal paths that originate from zero inputs assuming that only 
jc(0) and jc(1) are nonzero.

(b) Repeat part (a) for the radix-2 DIT algorithm.
(c) Which algorithm is better if we wish to compute all points of the DFT? What 

happens if we want to compute only the points X  (0), X (l), X (2), and X (3)? 
Establish a rule to choose between DIT and DIF pruning depending on the 
values of M and L.

(d) Give an estimate of saving in computations in terms of M, L,  and N.
6.28 Parallel computation o f  the DFT  Suppose that we wish to compute an N  =  2P2V 

point DFT using 2P digital signal processors (DSPs). For simplicity we assume that 
p =  v =  2. In this case each DSP carries out all the computations that are necessary 
to compute 2V DFT points.
(a) Using the radix-2 D IF flow graph, show that to avoid data shuffling, the entire 

sequence x(n)  should be loaded to the memory of each DSP.
(b) Identify and redraw the portion of the flow graph that is executed by the DSP 

that computes the DFT samples X(2),  X(10), X(6), and X(14).
(c) Show that, if we use M =  2'' DSPs, the computation speed-up S is given by

log-, N
S =  M

log2 N -  log, M +  2(M -  1)

6.29 Develop an inverse radix-2 DIT FFT algorithm starting with the definition. Draw the 
flow graph for compulation and comparc with the corresponding flow graph for the 
direct FFT. Can the IFFT flow graph be obtained from the one for the direct FFT?

6.30 Repeat Problem 6.29 for the DIF case.
6.31 Show that an FFT on data with Hermitian symmetry can be derived by reversing the 

flow graph of an FFT for real data.
6.32 Determine the syslem function H(z)  and the difference equation for the system that 

uses the Goertzel algorithm to compute ihe DFT value X(N -  k).
6.33 (a) Suppose that x(n)  is a finite-duration sequence of N = 1024 points. It is desired

to evaluate the z-transform X  (;) of the sequence at the points

Zk = eiQ **™ * k =  0. 100,200......1000

by using the most efficient method or algorithm possible. Describe an algorithm 
for performing this computation efficiently. Explain how you arrived at your 
answer by giving the various options or algorithms that can be used.

(b) Repeat part (a) if X  (z) is to be evaluated at

zt =  2(0.9) V '1(2,r/5000*+’r/21 k = 0 ,1 ,2 ........999

634  Repeat the analysis for the variance of the quantization error, carried out in Sec­
tion 6.4.2, for the decimation-in-frequency radix-2 FFT algorithm.

635  The basic butterfly in the radix-2 decimation-in-time FFT algorithm is

*„+,<*) =  Xn(* )+  W”X„(l)



(a) If we require that !X„(Jt)| < j  and |Jf„(/)| < 5, show that

|Re[X„+,(*)]| < 1, |/te[Xn+1(/)]| < 1 

| I m [ X „ + 1 (*)]l <  1, | / m [ A B + 1 (/)]| <  1

Thus overflow does not occur.
(b) Prove that

max[|X,,+i(A)|. |X„+i(/)|] > max[|Xn(*)l.l*,,(/)|]

max[|X„+1(*)UX,,+1(/)|] < 2m ax[|X „(*)|.|*n(/)l]

636* Computation o f  the DFT  Use an FFT subroutine to compute the following DFTs 
and plot the magnitudes |X(Jt)| of the DFTs.
(a) The 64-point DFT of the sequence

, , [1 , n =  0 ,1 ........15 (Ni ~  16)x(n) =  I
10, otherwise

(b) The 64-point DFT of the sequence

1, n =  0 ,1 ........... 7 (N\ =  8)
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10, otherwise

(c) The 128-point DFT of the sequence in part (a).
(d) The 64-point DFT of the sequence

| 10f  >'*/*>", „ =  0 ,1 ........63 (Ni =  64)x (n) — {
J 0. otherwise

Answer the following questions.
(1) What is the frequency interval between successive samples for the plots in 

parts (a), (b). (c), and (d)?
(2) What is the value of the spectrum at zero frequency (dc value) obtained 

from the plots in parts (a), (b), (c), (d)?
From the formula

X(k) = Y ^ x (n )e '

compute the theoretical values for the dc value and check these with the 
computer results.

(3) In plots (a), (b), and (c), what is the frequency interval between successive 
nulls in the spectrum? What is the relationship between N 1 of the sequence 
x(n ) and the frequency interval between successive nulls?

(4) Explain the difference between the plots obtained from parts (a) and (c).
637* Identification o f  pole positions in a system Consider the system described by the

difference equation

y(n) =  —r2y(n — 2) +  x(n)

(a) Let r =  0.9 and x(n) =  &(n). G enerate the output sequence y(n) for 0 < n < 127.
Compute the N  =  128 point DFT [I 'M ) and plot {|y(Jt)t).



(b) Compute the N  =  128 point DFT of the sequence

ui(n) =  (0.92)- " v(n)

where y(/t) is the sequence generated in part (a). Plot the DFT values | W (t)|. 
What can you conclude from the plots in parts (a) and (b)?

(c) Let r =  0.5 and repeat part (a).
(d) Repeat part (b) for the sequence

ui(n) =  (0.55)~nv(n)

where y(n) is the sequence generated in part (c). What can you conclude from 
the plots in parts (c) and (d)?

(e) Now let the sequence generated in part (c) be corrupted by a sequence of “mea­
surem ent" noise which is Gaussian with zero mean and variance a 2 = 0.1. Repeat 
parts (c) and (d) for the noise-corrupted signal.
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Implementation of 
Discrete-Time Systems

The focus of this chapter is on the realization o f  linear tim e-invariant discrete­
time systems in either software or hardware. A s we noted in C hapter 2, there are 
various configurations or structures for the realization of any FIR and IIR discrete­
time system. In Chapter 2 we described the sim plest o f these structures, namely, 
the direct-form realizations. H owever, there are other more practical structures 
that offer som e distinct advantages, especially when quantization effects are taken 
into consideration.

O f particular im portance are the cascade, parallel, and lattice structures, 
which exhibit robustness in finite-word-length im plem entations. A lso  described  
in this chapter is the frequency-sampling realization for an FIR  system, which 
often has the advantage o f being com putationally efficient w hen com pared with 
alternative FIR realizations. Other important filter structures are obtained by 
em ploying a state-space formulation for linear time-invariant system s. An analysis 
o f system s characterized by the state-variable form is presented in both the time 
and frequency domains.

In addition to  describing the various structures for the realization o f discrete­
time system s, we also treat problem s associated with quantization effects in the 
im plem entation o f digital filters using finite-precision arithm etic. This treatment 
includes the effects on the filter frequency response characteristics resulting from  
coefficient quantization and the round-off noise effects inherent in the digital im­
plem entation o f  discrete-tim e systems.

Let us consider the important class o f linear time-invariant discrete-tim e systems 
characterized by the general linear constant-coefficient difference equation

7.1 STRUCTURES FOR THE REALIZATION OF DISCRETE-TIME 
SYSTEMS

N M
(7.1.1)

500
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A s w e have shown by m eans o f the z-transform, such a class o f  linear time-invariant 
discrete-tim e system s are also characterized by the rational system  function

M

which is a ratio o f tw o polynom ials in z -1 . From the latter characterization, we 
obtain the zeros and poles o f the system  function, which depend on the choice o f 
the system  param eters {£>*} and {a*} and which determ ine the frequency response 
characteristics o f the system.

Our focus in this chapter is on the various m ethods o f im plem enting (7.1.1) 
or (7.1.2) in either hardware, or in software on a program mable digital com puter. 
W e shall show  that (7.1.1) or (7.1.2) can be im plem ented in a variety o f ways 
depending on the form in which these tw o characterizations are arranged.

In general, we can view  (7.1.1) as a com putational procedure (an algorithm) 
for determ ining the output sequence v(/t) o f the system from the input sequence  
x(n) .  H ow ever, in various ways, the com putations in (7.1.1) can be arranged into 
equivalent sets o f difference equations. Each set o f equations defines a com pu­
tational procedure or an algorithm for im plem enting the system. From each set 
o f  equations we can construct a block diagram consisting o f  an interconnection o f  
delay elem ents, m ultipliers, and adders. In Section 2.5 we referred to such a block 
diagram as a realization  o f the system  or, equivalently, as a structure  for realizing 
the system .

If the system  is to be im plem ented in software, the block diagram or, equiv­
alently, the set o f equations that are obtained by rearranging (7.1.1), can be con­
verted into a program that runs on a digital com puter. A lternatively, the structure 
in block diagram form im plies a hardware configuration for im plem enting the 
system.

Perhaps, the one issue that may not be clear to the reader at this point 
is why w e are considering any rearrangements o f (7.1.1) or (7.1.2). Why not 
just im plem ent (7.1.1) or (7.1.2) directly without any rearrangement? If either
(7.1.1) or (7.1.2) is rearranged in som e manner, what are the benefits gained in the  
corresponding im plem entation?

T hese are the im portant questions which are answered in this chapter. A t  
this point in our developm ent, we sim ply state that the major factors that influ­
ence our choice o f a specific realization are com putational com plexity, m emory  
requirem ents, and finite-word-length effects in the com putations.

C om puta t iona l  com plexity  refers to  the number o f arithmetic operations (m ul­
tiplications, divisions, and additions) required to  com pute an output value y(n)  for 
the system . In the past, these w ere the only item s used to m easure com putational 
com plexity. H ow ever, with recent developm ents in the design and fabrication of  
rather sophisticated program m able digital signal processing chips, other factors,

H (z)  = (7.1.2)
N
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such as the number of times a fetch from m emory is perform ed or the number of 
times a com parison betw een tw o numbers is perform ed per output sample, have 
becom e important in assessing the com putational com plexity o f  a given realization 
o f a system.

M em o ry  requirements  refers to the number o f  memory locations required 
to  store the system  parameters, past inputs, past outputs, and any intermediate 
com puted values.

Finite-word-length effects or finite-precision effects refer to the quantization 
effects that are inherent in any digital im plem entation o f the system, either in 
hardware or in software. The param eters o f the system  must necessarily be repre­
sented with finite precision. The com putations that are perform ed in the process 
of com puting an output from the system  must be rounded- off or truncated to fit 
within the limited precision constraints o f the com puter or the hardware used in 
the im plem entation. W hether the com putations are perform ed in fixed-point or 
floating-point arithmetic is another consideration. A ll these problem s are usually 
called finite-word-length effects and are extrem ely important in influencing our 
choice o f  a system realization. W e shall see that different structures o f a system, 
which are equivalent for infinite precision, exhibit different behavior when finite- 
precision arithmetic is used in the im plem entation. Therefore, it is very important 
in practice to select a realization that is not very sensitive to  finite-word-length 
effects.

A lthough these three factors are the major on es in influencing our choice o f 
the realization of a system o f the type described by either (7.1.1) or (7.1.2), other 
factors, such as whether the structure or the realization lends itself to parallel 
processing, or whether the com putations can be pipelined, may play a role in 
our selection of the specific im plem entation. These additional factors are usually 
important in the realization o f m ore com plex digital signal processing algorithms.

In our discussion of alternative realizations, w e concentrate on the three 
m ajor factors just outlined. O ccasionally, w e will include som e additional factors 
that may be important in som e im plem entations.

7.2 STRUCTURES FOR FIR SYSTEMS

In general, an FIR  system is described by the difference equation

Af-1

y(n) =  bkx (n ~  k)  (7.2.1)
*=0

or, equivalently, by the system  function

A f-1

H{z)=*YibkZ~k {122)
*=o

Furthermore, the unit sample response of the FIR system is identical to the coef-
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ficients {£>*}, that is,

, ,  , \b„,  0 < n < Af — 1 ,7 , , ,
'K’,) =  |o .  otherwise <7-2 '3>

The length o f  the FIR filter is selected as M  to  conform  with the established  
notation in the technical literature.

W e shall present several m ethods for im plem enting an FIR  system , begin­
ning with the sim plest structure, called the direct form. A  second structure is 
the cascade-form  realization. The third structure that we shall describe is the 
frequency-sam pling realization. Finally, w e present a lattice realization o f an FIR  
system . In this discussion we follow  the convention often used in the technical 
literature, which is to use for the parameters o f an FIR  system.

In addition to the four realizations indicated above, an FIR system  can be 
realized by m eans o f the D FT , as described in Section 6.2. From one point o f view, 
the D F T  can be considered as a com putational procedure rather than a structure 
for an FIR  system . H ow ever, when the com putational procedure is im plem ented  
in hardware, there is a corresponding structure for the FIR system . In practice, 
hardware im plem entations o f the D F T  are based on the use o f the fast Fourier 
transform (FFT) algorithms described in Chapter 6 .

7.2.1 Direct-Form Structure

The direct-form  realization follow s im m ediately from the nonrecursive difference 
equation given by (7.2.1) or, equivalently, by the convolution sum m ation

M- 1
y(n)  =  ^  h(k)x (n  -  k) (7.2.4)

t=o

The structure is illustrated in Fig. 7.1.
W e observe that this structure requires Af — 1 m em ory locations for stor­

ing the Af — 1 previous inputs, and has a com plexity o f Af m ultiplications and 
M  — 1 additions per output point. Since the output consists o f  a w eighted linear 
com bination o f  Af — 1 past values o f the input and the w eighted  current value o f  
the input, the structure in Fig. 7.1, resem bles a tapped delay line or a transversal

Figwre 7.1 Direct-form realization of FIR system.
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Figure 7.2 Direct-form realization of linear-phase FIR system (Af odd).

system. C onsequently, the direct-form realization is often called  a transversal or 
tapped-delay-line filter.

W hen the FIR  system has linear phase, as described in Section 8.2, the unit 
sam ple response o f the system satisfies either the sym m etry or asym m etry condition

h(n) = ± h ( M  -  1 -  n) (7.2.5)

For such a system  the number o f m ultiplications is reduced from  M  to M f l  for Af 
even and to (Af — l ) /2  for M  odd. For exam ple, the structure that takes advantage 
o f this symmetry is illustrated in Fig. 7.2 for the case in which M  is odd.

7.2.2 Cascade-Form Structures

The cascade realization follow s naturally from the system  function given by (7.2.2). 
It is a sim ple m atter to factor H( z)  into second-order FIR  system s so that

K

fl(z) =  [] f l* (z )  0-2.6)
*=i

where

Hk (z) =  bk0 +  bk]Z~l +  bk2z~2 * =  1 ,2 .........K  (7.2.7)

and K  is the integer part o f (M  +  l ) /2 . The filter param eter bo m ay be equally 
distributed am ong the K  filter sections, such that bo =  biobw ■ • ■ b Ka or it may be 
assigned to a single filter section. The zeros o f H (z )  are grouped in pairs to pro­
duce the second-order FIR system s o f the form (7.2.7). It is always desirable to 
form pairs o f com plex-conjugate roots so  that the coeffic ients \bki} in (7.2.7) are 
real valued. O n the other hand, real-valued roots can be paired in any arbitrary 
m anner. The cascade-form  realization along with the basic second-order section  
are shown in Fig, 7.3.
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H](z)
>'[(") =

H2(z)
>'2<n) =

*2<” ) jr,(n)
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Vjr(n) = ,Y(n)

(a)

Figure 7.3 Cascade realization of an FIR system.

In the case o f linear-phase FIR filters, the symmetry in h(n)  im plies that the 
zeros o f H (z)  a lso exhibit a form o f symmetry. In particular, if Zk and z*k are a pair 
of com plex-conjugate zeros then 1 f z t  and 1 / z \  are also a pair o f  com plex-conjugate  
zeros (see Sec. 8.2). C onsequently, we gain som e sim plification by forming fourth- 
order sections o f  the FIR system  as follow s

Hk(z) =  c«,( l  - z / t z - ’ Kl - c ^ ' K l  - z ~ l / z k )(\  - z - ' / z V ,

=  Q o  +  Q - l t " 1 +  Ck2Z~"  +  Q t Z - ’’ +  Z ~ A
(7.2.8)

where the coefficients {ct i } and (c^f are functions o f  zt- Thus, by com bining  
the two pairs o f  poles to form a fourth-order filter section, we have reduced the 
num ber of m ultiplications from six to three (i.e., by a factor o f  50% ). Figure 7.4 
illustrates the basic fourth-order FIR filter structure.

Figure TA Fourth-order section in a
cascade realization o f an FIR system.



7.2.3 Frequency-Sampling Structures*

The frequency-sam pling realization is an alternative structure for an FIR filter 
in which the parameters that characterize the filter are the values o f the desired 
frequency response instead o f the im pulse response h(n).  T o derive the frequency- 
sampling structure, we specify the desired frequency response at a set o f equally  
spaced frequencies, namely

2tt M  -  1
cot =  —  (.k + a)  A: =  0 , 1 , . . . , — - —  M  odd  

M  2
M

A: =  0, 1 , . . . , -------1 M  even
2

a  =  0  or j

and solve for the unit sam ple response h(n)  from these equally spaced frequency 
specifications. Thus we can write the frequency response as

M- 1
h(n)e~ jum

n —0

and the values o f  H(a>) at frequencies a>t =  (2 n /M ) { k  + a )  are simply 

H (k  + a )  = H  +  cr)^

(7.2.9)
=  £  h (n )e -j2*lk+aWM k _  0< 1____ A/ -  1

The set o f values { //(£ -(-a)} are called the frequency sam ples o f  H(a)). In the case 
where a  =  0, j//(Jt)} corresponds to the M -point D F T  o f (A(n)}.

It is a sim ple m atter to invert (7.2.9) and express h(n)  in terms o f the fre­
quency samples. The result is
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i M- 1
h(n) =  —  J '  H (k  +  a )e j2*(i+a)n/M n =  0, 1 , . . . ,  M  -  1 (7.2.10)

W hen a =  0, (7.2.10) is simply the ID FT  o f {//(&)}. N ow  if we use (7.2.10) to 
substitute for h(n)  in the z-transform H (z ) ,  we have 

u-\

H ( z )  =  £ > ( " ) ; ■ "
n=0

(7.2.11)
M- 1

-L
■i u - 1

—  Y \  H (k  + a ) e j2* il'H' )"/"  
M

filters.

*=0

^The reader may also refer to Section 8.2.3 for additional discussion o f frequency-sampling FIR
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By interchanging the order o f the tw o sum m ations in (7.2.11) and performing  
the sum m ation over the index n we obtain

H ( z )  =  ^ H ( k  +  a )
I M -1

^  ̂ ej2n(i+a)/M „ - \ y

} -  Z- Mej2na y l  H ( k  +  a)
M  2 . 1  _  e j2 n ik + a ) /M z - 1

(7.2.12)

Thus the system  function H (z)  is characterized by the set o f frequency sam ples 
(W(Jt-t-cr)j instead o f {h(«)).

W e view  this FIR filter realization as a cascade of tw o filters [i.e., H{z)  =  
/ / i ( z ) / / 2 (s)]- O ne is an all-zero filter, or a com b filter, with system  function

H x(z) =  — (1 - r wf y2l“ ) (7.2.13)
M

Its zeros are located at equally spaced points on the unit circle at

Zt =  jt =  0 ,1 .........A f - 1

The second filter with system  function

Af — 1

H liz )  — 2 ^  -J _  j2n(t+a)/M (7.2.1 )
Jt=0 *■

consists o f  a parallel bank o f  single-pole filters with resonant frequencies 

Pl =  e}2* ik+ayM k =  0 , l .........M  -  1

N ote that the pole locations are identical to  the zero locations and that both  
occur at a)k =  2k (k +  a ) / M ,  which are the frequencies at which the desired fre­
quency response is specified. The gains o f the parallel bank o f resonant filters 
are simply the com plex-valued param eters \ H ( k  +  a )}. This cascade realization is 
illustrated in Fig. 7.5.

W hen the desired frequency response characteristic o f the FIR filter is nar­
rowband, m ost o f the gain param eters \H (k  +  a )) are zero. Consequently, the 
corresponding resonant filters can be elim inated and only the filters with nonzero  
gains need be retained. The net result is a filter that requires few er com puta­
tions (m ultiplications and additions) than the corresponding direct-form realiza­
tion. Thus w e obtain a m ore efficient realization.

The frequency-sam pling filter structure can be sim plified further by exploiting  
the s y m m e t r y  in H (k  +  a ) ,  namely, H ( k ) =  H * (M  — k)  for a  =  0  and

H  (* +  i )  =  H* (M  -  k  -  | )  for a  =  \

T hese relations are easily deduced from (7.2.9). A s a result o f this symmetry, a 
pair o f single-pole filters can be com bined to form a single tw o-pole filter with
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real-valued param eters. Thus for a  =  0 the system function Hz (z) reduces to

H ( 0) , Aik )  +  B(lc)z- 1 w  
f i i i z )  =  t _  —  l +  2 ^  — —----- 7  M  odd

t=1 .  2 c o s { 2 n k / M ) z ~ '  + z~2 

H i 0) , H i M / 2 )  , lM̂ ~ ] A{k)  +  B{k)z ~x

H^ >  = r r p r  + T T P - + £  ~ 2cos(2;rfc/Af)z-1 +  z ~ 2
M  even

(7.2.15)
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(7.2.16)

■(f)-

w here, by definition,

A(k)  =  H(k)  +  H ( M  - k )

B(k)  =  H{k )e~ i2nklM +  H ( M  -  

Similar expressions can be obtained for a  =

Example 7.2.1

Sketch the block diagram for the direct-form realization and the frequency-sampling 
realization of the M =  32, a =  0, linear-phase (symmetric) FIR  filter which has 
frequency samples

1, * =  0 ,1 ,2  

5- 4 = 3
0, * = 4 . 5 ........15

Compare the computational complexity of these two structures.

Solution Since the filter is symmetric, we exploit this symmetry and thus reduce the 
number of multiplications per output point by a factor of 2, from 32 to 16 in the 
direct-form realization. The number of additions per output point is 31. The block 
diagram of the direct realization is illustrated in Fig. 7.6.

We use the form in (7.2.13) and (7.2.15) for the frequency-sampling realization 
and drop all terms that have zero-gain coefficients |H(k)}. The nonzero coefficients 
are H(k) and the corresponding pairs are H(M -  k), for k = 0 ,1 , 2, 3. The block 
diagram of the resulting realization is shown in Fig. 7.7. Since H(0) =  1, the single­
pole filter requires no multiplication. The three double-pole filter sections require 
three multiplications each for a total of nine multiplications. The total number of 
additions is 13. Therefore, the frequency-sampling realization of this FIR filter is 
computationally more efficient than the direct-form realization.

Figure 7.6 Direct-form realization of Af = 3 2  FIR filter.
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Figare 7.7 Frequency-sampling realization for the FIR filter in Example 7.2.1.
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7.2.4 Lattice Structure

In this section we introduce another FIR  filter structure, called the lattice filter or 
lattice realization. Lattice filters are used extensively in digital speech processing  
and in the im plem entation o f adaptive filters.

Let us begin the developm ent by considering a sequence o f FIR  filters with 
system  functions

Hm(z) =  A m(z) m = 0 . 1 , 2 .........M  -  1 (7.2.17)

where, by definition, A m(z) is the polynom ial
m

A m(z) =  1 +  £ a m(k)z~k m > 1 (7.2.18)
*=i

and /lo(^) =  !• The unit sam ple response o f the mth filter is /j„,(0) =  1 and 
h m{k) =  a m(k), k =  1, 2 , . . . ,  m.  The subscript m  on the polynom ial Am(c) denotes  
the degree o f the polynom ial. For mathem atical convenience, w e define a,„ (0) =  1.

If (*(n)} is the input sequence to the filter A,„{z) and (y(n)( is the output 
sequence, we have

m
v(«) =  -*(«) +  ^ o r m(A:)A-(?f — k)  (7.2.19)

*■=l

T w o direct-form structures o f the FIR filter are illustrated in Fig. 7.8.

Figure 1A Direct-form realization of the FIR prediction filter.
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In Chapter 11, we show that the FIR structures show n in Fig. 7.8 are inti­
m ately related with the topic o f linear prediction, where

m

x(n)  =  ~ ^ 2 a m(k)x (n  -  k)  (7.2.20)
*=i

is the one-step forward predicted value o f x  (n), based on m past inputs, and 
y(n )  =  x (n) — x (n ), given by (7.2.19), represents the prediction error sequence. 
In this context, the top filter structure in Fig. 7.8 is called a predict ion error filter. 

N ow  suppose that w e have a filter of order m =  1. The output o f such a filter
is

>-(«) =  x(n )  - fa i( l)jr (n  -  1) (7.2.21)

This output can also be obtained from a first-order or single-stage lattice filter, 
illustrated in Fig. 7.9, by exciting both of the inputs by x(n )  and selecting the output 
from the top branch. Thus the output is exactly (7.2.21), if we select /l i  =  ori (1). 
The parameter K i in the lattice is called a reflection coefficient and it is identical 
to  the reflection coefficient  introduced in the Schur-C ohn stability test described 
in Section 3.6.7.

N ext, let us consider an FIR filter for which m =  2. In this case the output 
from a direct-form structure is

y(n)  = x(n )  +  ff;>(l)jr(/i -  1 ) +  ct2(2)x(n  -  2 )

By cascading two lattice stages as shown in Fig. 7.10, it is possible  
sam e output as (7.2.22). Indeed, the output from the first stage is

f i  (fl) =  -*(n) +  K]X{n -  1)

£i(n) =  K {x(n )  +  x (n  -  1 )

The output from the second stage is

f l i n )  =  f \ ( n )  +  -  1 )

g2(n) =  K 2f i ( n )  +  g i(n  -  1)

/o(") = &>(") =■*(«)
/i(«) =/o(") + *i£o{n -  1) = *00 + X , x ( n  -  1) 
j,{n) = tf,/oOO + SoO1 -  1) = fCix(n) + x(n -  1)

(7.2.22) 

to  obtain the

(7.2.23)

(7.2.24)

Figirc 7.9 Single-stage lattice filter.
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Figure 7.10 Two-stage lattice filter.

If we focus our attention on f 2{n) and substitute for f \ ( n )  and g\ (n  — 1) from  
(7.2.23) into (7.2.24), w e obtain

f 2(n) =  jr(n) +  K\ x( n  -  1) +  -  1) +  x ( n  -  2)]
(7.2.25)

=  x(n)  +  ^ i ( l  +  K 2)x(n  -  1) +  K 2x{n — 2)

N ow  (7.2.25) is identical to the output of the direct-form FIR filter as given by 
(7.2.22), if  w e equate the coefficients, that is,

a 2 (2) =  K 2 a 2( l )  =  ATi(l +  K 2) (7.2.26)
or, equivalently,

K 2 =  a 2(2) Kx =  (7.2.27)
1 +  a 2(2)

Thus the reflection coefficients K\ and K 2 o f the lattice can be obtained from the 
coefficients {am(£)} o f the direct-form realization.

By continuing this process, one can easily dem onstrate by induction, the 
equivalence betw een an m th-order direct-form FIR filter and an w -order or m -  

stage lattice filter. T he lattice filter is generally described by the follow ing set o f  
order-recursive equations:

/o (n ) =  gain)  =  x(n )  (7.2.28)

U i n )  =  / ffl_ j(« ) +  K mgm- X{n -  1) m  =  1 ,2 .........M -  1 (7.2.29)

gm(n) =  ^ / B- iW  +  i . - i ( i i - l )  m = 1 , 2 , . . . ,  M  — 1 (7.2.30)

Then the output o f the (A f—l)-stage  filter corresponds to  the output o f  an (A f—1)- 
order F IR  filter, that is,

y(n) =

Figure 7.11 illustrates an (Af -  l)-stage  lattice filter in block diagram form along  
with a typical stage that shows the com putations specified by (7.2.29) and (7.2.30).

A s a consequence o f  the equivalence betw een an FIR  filter and a lattice filter, 
the output f m(n) o f  an m -stage lattice filter can be expressed as

m

fm(n)  =  £  <xm(k)x(n -  k)  «m(0) =  1 (7.2.31)
*=o

Since (7.2.31) is a convolution sum, it follow s that the z-transform relationship is

Fm(z) =  Am(z)X(z)
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(a)

Figure 7.11 (Af — l)-stage lattice filter.

or, equivalently,
F  (?) F  (7 }

A m(z) =  (7.2.32)
X ( z )  Fo(z)

T he other output com ponent from  the lattice, namely, g m(n), can also be 
expressed in the form o f a convolution sum as in (7.2.31), by using another set 
o f coefficients, say {^m(Jt)}. That this in fact is the case, becom es apparent from  
observation o f  (7.2.23) and (7.2.24). From (7.2.23) we note that the filter coeffi­
cients for the lattice filter that produces / i (n )  are {1 , A’l} =  {1 , ofi( 1 )} while the 
coefficients for the filter with output g\(n)  are (AT], 1} =  |a i ( l ) ,  1}. W e note that 
these tw o sets o f coefficients are in reverse order. If w e consider the two-stage 
lattice filter, with the output given by (7.2.24), w e find that g 2 (n) can be expressed  
in the form

g2(n) =  K 2f \ ( n )  +  £ i(n  -  1)

=  K 2[xin)  +  K \x {n  — 1)] +  K \x { n  -  1) +  x{n — 2)

=  K 2x{n) +  K \ ( l  +  K 2)x{n  -  1) -I- x i n  -  2)

=  cr2 (2 )jc(n) +  £*2 ( 1 )* (n -  1 ) +  x i n  -  2 )

C onsequently, the filter coefficients are {a2 (2), a 2 ( l ) ,  1}, w hereas the coefficients 
for the filter that produces the output f i i n )  are {1, a 2( \ ) ,  a 2 (2)}. H ere, again, the 
tw o sets o f filter coefficients are in reverse order.

From this developm ent it follow s that the output gm{n) from an m -stage 
lattice filter can be expressed by the convolution sum  o f the form

m

gmin)  =  £  A*(*M « -  k) (7.2.33)
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w here the filter coefficients {& ,(*)} are associated with a filter that produces 
f m(n) =  y(n )  but operates in reverse order. Consequently,

with pm(m) =  1 .
In the context o f linear prediction, suppose that the data x(n),  x{n -  1 ) , . . . ,  

x(n  — m + 1) is used to linearly predict the signal value x(n  — m )  by use o f  a linear 
filter with coefficients {—fim(k)}. Thus the predicted value is

Since the data are run in reverse order through the predictor, the prediction per­
form ed in (7.2.35) is called backw ard  prediction.  In contrast, the FIR filter with 
system  function Am(z) is called a fo rw a rd  predictor.

In the z-transform dom ain, (7.2.33) becom es

where Bm(z) represents the system function o f the FIR  filter with coefficients 
{& ,(*)}, that is,

The relationship in (7.2.39) im plies that the zeros o f  the F IR  filter with system  
function Bm(z) are simply the reciprocals o f  the zeros o f  A„(z) .  H ence Bm(z) is 
called the reciprocal or reverse polynom ial o f  A m(z).

N o w  that w e have established these interesting relationships betw een  the 
direct-form  FIR  filter and the lattice structure, let us return to  the recursive lattice  
equations in (7.2.28) through (7.2.30) and transfer them  to the z-dom ain. Thus

f}m (k) =  a m (m — k)  * =  0 ,1 .........m (7.2.34)

m-l
(7.2.35)

G m(z) =  Bm(z)X (z ) (7.2.36)

or, equivalently,

(7.2.37)

(7.2.38)
4=0

Since fim(k) =  a m(m — *), (7.2.38) m ay be expressed as
m

ffl

(7.2.39)
m
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w e have

F0(z) =  G 0(z) =  X (z )

Fm(z) =  Fm_i(z) +  J:mz- 1 Gm_i(z) m =  1, 2 , . . . ,  M  -  1 

G m(z) =  +  m =  1 , 2 , . . . ,  M — 1

(7.2.40)

(7.2.41)

(7.2.42)

If w e divide each equation by X (z), we obtain the desired results in the form

Thus a lattice stage is described in the z-domain by the matrix equation

B efore concluding this discussion, it is desirable to develop  the relationships 
for converting the lattice parameters that is, the reflection coefficients, to the 
direct-form filter coefficients (am(Jt)), and vice versa.

Conversion of lattice coefficients to direct-form filter coefficients. The
direct-form FIR  filter coefficients {am(Jk)} can be obtained from  the lattice coeffi­
cients {AT;} by using the follow ing relations:

The solution is obtained recursively, beginning with m =  1 . Thus w e obtain a 
sequence o f (M  — 1) FIR filters, one for each value o f m. T he procedure is best 
illustrated by m eans o f  an exam ple.

Example 12J2

Given a three-stage lattice filter with coefficients AT] =  j , K2 =  5 , Ky =  5 , determine 
the FIR filter coefficients for the direct-form structure.

Solution We solve the problem recursively, beginning with (7.2.48) for m =  1. Thus 
we have

Ai(z) =  A„<z) +tfiZ ^B oW

=  1 +  K n - 1 = 1 +  Jz"1

Hence the coefficients of an FIR filter corresponding to the single-stage lattice are 
ori(0) =  1 , ari(l) =  Ki =  j. Since Bm(z) is the reverse polynomial of A„(z), we have

A0(z) =  B0(z) =  1

A m{z) =  A m- X(z) +  K „ z ~ }Bm- i ( z )  m =  1 ,2 .........M  -  1
Bm(z) = K n A n - i W + z - ' B ^ i z )  m = l , 2 , . . . , M - l

(7.2.43)

(7.2.44)

(7.2.45)

(7.2.46)

A0 (z) =  B0(z) =  1

A m(z) =  Am- \ ( z )  +  K mz~xBm~\(z)  m  =  1 , 2 - - - M  -  1
Bm(z) =  Z- mA m(z~l ) m =  1 ,2 .........M -  1

(7.2.47)

(7.2.48)

(7.2.49)
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Next we add the second stage to the lattice. For m = 2 ,  (7.2.48) yields 

■AjU) =  ^ i(i) +  KiZ~* B\(z)
—  1 4 -  J - - 1  4 -  1 , - 2— 1 +  Rc T 2'-

Hence the FIR filter parameters corresponding to the two-stage lattice are £*2(0) =  1, 
“2(1) =  | ,  £*2(2) =  Also,

*2(z) = J + i = +z-2
Finally, the addition of the third stage to the lattice results in the polynomial 

M(z)  =  * z (;)+ * :3 z _ ,ft(z )

=  1 +  z _1 +  %z~2 + | z -3 

Consequently, the desired direct-form FIR filter is characterized by the coefficients 

£*3(0) =  1 a 3(l) =  g  of3(2) =  2 o3{3) =  i

A s this exam ple illustrates, the lattice structure with parameters K \,  K i .........
Km, corresponds to a class o f m  direct-form FIR  filters with system  functions A\  (z), 
y4i (z) , . . . ,  A„,(z). It is interesting to note that a characterization o f this class o f m 
FIR filters in direct form requires m(m  +  l ) /2  filter coefficients. In contrast, the 
lattice-form  characterization requires only the m reflection coefficients {A',}. The 
reason that the lattice provides a more com pact representation for the class o f m 
FIR filters is sim ply due to the fact that the addition o f stages to the lattice does  
not alter the param eters o f the previous stages. On the other hand, the addition  
o f the mth stage to a lattice with ( m - 1 )  stages results in a FIR  filter with system  
function A m(z) that has coefficients totally different from the coefficients o f the 
lower-order FIR  filter with system  function Am_ i(z).

A  form ula for determ ining the filter coefficients [am(Jt)} recursively can be 
easily derived from  polynom ial relationships in (7.2.47) through (7.2.49). From the 
relationship in (7.2.48) w e have

Am(z) =  Am_i(z) +  K mz ~ l Bm- i ( z )

m »_ i m-t (7.2.50)
^  a m (k )z~ k =  ^  a m-] (k)z~k +  K m ^  a m- \  ( m - 1  -  k)z  (i+1) 
k = 0  k = 0 *=0

B y equating the coefficients o f equal powers o f z - 1  and recalling that a m(0) =  1
for m  =  1, 2 .........M  - 1, w e obtain the desired recursive equation for the FIR filter
coefficients in the form

£*m(0) =  1 (7.2.51)

a  m(m) =  K m (7.2.52)

a m(k)  =  ctm- \ ( k )  +  -  *)

=  £*m—i (k) +  a m(rn)am-i(rn -  k) ^ (7-2. 53)
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W e note that (7.2.51) through (7.2.53) are sim ply the L evinson-D urbin  recursive 
equations given in Chapter 11.

Conversion of direct-form FIR filter coefficients to lattice coefficients.
Suppose that we are given the FIR coefficients for the direct-form  realization or, 
equivalently, the polynom ial A m(z), and we wish to determ ine the corresponding  
lattice filter param eters {£ ,} . For the m -stage lattice we im m ediately obtain the 
param eter K m =  a m (m). T o  obtain K m- \  we need the polynom ials Am_i(z) since, 
in general, K m is obtained from the polynom ial A m (z) for m  =  M  — 1, Af — 2 , . . . ,  1. 
Consequently, w e need to com pute the polynom ials A m(z) starting from m  =  Af — 1 
and “stepping dow n” successively to m  =  1 .

The desired recursive relation for the polynom ials is easily determ ined from  
(7.2.44) and (7.2.45). We have

A m(z) =  A m- \ ( z )  +  K mz ~ x Bm- \{ z )

=  Am- \ ( z )  +  K m[Bm(z) -  ^ mAm_ i(;) ]

If we solve for Am_i(z),  we obtain

A m- i ( z ) =  -*"*"■<*> m = M - h M - 2 .........1 (7.2.54)

which is just the step-down recursion used in the Schur-C ohn stability test de­
scribed in Section 3.6.7. Thus we com pute all low er-degree polynom ials A m(z) 
beginning with A M- \ ( z )  and obtain the desired lattice coefficients from the rela­
tion K m =  a m(m). W e observe that the procedure works as long as \Km \ 1 for 
m =  1, 2 .........A f - 1 .

Example 7.23

Determine the lattice coefficients corresponding to the FIR filter with system function 

H(z) = A3(z) =  1 -I- -I- f z “2 -I- ±z-J 

Solution First we note that =  a 3(3) =  | .  Furthermore,

# 3 (z) =  5  +  jU- 1  +  z~2 +  z~y 

The step-down relationship in (7.2.54) with m =  3 yields

A3(z) -  K i B^ z )
A2(z) =

1 -  K

1 , - 2=  l +  f z - ^ z

Hence K2 — a2(2) =  5 and Bi (z) =  5 +  | z _1 +  z_1- By repeating the step-down 
recursion in (7.2.51), we obtain

, , , A ib)  ~  K2B2(z)
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From the step-dow n recursive equation in (7.2.54), it is relatively easy to  
obtain a formula for recursively com puting K m, beginning with m =  M  — 1 and 
stepping down to  m =  1. For m  =  M  — 1, M  — 2 , . . . ,  1 we have

K m =  a m(m ) Qfm—l (0) =  1 (7.2.55)

a m(k) -  K mfim(k)
— J  __ g 2

a m(k) -  otm ( r n ) a m ( m  -  k)
1 5  k  < m  — 1 (7.2.56)

1 - a l ( m )

which is again the recursion w e introduced in the Schur-C ohn stability test.
A s indicated above, the recursive equation in (7.2.56) breaks down if any 

lattice param eters | Arm j =  1. If this occurs, it is indicative o f the fact that the  
polynom ial A m- \ ( z )  has a root on the unit circle. Such a root can be factored out 
from Am_](z)  and the iterative process in (7.2.56) is carried out for the reduced- 
order system.

7.3 STRUCTURES FOR IIR SYSTEMS

In this section we consider different IIR  system s structures described by the dif­
ference equation in (7.1.1) or, equivalently, by the system  function in (7.1.2). Just 
as in the case o f  FIR system s, there are several types o f structures or realizations, 
including direct-form structures, cascade-form  structures, lattice structures, and 
lattice-ladder structures. In addition, IIR system s lend them selves to  a parallel- 
form realization. W e begin by describing two direct-form  realizations.

7.3.1 Direct-Form Structures

T he rational system  function as given by (7.1.2) that characterizes an IIR system  
can be view ed as tw o system s in cascade, that is,

H ( z ) =  H i (z ) H2(z ) (7.3.1)

w here Hi (z) consists o f the zeros o f  H (z) ,  and Hz(z)  consists o f the po les o f H{z),
M

H l (z ) =  Y ! f bkZ~k (7-3.2)
*=o

and

H2(z ) = ------- -- ---------  (7.3.3)

1 +  X > z " *
*=i

In Section 2.5.1 w e describe tw o different direct-form  realizations, character­
ized by w hether H\{z)  precedes H jiz ) ,  or vice versa. Since H \(z)  is an FIR  system, 
its direct-form realization was illustrated in Fig. 7.1. B y attaching the all-pole
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All-zero system All-pole system

Figure 7.12 Direct form I realization.

system in cascade with H\(z) ,  we obtain the direct form I realization depicted in 
Fig. 7.12. This realization requires M  +  N  +  1 m ultiplications, M  +  N  additions, 
and M  +  N  +  1 m em ory locations.

If the all-pole filter f y i z )  is placed before the all-zero filter H i(z), a more 
com pact structure is obtained as illustrated in Section 2.5.1. R ecall that the differ­
ence equation for the all-pole filter is

N
w (n ) =  -  ^  ai(W{n -  k)  +  jr(n) (7.3.4)

Since w(n)  is the input to the all-zero system , its output is

M
y W  = bkw (n -  k) (7.3.5)

*=o

W e note that both (7.3.4) and (7.3.5) involve delayed versions o f  the sequence  
(u>(n)}- C onsequently, only a single delay line or a single set o f  m em ory locations 
is required for storing the past values o f {u>(n)}. T he resulting structure that 
im plem ents (7.3.4) and (7.3.5) is called a direct form  II realization and is depicted  
in Fig. 7.13. This structure requires M  +  N  +  1 m ultiplications, M  +  N  additions,
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Figure 7.13 Direct form II realization ( N  —  Af).

and the m aximum  o f {M, N } m emory locations. Since the direct form  II realization  
m inim izes the num ber of m em ory locations, it is said to be canonic.  H ow ever, we  
should indicate that other IIR  structures also possess this property, so that this 
term inology is perhaps unjustified.

T he structures in Figs. 7.12 and 7.13 are both called “direct form ” realiza­
tions because they are obtained directly from the system  function H ( z ) w ithout 
any rearrangem ent o f H (z) .  U nfortunately, both structures are extrem ely sensi­
tive to param eter quantization, in general, and are not recom m ended in practical 
applications. This topic is discussed in detail in Section 7.6, w here w e dem onstrate 
that w hen N  is large, a sm all change in a filter coefficient due to  param eter quan­
tization, results in a large change in the location o f  the po les and zeros o f the 
system.

7.3.2 Signal Flow Graphs and Transposed Structures

A  signal flow graph provides an alternative,Nbut equivalent, graphical represen­
tation to a block diagram structure that w e have been  using to  illustrate various 
system  realizations. The basic elem ents o f  a flow graph are branches and nodes. 
A  signal flow graph is basically a set o f directed branches that connect at nodes. 
B y definition, the signal out o f  a branch is equal to  the branch gain (system  func­
tion) tim es the signal into the branch. Furtherm ore, the signal at a node o f  a 
flow graph is equal to  the sum  o f  the signals from all branches connecting to  the 
node.

T o  illustrate these basic notions, let us consider the tw o-pole and tw o-zero  
IIR  system  depicted in block diagram form  in Fig. 7.14a. T he system  block
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(a)

Source node Sink node

5
(b)

Fignre 7.14 Second-order filter structure (a) and its signal flow graph (b).

diagram can be converted to the signal flow graph shown in Fig. 7.14b. W e note 
that the flow graph contains five nodes labeled 1 through 5. T w o o f the nodes 
(1 ,3 )  are summing nodes (i.e., they contain adders), while the other three nodes 
represent branching points. Branch transm ittances are indicated for the branches 
in the flow graph. N ote that a delay is indicated by the branch transmittance 
z-1 . W hen the branch transmittance is unity, it is left unlabeled. The input to 
the system  originates at a source n o d e  and the output signal is extracted at a sink  
node.

W e observe that the signal flow graph contains the sam e basic information  
as the block diagram realization o f the system . T he only apparent difference is 
that both  branch points and adders in the block diagram are represented by nodes 
in the signal flow graph.

The subject o f linear signal flow graphs is an im portant on e  in the treatment 
o f netw orks and many interesting results are available. O ne basic notion  involves 
the transformation o f one flow graph into another without changing the basic 
input-output relationship. Specifically, on e technique that is useful in deriving 
new system  structures for FIR  and IIR  system s stem s from  the transposit ion  or 
f low-graph reversal theorem.  This theorem  sim ply states that if  w e reverse the
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directions o f all brancb transm ittances and interchange the input and output in 
the flow graph, the system  function rem ains unchanged. The resulting structure is 
called a transposed s tructure  or a transposed fo rm .

For exam ple, the transposition o f the signal flow graph in Fig. 7.14b is illus­
trated in Fig. 7.15a. The corresponding block diagram realization o f the transposed  
form is depicted in Fig. 7.15b. It is interesting to  note that the transposition o f the 
original flow graph resulted in branching nodes becom ing adder nodes, and vice 
versa. In Section 7.5 w e provide a proof o f the transposition theorem  by using 
state-space techniques.

Let us apply the transposition theorem  to  the direct form II structure. First, 
we reverse all the signal flow directions in Fig. 7.13. Second, we change nodes  
into adders and adders into nodes, and Anally, we interchange the input and the 
output. These operations result in the transposed direct form II structure shown  
in Fig. 7.16. This structure can be redrawn as in Fig. 7.17, which shows the input 
on the left and the output on the right.

~ai s ^ \  h  
—

(b)

Figure 7.15 Signal flow graph of 
transposed structure (a) and its 
realization (b).
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Figure 7.16 Transposed direct form II 
structure.

The transposed direct form II realization that w e have obtained can be de­
scribed by the set o f  difference equations

y(n )  =  wrf n -  l ) + b o x ( n )

Wt(n) = wt+i(n -  1)  + b kx(n)

wN(n) =  bNx(n) - a Ny(n)

Jt =  1 ,2 .........N - 1

(7.3.6)

(7.3.7)

(7.3.8)

W ithout loss o f  generality, w e have assum ed that Af =  W in writing equations. It 
is also clear from observation o f  Fig. 7.17 that this set o f d ifference equations is 
equivalent to  the single difference equation

y ( n )  =  ~ ^ 2 a ky(n  -  k ) +  ^ b kx (n  -  k ) (7.3.9)



Sec. 7.3 Structures for IIR Systems 525

Figure 7.17 Transposed direct form II 
structure.

Finally, w e observe that the transposed direct form II structure requires the same 
num ber of m ultiplications, additions, and m emory locations as the original direct 
form II structure.

A lthough our discussion of transposed structures has been concerned with 
the general form  o f  an IIR  system, it is interesting to note that an FIR  system, 
obtained from (7.3.9) by setting the a* =  0, k  =  1, 2 , . . . ,  N ,  also has a transposed  
direct form as illustrated in Fig. 7.18. This structure is sim ply obtained from  
Fig. 7.17 by setting a* =  0, k  =  1, 2 , . . . ,  N .  This transposed form realization m ay

Figure 7.18 Transposed FIR structure.
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be described by the set o f difference equations

w M(n) =  b t fx (n )  (7.3.10)

u>*(/i) =  u>*+i(n — 1) +  bkx(n) k  =  M  — 1, M  ~  2, . . . , 1  (7.3.11)

y (n ) =  wi(n  -  1) +/>&*(«) (7.3.12)

In summary, T able 7.1 illustrates the direct-form structures and the corresponding  
difference equations for a basic tw o-pole and tw o-zero IIR system  with system  
function

x b0 +  b i z ~ l +  b2z~ 2
H (z)  =  ----------- ------------ 3 - (7.3.13)

1 +  fli z 1 +azz 1
This is the basic building block in the cascade realization o f  high-order IIR  systems, 
as described in the follow ing section. O f the three direct-form  structures given in 
Table 7.1, the direct form II structures are preferable due to the smaller number 
o f m em ory locations required in their im plem entation.

Finally, we note that in the z-domain, the set o f d ifference equations describ­
ing a linear signal flow graph constitute a linear set o f  equations. A ny rearrange­
ment o f  such a set o f equations is equivalent to  a rearrangement o f  the signal flow 
graph to obtain a new  structure, and vice versa.

7.3.3 Cascade-Form Structures

Let us consider a high-order IIR  system  with system  function given by (7.1.2). 
W ithout loss o f  generality w e assume that N  > M .  T he system  can be factored  
into a cascade o f  second-order subsystem s, such that H  (z) can be expressed as

K

*=i

w here K  is the integer part o f (N  +  l ) /2 .  Hk (z) has the general form

rr , , bto +  b u z ' 1 +  bk2Z ' 2
Hk(z) =  — --------------------- 3 5 -  (7.3.15)

1 +  fljtiz 1 +  ak2z 2

A s in the case o f  FIR  system s based on a cascade-form  realization, the parameter 
bo can be distributed equally am ong the K  filter sections so  that bo =  £>1 0 ^ 2 0  • ■ ■ bxo- 

The coefficients {a*j} and {*>*, }in the second-order subsystem s are real. This 
im plies that in form ing the second-order subsystem s or quadratic factors in (7.3.15), 
w e should group together a pair o f com plex-conjugate poles and w e  should group 
together a pair o f  com plex-conjugate zeros. H ow ever, the pairing o f tw o com plex- 
conjugate poles with a pair o f  com plex-conjugate zeros or real-valued zeros to form  
a subsystem  o f  the type given by (7.3.15), can be done arbitrarily. Furthermore, 
any two real-valued zeros can be paired together to form  a quadratic factor and, 
likewise, any two real-valued poles can be paired together to  form  a quadratic 
factor. Consequently, the quadratic factor in the num erator o f (7.3.15) may consist
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TABLE 7.1 SOME SECOND-ORDER MODULES FOR DISCRETE-TIME SYSTEMS

Structure Implementation Equations System Function

xin)

x<n)

x<n)

v(n) = fc().t(n) +fc]X(n -  I)
-I- i>2.t(rt -  2)
-  oi v(n -  1) —<t2\(n — 2)

bft + bjZ 1 +biz 2 
1 + a u -1 +aiz~2

H(z)  =

u.’(n )  =  ~ d i w ( n  — I )  — a 2 w ( n — 2 )  

+ x(n)
,v(n) = bow(n) -+- fcj utr(»» — 1)

+ b2U)(n — 2)

v(n) =  bu.x(n) + wt(n -  1) 
= htx(n)  — ai_v(n)

-t- w 2 ( n  -  1 )  

w 2 (n) =  b i x ( n )  -  a 2 y ( n )

H( Z)  =
bp + bjZ 1 +bjz 
1 + a u _1 +aiz~2

H( Z)
bp -t-fri? 1 +bjz 2 
1 + c u - * +aiz~2
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o f  either a pair o f real roots or a pair o f com plex-conjugate roots. The sam e 
statem ent applies to  the denom inator o f (7.3.15).

If N  >  M ,  som e o f  the second-order subsystem s have num erator coefficients 
that are zero, that is, either bk2 =  0 or bk\ = 0  or both bk2 =  bk\ =  0 for som e k. Fur­
therm ore, if N  is odd, one o f  the subsystem s, say Hk (z), must have ak2 =  0, so  that 
the subsystem  is o f first order. T o preserve the m odularity in the im plem entation  
o f  H (z) ,  it is often preferable to use the basic second-order subsystem s in the cas­
cade structure and have som e zero-valued coefficients in som e o f  the subsystems.

Each of the second-order subsystem s with system  function o f  the form  (7.3.15) 
can be realized in either direct form I, or direct form  II, or transposed direct form
II. Since there are many ways to pair the poles and zeros o f H (z) into a cascade 
o f  second-order sections, and several ways to order the resulting subsystem s, it is 
possible to obtain a variety o f  cascade realizations. A lthough all cascade realiza­
tions are equivalent for infinite precision arithmetic, the various realizations may 
differ significantly when im plem ented with finite-precision arithmetic.

The general form o f the cascade structure is illustrated in Fig. 7.19. If we 
use the direct form II structure for each of the subsystem s, the com putational 
algorithm  for realizing the IIR  system with system  function H ( z ) is described by 
the follow ing set o f  equations.

>>o(n) =  x(n)  (7.3.16)

w k(n) = - a kiw k(n -  1) -  ak2wk (n -  2) +  y*_i(n) k =  1 ,2 ...........K  (7.3.17)

y k(n) =  bk0w k(n) +  bt i w k(n -  1) -I- bk2w t (n -  2) k =  1 ,2 ..........K  (7.3.18)

y(n) =  ytcin) (7.3.19)

(a)

** 0  S ~ \  > '* ( * )  =  X t  +  1 ( n )

0 -
-«*l

^ - 0

(b)

Ftg*rc 7.19 Cascade structure of second-order systems and a realization of each 
second-order section.
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Thus this set o f equations provides a com plete description o f  the cascade structure 
based on direct form II sections.

7.3.4 Parallel-Form Structures

A  parallet-form  realization o f an IIR  system can be obtained by perform ing a 
partial-fraction expansion o f H(z) .  W ithout loss o f  generality, we again assume 
that N  > M  and that the p o les are distinct. Then, by perform ing a partial-fraction  
expansion o f H(z) ,  we obtain the result

N Ai
H (z )  =  C +  V  ------- — r (7.3.20)

t t 1 -  P*z~'

w here {p*} are the poles, {At \are  the coefficients (residues) in the partial-fraction  
expansion, and the constant C is defined as C =  b s /a s i .  The structure implied  
by (7.3.20) is show n in Fig. 7.20. It consists o f a parallel bank o f single-pole  
filters.

In general, som e of the poles o f  H (z)  may be com plex valued. In such a case, 
the corresponding coefficients At  are also com plex valued. To avoid m ultiplica­
tions by com plex numbers, we can com bine pairs o f com plex-conjugate poles to  
form tw o-pole subsystem s. In addition, we can com bine, in an arbitrary manner,

c

Figure 7.20 Parallel structure of IIR system.
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Figure 7*21 Structure of second-order section in a parallel IIR system realization.

pairs o f real-valued poles to form tw o-pole subsystem s. Each o f  these subsystem s 
has the form

Hk{z) =
1 + a kiz ] + a k2r

(7.3.21)

where the coefficients {bk,} and (at;] are real-valued system  param eters. The over­
all function can now be expressed as

H(z) = C + J 2 h*<*> (7.3.22)

where K  is the integer part o f (N  + 1)/2. W hen N  is odd, one o f  the H k (z) is really 
a single-pole system (i.e., bk\ =  a k 2  =  0 ).

T he individual second-order sections which are the basic building blocks for 
H (z)  can be im plem ented in either o f the direct forms or in a transposed direct 
form. The direct form II structure is illustrated in Fig. 7.21. W ith this structure as 
a basic building block, the parallel-form realization o f the FIR  system  is described  
by the follow ing set o f equations

wk(n) =  —aki w k(n -  1) -  ak2wk(n -  2) +  x(n)

yt(n) = bk0wk(n) + bktwt (n -  1)

K
y(n) = Cx(n ) +  ^ y t ( n )

* =  1 , 2 , . . . ,  

k  =  1 ,2 .........K

(7.3.23)

(7.3.24)

(7.3.25)

Example 7.3.1

Determine the cascade and parallel realizations for the system described by the system 
function

H(z) =
10(1 -  1)(1 — l z -1 ) ( l  +  2 z-1)

(1 -  |z _1)(l -  5Z-1)[1 -  (j +  ; j )z -1][l -  (5 -



Solution The cascade realization is easily obtained from this form. One possible 
pairing of poles and zeros is

1 -  lz~*
=  i  _  2 .- i  +  2, z- 2 

1 8 '  T  32 ‘

l  +  l z - ' - z " 2
H2<c) =  i — r ~ ;1 - z ~ l +  \ z~2

and hence

H(z) = 10//,(z)Jfe(z)

The cascade realization is depicted in Fig. 7.22a.
To obtain the parallel-form realization, H(z)  must be expanded in partial frac­

tions. Thus we have
A i Ai

" (2 )  =  ■ +
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1 - f z - 1 1 - i z - 1 i-(i +  yi)z-i i - ( l - y i );-i

where j4t , A2, A3, and A j are to be determined. After some arithmetic we find that

A { =  2.93, A,  =  -17.68, A3 =  12.25 -  yl4.57, A\ = 12.25 +  >14.57

upon recombining pairs of poles, we obtain

„  % —14.75 — 12.90z_l 24.50 +  26.82;"'
H (z) — -------1— ;----- 5— i— I-

1 _  Z--1 _1_ 2 . 7 - 1  1 _  --I -L J.--2 x*- +  324 *■ 2^
The parallel-form realization is illustrated in Fig. 7.22b.

7.3.5 Lattice and Lattice-Ladder Structures for IIR 
Systems

In Section 7.2.4 w e developed  a lattice filter structure that is equivalent to an FIR  
system . In this section  we extend the developm ent to  IIR  system s.

Let us begin with an all-pole system  with system  function

H  (z) = ------- ^ ----------- =■ — (7. 3. 26)
A  t a n (z)

1 + ^ c i s ( k ) z  
k=l

The direct form realization o f this system  is illustrated in Fig. 7.23. The difference 
equation for this IIR  system  is

N

y(n)  =  ~ ^ a N (k)y(n -  k)  +  x{n)  (7.3.27)
*=i

It is interesting to note that if w e interchange the roles o f input and output 
[i.e., interchange x (n )  with y(n) in (7.3.27)], w e obtain

x(n) =  -  ^ T a N(k)x(n -  k) 4- y(ri)
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(a)

(b)

Figure 7.22 Cascade and parallel realizations for the system in Example 7.3.1.

or, equivalently,
N

y ( n ) =  x (n )  4- ^ a w(fc)*(n -  k)  (7.3.28)
*=i

W e note that the equation in (7.3.28) describes an FIR  system  having the 
system  function H (z)  =  A N (z), w hile the system  described by th e  difference equa­
tion in (7.3.27) represents an IIR  system  with system  function H ( z )  =  lMw(z)*
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*(«) yi.n)

Figure 7.23 Direct-form realization of an all-pole system.

O ne system  can b e  obtained from  the other simply by interchanging the roles o f  
the input and output.

Based on this observation, we shall use the all-zero (FIR ) lattice described in 
Section 7.2.4 to  obtain a lattice structure for an all-pole IIR  system  by interchanging  
the roles o f the input and output. First, w e take the all-zero lattice filter illustrated 
in Fig. 7.11 and then redefine the input as

x (n) =  f N(n) (7.3.29)

and the output as
v(n) =  fo(n)  (7.3.30)

T hese are exactly the opposite o f the definitions for the all-zero lattice filter. These  
definitions dictate that the quantities { /m(n)l be com puted in descending order [i.e., 
/v ( n ) ,  / v _ i ( n ) , . . . ) .  T his com putation can be accom plished by rearranging the 
recursive equation in (7.2.29) and thus solving for / m_\ (n) in term s o f f m(n), that is,

/ m - i ( n )  =  fm(n)  -  K mgm- i ( n  -  1) m  =  N ,  N  -  1 , . . . ,  1

The equation (7.2.30) for gm(n) rem ains unchanged.
T he result o f these changes is the set o f equations

f s ( n )  =  x  (n)

f m - \ ( n )  =  f m(n) -  K mgm. ] ( n  -  1) m =  N ,  N  -  1, .  

gm(n) =  K mf m- i ( n ) +  gm- \ (n  -  1) m =  N,  N  -  1, 

y (n ) =  /o (n ) =  go(n) 

which correspond to  the structure show n in Fig. 7.24.

(7.3.31)

(7.3.32)

(7.3.33)

(7.3.34)

Input

Figure 7.24 Lattice structure for an all-pole IIR system.
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T o dem onstrate that the set o f equations (7.3.31) through (7.3.34) represent 
an all-pole IIR  system , let us consider the  case w here N  = 1. T he equations  
reduce to

* (n ) =  / i(n )  

fain) =  h i n )  -  K\goin -  1)

g i(n ) =  ATi/o(n) +  go(n -  1) (7.3.35)

?(«) =  foin)

=  x i n )  -  K \y in  -  1 )

Furthermore, the equation for g i(/i) can be expressed as

£ i(n ) =  ATi^n) +  y in  -  1) (7.3.36)

W e observe that (7.3.35) represents a first-order all-pole IIR system  while (7.3.36) 
represents a first-order FIR  system . The p o le is a result o f the feedback  introduced  
by the solution o f the ( / m(n)} in descending order. This feedback is depicted in 
Fig. 7.25a.

Forward

(a)

Forward

Reverse
(b)

Figure 125 Single-pole and two-pole lattice system.
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(7.3.37)

N ext, let us consider the case N  =  2, which corresponds to the structure in 
Fig. 7.25b. T he equations corresponding to this structure are

f 2(n) =  x  (n)

f i ( n )  =  f 2(n) -  K 2g i(n  -  1)

g2(n) =  K 2f i ( n )  +  g i(n  -  1 )

/o (n) =  / i (n )  -  Kigoin -  1 )

gi (n) =  K ifo(n ) +  g o ( n - l )

y (n )  =  /o (n) =  go(«)

A fter som e sim ple substitutions and m anipulations we obtain

y (n )  =  +  K 2)y(n  — 1) -  K 2y(n  -  2) +  x (n )  (7.3.38)

g2(n) =  K 2v(n) +  K XQ + K 2)y(n  -  1) +  v(n -  2) (7.3.39)

Clearly, the difference equation in (7.3.38) represents a tw o-pole IIR system, and 
the relation in (7.3.39) is the input-output equation for a tw o-zero FIR  system. 
N ote that the coefficients for the FIR system  are identical to those in the IIR 
system  except that they occur in reverse order.

In general, these conclusions hold for any N . Indeed, with the definition of 
Am(i)  given in (7.2.32). the system  function for the all-pole IIR system  is

„  , , Y(z) Fo(z) 1 7 ,  ,,
Ha (z) = -------= ----------= ----------  (7.3.40)

X (z )  Fm(z) Am( z)

Similarly, the system  function o f the all-zero (FIR ) system  is

H b(z) =  =  Bm(z) =  z~mA m(z~ l ) (7.3.41)
Y (z)  G 0(Z)

where w e used the previously established relationships in (7.2.36) through (7.2.42). 
Thus the coefficients in the FIR system  Hb(z) are identical to  the coefficients in 
Am(z), except that they occur in reverse order.

It is interesting to note that the all-pole lattice structure has an all-zero path 
with input go(n) and output g x (n ),  which is identical to its counterpart all-zero  
path in the all-zero lattice structure. T he polynom ial Bm (z), which represents the 
system  function o f the all-zero path com m on to both lattice structures, is usually 
called the b a ckw ard  system  fu n c tio n , because it provides a backward path in the 
all-pole lattice structure.

From this discussion the reader should observe that the all-zero and all-pole 
lattice structures are characterized by the sam e set o f  lattice param eters, namely, 
K \, K 2, . . K n . T he tw o lattice structures differ only in the interconnections o f  
their signal flow graphs. C onsequently, the algorithms for converting betw een the 
system  param eters (am(fc)} in the direct form  realization o f  an FIR  system , and the 
param eters o f  its lattice counterpart apply as well to  the all-pole structure.
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W e recall that the roots o f the polynom ial A N(z) lie inside the unit circle if
and only if the lattice param eters |^ m| <  1 for all m  =  1, 2 .........N .  Therefore, the
all-pole lattice structure is a stable system  if and only if its param eters \K m\ <  1 
for all m.

In practical applications the all-pole lattice structure has been  used to m odel 
the human vocal tract and a stratified earth. In such cases the lattice parameters, 
{Km) have the physical significance o f being identical to reflection coefficients in 
the physical m edium . This is the reason that the lattice param eters are often  called  
reflection coefficients. In such applications, a stable m odel o f  the m edium  requires 
that the reflection coefficients, obtained by perform ing m easurem ents on  output 
signals from the m edium , be less than unity.

The all-pole lattice provides the basic building block for lattice-type structures 
that im plem ent IIR  system s that contain both poles and zeros. T o develop  the 
appropriate structure, let us consider an IIR system  with system  function

M

H (z)  =  -------------------------=  (1 3 A 2 )
A  , * n (z )

1 + J 2 a N(k)z~L 
k= 1

where the notation for the numerator polynom ial has been changed to avoid con­
fusion with our previous developm ent. W ithout loss of generality, we assume that 
N > M .

In the direct form II structure, the system  in (7.3.42) is described by the 
difference equations

N
w (n) =  — ^ atf(fc)u> (n  — k) +  x (n )  (7.3.43)

*=i
M

y(n)  =  £ c M(fc)w(n -  k) (7.3.44)
*=o

N ote that (7.3.43) is the input-output o f an all-pole IIR system  and that (7.3.44) is 
the input-output o f an all-zero system. Furtherm ore, w e observe that the output of 
the all-zero system  is sim ply a linear com bination o f delayed outputs from the all­
p ole system. This is easily seen by observing the direct form II structure redrawn 
as in Fig. 7.26.

Since zeros result from forming a linear com bination o f  previous outputs we 
can carry over this observation to construct a p o le-zero  IIR  system  using the all­
pole lattice structure as the basic building block. W e have already observed that 
gm(n ) is a linear com bination o f  present and past outputs. In fact, the system

Hh(z) =  =  Bm(z)
Y (z)
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^ - 0 - ------0 -------0

w(n) w(n -  1)

0>

w(n -  2)

e«0 )

w(n -  Af + 1) ------  w( n- M)
t - M ------------- ------

c*<2) cu ( M -  1) c^M)

yirt)

0 — - 0 - -------0 ------- 0 ^
Figure 7.26 D irect form II realization of IIR system.

is an all-zero system . T herefore, any linear com bination o f  {gm(n)} is also an 
all-zero system.

Thus w e begin with an all-pole lattice structure with param eters K m, 1 <  
m < N ,  and we add a ladder  part by taking as the output a w eighted linear 
com bination o f  (£*(n)}. T he result is a p o le-zero  IIR system  which has the lattice- 
ladder  structure shown in Fig. 7.27 for M  =  N.  Its output is

M

msrO
(7.3.45)

where (um) are the param eters that determ ine the zeros o f  the system . The system

Figure 7.27 Lattice-ladder structure for the realization o f  a pole-zero system.
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Y(z)
H (z)  =

X (z )

function corresponding to (7.3.45) is

-Z>
(7.3.46)

G m(z)
X {z)

Since X (z )  =  FN(z) and fb(z) =  G q(z ), (7.3.46) can be written as

rr/  ̂ G m{z) Fq(z)
H ( z )  =  > u m— — — 7 -  

^  G 0(z) FN (z)

Bm{z)
a n (z ) (7.3.47)

M
y ,  vmBm{z)

A \ ( z )
If we com pare (7.3.41) with (7.3.47), we conclude that

M
CM(z) =  ' £ / vmBm(z) (7.3.48)

m=0

This is the desired relationship that can be used to determ ine the weighting coef­
ficients {um). Thus, we have dem onstrated that the coefficients o f  the numerator 
polynom ial C*f(z) determ ine the ladder param eters {um}, w hereas the coefficients 
in the denom inator polynom ial A^(z) determ ine the lattice param eters {Km\.

G iven the polynom ials C «(z) and A n (z), where N  > M ,  the parameters of 
the all-pole lattice are determ ined first, as described previously, by the conver­
sion algorithm given in Section 7.2.4, which converts the direct form coefficients 
into lattice parameters. B y m eans o f the step-dow n recursive relations given by 
(7.2.54), we obtain the lattice param eters {Km} and the polynom ials Bm(z), m =  1, 
2 , . . . ,  N .

T he ladder param eters are determ ined from (7.3.48), which can be expressed
as

TO —1

Cm(z) =  £  vk Bk(z) +  vmBm(z) (7.3.49)

or, equivalently, as

Cm(z) =  Cm_ ,(z ) +  vmBm(z) (7.3.50)

Thus Cm(z) can be com puted recursively from the reverse polynom ials Bm(z), m =
1 , 2 , . . . ,  M .  Since — 1  for all m, the param eters vm, m =  0, 1 , . . . ,  M  can be 
determ ined by first noting that

vm =  cm(m) m  =  0 , 1 , . . . ,  M  (7.3.51)



Sec. 7.4 State-Space System Analysis and Structures 539

T hen, by rewriting (7.3.50) as

Cm- \ (z) =  Cm (z ) -  iv, Bm(z) (7.3.52)

and running this recursive relation backward in m  (i.e., m =  M , M  — 1 , . , , ,  2 ), w e  
obtain cm(m ) and therefore the ladder param eters according to  (7.3.51).

T he lattice-ladder filter structures that w e have presented require the m in­
im um  am ount o f m em ory but not the m inimum number o f  m ultiplications. A l­
though lattice structures with only one m ultiplier per lattice stage exist, the two 
m ultiplier-per-stage lattice that we have described, is by far the m ost widely used in 
practical applications. In conclusion, the m odularity, the built-in stability charac­
teristics em bodied in the coefficients {ATm}, and its robustness to  finite-word-length  
effects m ake the lattice structure very attractive in m any practical applications, 
including speech processing systems, adaptive filtering, and geophysical signal pro­
cessing.

7.4 STATE-SPACE SYSTEM ANALYSIS AND STRUCTURES

U p  to this point our treatment o f linear time-invariant system s has been limited  
to  an in p u t-o u tp u t  or external description  of the characteristics o f the system. In 
other words, the system  was characterized by m athem atical equations that relate 
the input signal to  the output signal. In this section w e introduce the basic concepts 
in the state-space description o f linear time-invariant causal systems. A lthough the 
state-space  or internal description  of the system  still involves a relationship betw een  
the input and output signals, it also involves an additional set o f variables, called  
state variables. Furtherm ore, the m athem atical equations describing the system, 
its input, and its output are usually divided into tw o parts:

1. A  set o f m athem atical equations relating the state variables to the input 
signal.

2. A  second set of m athem atical equations relating the state variables and the 
current input to the output signal.

The state variables provide inform ation about all the internal signals in the 
system . A s a result, the state-space description provides a m ore detailed  descrip­
tion o f  the system  than the input-output description. A lthough our treatment o f  
state-space analysis is confined primarily to  single input-single output linear time- 
invariant causal system s, the state-space techniques can also be applied to non­
linear system s, time-variant system s, and m ultiple input-m ultiple output systems. 
In fact, it is in the characterization and analysis o f  m ultiple input-m ultiple output 
system s that the pow er and im portance o f  state-space m ethods are clearly evident.

B oth  input-output and state-variable descriptions o f  a system  are useful in 
practice. T he description w e use depends on the problem , the available informa­
tion, and the questions to  be answered. In our presentation, the em phasis is on
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the use o f  state-space techniques in system  analysis, and in the developm ent o f  
state-space structures for the realization o f discrete-tim e system s.

7.4.1 S ta te-Sp ace D escrip tions of S y stem s Characterized  
by Difference Equations

A s we have already observed, the determ ination o f  the output o f  a system  requires 
that w e know the input signal and the set o f initial conditions at the time the input 
is applied. If a system  is not relaxed initially, say at tim e no, then  know ledge of 
the input signal x (n )  for n > nQ is not sufficient to uniquely determ ine the output 
y(n) for n >  no- The initial conditions o f the system  at n =  no m ust also be known  
and taken into account. This set o f initial conditions is called the state o f the 
system  at n =  no- H ence we define the  state o f  a system  at tim e no as the a m o u n t o f  
in fo rm a tion  that m u s t be p ro v id ed  at tim e  n0, which, together w ith  the in p u t signal 
x (n )  fo r  n > no, un iquely  determ ine the o u tp u t o f  the system  fo r  a ll n >  no-

From this definition we infer that the concept o f state leads to a decom po­
sition o f a system into tw o parts, a part that contains m em ory, and a m em oryless 
com ponent. The inform ation stored in the m em ory com ponent constitutes the set 
of initial conditions and is called the state o f  the system . The current output o f  the 
system then becom es a function o f  the current value o f the input and the current 
state. Thus, to determ ine the output o f the system  at a given tim e, we need the 
current value o f the state and the current input. Since the current value o f the 
input is available, w e only need to provide a m echanism  for updating the state o f  
the system  recursively. C onsequently, the state o f the system  at tim e no + 1  should  
depend on the state o f  the system  at time n0 and the value o f the input signal x  (n) 
at n =  no-

T he follow ing exam ple illustrates the approach in form ulating a state-space 
description o f a system . L et us consider a linear tim e-invariant causal system  
described by the difference equation

T he direct form II realization for the system  is shown in Fig. 7.28.
A s state variables, w e use the contents o f the system  m em ory registers, count­

ing them from the bottom , as shown in Fig. 7.28. W e recall that the  output o f a 
delay elem ent represents the present value stored in the register and the input 
represents the next value to be stored in the m em ory. C onsequently, with the aid 
o f  Fig. 7.28, w e can write

3 3
(7.4.1)

t>i(n +  1 ) =  V2 (n) 

v i (n +  1 ) =  U3  («)

v$(n +  1) =  - a 3U i(n ) -  02 « 2 (n ) -  o m 3(n )  +  x(n)

(7.4.2)
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<*>

o - -« l ©

0 -

v2 («)
■6

U,(«)

" « 3  3

Figure 7.28 Direct form II realization of system described by the difference equa­
tion in (7.5.1).

It is interesting to note that the state-variable formulation for the third-order 
system  o f (7.4.1) involves three first-order difference equations given by (7.4.2). In 
general, an nth-order system  can be described by n first-order difference equations.

T he output equation, which expresses y ( n ) in terms of the state variables and 
the present input value x (n ), can also be obtained by referring to Fig. 7.28. W e have

y(n) =  i>oVi(n +  1 ) +  />3 Ui(n) + b2v2 (n) +  6 it>3 (/i)

W e can elim inate v$(n + 1 )  by using the last equation in (7.4.2). Thus we obtain 
the desired output equation

y(n) =  (f>3 -  boa2)v i(n )  +  (£ 2  — boa2)v2(n) +  (b\ -  i>o<ai)u3 (n) +  b0x(n )  (7.4.3)

If we put (7.4.2) and (7.4.3) into matrix form we have

’ V[(n +  1)- - 0 1 0  ■ ‘ t>] (n ) - - 0 -
V2 (n + 1) = 0 0 1 V2 (n) + 0

_ v 3 (n  +  1 ) . . - 0 3 - a 2 - a \ . - i> 3 (n )- . 1 .
x(n ) (7.4.4)

and

y(n )  =  [(b3 -  b0a3) ( ^  -  M 2 ) (i>i ~  M l ) ]
~ v i(n )’

v2(n) ■+■ box(n) (7.4.5)
-V3 ( * ) -

T he equations (7.4.4) and (7.4.5) provide a com plete description o f the sys­
tem . Furtherm ore, the variables v i(n), V2(n), and 113(0 ), which summarize all the 
necessary past inform ation, are the state variables  o f the system. W e also observe  
that as indicated previously, equations (7.4.4) and (7.4.5) split the system  into tw o  
com ponent parts, a dynamic (m em ory) subsystem  and a static (m em oryless) sub­
system . W e say that this se t o f  equations provides a state-space description  o f the 
system.
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By generalizing the previous exam ple, it can easily be seen  that the A'th-order 
system  described by

Af N
, ( « )  =  - £  a ty (n ~  +  bkX^n ~  k) (7.4.6)

*=i Jt=0

can be expressed as a linear time-invariant state-space realization by the relations

State equation

v(n -j- 1 ) =  Fv(n) +  qx(n) (7.4.7)

Output equation

>■(«) =  gf v (n )  +  d x (n ) (7.4.8)

where the elem ents o f  F, q, g, and d  are constants (i.e., they do not change as a 
function o f the time index n), given by

F =

g =

-  0 1 0  • • 0  “ "0 "
0 0 1  0  - 0

q =

0

0 0 0 1 0

. - a s ~ a „ - 1 - a 2 ~ a \  .

(7.4.9)

bN — boaN 
bfj - 1 — boan-\

b\ — boa\

A ny discrete-tim e system  w hose input x (n ), output y(n) ,  and state v{n), for 
all n >  no, are related by the state-space equations above, w here F, q, g, and d  are 
arbitrary but fixed quantities, will be called linear and t ime invariant.  If at least 
one of the quantities in F, q, g, or d  depends on tim e, the system  becom es time  
variant.

W e will refer to (7.4.7) through (7.4.8) as the linear time-invariant state-space 
model,  which can be represented by the sim ple vector-m atrix block diagram in 
Fig. 7.29. In this figure the double lines represent vector quantities and the blocks 
represent the vector or matrix coefficients.

Example 7.4.1

Determine the state-space equations for the transposed direct form II structure shown
in Fig. 7.30.

Solution The validity of this structure can be seen if we rewrite (7.4.1) as

y(n)  =  -  k) -  aky(n -  * )] +  box(n)
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Figure 7.29 General state-space description of a linear time-invariant system.

*(«)

Figure 7JO State-space realization for the system described by (7.4.1).

Due to the linearity and time invariance of the system, instead of first delaying the 
signals x(n)  and y(n) and then computing the terms bkx(n -  k) — aky(n — k) as in 
Fig. 7.28, we first compute the terms bkx(n) — aty(n) and then delay them.

If we use the state variables indicated in Fig. 7.30, we obtain
'vi(n  +  1 )" ‘ 0  0  — 0 3  ’ 'M n ) ‘ ‘ bi — boaj "

Vi (n + 1 ) = 1 0  - a 2 i>2 (n) = * 2  -  M 2

.  v3 (n +  1 ) . . 0  1 - a i . .t>B(n). -b\ — bod\.

x(n)

y(n) =  [0  0  1 ]
Di(n) 
l> 2 (fl)  

V3(n) J
-f box(n)

(7.4.10)

(7.4.11)

The state-space description specified by (7.4.4) and (7.4.5) is known as a type
1 state-space realization, w hereas the on e described by (7.4.10) and (7.4.11) is 
called  a type 2  state-space realization.

7.4 .2  Solution of the Sta te-Sp ace  E quations

T here are several m ethods for solving the state-space equations. H ere w e discuss 
a recursive solution which m akes use o f  the fact that the state-space equations are 
a se t o f linear first-order difference equations.
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For the jV-dimensional state-space m odel

v(« +  1) =  Fv(/i) +  qjr(n) 

y(n) =  g'v(n) +  dx(n)

(7.4.12)

(7.4.13)

and given the initial condition v(«0), we have for n >  n0, 

v(n0 +  1) =  Fv(n0) +  q*(n) 

v(no +  2 ) =  Fv(n0 +  1 ) +  qjr(n0 +  1 )

=  F2v(n0) +  Fqj(«o) +  q-^(«o +  1)

where F2 represents the matrix product FF and Fq is the product o f the matrix F 
and the vector q. If we continue as in the one-dim ensional case, we obtain, for 
n >  n0,

The matrix F° is defined as the N  x N  identity matrix, having unity on the 
main diagonal and zeros elsew here. The matrix F'- -' is often  d enoted  as 4>(/ -  j ) ,  
that is,

for any positive integers i >  j .  This matrix is called the state transition matrix  of 
the system.

The output o f the system  is obtained by substituting (7.4.14) into (7.4.13). 
The result o f this substitution is

From this general result, we can determ ine the output for two special cases. 
First, the zero-input response o f the system  is

Clearly, the A'-dimensional state-space system is zero-input linear, zero-state 
linear, and since y (n )  =  y Zi(n) +  y zs(n), it is linear. Furtherm ore, since any system  
described by a linear constant-coefficient d ifference equation can be put in the 
state-space form, it is linear, in agreem ent with the results obtained in Section 2.4.

(7.4.14)

* ( /  -  j )  =  F ~ J (7.4.15)

y(n)  =  g'F" nov(n0) +  £  g'F" 1 kqx (k )  +  dx{n )
*=«0

n-1
(7.4.16)

=  -  floM no) +  ^ 2 -  1 -  &)q*(*) +  d x (n )

yzM )  =  g'F" n“v(n0) =  g '$ (n  -  floM no) 

On the other hand, the zero-state response is

n—1

(7.4.17)

yzs(n) =  g' $ { n  -  1  -  fc)q*(/:) +  d x(n ) (7.4.18)
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7.4.3 Relationships Between Input-Output and 
State-Space Descriptions

From our previous discussion w e have seen that there is no unique choice for the 
state variables o f  a causal system. Furtherm ore, different choices for the state  
vector lead to  different structures for the realization o f  the sam e system . H ence, 
in general, the input-output relationship does not uniquely describe the internal 
structure o f  the system .

T o illustrate these assertions, let us consider an N -dim ensional system  with 
the state-space representation

Let P be any N  x  N  matrix w hose inverse matrix P-1 exists. W e define a new  
state vector v(n) as

W ith these definitions, the state equations can be expressed in terms o f  the new  
system  quantities as

If w e com pare (7.4.19) and (7.4.20) with (7.4.26) and (7.4.27), w e observe  
that by a sim ple linear transformation o f  the state variables, w e have generated  
a new  set o f  state equations and an output equation, in which the input x ( n ) and 
the output y ( n ) are unchanged. Since there is an infinite num ber o f  choices o f  the  
transformation m atrix P, there is also an infinite num ber o f  state-space equations

v(n +  1) =  Fv(rt) 4- qjf(n) 

y(n)  =  g'v(n) -1- d x (n )

(7.4.19)

(7.4.20)

(7.4.24)

(7.4.23)

(7.4.22)

(7.4.21)

N ow , w e define a new  system  param eter matrix F and the vectors q and g as

F = PFP-1

(7.4.25)

v(rt 4  1) — Fv(n) 4 - q*(n) 

y(n)  =  §fv(n)  -j- d x(n )

(7.4.26)

(7.4.27)
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and structures for a system . Som e o f  these structures are different, while som e  
others are very similar, differing on ly by scale factors.

A ssociated with any state-space realization o f  a system  is the concept o f a 
m in im a l  realization. A  state-space realization is said to be m in im a l  if the dim ension  
o f  the state space (the number o f  state variables) is the sm allest o f  all possible  
realizations. Since each state variable represents a quantity that must be stored  
and updated at every tim e instant n , it fo llow s that a m inim al realization is one  
that requires the sm allest number o f  delays (storage registers). W e recall that the  
direct form II realization requires the sm allest number o f  storages registers, and 
consequently, a state-space realization based on the contents o f  the delay elem ents  
results in a m inim al realization. Similarly, an FIR  system  realized as a direct form  
structure leads to a m inimal state-space realization if the values o f the storage 
registers are defined as the state variables. On the other hand, the direct form I 
realization of an IIR  system  does not lead to a minimal realization.

N ow , let us determ ine the impulse response o f  the system  from the state- 
space realization. The im pulse response provides one o f  the links betw een the 
input-output and state-space description o f systems.

By definition the im pulse response h(n)  o f a system  is the zero-state re­
sponse o f the system to the excitation x ( n ) =  6 (n). H en ce it can be obtained from  
equation (7.4.16) if we set no =  0 (the time w e apply the input), v(0) =  0, and 
x (n )  — S(n). Thus the im pulse response o f  the system  described by (7.4.19) and 
(7.4.20) is given by

h(n) — g, Fn~ 1 q«(n — 1) +  d8(n)
(7.4.28)

=  g '$ (n  — l)qw(n — 1 ) +  d8(n)

Given a state-space description, it is straightforward to  determ ine the im pulse re­
sponse from (7.4.28). H ow ever, the inverse is not easy since there is an infinite 
number o f  state-space realizations for the sam e input-output description.

The transpose system. The transpose o f a m atrix F is obtained by inter­
changing its colum ns and rows, and it is denoted by F .  For exam ple,

r /n /12  • ■ f \ N  ' r /11 /21 • • f m '
/21 /2 2  • ■ f2N /12 /22  • ■ /V 2

F* =

- / v  1 f s 2 • f s N  - - f l N f l N  • • fNN  -

N ow  define the transpose sys tem  (7 .4 .1 9 )-(7 .4.20) as

v'tn +  1) =  F v* (rt) +  gx(n )  (7.4.29)

y '(n )  =  qV (n) - \-dx(n)  (7.4.30)

A ccording to (7.4.28), the im pulse response o f this system  is given as

t i ( n )  =  qr(F')"-1g«(n -  1) +  dS(n )  (7.4.31)
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From matrix algebra w e know that (F )"  1 =  ( F -1)'- H ence  

h'(n)  ~  q ' ( F _ 1 ), gw(n -  1 ) +  d5(n)

W e claim that h'(n)  =  h(n). Indeed, the term q ' ( F -1 )'g is a scalar. H ence it 
is equal to its transpose. Consequently,

[ q ' ( F - 1 )'g]' =  g'(F  y - ' q

Since this is true, it follow s that (7.4.31) is identical to  (7.4.28) and, therefore, 
h '(n)  =  h(n).  Thus a single input-single  o u tp u t  system a n d  its transpose have iden­
tical im pulse  responses a n d  hence the sam e inpu t -o u tp u t  relationship. To support 
this claim further, we note that the type 1  and type 2  state-space realizations, 
described by (7.4.3), (7.4.4), (7.4.10), and (7.4.11) are transpose structures, which 
stem  from the sam e input-output relationship (7.4.1).

W e have introduced the transpose structure because it provides an easy  
m ethod for generating a new structure. H ow ever, som etim es this new structure 
m ay either differ trivially or be identical to  the original one.

The diagonal system. A  closed-form  solution of the state-space equations 
is easily obtained when the system matrix F is diagonal. H ence, by finding a matrix 
P so that F  =  P F P - 1  is diagonal, the solution of the state equations is simplified 
considerably. The diagonalization of the matrix F  can be accom plished by first 
determ ining the eigenvalues and eigenvectors o f the matrix.

A  number A is an eigenvalue  o f  F  and a nonzero vector u is the associated  
eigenvector  if

Fu =  Au (7.4.32)

T o determ ine the eigenvalues o f F, we note that

(F  -  Xl)u =  0 (7.4.33)

This equation has a (nontrivial) nonzero solution u if the matrix F -  XI is singular 
[i.e., if (F  — Al) is noninvertible], which is the case if the determ inant o f (F  — /.I) 
is zero, that is, if

det (F -  XI) =  0 (7.4.34)

This determ inant in (7.4.34) yields the characteristic po lyn o m ia l  o f the matrix 
F. For a n N x N  matrix F, the characteristic polynom ial o f F  is degree N  and hence
it has jV roots, say X,, i =  1, 2 .........N .  The roots may be distinct or som e roots
m ay be repeated. In any case, for each root A,, w e can determ ine a vector u (, 
called the eigenvector corresponding to the eigenvalue X,, from the equation

FU; =  X(U;

T hese eigenvectors are orthogonal, that is, uju, =  0, for i ^  j .
If w e form a matrix U  w hose colum ns consist o f the eigenvectors {u, }, that is,

f  t  t  t  ■
U  =  Ul U2 ••• UjV

- 1 1  i  J



then the matrix F =  U -1F U  is diagonal. Thus we have solved for the matrix that 
diagonalizes F.

T he follow ing exam ple illustrates the procedure o f  diagonalizing F.

Example 7.4.2

The Fibonacci sequence, which is the sequence {1,1,2, 3, 5 ,8 .1 3 .. . .} ,  can be gener­
ated as the impulse response of the system that satisfies the state-space equations

v ( « +  1 )  =  j  j  v < n ) +  j ^ J  .x (n )

y(rt) =  [1  1 ] v(n)  +  x(n)

Determine the impulse response {/»(«)} of the system.

Solution Now we wish to determine an equivalent system 

v(n +  1) =  Fv(n) +  qx(n)

y(n) = g'v(n) + dx(n)

such that the matrix F is diagonal. From (7.4.25) we recall that the two systems are 
equivalent if

F =  PFP“' q =  P? g '= g 'P " 1

Given F. the problem is to determine a matrix P such that F =  PFP - 1  is a diagonal 
matrix.

First, we compute the determinant in (7.4.34). We have 

d et(F -A l)  = d e t [ “ j — X — 1 =  0

or

1 +  V 5 1 -  V s
x, =  - 2—  X2 =  - 1 -

To find the eigenvector U] corresponding to A.], we have

[? °r »'=[i]
Similarly, we obtain
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We observe that ur,u2 =  1 +  = 0  (i.e., the eigenvectors are orthogonal). Now 
matrix U, whose columns are the eigenvectors of F, is

Then the matrix U -1FU is diagonal. Indeed, it easily follows that

Xj 0 1



and since the transformation matrix is P =  U-1, we have

p = __ !__ r ^  - M
A.2 — A.i L —A-i 1  J

Thus the diagonal matrix F has the form

M o':]
where the diagonal elements are the eigenvalues of the characteristic polynomial.
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Furthermore, we obtain

q =  Pq =

and

_1_

v l

L 'V 5 J

r  =

'3 +  V s  3 - V 5
2 2

The impulse response of this equivalent diagonal system is 

fi(n) =  g'Fqu(n -  1) +d&(n)

(^K^y
m m

u(n -  1 ) +  5(n)

which is the general formula for the Fibonacci sequence.
An alternative expression can be found by noting that the Fibonacci sequence 

can be considered as the zero-input response of the system described by the difference 
equation

y(n) =  y(n -  1 ) +  y(n -  2 ) +  x (n)

with initial conditions j><—1) =  1, y (—2) =  —1. From the type 1 state-space realization, 
we note that U](0) =  y { - 2 ) =  - 1  and t^(0) =  ;y (-l)  =  1. Hence

r  - 3  +  V5 n
r * (° n  p r ^ n  z i  
L t>2(0 ) J Lv2<0)J 5

2
3 +  V S

and the zero-input response is

yn(")  =  r ^ ^ ( 0)

(»)

This is the more familiar form for the Fibonacci sequence, where the first term of the 
sequence is zero, that is, the sequences is {0 , 1 , 1 , 2 , 3 ,5 , 8, . .  .)•
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This exam ple illustrates the m ethod for diagonalizing the matrix F. The 
diagonal system  yields a set o f  N  decoupled, first-order linear difference equations 
that are easily solved to yield the state and the output o f the system .

It is important to note that the eigenvalues o f the matrix F are identical to  the 
roots o f the characteristic polynom ial, which are obtained from the hom ogeneous 
difference equation that characterizes the system. For exam ple, the system  that 
generates the Fibonacci sequence is characterized by the hom ogeneous difference  
equation

y(n) -  y(n -  I) -  y{n -  2) =  0  (7.4.35)

R ecall that the solution is obtained by assuming that the hom ogeneous solution  
has the form

yh(n) =  kn

Substitution o f this solution into (7.4.35) yields the characteristic polynomial

A2 -  /  -  1 =  0

But this is exactly the sam e characteristic polynom ial obtained from the determ i­
nant o f (F -  XI).

Since the state-variable realization of the system  is not unique, the matrix 
F is also not unique. H ow ever, the eigenvalues o f the system are unique, that is, 
they are invariant to any nonsingular linear transformation o f  F. Consequently, 
the characteristic polynom ial o f  F  can be determ ined either from evaluating the 
determ inant o f ( F - A l )  or from the difference equation characterizing the system.

In conclusion, the state-space description provides an alternative character­
ization of the system  that is equivalent to  the input-output description. O ne ad­
vantage o f  the state-variable formulation is that it provides us with the additional 
information concerning the internal (state) variables o f the system , information 
that is not easily obtained from the input-output description. Furtherm ore, the 
state-variable formulation o f  a linear time-invariant system  allow s us to represent 
the system  by a set o f (usually coupled) first-order difference equations. The de­
coupling o f the equations can be achieved by m eans o f a linear transformation that 
can be obtained by solving for the eigenvalues and eigenvectors o f  the system. The 
decoupled equations are then relatively sim ple to  solve. M ore im portant, however, 
the state-space form ulation provides a powerful, yet straightforward m ethod for 
dealing with system s that have m ultiple inputs and m ultiple outputs (M IM O ). A l­
though we have not considered such system s in our study, it is in the treatment of 
M IM O  system s where the true pow er and the beauty o f  the space-space formula­
tion can be fully appreciated.

7.4.4 State-Space Analysis in the z-Domain

The state-space analysis in the previous sections has been  perform ed in the time 
dom ain. H ow ever, as w e have observed previously, the analysis o f linear time- 
invariant discrete-tim e system s can also be carried out in the z-transform



dom ain, often with greater ease. In this section w e treat the state-space rep­
resentation o f linear time-invariant discrete-tim e system s in the z-transform d o­
main.

Let us consider the state-space equation

v(rt +  1) =  Fv(n) +  <pr(n) (7.4.36)

If w e define the vector V (z) as

Sec. 7.4 State-Space System Analysis and Structures 551

* \(z) 1  
V2(z)

(7.4.37)V (z) =

LVV(z).

then (7.4.36) can be expressed in matrix form as

zV (z) =  FV (z) +  q * (z )  (7.4.38)

T he tw o terms involving V(z) can be collected together and the resulting equation  
can be used to solve for V(z). Thus

(zi -  F)V(z) =  q*(z)
(7.4.39)

V(z) =  ( z I - F r V ( z )

The inverse z-transform o f (7.4.39) yields the solution for the state equations. 
N ext, we turn our attention to the output equation, which is given as

j(n )  =  g*v (n) +  d x(n )  (7.4.40)

The z-transform o f (7.4.40) is

y ( z ) = g 'V ( z )  +  dX (z) (7.4.41)

B y using the solution in (7.4.39) w e can elim inate the state vector V (z) in 
(7.4.41). Thus we obtain

y (z )  =  [g, ( z I - F ) ~ 1q +  d ]X (z) (7.4.42)

which is the z-transform o f the zero-state response o f the system . T he system  
function is easily obtained from  (7.4.42) as

H (z) =  — y =  g ' ( z I - F ) - 1q +  <f (7.4.43)

T he state equation given by (7.4.39), the output equation given by (7.4.42) and the 
system  function given by (7.4.43) all have in com m on the factor (z i — F )-1 . This 
is a fundam ental quantity that is related to the z-transform  o f  the state transition  
m atrix o f the system . T he relationship is easily established by com puting the



z-transform o f the im pulse response h(n),  which is g iven  by (7.4.28). Thus we 
have

00

H (z)  =  X > (« )z ~ "
n=0 

oc
=  -  1) +  d i ( n ) \ z ~ n (7.4.44)
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T he term in parentheses in (7.4.44) can be written as

00

=  z -H l +  Fz” 1 +  F2z - 2 +  ---)  

=  z - H l - F z " 1 ) " 1 =  ( z I - F ) ' 1

(7.4.45)

If we substitute the result in (7.4.45) into (7.4.44), w e obtain the expression for 
H (z)  as given in (7.4.43).

Since the state transition matrix is given by

(/i) = F  (7.4.46)

the z-transform o f  (n) is

00

Y  V  z~" =  I +  Fz - 1 +  F2z - 2  +  F V 3 +  ■ ■ ■

=  ( I - F z - 1 ) - 1 = z ( z I - F ) - 1

The relation in (7.4.47) provides a sim ple m ethod for determ ining the state 
transition matrix by m eans o f z-transforms. W e recall that

( z I - F T 1 =  (7.4.48)
d et(z l -  F)

where adj(A ) denotes the adjoint  matrix  o f A  and det (A )  denotes the determinant 
of the matrix A . Substitution o f  (7.4.48) into (7.4.43) yields the result

(7A49>
C onsequently, the denom inator D (z)  o f  the system  function H (z) ,  which contains 
the po les o f the system  is simply

D (z)  =  d et(z l -  F) (7.4.50)

But the d et(z l — F) is just the characteristic polynom ial o f  F. Its roots, which are 
the poles o f system , are the eigenvalues o f  the matrix F.
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Example 7A 3

Determine the system function H(z), the impulse response h(n), and the state tran­
sition matrix 3>(n) of the system that generates the Fibonacci sequence. This system 
is described by the state-space equation

v(n +  l)  =  j^  j j  v(n) +  x(n) 

y(n) = [ 1  1 ] v(n) +  jr(n)

Solution First, we determine H(z) and h(n) by computing (zl -  F)_t. We have

— u  u
Hence

..[‘71 !][?] + '
1

z2 -  ; -  1 l - z - ' - z - 2 

By inverting / / ( ’ ), we obtain h(n) in the form

h(n) =
y/5

«(H)

We note that the poles of H(z) are />] =  (] +  \/5 )/2  and p2 = (1 -  \/5)/2 . Since 
| Pi | > 1, the system that generates the Fibonacci sequence is unstable.

The state transition matrix #(n) has the z-transform

z(zl -  F) " 1 =  2 1 [ ; 2 ~ Z
z2 -  z -  1 L z z J

The four elements of ^(n) are obtained by computing the inverse transform of the 
four elements of z(zI -  F)_1. Thus we obtain

L<fci(n) <h2(n)l
where

<hi(n) =  ~7= H T - ( 4 T > («)

We note that the impulse response h{n) can also be computed from (7.4.28) by using 
the state transition matrix.
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This analysis m ethod applies specifically to  the com putation o f the zero-state  
response of the system. This is the consequence o f  the fart that w e have used the 
two-sided z-transform.

If we wish to determ ine the total response o f  the system , beginning at a 
nonzero state, say v(/i0), we must use the one-sided z-transform. Thus, for a given  
initial state v(n0) and a given input * (« ) for n >  no, w e can determ ine the state 
vector v(n) for n > no and the output y (n )  for n >  no, by m eans o f the one-sided  
z-transform.

In this developm ent we assume that no =  0, w ithout loss o f  generality. Then, 
given ;r(n) for n > 0 , and a causal system , described by the state equations in 
(7.4.36), the one-sided z-transform o f the state equations is

zV + (z) -  zv(0) =  FV + (z) +  qX (z)
or, equivalently,

V + (z) =  z (z l -  F r V O )  +  (z l -  F ) - 1 qX (z) (7.4.51)

N ote that X+ (z) =  X (z), since x (n )  is assumed to  be causal.
Similarly, the z-transform o f  the output equation given by (7.4.40) is

Y +(z) =  i V + (z) +  d X ( z )  (7.4.52)

If we substitute for V + (z) from (7.4.51) into (7.4.52), we obtain the result

Y +(z) =  z g ' ( z I - F r 1v(0) +  [ g ' ( z I - F r 1q +  rf]X(z) (7.4.53)

O f the terms on the right-hand side o f (7.4.53), the first represents the zero-input 
response o f the system due to  the initial conditions, while the second represents 
the zero-state response o f the system  that we obtained previously. Consequently,
(7.4.53) constitutes the total response o f the system , which can be expressed in the 
time domain by inverting (7.4.53). The result o f this inversion y ields the form for 
y(n) given previously by (7.4.16).

7.4.5 Additional State-Space Structures

In Section 7.4.2 w e described how state-space equations can b e  obtained from a 
given structure and, conversely, how to obtain a realization o f the system  given  
the state equations. In this section w e revisit the parallel-form  and cascade-form  
realizations described previously and consider these structures in the context o f a 
state-space formulation.

The parallel-form state-space structure is obtained by expanding the system  
function H (z)  into a partial-fraction expansion, develop ing the state-space formu­
lation for each term in the expansion and the corresponding structure, and finally, 
connecting all the structures in parallel. W e illustrate the procedure under the 
assumption that the po les are distinct and N  — M.

The system function H ( z ) can be expressed as
N D

H (z )  =  C +  Y  — ”  (7.4.54)
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N ote that this is a different expansion from that given in (7.3.20). T he output o f  
the system  is

Y(z)  =  H ( z ) X ( z )  =  C X ( z )  +  BkYk(z)

where, by definition,

Yk(z) =
X(Z)

k=1

it =  1 ,2 .........N
Z -  Pt

In the time dom ain, the equations in (7.4.56) becom e

y t (n +  1) =  pkyk(n) + * ( « )  k =  1 , 2 , ,  N  

W e define the state variables as

vt(n) =  yt (n) k =  1 , 2 , . . . ,  N  

T hen the difference equations in (7.4.57) becom e

Vk(n +  1 ) =  PkVkin) +  x (n )  * =  1 , 2 .........N
The state equations in (7.4.59) can be expressed in matrix form as

(7.4.55)

(7.4.56)

"Pi o ■ 0 - "1"
0 pj  ■ 0 1

v(n +  1) = v(n) +

_  0 Pn - . 1 .

(7.4.57)

(7.4.58)

(7.4.59)

jc(rt) (7.4.60)

B n ] v(n)  +  C x (n )  (7.4.61)

This parallel-form realization is called the norm al  f o r m  representation, b e­
cause the matrix F  is diagonal, and hence the state variables are uncoupled. An  
alternative structure is obtained by pairing com plex-conjugate poles and any tw o  
real-valued poles to form second-order sections, which can be realized by using 
either type 1  or type 2  state-space structures.

The cascade-form  state-space structure can be obtained by factoring H (z)  into  
a product o f  first-order and second-order sections, as described in Section 7.2.2, 
and then im plem enting each section by using either type 1  or type 2  state-space  
structures.

L et us consider the state-space representation o f  a single second-order section  
involving a pair o f  com plex-conjugate poles. The system function is

bo +  b i z ~ l +  fa z~ 2

and the output equation is

y(n) =  [ B] B2

H (z )  =
1  +O iZ - 1  + 0 2 Z '2

boz2 +  b iz  +  b2 
z 2 +  a iz  +  02

A A*
=  bo + +

z - p  Z - p *

t , A X &  . y(z) =  b0x ( z )  + -----------h -------- -
z - p  Z - p

The output of this system can be expressed as

(7.4.62)

(7.4.63)
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W e define the quantity

S(z)  =  (7.4.64)
z - p

This relationship can be expressed in the tim e dom ain as

s{n +  1) =  ps(n )  + A x{n )  (7.4.65)

Since s(n) ,  p ,  and A are com plex valued, we define .y(n) as 

s(n) =  (/i) +  j v 2(n)

P =  « i +  ;'« 2  (7.4.66)

A -  q \ +  j q 2

U pon substitution o f  these relations into (7.4.65) and separating its real and 
imaginary parts, w e obtain

i>i (« +  ] )  =  cfiui (n) — ct2V2( n) +  q \ x { n )
(7.4.67)

U2(«  +  1) =  <*2i>i(n) +  a ] U 2 ( n )  +  q2x(n)

W e choose vi(n) and v2(n) as the state variables and thus obtain the coupled pair 
o f state equations which can be expressed in matrix form as

j:(n) (7.4.68)
L</2 j

The output equation can be expressed as

y(n )  =  b0x(n )  + s ( n ) +  j*(n) (7.4.69)

U pon substitution for s(n)  in (7.4.69), w e obtain the desired result for the output 
in the form

y(n)  =  [2  0 ]v (« )  + b0x(n )  (7.4.70)

A  realization for the second-order section is shown in Fig. 7.31. It is simply 
called the coupled- form  state-space realization. This structure, which is used as the 
building block in the im plem entation o f  cascade-form  realizations for higher-order 
IIR systems, exhibits low  sensitivity to finite-word-length effects.

v(n +  1 ) =
a i — a 2 v(«) +
a 2 a  i

7.5 REPRESENTATION OF NUMBERS

U p to this point w e have considered the im plem entation o f d iscrete-tim e systems 
without being concerned about the finite-word-length effects that are inherent in 
any digital realization, w hether it be in hardware or in software. In fact, w e have 
analyzed systems that are m odeled  as linear w hen, in fact, digital realizations of 
such systems are inherently nonlinear.

In this and the follow ing tw o sections, w e consider the various forms of 
quantization effects that arise in digital signal processing. A lthough w e describe
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Figure 731  Coupled-form state-space realization of a two-pole, two-zero IIR 
system.

floating-point arithmetic operations briefly, our major concern is with fixed-point 
realizations o f digital filters.

In this section we consider the representation o f num bers for digital com pu­
tations. The main characteristic o f digital arithmetic is the lim ited (usually fixed) 
num ber o f digits used to represent numbers. This constraint leads to finite nu­
m erical precision in com putations, which leads to round-off errors and nonlinear 
effects in the perform ance o f  digital filters. W e now  provide a brief introduction  
to  digital arithmetic.

7.5.1 Flxed-Point Representation of Numbers

T he representation o f num bers in a fixed-point format is a generalization o f the 
familiar decim al representation o f a number as a string o f  digits with a decimal 
point. In this notation, the digits to  the left o f the decim al point represent the 
integer part o f  the number, and the digits to  the right o f the decim al point represent 
the fractional part o f the number. Thus a real number X  can be represented as 

X  =  {b~A........ b ^ M M ..........bB)r

=  t  >,r~‘ 0 < » , < ( r - l )  <7'5 1 )
i rz—A

w here bt represents the digit, r is the radix or base, A  is the number o f  integer
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digits, and B  is the num ber o f fractional digits. A s an exam ple, the decim al number 
(123.45)io and the binary number ( 1 0 1 .0 1 ) 2 rep resen t the fo llo w in g  sums:

(123.45)io =  1 x  102  +  2 x  101 +  3 x  10° + 4  x  10_I +  5 x  10~ 2

(1 0 1 .0 1 ) 2  =  1  x  2 2 +  0  x  2 1 +  1  x 2 ° +  0  x  2 _ 1  +  1  x  2 ‘ 2

Let us focus our attention on the binary representation since it is the most 
important for digital signal processing. In this case r =  2 and the digits {£,} are 
called binary digits or bits and take the values {0 ,1}. The binary digit b - A is called  
the m ost significant bit (M SB ) o f the number, and the binary digit b B is called the 
least significant bit (LSB). The “binary poin t” betw een  the digits bo and b\ does  
not exist physically in the com puter. Simply, the logic circuits o f  the com puter 
are designed so that the com putations result in numbers that correspond to the 
assumed location o f this point.

B y using an n-bit integer form at (A =  n — 1, B =  0), w e an represent 
unsigned integers with m agnitude in the range 0  to  2" -  1. U sually, w e use the 
fraction format (A  =  0, B  =  n -  1), with a binary point betw een  bo and b \, that 
permits numbers in the range from 0 to 1 -  2~n. N ote  that any integer or mixed  
number can be represented in a fraction format by factoring out the term r A in
(7.5.1). In the sequel w e focus our attention on the binary fraction format because 
m ixed numbers are difficult to  m ultiply and the number o f b its representing an 
integer cannot be reduced by truncation or rounding.

There are three ways to represent negative numbers. T his leads to  three 
formats for the representation o f  signed binary fractions. The format for positive 
fractions is the sam e in all three representations, namely,

B

X  =  0.bib2 ■ ■ ■bB =  Y l b<- 2 “', X >  0 (7.5.2)
;«i

N ote that the M SB bo is set to  zero to  represent the positive sign. Consider now  
the negative fraction

B

X  =  - O M h  ■ ■ ■bB =  - J 2 b i -  2~‘ (7 -5 -3>

This number can be represented using one o f the follow ing three formats.

Sign-m agnitude format. In this format, the M SB is set to  1 to represent 
the negative sign,

.Xsm — l .b \b 2  • • - bB for X  <  0 (7.5.4)

O ne's-com plem ent format. In this format the negative numbers are rep­
resented as

X iC =  l b i h - b B X < 0  (7.5.5)

w here fc; =  1 -  i>, is the o n e ’s  com plem ent o f bt . Thus if X is a positive number, 
the corresponding negative num ber is determ ined by com plem enting (changing l ’s



to  0 ’s and 0’s to  l ’s) all the bits. A n alternative definition for X ic  can be obtained  
by noting that

B

X 1C =  1 x  2° +  £ ( 1  -  bi) • 2 -' =  2 -  2~b \X\  (7.5.6)
r=l

Two’s-complement format. In this format a negative num ber is repre­
sented  by forming the tw o’s com plem ent o f the corresponding positive number. 
In other words, the negative number is obtained by subtracting the positive num­
ber from 2.0. M ore sim ply, the tw o’s com plem ent is form ed by com plem enting  
the positive number and adding one LSB. Thus

X 2c  =  l . b i b 2 - - b B +  0 0 - - 0 1  X < 0  (7.5.7)

where +  represents m odulo -2  addition that ignores any carry generated from the  
sign bit. For exam ple, the number — 2 is simply obtained by com plem enting 0011 
( | )  to  obtain 1100 and then adding 0001. This yields 1101, which represents — j  
in tw o ’s com plem ent.

From (7.5.6) and (7.5.7) is can easily be seen that

X 2Q = X ]C + 2~H =  2 -  \X\ (7.5.8)

T o dem onstrate that (7.5.7) truly represents a negative number, we use the identity

B

l  =  J 2 2~i + 2 ' B (7 -5 -9 )
i=i

T he negative number X  in (7.5.3) can be expressed as

B

X 2C =  - J 2 b i -  2 "' +  1 - 1
1= 1

B

=  - 1  +  J ] ( l  -  bi)2~' +  2~B 
i=i

=  - l  +  ^ b i  - 2 - 1 + 2 ~ b 
i = i

w hich is exactly the tw o’s-com plem ent representation o f (7.5.7).
In summary, the value o f a binary string b o h  • • bB depends on the format 

used. For positive numbers, bo =  0, and the num ber is given by (7.5.2). For 
negative numbers, w e use these corresponding form ulas for the three formats.

Example 7.5.1

Express the fraction g and —|  in sign-magnitude, two’s-complement, and one’s- 
complement format.
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Solution X  =  |  is represented as 2~' +  2- 2  +  2~3, so  that X  =  0 .111. In  sign- 
magnitude form at, X  =  — | is represented as 1.111. In o n e 's  com plem ent, we have

X,c =  1.0 0 0  

In  two’s com plem ent, the result is

X2C = 1.0 0 0  +  0.00 1 =  1 .0 0 1

The basic arithmetic operations o f  addition and m ultiplication depend on  
the format used. For on e’s-com plem ent and tw o’s-com plem ent formats, addition  
is carried out by adding the numbers bit by bit. The formats differ only in the way 
in which a carry bit affects the M SB. For exam ple, f  — § =  g. In tw o ’s com plem ent, 
we have

where ® indicates m odulo-2 addition. N ote  that the carry bit, if present in the 
M SB. is dropped. On the other hand, in o n e ’s- com plem ent arithm etic, the carry in 
the M SB, if present, is carried around to the LSB. Thus the com putation g — |  =  g 
becom es

A ddition in the sign-m agnitude format is m ore com plex and can involve sign 
checks, com plem enting, and the generation o f a carry. On the other hand, di­
rect multiplication o f tw o sign- m agnitude numbers is relatively straightforward, 
whereas a special algorithm is usually em ployed for o n e ’s com plem ent and tw o’s 
com plem ent multiplication.

M ost fixed-point digital signal processors use tw o ’s-com plem ent arithmetic. 
H ence, the range for ( B + l ) —bit numbers is from —1 to 1—2- f i . T hese numbers can 
be view ed in a w heel format as shown in Fig. 7.32 for B =  2. T w o ’s-com plem ent 
arithmetic is basically arithmetic m odulo-2 B +1 [i.e., any num ber that falls outside

0 1 0 0 ® 1101 = 0 0 0 1

0100 ©  1100 =  0000 ©  0001 =  0001

0 0.0

- 2 0.5

-4
(a)

- 1.0

(b)

Figure 7.32 Counting wheel for 3-bit two’s-complement numbers (a) integers and 
(b) functions.
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the range (overflow  or underflow) is reduced to this range by subtracting an appro* 
priate m ultiple o f  2B+1]. T his type o f arithmetic can be view ed as counting using  
the w heel o f  Fig. 7.32. A  very im portant property o f tw o’s- com plem ent addition  
is that if  the final sum o f a string o f numbers X \ ,  X i , . . . , X N is w ithin the range, 
it will be com puted correctly, even  if individual partial sum s result in overflows. 
This and other characteristics o f  tw o ’s-com plem ent arithmetic are considered in 
Problem  7.44.

In general, the m ultiplication o f two fixed-point numbers each o f  b  bits in 
length results in a product o f 2b bits in length. In fixed-point arithmetic, the  
product is either truncated or rounded back to  b bits. A s  a result w e have a 
truncation or round-off error in the b least significant bits. The characterization  
of such errors is treated below .

7.5.2 Binary Floating-Point Representation of Numbers

A  fixed-point representation o f numbers allows us to cover a range o f numbers, 
say* *max — *min with a resolution

. -*max -Xmin

where m =  2* is the num ber o f levels and b  is the number o f bits. A  basic character* 
istic o f the fixed-point representation is that the resolution is fixed. Furthermore, 
A increases in direct proportion to an increase in the dynamic range.

A  floating-point representation can be em ployed as a m eans for covering a 
larger dynamic range. The binary floating-point representation com m only used  
in practice, consists o f a mantissa M , which is the fractional part o f the number 
and falls in the range |  < M  <  1, m ultiplied by the exponential factor 2 E, where 
the exponent E  is either a positive or negative integer. H ence a number X  is 
represented as

X  =  M - 2 E

The m antissa requires a sign bit for representing positive and negative numbers, 
and the exponent requires an additional sign bit. Since the mantissa is a signed  
fraction, w e can use any o f  the four fixed-point representations just described.

For exam ple, the num ber X i =  5 is represented by the follow ing mantissa 
and exponent:

M i  =  0 .1 0 1 0 0 0  

=  0 1 1

while the num ber X 2 =  |  is represented by the follow ing m antissa and exponent

M 2 -  0.110000  

E 2 =  101

where the leftmost bit in the exponent represents the sign bit.
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If the tw o numbers are to be m ultiplied, the m antissas are m ultiplied and the 
exponents are added. Thus the product o f these tw o numbers is

X i X 2 =  M \M 2 ■ 2El+E2 

=  (0 .011110) - 2010 

=  (0 .111100) - 2001

O n the other hand, the addition o f the tw o floating-point num bers requires that 
the exponents be equal. This can be accom plished by shifting the mantissa o f the 
sm aller number to the right and com pensating by increasing the corresponding 
exponent. Thus the number X 2 can be expressed as

M2 =  0 .0 0 0 0 1 1

E 2 =  O il

With E2 = E], we can add the tw o numbers X \  and X 2. The result is 

X i  +  X 2 =  (0.101011) -2 011

It should be observed that the shifting operation required to equalize the 
exponent o f X 2 with that for X 1 results in loss o f precision, in general. In this 
exam ple the six-bit mantissa was sufficiently long to accom m odate a shift o f four 
bits to the right for M2 w ithout dropping any o f the ones. H ow ever, a shift o f five 
bits would have caused the loss o f a single bit and a shift o f  six bits to the right 
w ould have resulted in a mantissa o f M 2 =  0.000000, unless w e round upward after 
shifting so that M 2 =  0.000001.

Overflow occurs in the m ultiplication o f tw o floating-point numbers when the 
sum o f the exponents exceeds the dynamic range o f  the fixed-point representation  
o f the exponent.

In com paring a fixed-point representation with a floating-point representa­
tion, each with the sam e number o f total bits, it is apparent that the floating­
point representation allows us to cover a larger dynamic range by varying the 
resolution across the range. T he resolution decreases w ith an increase in the 
size o f successive numbers. In other words, the distance betw een  two successive 
floating-point numbers increases as the numbers increase in size. It is this vari­
able resolution that results in a larger dynam ic range. A lternatively, if we wish 
to  cover the sam e dynamic range with both fixed-point and floating-point rep­
resentations, the floating-point representation provides finer resolution for small 
numbers but coarser resolution for the larger numbers. In contrast, the fixed- 
point representation provides a uniform  resolution throughout the range o f  num ­
bers.

For exam ple, if we have a com puter with a word size o f  32 bits, it is possible 
to  represent 232 numbers. If w e wish to represent the p ositive integers beginning 
with zero, the largest possible integer that can be accom m odated is

232 — 1 =  4,294,967,295
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T he distance betw een  successive numbers (the resolution) is 1. A lternatively, we 
can designate the leftm ost bit as the sign bit and use the rem aining 31 bits for 
the m agnitude. In such a case a fixed-point representation allows us to cover the 
range

—(231 -  1) =  —2,147,483,647 to  (231 -  1) =  2,147,483,647

again with a resolution o f 1 .
On the other hand, suppose that w e increase the resolution by allocating 10 

bits for a fractional part, 21 bits for the in teger part, and 1 bit for the sign. Then  
this representation allow s us to cover the dynam ic range

— (2 31 — 1 ) ■ 2 ~ 10 =  —(2 21 — 2 -t0 ) to  (2 31 — 1 ) ■ 2 - 1 0  =  2 21 — 2~10 

or, equivalently,

-2 ,097,151.999 to  2,097,151.999

In this case, the resolution is 2 ~ 10. Thus, the dynamic range has been  decreased  
by a factor o f  approximately 1 0 0 0  (actually 2 10), while the resolution has been  
increased by the sam e factor.

For com parison, suppose that the 32-bit word is used to represent floating­
point numbers. In particular, let the mantissa be represented by 23 bits plus a sign 
bit and let the exponent be represented by 7 bits plus a sign bit. N ow , the smallest 
number in m agnitude will have the representation,

sign 23 bits sign 7 bits
0 , 10 0  - 0  1  1 1 1 1 1 1 1  =  i  x 2 “ 127 ^ 0 .3  x 1 0 ' 38 

A t the other extrem e, the largest num ber that can be represented with this floating­
point representation is

sign 23 bits sign 7 bits
0  111 -- • 1 0 1111111 = ( l - 2 “23) x 2 m «  1.7 x  1038

Thus, w e have achieved a dynamic range o f approxim ately 1076, but with varying 
resolution. In particuiar, we have fine resolution for sm all numbers and coarse 
resolution for larger numbers.

The representation of zero poses som e special problem s. In general, only  
the m antissa has to  be zero, but not the exponent. T he choice o f M  and £ ,  
the representation o f zero, the handling o f  overflows, and other related issues  
have resulted in various floating-point representations on  different digital com ­
puters. In an effort to  define a com m on floating-point format, the Institute o f  
Electrical and Electronic Engineers (IE E E ) introduced the IE E E  754 standard, 
which is w idely used in practice. For a 32-bit m achine, the IE E E  754 standard  
single-precision, floating-point num ber is represented as X  =  ( —1)* ■ 2 £ - l 27(Af), 
where

0 1 8 9 31
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This number has the follow ing interpretations:

If E  =  255 and M  ^  0, then X  is not a number 

If E  — 255 and M  — 0, then X  — ( - 1 ) 5 • oo 
If 0 <  E  <  255, then X  =  ( - 1 ) 5 ■ 2 E~l21( l . M )
If E  -  0 and M  ^  0, then X  =  ( - 1 ) 5 ■ 2"I26(0.Af)
If E  =  0 and M  =  0, then X  =  ( - 1 ) 5 ■ 0

where 0 .M  is a fraction and l . M  is a m ixed number with one integer bit and 23 
fractional bits. For exam ple, the number

0 1 00000  10 1 0 1 0 00 
S E M

has the value X  =  —1° x 2 13 0 -12 7  x 1 .1 0 1 0 . . .0  =  23 x y  =  13. The m agni­
tude range o f  the 32-bit IE E E  754 floating-point numbers is from  2~m  x  2 -2 3  to 
(2  — 2 —23) x 2 127 (i.e., from 1,18 x  10~ 38 to 3.40 x 1038). C om putations with numbers 
outside this range result in either underflow or overflow.

7.5.3 Errors Resulting from Rounding and Truncation

In performing com putations such as m ultiplications with either fixed-point or 
floating-point arithmetic, w e are usually faced with the problem  o f  quantizing a 
number via truncation or rounding, from  a given level o f precision to a level o f  
low er precision. T he effect o f  rounding and truncation is to  introduce an error 
w hose value depends on the number o f  bits in the original num ber relative to 
the number o f  bits after quantization. T he characteristics o f the errors introduced  
through either truncation or rounding depend on the particular form o f  number 
representation.

T o be specific, let us consider a fixed-point representation in which a number 
x  is quantized from  bu bits to  b bits. Thus the number

bu

x  =  0 . 1 0 1 1 0 1  

consisting o f bu bits prior to  quantization is represented as

b

x = o.ioi • • • i
after quantization, w here b < bu. For exam ple, if x  represents the sam ple o f  
an analog signal, then bu may be taken as infinite. In any case if  the quantizer 
truncates the value o f  x ,  the truncation error is defined as

E t =  Q , ( x ) - x (7.5.10)
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First, w e consider the range o f values o f the error for sign-magnitude and 
tw o’s-com plem ent representation. In both o f these representations, the positive 
numbers have identical representations. For positive numbers, truncation results in 
a num ber that is sm aller than the unquantized number. C onsequently, the trunca­
tion error resulting from a reduction o f  the num ber o f significant bits from b„ to  b is

- Q T b - 2 ~ b“) < E,  < 0  (7.5.11)

w here the largest error arises from  discarding bu — b  bits, all o f which are ones.
In the case o f negative fixed-point numbers based on the sign-magnitude 

representation, the truncation error is positive, since truncation basically reduces 
the m agnitude o f the numbers. C onsequently, for negative numbers, w e have

0 <  E, <  ( X b - 2 ~ b-) (7.5.12)

In the tw o’s-com plem ent representation, the negative o f a number is obtained  
by subtracting the corresponding positive number from 2. A s a consequence, the 
effect o f truncation on a negative number is to  increase the m agnitude o f the 
negative number. C onsequently, x  > Q t (x)  and hence

— (2~h — 2~b“) < E, < 0  (7.5.13)

H ence we conclude that the truncation error f o r  the s ign-magnitude representation 
is sym m etr ic  a bou t  zero an d  fal ls in the range

- ( 2 ~ h -  2~b“ ) < £ , < ( 2~h -  2 ~b") (7.5.14)

On the other hand, f o r  two 's-complement representation, the truncation error is 
always negative a nd  fal ls in the range

— (2~h — 2~b‘) < E, < 0  (7.5.15)

N ext, let us consider the quantization errors due to rounding o f a number. A  
number x ,  represented by bu bits before quantization and b bits after quantization, 
incurs a quantization error

£r =  Q r(x) -  X (7.5.16)

Basically, rounding involves only the m agnitude o f  the number and, consequently, 
the round-off error is independent o f  the type o f  fixed-point representation. The 
m aximum  error that can be introduced through rounding is (2~b — 2~b,) /2  and this 
can be either positive or negative, depending on the value o f x .  Therefore, the 
r o u n d -o f f  error is s ym m etr ic  abou t  ze ro  an d  fal ls in the range

-  \ { 2 ~ b -  2~h‘ ) <  E r <  \ {2 ~ b -  2~b' )  (7.5.17)

T hese relationships are sum m arized in Fig. 7.33 when x  is a continuous signal 
am plitude (bu =  oo).

In a floating-point representation, the m antissa is either rounded or truncated. 
D u e  to  the nonuniform  resolution, the corresponding error in a floating-point 
representation is proportional to  the num ber being quantized. A n  appropriate
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E, -  QM) - *

2 '

(a)

£,= Q,M -  x 
2-b < £, < 0

(b)

£, = (2,M -  x 
- 2-* 5  £ ,< 2 - ‘

(c )

Figure 733 Quantization errors in rounding and truncation: (a) rounding; (b) truncation 
in two’s complement; (c) truncation in sign-magnitude.

representation for the quantized value is

Q (x)  =  x  +  ex  

where e is called the relative error. N ow

Q (x)  -  x  =  ex

(7.5.18)

(7.5.19)



In the case o f  truncation based on tw o’s-com plem ent representation o f the  
m antissa, we have

-  2E2~b < e,x  <  0 (7.5.20) 

for positive numbers. Since 2 £ _ 1  <  x  <  2£ , it follow s that

-  2~m  < e, <  0 x  >  0 (7.5.21)

On the other hand, for a negative num ber in tw o’s-com plem ent representation, 
the error is

0  <  e,x < 2E2~b

and hence

0 <  e, <  2~b+l x < 0  (7.5.22)

In the case where the mantissa is rounded, the resulting error is sym m etric 
relative to zero and has a maximum value o f ± 2 ~ h f l .  C onsequently, the round-off 
error becom es

-  2 e ■ 2~h f l  < erx  <  2 E ■ 2~h f l  (7.5.23)

A gain, since x  falls in the range 2 £ _ 1  <  x  <  2 £ , we divide through by 2 E~] so that

-  2~h < er < 2~b (7.5.24)

In arithmetic com putations involving quantization via truncation and round­
ing, it is convenient to adopt a statistical approach to the characterization of such 
errors. The quantizer can be m odeled as introducing an additive noise to the 
unquantized value x .  Thus we can write

Q( x )  = X  +  €

w here e =  E r for rounding and e =  E, for truncation. This m odel is illustrated in 
Fig. 7.34.

Since x  can be any number that falls within any o f the levels o f the quan­
tizer, the quantization error is usually m odeled as a random  variable that falls
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I Quantizer
CM

(a)

{*)----
Figure 734 Additive noise model for 
the nonlinear quantization process:
(a) actual system; (b) model for 
quantization.(b)
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within the limits specified. This random  variable is assum ed to  be uniformly 
distributed within the ranges specified for the fixed-point representations. Fur­
thermore, in practice, bu > >  b, so that w e can neglect the factor o f  2~b- in 
the formulas given below . U nder these conditions, the probability density func­
tions for the round-off and truncation errors in the two fixed-point representations 
are illustrated in Fig. 7.35. W e note that in the case o f  truncation o f  the tw o’s- 
com plem ent representation o f  the number, the average value o f  the error has a 
bias o f 2~bf2,  w hereas in all other cases just illustrated, the error has an average 
value o f  zero.

W e shall use this statistical characterization o f  the quantization errors in our 
treatment o f such errors in digital filtering and in the com putation o f the D F T  for 
fixed-point im plem entation.

p(£r)

A

A
2

0 A
2

A =  2 ~ h 

Er

(a)

P(E,)

2A

- A 0 A

A = 2-*

E,

(b)

P<£|)

A

A = 2~b

(c)

0
Figure 7J5 Statistical characterization 
of quantization errors: (a) round-off 
error, (b) truncation error for 
sign-magnitude; (c) truncation error for 
two’s complement.
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7.6 QUANTIZATION OF FILTER COEFFICIENTS

In the realization of F IR  and IIR  filters in hardware or in software on a general- 
purpose com puter, the accuracy with which filter coefficients can be specified is 
lim ited by the word length o f  the com puter or the length o f  the register provided  
to  store the coefficients. Since the coefficients used in im plem enting a given filter 
are not exact, the poles and zeros o f  the system  function will, in general, be 
different from the desired poles and zeros. C onsequently, w e obtain a filter having  
a frequency response that is different from the frequency response o f the filter with 
unquantized coefficients.

In Section 7.6.1, w e dem onstrate that the sensitivity o f  the filter frequency 
response characteristics to  quantization o f  the filter coefficients is minim ized by 
realizing a filter having a large number o f poles and zeros as an interconnection  
o f second-order filter sections. This leads us to the parallel-form and cascade- 
form realizations in which the basic building blocks are second-order filter 
sections.

7.6.1 Analysis of Sensitivity to Quantization of Filter 
Coefficients

T o illustrate the effect o f quantization o f  the filter coefficients in a direct-form  
realization o f an IIR  filter, let us consider a general IIR  filter with system  
function

T he direct-form  realization o f  the IIR  filter with quantized coefficients has the  
system  function

w here the quantized coefficients {£jt}and {a*) can be related to  the unquantized  
coefficients {£*} and [ak ] by the relations

M

I > * - ‘
Jt = 0 (7.6.1)

*3=0 (7.6.2)

a t  ~  ok +  A a* jfc =  1 ,2

b t  =  bt  +  A bt  k  =  0 , 1 , , . . ,  M
(7.6.3)

and {Aa*} and {Ai*} represent the quantization errors.
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The denom inator o f H (z)  may be expressed in the form

d (z) =  i  +  Y l akZ * =  n a  ~  PkZ ^ (7.6.4)

w here are the poles o f H (z) .  Similarly, we can express the denom inator o f  
H{z)  as

w here ~pk =  p k +  A p k, k  =  1 , 2 , . . . ,  N ,  and A p t  is the error or perturbation resulting 
from the quantization o f the filter coefficients.

W e shall now relate the perturbation A p t  to  the quantization errors in the
fatl.

The perturbation error Ap,  can be expressed as

where dp,/dan,  the partial derivative o f with respect to ak, represents the incre­
m ental change in the pole p, due to a change in the coefficient ak. Thus the total 
error Ap, is expressed as a sum o f  the increm ental errors due to changes in each 
o f the coefficients {ak}.

The partial derivatives d p t /dak, k =  1 , 2 , . . . ,  N ,  can be obtained by differen­
tiating D(z)  with respect to each o f  the {a*}. First w e have

N
(7.6.5)

(7.6.7)

Then

dPi _  {d D (z ) /d a k)z=Pi 

dak O D ( z ) / d z ) z=Pl
(7.6.8)

The numerator o f (7.6.8) is

(7.6.9)

The denom inator o f  (7.6.8) is
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(7.6.10)

=  7 * n  ( n - p i )  
* /=i

i  a .

Therefore, (7.6.8) can be expressed as

(7.6.11)

1=1

Substitution o f the result in (7.6.11) into (7.6.6) yields the total perturbation  
error A p, in the form

This expression provides a m easure o f the sensitivity o f the /th  pole to changes in 
the coefficients {a*). A n  analogous result can be obtained for the sensitivity o f the 
zeros to errors in the parameters ( it ) .

The term s (p,- — pi)  in the denom inator o f (7.6.12) represent vectors in the  
z -plane from the poles {/?/} to the pole p,. If the poles are tightly clustered as 
they are in a narrowband filter, as illustrated in Fig. 7.36, the lengths |p, -  p t \ are 
sm all for the poles in the vicinity o f p, . T hese small lengths will contribute to large 
errors and hence a large perturbation error Ap, results.

The error Ap, can be minim ized by m aximizing the lengths |p,- — p/|. This can 
be accom plished by realizing the high-order filter with either single-pole or double­
pole filter sections. In general, however, single-pole (and single-zero) filter sections 
have com plex-valued poles and require com plex-valued arithmetic operations for 
their realization. This problem  can b e  avoided by com bining com plex-valued poles  
(and zeros) to  form  second-order filter sections. Since the com plex-valued poles  
are usually sufficiently far apart, the perturbation errors {Ap,} are minim ized. A s  
a consequence, the resulting filter with quantized coefficients m ore closely ap­
proxim ates the frequency response characteristics o f  the filter with unquantized  
coefficients.

It is interesting to  note that even  in the case o f  a tw o-pole filter section, the 
structure used to realize the filter section  plays an im portant role in the errors

N N - k

(7.6.12)

/=]
Mt
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Im(z)

Figure 73 6  Pole positions for a 
bandpass HR filter.

caused by coefficient quantization. T o  be specific, let us consider a tw o-pole filter 
with system  function

H{z)  =
1

1 — (2 /-c o s 0 )z - 1  +  r 2z~2
(7.6.13)

This filter has poles at z =  re ±j<i. W hen realized as shown in Fig. 7.37, it has two 
coefficients, a\ — 2 r cos 6 and a2 =  — r 2. W ith infinite precision it is possible to  
achieve an infinite number o f pole positions. Clearly, with finite precision (i.e., 
quantized coefficients oi and a2), the possible pole positions are also finite. In 
fact, when b bits are used to represent the m agnitudes o f a\ and a2, there are at 
m ost (2h — l ) 2 possible positions for the poles in each quandrant, excluding the 
case a\ =  0 and a2 =  0 .

For exam ple, suppose that b =  4. Then there are 15 possib le nonzero values 
for a\.  There are also 15 possible values for r 2. W e illustrate these possible values 
in Fig. 7.38 for the first quandrant o f  the z-plane only. There are 169 possible pole

Mn) ■ <*> -y(n)

2rcos 6

Figure 7.37 Realization of a two-pole
IIR filter.
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Figure 7.38 Possible pole positions for two-pole IIR filter realization in Fig. 7.37.

positions in this case. The nonuniform ity in their positions is due to  the fact that 
w e are quantizing r2, w hereas the pole positions lie on a circular arc o f radius r . O f 
particular significance is the sparse set o f  poles for values o f  6 near zero and, due to  
sym m etry, near 6 =  n .  T his situation would be highly unfavorable for lowpass fil­
ters and highpass filters which norm ally have poles clustered near 6 =  0 and 8 =  jr.

A n alternative realization o f the two*pole filter is the coupled-form  realiza­
tion illustrated in Fig. 7.39. T he two coupled equations are

> i(«) =  x in )  +  r co s#  >j(« — 1 ) - r s i n #  y(n  — 1 )
(7.6.14)

y (n ) =  r sin #  y \(n  — 1 ) +  r c o s 0  y(n  — 1 )

B y transforming these tw o equations into the z-dom ain, it is a sim ple matter to  
show  that

y (z) . ( r s in 0 )z - 1

X (z )  ~  1 -  (2 rc o s6 )z - 1 +  r 2 z ~ 2  ( }
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— . 0 — - 0 >i(n)

rcos 9

V|{n -  1)

rsin 6
—t sin 6

Figure 7.39 Coupled-form realization 
V|(n -  1) of a two-pole IIR filter.

In the coupled form we observe that there are also tw o coefficients, a i — 
r s in #  and a 2 =  r c o s 9. Since they are both linear in r,  the possible p ole positions 
are now equally spaced points on a rectangular grid, as shown in Fig. 7.40. A s  
a consequence, the pole positions are now uniformly distributed inside the unit 
circle, which is a m ore desirable situation than the previous realization, especially  
for lowpass filters. (There are 198 possible pole positions in this case.) H ow ever, 
the price that we pay for this uniform distribution o f pole positions is an increase 
in com putations. The coupled-form  realization requires four multiplications per 
output point, w hereas the realization in Fig. 7.37 requires on ly tw o multiplications 
per output point.

It is interesting to com pare the coupled-form  realization o f Fig. 7.39 with 
the coupled (or norm al) form state-space structure o f Fig. 7.31. The poles o f the 
state-space structure are directly related to its coefficients, since on and ± a 2 are 
the real and imaginary parts o f the roots. Since aj =  r  cos © and a 2 — r  sin ©, 
it is clear that quantizing cri and a 2 results in a rectangular grid o f possible p ole  
positions, as show n in Fig. 7.40.

Since there are various ways in which on e can realize a second-order filter 
section, there are obviously m any possibilities for different p ole locations with 
quantized coefficients. Ideally, w e should select a structure that provides us with 
a dense set o f  points in the regions where the poles be. U nfortunately, how ever, 
there is no sim ple and system atic m ethod for determ ining th e  filter realization that 
yields this desired result.

G iven that a higher-order IIR  filter should be im plem ented as a com bination  
o f  second-order sections, w e still m ust decide whether to  em ploy a parallel config­
uration or a cascade configuration. In other words, we m ust decide betw een the 
realization

(7.6.16)
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and the realization

h (z ) =  T  1  CM +  C‘ 1Z'
1 +  fltiZ"1 +  a*2Z-2

(7.6.17)

If the IIR filter has zeros on the unit circle, as is generally  the case with elliptic  
and C hebyshev type II filters, each second-order section  in the cascade configu­
ration o f  (7.6.16) contains a pair o f  com plex-conjugate zeros. The coefficients 
{&*} directly determ ine the location o f  these zeros. If  the [by] are quantized, the  
sensitivity o f  the system  response to the quantization errors is easily and directly  
controlled by allocating a sufficiently large num ber o f  bits to  the representation  
o f  the {bki}. In fact, w e can easily evaluate the perturbation effect resulting from  
quantizing the coefficients to  som e specified precision. T hus w e have direct 
control o f  both the poles and the zeros that result from  the quantization process.

O n  the other hand, the parallel realization o f  H (z )  provides direct control 
o f  the p o les o f  the system  only. T he num erator coefficients {chi} and {c*i} do not
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specify the location o f the zeros directly. In fact, the {c*o) and fc*i} are obtained  
by performing a partial-fraction expansion of H (z ). H ence they do not directly 
influence the location o f the zeros, but only indirectly through a com bination o f all 
the factors o f H (z) .  A s a consequence, it is m ore difficult to  determ ine the effect 
o f quantization errors in the coefficients {c*, }, on the location o f  the zeros o f  the 
system.

It is apparent that quantization o f the param eters {c*, J is likely  to produce a 
significant perturbation o f the zero positions and usually, it is sufficiently large in 
fixed-point im plem entations to m ove the zeros off the unit circle. This is a highly 
undesirable situation, which can b e  easily  rem edied by use o f a floating-point 
representation. In any case the cascade form  is m ore robust in the presence o f  co­
efficient quantization and should be the preferred choice in practical applications, 
especially where a fixed-point representation is em ployed.

Example 7.6.1

Determine the effect of parameter quantization on the frequency response of the 
7-order elliptic filter given in Table 8.11 when it is realized as a cascade of second- 
order sections.

Solution The coefficients for the elliptic filter given in Table 8.11 are specified for 
the cascade form to six significant digits. We quantized these coefficients to four and 
then three significant digits (by rounding) and plotted the magnitude (in decibels) 
and the phase of the frequency response. The results are shown in Fig. 7.41 along the 
frequency response of the filter with unquantized (six significant digits) coefficients. 
We observe that there is an insignificant degradation due to coefficient quantization 
for the cascade realization.

Example 7.(L2

Repeat the computation of the frequency response for the elliptic filter considered in 
Example 7.6.1 when it is realized in the parallel form with second-order sections.

Solution The system function for the 7-order elliptic filter given in Table 8.11 is

0 .2781304 +  0 .0054373108Z -1 

(2) "  1 -  0 .7 9 0 1 0 3 Z '1

-0 .3 8 6 7 8 0 5  +  0 .3 3 2 2 2 2 9 ;- '

+  1 -  1 .5 1 7 2 2 3 j-1 + 0 .7 1 4 0 8 8 z ~ 2

0.1277036  -  0 .1 5 5 8 6 9 6 :- 1 

+  1 -  1 .4 2 1 7 7 3 * -1 +  0 .861895z“2 

-0 .0 1 5 8 2 4 1 8 6  +  0 .3837 7 3 5 6 z"]

+  1 -  1.387447*-1 +0.962242z-i 

The frequency response of this filter with coefficients quantized to four digits 
is shown in Fig. 7.42a. When this result is compared with the frequency response in 
Fig. 7.41, we observe that the zeros in the parallel realization have been perturbed 
sufficiently so that the nulls in the magnitude response are now at -8 0 , -8 5 , and 
—92 dB. The phase response has also been perturbed by a small amount.
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Figure 7.41 Effect of coefficient quantization of the magnitude and phase response of an 
N — 7 elliptic filter realized in cascade form.

When the coefficients are quantized to three significant digits, the frequency 
response characteristic deteriorates significantly, in both magnitude and phase, as 
illustrated in Fig. 7.42b. It is apparent from the magnitude response that the zeros 
are no longer on the unit circle as a result of the quantization of the coefficients. This 
result clearly illustrates the sensitivity of the zeros to quantization of the coefficients 
in the parallel form.

When compared with the results of Example 7.6.1, it is also apparent that the 
cascade form is definitely more robust to parameter quantization than the parallel 
form.



Ph
as

e 
(d

eg
re

e)
 

Ga
in 

(d
b)

578 Implementation of Discrete-Time Systems Chap. 7

(a) Quantization to 4 digits

Figure 7.42 Effect of coefficient quantization of the magnitude and phase response of an 
N =  7 elliptic filter realized in cascade form: (a) quantization to four digits; (b) quantization 
to three digits.

7.6.2 Quantization of Coefficients In FIR Filters

A s indicated in the preceding section, the sensitivity analysis perform ed on  the 
p o les o f  a system  also applies directly to  the zeros o f the IIR  filters. C onsequently, 
an expression analogous to  (7.6.12) can b e  obtained for the zeros o f  an F IR  filter. 
In effect, w e should generally realize F IR  filters with a large num ber o f zeros as



Ph
as

e 
(d

eg
re

e)
 

Ga
in 

(d
b)

Sec. 7.6 Quantization of Filter Coefficients 579

(b) Quantization to 3 digits 

Figure 7.42 Continued

a cascade o f  second-order and first-order filter sections to  m inim ize the sensitivity  
to  coefficient quantization.

O f particular interest in practice is the realization o f  linear phase FIR filters. 
T he direct-form  realizations shown in Figs. 7.1 and 7.2 m aintain the linear-phase 
property even  when the coefficients are quantized. This follow s easily from the o b ­
servation that the system  function o f  a linear-phase FIR  filter satisfies the property

H( z)  =
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independent o f whether the coefficients are quantized or unquantized (see Sec­
tion 8.2). Consequently, coefficient quantization d oes not affect the phase charac­
teristic o f the FIR  filter, but affects on ly  the m agnitude. A s a result, coefficient 
quantization effects are not as severe on a linear-phase FIR  filter, since the only  
effect is in the m agnitude.

Example 7.63

Determine the effect of parameter quantization on the frequency response of an 
Af =  32 linear-phase FIR bandpass filter. The filter is realized in the direct form.

Solution The frequency response of a linear-phase FIR bandpass filter with unquan- 
tized coefficients is illustrated in Fig. 7.43a. When the coefficients are quantized to 
four significant digits, the effect on the frequency response is insignificant. However, 
when the coefficients are quantized to three significant digits, the sidelobes increased 
by several decibels, as illustrated in Fig. 7.43b. This result indicates that we should use 
a minimum of 10 bits to represent the coefficients of this FIR filter and, preferably, 
12 to 14 bits, if possible.

From this exam ple we learn that a minimum o f  10 bits is required to represent 
the coefficients in a direct-form  realization o f  an FIR filter o f  m oderate length. A s  
the filter length increases, the num ber o f bits per coefficient m ust be increased to  
maintain the sam e error in the frequency response characteristic o f the filter.

For exam ple, suppose that each filter coefficient is rounded to {b +  1) bits. 
Then the maximum error in a coefficient value is bounded as

_ 2 -<fr+t> < e h(n) < 2~(b+l)

Since the quantized values m ay be represented as h(n)  =  h(n)  +  eh(n), the error in 
the frequency response is

=  y ^ f ek {n)e'

Since eh(n) is zero m ean, it follow s that E m  (to) is also zero m ean. A ssum ing that 
the coefficient error sequence eh(«), 0 <  n < M  -  1, is uncorrelated, the variance 
o f  the error E m {co) in the frequency response is just the sum o f  the variances o f  
the M  terms. Thus w e have

2 - 2(i>+i) 2~2(b+2>
cr| =  — :■ — M  = -----------M

£ 12 3
H ere w e note that the variance o f  the error in H(a>) increases linearly with M .  
H ence the standard deviation o f  the error in H {a>) is

2 ~(H-2) 
a£ =  —

\/3

Consequently, for every factor o f  4  increase in M ,  the precision in the filter coeffi­
cients must be increased by one additional bit to  m aintain the standard deviation  
fixed. This result, taken together with the results o f  Exam ple 7.6.3, im plies that
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Relative frequency 
(a) No quantization

(b) Quantization to 3 digits

Figure 7.43 Effect of coefficient quantization of the magnitude of an M =  32 linear-phase 
FIR filter realized in direct form: (a) no quantization; (b) quantization to three digits.

the frequency error remains tolerable for filter lengths up to 256, provided that 
filter coefficients are represented by 12 to 13 bits. If  the word length o f  the digi­
tal signal processor is less than 12 bits or if the filter length exceeds 256, the filter 
should b e  im plem ented as a cascade o f sm aller length filters to  reduce the precision  
requirem ents.
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In a cascade realization o f the form
K

H (z)  =  G ]" [//*  ( 0  (7.6.18)
i=l

where the second-order sections are given as

Hk(z) =  1 +  bklz~ l +  bk2z~ 2 (7A 19)

the coefficients o f  com plex-valued zeros are expressed as b =  —2rk cos 6k and 
bk2 =  r\. Q uantization o f bki and bk2 result in zero locations as show n in Fig. 7.38, 
except that the grid extends to points outside the unit circle.

A  problem  m ay arise, in this case, in maintaining the linear-phase property, 
because the quantized pair o f zeros at z =  ( l / r k)e±j6k may not b e  the mirror image 
o f the quantized zeros at z =  rke ±j6k. This problem  can be avoided by rearranging 
the factors corresponding to the mirror-image zero. That is, w e can write the 
mirror-image factor as

f l  — —  cos0*z_ 1 +  -~rz- 2  ) =  -^-(r? — 2 rk cos 0*7 “ ’ +  z~ 2) (7.6.20)
V rk r \  J

The factors {1 / r 2} can be com bined with the overall gain factor G,  or they can 
be distributed in each o f the second-order filters. The factor in (7.6.20) contains 
exactly the sam e param eters as the factor ( 1  — 2rk c o s 0*z- 1  +  r^z-2 ), and conse­
quently, the zeros now occur in mirror-image pairs even when the parameters are 
quantized.

In this brief treatment we have given the reader an introduction to the 
problem s o f coefficient quantization in IIR and FIR  filters. W e have dem on- 
stated that a high-order filter should be reduced to a cascade (for FIR  or IIR  
filters) or a parallel (for IIR  filters) realization to m inim ize the  effects o f  quan­
tization errors in the coefficients. This is especially im portant in fixed-point re­
alizations in which the coefficients are represented by a relatively small number 
of bits.

7.7 ROUND-OFF EFFECTS IN DIGITAL FILTERS

In Section 7.5 w e characterized the quantization errors that occur in arithmetic 
operations perform ed in a digital filter. The presence o f on e  or m ore quantiz­
ers in the realization o f a digital filter results in a nonlinear device with char­
acteristics that m ay be significantly different from the ideal linear filter. For 
exam ple, a recursive digital filter m ay exhibit undesirable oscillations in its out­
put, as shown in the follow ing section, even in the absence o f an input 
signal.

A s  a result o f the finite-precision arithmetic operations perform ed in the 
digital filter, som e registers may overflow if the input signal level becom es large.
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O verflow  represents another form o f undesirable nonlinear distortion on the d e­
sired signal at the output o f the filter. C onsequently, special care m ust be exercised  
to  scale the input signal properly, either to  prevent overflow  com pletely or, at least, 
to  m inim ize its rate o f occurrence.

The nonlinear effects due to finite-precision arithm etic m ake it extrem ely  
difficult to  precisely analyze the perform ance o f a digital filter. T o perform an 
analysis o f quantization effects, w e adopt a statistical characterization of quanti­
zation errors which, in effect, results in a linear m odel for the filter. Thus we are 
able to quantify the effects o f quantization errors in the im plem entation of digi­
tal filters. Our treatment is limited to  fixed-point realizations where quantization  
effects are very important.

7.7.1 Limit-Cycle Oscillations in Recursive Systems

In the realization o f a digital filter, either in digital hardware or in software on  
a digital com puter, the quantization inherent in the finite- precision arithmetic 
operations render the system nonlinear. In recursive system s, the nonlinearities 
due to the finite-precision arithmetic operations often cause periodic oscillations 
to occur in the output, even when the input sequence is zero or som e nonzero  
constant value. Such oscillations in recursive system s are called limit cycles and 
are directly attributable to round-off errors in m ultiplication and overflow errors 
in addition.

T o illustrate the characteristics o f a limit-cycle oscillation, let us consider a 
single-pole system  described by the linear difference equation

w here the pole is at z =  a. The ideal system  is realized as shown in Fig. 7.44. On  
the other hand, the actual system, which is described by the nonlinear difference  
equation

is realized as shown in Fig. 7.45.
Suppose that the actual system  in Fig. 7.45 is im plem ented with fixed-point 

arithm etic based on four bits for the m agnitude plus a sign bit. The quantization  
that takes place after multiplication is assumed to round the resulting product 
upward.

y(n) =  ay(n -  1) +  x(n) (7.7.1)

v(n ) =  Q[av(n -  1)] +  x(n) (7.7.2)

a
Figure 7.44 Idea] single-pole recursive
system.
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Wn)

Figure 7.45 Actual nonlinear system.

In Table 7.2 we list the response o f  the actual system  for four different 
locations o f the pole z — a,  and an input x(n) =  /9S(n), where fi =  15/16, which 
has the binary representation 0.1111. Ideally, the response o f the system  should  
decay toward zero exponentially [i.e., y(n)  =  a" —*■ 0 as n —*■ oo]. In the actual 
system, however, the response v(n)  reaches a steady-state periodic output sequence 
with a period that depends on the value o f the pole. W hen the pole is positive, the  
oscillations occur with a period Np =  1, so  that the output reaches a constant value 
of ^  for o =  j  and g for a =  On the other hand, when the p o le  is negative, the 
output sequence oscillates betw een  positive and negative values ( ± ^  for a  =  — |  
and for a =  — He nc e  the period is N p =  2.

These limit cycles occur as a result o f the quantization effects in m ultipli­
cations. W hen the input sequence x (n )  to  the filter becom es zero, the output o f  
the filter then, after a number o f iterations, enters into the limit cycle. The out­
put remains in the limit cycle until another input o f sufficient size is applied that 
drives the system  out o f the limit cycle. Similarly, zero-input limit cycles occur 
from nonzero initial conditions with the input x (n )  =  0 . TTie am plitudes o f the 
output during a limit cycle are confined to  a range o f values that is called the dead  
ban d  o f the filter.

TABLE 7.2 LIMIT CYCLES FOR LOWPASS SINGLE-POLE FILTER

n a =  0 .1 0 0 0  
i

~  2

a = 1 .1 0 0 0
1
2

a =  0 .1 1 0 0
_  3
“  4

a = 1 .1 1 0 0
3
4

0 0 .1 1 1 1 \ 16 / 0 .1 1 1 1
( i f ) 0 .1 0 1 1 ( S ) 0 .1 0 1 1 (B )

1 0 .1 0 0 0 ( f t ) 1 .1 0 0 0 ( - f t ) 0 . 1 0 0 0 ( f t ) 1 .1 0 0 0 ( - f t )

2

3

0 .0 1 0 0

0 .0 0 1 0

( f t )

( f t )

0 .0 1 0 0

1 .0 0 1 0

m
( - f t )

0 .0 1 1 0

0 .0 1 0 1

(ft)

( f t )

0 .0 1 1 0

1 .0 1 0 1

( f t )

( - f t )

4 0 .0 0 0 1 ( f t ) 0 .0 0 0 1 ( f t ) 0 . 0 1 0 0 ( f t ) 0 .0 1 0 0 ( f t )

5 0 .0 0 0 1 ( f t ) 1 .0 0 0 1 ( - f t ) 0 .0 0 1 1 ( f t ) 1 .0 0 1 1 ( - f t )

6 0 .0 0 0 1 ( f t ) 0 .0 0 0 1 ( f t ) 0 .0 0 1 0 ( f t ) 0 .0 0 1 0 ( f t )

7 0 .0 0 0 1 ( f t ) 1 .0 0 0 1 ( - f t ) 0 .0 0 1 0 ( f t ) 1 .0 0 1 0 ( - f t )

8 0 .0 0 0 1 (ft) 0 .0 0 0 1 (ft ) 0 .0 0 1 0 (ft) 0 .0 0 1 0 (ft)



It is interesting to note that w hen the response o f  the single-pole filter is in 
the limit cycle, the actual nonlinear system  operates as an equivalent linear system  
with a p o le at z =  1  w hen the pole is positive and z =  — 1  w hen the p ole is negative. 
That is,

(7.7.3)

Since the quantized product av(n — 1) is obtained by rounding, it fo llow s that the  
quantization error is bounded as

\Q r[av(n -  1)] -  av(n  -  1)| <  \  ■ 2~b (7.7.4)

w here b is the number of bits (exclusive o f sign) used in the representation o f the 
p o le  a and u(n). C onsequently, (7.7.4) and (7.7.3) leads to

|v(n -  1 )| -  \ctv{n -  1 )| <  \  ■ 2~b

and hence

1  2 ~ b
N "  ~  DI <  f — 7  (7.7.5)

1 -  \a\

The expression in (7.7.5) defines the dead band for a single-pole filter. For  
exam ple, when b =  4 and ja| =  1, w e have a dead band with a range o f am plitudes 
(— ^ ) .  W hen b =  4 and \a\ =  2, the dead band increases to (—g, | ) .

The limit-cycle behavior in a tw o-pole filter is m uch m ore com plex and a 
larger variety o f  oscillations can occur. In this case the ideal tw o-pole system  is 
described by the linear difference equation,

>>(n) =  ai)'(n -  1) +  a2y(n  -  2) +  jc(n) (7.7.6)

whereas the actual system  is described by the nonlinear difference equation

v(n) =  Qr[aiv(n  -  1)] +  Q r f a v i n  -  2)] +  x (n )  (7.7.7)

W hen the filter coefficients satisfy the condition a \  < —4o2, the poles o f  the 
system  occur at

z =  re±ie

w here a2 =  — r 2 and ai  =  2 r c o s0 . A s in the case o f the single-pole filter, when  
the system  is in a zero-input or zero-state limit cycle,

Qr[a2v(n -  2)] =  - v ( n  -  2) (7.7.8)

In other words, the system  behaves as an oscillator with com plex-conjugate poles  
on the unit circle (i.e., a2 — — r 2 =  —1). R ounding the product av(n  — 2) im plies 
that

| Q r[a2v(n -  2)] -  a2v{n - 2 ) \ < \ -  2~b (7.7.9)

U pon substitution o f  (7.7.8) into (7.7.9), we obtain the result 

|u(n -  2 )| -  |a2v(n -  2 )| <  \  • 2~b
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or equivalently,

(7.7.10)

T he expression in (7.7.10) defines the dead band o f the tw o-pole filter with com plex- 
congugate poles. W e observe that the dead-band limits depend only on |ci2 1- The 
param eter a\ =  2r  cos 8 determ ines the frequency o f oscillation.

A nother possible limit-cycle m ode with zero input, which occurs as a result 
o f rounding the m ultiplications, corresponds to an equivalent second-order system  
with poles at z =  ± 1 . In this case it was shown by Jackson (1969) that the tw o-pole  
filter exhibits oscillations with an am plitude that falls in the dead  band bounded  
by 2 - * / ( l  -  |« il -  0 2 )-

It is interesting to note that these limit cycles result from rounding the prod­
uct o f the filter coefficients with the previous outputs, t>(« — 1 ) and v(n — 2 ). 
Instead o f  rounding, we may choose to truncate the products to  b  bits. With trun­
cation, w e can elim inate many, although not all, o f the limit cycles as shown by 
Claasen et al. (1973). H ow ever, recall that truncation results in a biased error 
unless the sign-magnitude representation is used, in which case the truncation er­
ror is sym m etric about zero. In general, this bias is undesirable in digital filter 
im plem entation.

In a parallel realization o f a high-order IIR  system, each second-order filter 
section exhibits its own lim it-cycle behavior, with no interaction am ong the second- 
order filter sections. C onsequently, the output is the sum o f  the zero-input limit 
cycles from the individual sections. In the case o f a cascade realization for a high- 
order IIR  system , the limit cycles are much m ore difficult to  analyze. In particular, 
when the first filter section exhibits a zero-input limit cycle, the output limit cycle 
is filtered by the succeeding sections. If the frequency o f the limit cycle falls near a 
resonance frequency in a succeeding filter section, the am plitude o f  the sequence  
is enhanced by the resonance characteristic. In general, w e must be careful to  
avoid such situations.

In addition to limit cycles caused by rounding the result o f m ultiplications, 
there are limit cycles caused by overflow s in addition. A n overflow  in addition 
o f  two or m ore binary numbers occurs w hen the sum exceeds the word size 
available in the digital im plem entation o f  the system . For exam ple, let us con­
sider the second-order filter section illustrated in Fig. 7.46, in which the addi­
tion is perform ed in tw o’s-com plem ent arithmetic. Thus we can write the output 
y in )  as

w here the function g[ ] represents the tw o’s-com plem ent addition. It is easily  
verified that the function g(u) versus v is described by the graph in Fig. 7.47.

R ecall that the range o f  values o f  the param eters (0 1 , 0 2 ) for a stable filter 
is given by the stability triangle in Fig. 3.15. H ow ever, these  conditions are no 
longer sufficient to  prevent overflow oscillation with tw o’s-com plem ent arithmetic.

y in )  =  g[a iy in  -  1 ) +  a2y in  -  2 ) +  -c(/i)] (7.7.11)
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<♦> y(n)

Q >

02
Figure 7.46 Two-pole filter realization.

g\v\

Figure 7.47 Characteristic functional relationship for two's complement addition 
of two or more numbers.

In fact, it can easily be shown that a necessary and sufficient condition for ensuring  
that no zero-input overflow  limit cycles occur is

|oi | +  \ai | <  1 (7.7.12)

which is extrem ely restrictive and hence an unreasonable constraint to  im pose on  
any second-order section.

A n  effective rem edy for curing the problem  o f  overflow  oscillations is to 
m odify the adder characteristic, as illustrated in Fig. 7.48, so  that it perform s sat­
uration arithm etic. Thus w hen an overflow (or underflow) is sensed, the output 
o f  the adder will be the full-scale value o f  ± 1 . T he distortion caused by this 
nonlinearity in the adder is usually small provided that saturation occurs infre­
quently. T h e use o f  such a nonlinearity does not preclude the need  for scal­
ing o f  the signals and the system  param eters, as described in the follow ing sec­
tion.
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g(v)

Figure 7.48 Characteristic functional 
relationship for addition with clipping at 
± 1.

Saturation arithmetic as just described elim inates limit cycles due to overflow, on  
the one hand, but on the other hand, it causes undesirable signal distortion due to 
the nonlinearity o f the clipper. In order to limit the am ount o f  nonlinear distortion, 
it is important to scale the input signal and the unit sam ple response, betw een the 
input and any internal sum m ing node in the system , such that overflow  becom es  
a rare event.

For fixed-point arithmetic, let us first consider the extrem e condition that 
overflow is not perm itted at any node o f  the system. Let yk (n ) d en ote the response  
of the system  at the Jtth node when the input sequence is x{n)  and the unit sam ple  
response betw een the node and the input is h t in ) .  Then

!>*(«) I = h k( m ) x ( n - m )
-oo oo

Suppose that jc(n) is upper bounded by A x . Then
OC

!>*(«)! <  A z \hk (m)\ for all n (7.7.13)

N ow , if  the dynamic range of the com puter is lim ited to (—1 ,1 ) , the condition

!>*(") I <  1

can be satisfied by requiring that the input x ( n )  be scaled such that

1

IMm)l

(7.7.14)

for all possible nodes in the system . T h e condition in (7.7.14) is b oth  necessary 
and sufficient to  prevent overflow.
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The condition in (7.7.14) is overly conservative, how ever, to the point where 
the input signal may be scaled too  m uch. In such a case, m uch o f the precision  
used to  represent x(n )  is lost. This is especially true for narrowband sequences, 
such as sinusoids, where the scaling im plied by (7.7.14) is extrem ely severe. For 
narrowband signals w e can use the frequency response characteristics o f the system  
in determ ining the appropriate scaling. Since |//(a>)| represents the gain o f the 
system  at frequency co, a less severe and reasonably adequate scaling is to  require 
that

(7-7 -15)max | (ct>) |
0<o><;r

w here Hk(w) is the Fourier transform o f {/t*(n)).
In the case o f  an FIR  filter, the condition in (7.7.14) reduces to

A , <  ^ -------  (7.7.16)

l*t(m )|
m=0

which is now a sum over the M  nonzero terms o f  the filter unit sam ple response. 
A nother approach to scaling is to  scale the input so that

n =  — OC

From  Parseval’s theorem  w e have

OO OO

£  \y t(n)\2 < C 2 £  \x(n)\2 =  C 2E x (7.7.17)
= -00  « = — 00

;m w e have

f ]  |>-t( « ) |2 =  [  \H(co)X(co)\2da> 
n ^ o o  2 *  J - *

^ / I
(7.7.18)

B y com bining (7.7.17) with (7.7.18), we obtain

00 f n
T  \hk(n)\2 (1 /2 * )  /  \H(a>)\2da)
t^oo J ~n

If w e com pare the different scaling factors given above, we find that

[ I 1 /2 00

£  IM n )|2 <m ax|flt(o>)| < £  IM « )I (7-7-20)

n= -oo  J n—-oo

Clearly, (7.7.14) is the m ost pessim istic constraint.
In the follow ing section we observe the ramifications o f  this scaling on the 

output signal-to-noise (pow er) ratio (SN R ) from  a first-order and a second-order 
filter section.
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7.7.3 Statistical Characterization of Quantization Effects 
in Fixed-Point Realizations of Digital Filters

It is apparent from our treatment in the previous section that an analysis o f  quan­
tization errors in digital filtering, based on determ inistic m odels o f quantization  
effects, is not a very fruitful approach. T he basic problem  is that the nonlinear 
effects in quantizing the products o f tw o numbers and in clipping the sum  o f two  
numbers to prevent overflow are not easily m odeled  in large system s that contain  
many multipliers and many sum m ing nodes.

T o obtain m ore general results on the quantization effects in digital filters, we  
shall m odel the quantization errors in m ultiplication as an additive noise sequence  
e(n ), just as we did in characterizing the quantization errors in A /D  conversion of  
an analog signal. For addition, w e consider the effect o f scaling the input signal 
to prevent overflow.

Let us begin our treatm ent with the characterization o f the round-off noise in 
a single-pole filter which is im plem ented in fixed-point arithmetic and is described  
by the nonlinear difference equation

v(n) =  Qr[av(n — 1)] +  x (n )  (7.7.21)

The effect o f rounding the product av(n  — 1) is m odeled  as a noise sequence e(n) 
added to the actual product av(n  — 1 ), that is,

Qr[av(n  — 1)] =  av(n  — 1) +  e(n ) (7.7.22)

With this m odel for the quantization error, the system  under consideration is 
described by the linear difference equation

v(n)  =  av(n  — 1) +  x (n )  +  e(n)  (7.7.23)

The corresponding system  is illustrated in block diagram form in Fig. 7.49.
It is apparent from (7.7.23) that the output sequence v(n)  o f  the filter can 

be separated into two com ponents. O ne is the response o f  the system  to the 
input sequence x(n) .  The second is the response o f  the system  to  the additive 
quantization noise e(n).  In fact, w e can express the output sequence u(n) as a sum  
of these tw o com ponents, that is,

v (n ) =  y(n)  +  q (n)  (7.7.24)

Figure 7.49 Additive noise model for 
the quantization error in a single-pole 
filter.



w here y(n )  represents the response o f the system  to  *(n), and q (n )  represents the 
response o f  the system  to  the quantization error e(n).  U p on  substitution from  
(7.7.24) for v(n)  in to (7.7.23), we obtain

y ( n ) +  q(rt) =  ay(n  -  1 ) +  aq(n -  1) +  je(n) +  e(n)  (7.7.25)

T o sim plify the analysis, we m ake the follow ing assum ptions about the error 
sequence e(n).

1. For any n,  the error sequence {e(n)\ is uniformly distributed over the range 
( _ i  . 2~b, i  - 2~b). This im plies that the m ean value o f  e(n)  is zero  and its 
variance is

2 - 2b
°e  =  - f i -  0-1.26)

2. The error {«(«)) is a stationary white noise sequence. In other words, the  
error e(n)  and the error e(m)  are uncorrelated for n ^  m.

3. T he error sequence {e(n)} is uncorrelated with the signal sequence {*(«)}.

The last assumption allows us to  separate the difference equation in (7.7.25) 
into tw o uncoupled difference equations, namely,

y(n) =  ay(n  -  1) +  x (n) (7.7.27)

q(n) =  aq(tt -  1) + e ( n )  (7.7.28)

T he difference equation in (7.7.27) represents the input-output relation for the 
desired system  and the difference equation in (7.7.28) represents the relation for 
the quantization error at the output o f the system.

T o  com plete the analysis, w e m ake use o f tw o im portant relationships devel­
oped in A ppendix A . The first is the relationship for the m ean value o f  the output 
q(n)  o f  a linear shift-invariant filter with im pulse response h{h)  w hen excited  by a 
random sequence e(n)  having a m ean value m e. T he result is

00
m q =  m e h(rt) (7.7.29)

fl=—00

or, equivalently,

m q ~  m eH {0) (7.7.30)

w here H {0) is the value o f the frequency response H(co) o f  the filter evaluated at 
(o =  0.

The second im portant relationship is the expression for the autocorrelation  
sequence o f  the output q(n)  o f  the filter with im pulse response h(n)  w hen  the input 
random  sequence e{ri) has an autocorrelation y„ (n ) .  This result is

=  E  £  h (k )h ( l )y te(k — l +  n)  (7.7.31)
i« —oo/=—oo
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In the important special case where the random sequence is w hite (spectrally flat), 
the autocorrelation yee(n) is a unit sam ple sequence scaled by the variance a 2, 
that is,

Yee(n) =  cr2S(n)  (7.7.32)

U pon substituting (7.7.32) into (7.7.31), w e obtain the desired result for the auto­
correlation sequence at the output o f a filter excited by white noise, namely,

00

y „ ( n )  =  Y ,  h i k >h k̂ +  n)  (7 ’7 ‘33)
fc=—00

The variance a 2 o f  the output noise is sim ply obtained by evaluating y ^ i n )  at 
n =  0. Thus

OO

° 2q = ° < Y , h2^  <7-7-34>
*= s -O C

and with the aid o f  Parseval’s theorem , we have the alternative expression

a]  =  ^  /  \H(a>)\2du> (7.7.35)

In the case o f the singie-pole filter under consideration, the unit sample 
response is

h(n)  =  a nu (n ) (7.7.36)

Since the quantization error due to rounding has zero m ean, the m ean value o f  
the error at the output o f the filter is m q =  0. The variance o f the error at the 
output o f  the filter is

00

*=° (7.7.37)

« ,2 
1  — a 2

W e observe that the noise pow er a 2 at the output o f  the filter is enhanced  
relative to the input noise pow er a 2 by the factor 1 / ( 1  — a 2). This factor increases 
as the p ole is m oved closer to  the unit circle.

T o  obtain a clearer picture o f  the effect o f  the quantization error, we should  
also consider the effect o f scaling the input. Let us assume that the input sequence  
(.t(n)} is a white noise sequence (wideband signal), w hose am plitude has been  
scaled according to (7.7.14) to prevent overflow s in addition. Then

A , <  1  -  |a|

If w e assum e that x in )  is uniformly distributed in the range ( -A * , A x), then, 
according to (7.7.31) and (7.7.34), the signal pow er at the output o f  the filter
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is
OO

*“° (7.7.38)

1  -  a 2

where a 2 =  (1 -  |a |)2/3  is the variance o f the input signal. T he ratio o f  the signal 
pow er a 2 to  the quantization error pow er a 2, which is called the signal-to-noise  
ratio (SN R ), is simply

°± = d
<*} (7.7.39)

=  ( 1  -  | s |)2 • 2 2(6+l)

This expression for the output SN R  clearly illustrates the severe penalty paid 
as a consequence o f  the scaling o f the input, expecially when the pole is near the 
unit circle. By com parison, if the input is not scaled and the adder has a sufficient 
number o f bits to avoid overflow, then the signal am plitude m ay be confined to  
the range (—1 , 1 ). In this case, cr2 =  which is independent o f the pole position. 
Then

2

%  =  21(b+l) (7.7.40)

T he difference betw een the SN R s in (7.7.40) and (7.7.39) clearly dem onstrates the 
need to use m ore bits in addition than in multiplication. The num ber o f additional 
bits depends on the position o f the pole and should b e  increased as the pole is 
m oved closer to the unit circle.

N ext, let us consider a tw o-pole filter with infinite precision which is described 
by the linear difference equation

3>(n) =  a iy (n  -  1) +  a2y(n  -  2) +  .x(n) (7.7.41)

where a\ =  2r  cos 6 and a2 =  —r 2. W hen the tw o products are rounded, w e have 
a system  which is described by the nonlinear difference equation

u(n) =  Q r[a\v{n -  1)] +  Q r[a2v(n -  2)] +  x(n) (7.7.42)

This system  is illustrated in block diagram form in Fig. 7.50.
N ow  there are tw o m ultiplications, and hence tw o quantization errors are 

produced for each  output. C onsequently, w e should introduce tw o noise sequences  
e\ (n) and e2(n), which correspond to the quantizer outputs

Qr[aiv(n -  1)] =  a iv (n  -  1) +  *i(n)  

Qr[a2v(n  -  2 )] =  a2v(n ~ 2 )  +  e2(n )
(7.7.43)
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Figure 7.50 Two-pole digital filter with 
rounding quantizers.

A  block diagram for the corresponding m odel is shown in Fig. 7.51. N ote that the 
error sequences e\ (n) and e2 (n) can be m oved directly to the input o f the filter.

A s in the case o f the first-order filter, the output o f  the second-order filter 
can be separated into tw o com ponents, the desired signal com ponent and the 
quantization error com ponent. The former is described by the difference equation

y(n) =  a t y(n  -  1) +  a 2 y(n — 2) +  x(n )  (7.7.44)

while the latter satisfies the difference equation

q(n)  = a \ q ( n  -  l )  +  a2 q(n  -  2) +  ei(n )  +  e2 (n) (7.7.45)

It is reasonable to assum e that the tw o sequences e\(n)  and e2 (n) are uncorrelated. 
N ow  the second-order filter has a unit sam ple response

H ence

h (n ) =  ——  sin(/t +  1  )9u(n)  
sin 6

^  ,  1  + r 2 1

X j  ~  1 _  r 2 r 4 +  J __ 2r2 c o s  26

(7.7.46)

(7.7.47)

j(n) O' u(n)

<l(n)

O'—0-
e2(n)

0 ^

Fijjnre 7.51 Additive noise model for 
the quantization errors in a two-pole 
filter realization.
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B y applying (7.7.34), we obtain the variance o f the quantization errors at the output 
o f the filter in the form

k 2

(7.7.48)

In the case o f the signal com ponent, if we scale the input as in (7.7.14) to 
avoid overflow, the pow er in the output signal is

a l  =  o 2l 'Y J h 2 {n)

where the pow er in the input signal jc(«) is given by the variance

1

X > ( « ) l

C onsequently, the SN R  at the output o f the tw o-pole filter is

0 \, a  _
cr,: o :

2  2(^+1)

X > ( n ) l

(7.7.49)

(7.7.50)

(7.7.51]

A lthough it is difficult to  determ ine the exact value o f the denom inator term  
in (7.7.51), it is easy to  obtain an upper and a low er bound. In particular, |/7 (n)| is 
upper bounded as

so that

\Hn)\ < - J — r n n >  0  
sm 6

OO 4  OC -I

Y  |/i(n)j < - —  Y V  =  ---------
A ;  1 -  s in 0  (1 - r )n=o (1 - r )  s in e

The low er bound m ay be obtained by noting that

(7.7.52)

(7.7.53)

I / / M l  = y ^ h ( n ) e —jam < X > ( « ) 1

But

H(a>) =
1

( 1  -  r e j s e-j«>)( 1  -  re ~ jee~im)

A t a> =  $, which is the resonant frequency o f  the filter, we obtain the largest value 
o f \HUd)\. H ence

1

(1 — r) V 1 +  r 2 — 2r cos 26
(7.7.54)
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Therefore, the SN R  is bounded from above and below  according to the relation
2

2 2 «>+i)(i _  r ) 2 s i n 2 0  < 2 2<6+1)( l  -  r ) 2( 1  +  r2  -  2 r c o s 2 9) (7 .7 .5 5 )

For exam ple, when 9 =  n [ 2, the expression in (7.7.55) reduces to
2

2 2 <i>+i>( i _  r ) 2 <  f l  <  22<i,+1>(l -  r )2( l  +  r ) 2 (7.7.56)

T he dominant term in this bound is (1 — r ) 2  which acts to  reduce the SN R  
dramatically as the poles m ove toward the unit circle. H ence the effect o f scaling 
in the second-order filter is m ore severe than in the single-pole filter. N ote that 
if d  =  1 -  r is the distance o f  the pole from the unit circle, the SN R  in (7.7.56) 
is reduced by d 2, whereas in the single-pole filter the reduction is proportional 
to  d.  T hese results serve to reinforce the earlier statem ent regarding the use of 
m ore bits in addition than in m ultiplication as a m echanism  for avoiding the severe 
penalty due to scaling.

The analysis o f  the quantization effects in a second-order filter can be ap­
plied directly to  higher-order filters based on a parallel realization. In this case 
each second-order filter section is independent o f all the other sections, and there­
fore the total quantization noise pow er at the output o f the parallel bank is simply 
the linear sum o f the quantization noise pow ers o f  each o f the individual sections. 
On the other hand, the cascade realization is m ore difficult to  analyze. For the 
cascade interconnection, the noise generated in any second-order filter section is 
filtered by the succeeding sections. A s a consequence, there is the issue o f  how to 
pair together real-valued poles to form second-order sections and how  to arrange 
the resulting second-order filters to m inim ize the total noise pow er at the output 
o f the high-order filter. This general topic was investigated by Jackson (1970a, b), 
w ho show ed that po les close to the unit circle should be paired with nearby zeros 
to  reduce the gain o f each second-order section. In ordering the second-order  
sections in cascade, a reasonable strategy is to place the sections in the order o f  
decreasing maximum frequency gain. In this case the noise p ow er generated in 
the early high-gain section is not boosted  significantly by the latter sections.

The follow ing exam ple illustrates the point that proper ordering o f sections 
in a cascade realization is im portant in controlling the round-off n oise at the output 
o f  the overall filter.

Example 7.7.1
Determine the variance of the round-off noise at the output of the two cascade
realizations of the filter with system function

H{z) =  Hi(z)H2(z)
where

1
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m z )  =
i - i z -

SolntioD Let h(n), hj(n), and h2 (n) represent the unit sample responses correspond­
ing to the system functions H(z), and H2 (z), respectively. It follows that

M « ) =  ( jV ^ n ) M « ) =  (;)*«<(«)

h(n) =  [2 ( 1 )" -  (i)"]«(n)

The two cascade realizations are shown in Fig. 7.52.
In the first cascade realization, the variance of the output is

OO 00
£ V ( n) + 5 2 ^ (n)

B=eO nxO

In the second cascade realization, the variance of the output noise is

OO OO
5 2  h2 (n) + ^  *i<«)

xM

€ >

-O
e\(")

■ 0

K * )

e2(n)

(a) Cascade realization I

vOO

(b) Cascade realization II

Figwe 7.52 Two cascade realizations in Example 7.8.1: (a) cascade realization I; 
(b) cascade realization II.
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Now
1 4

X > i< " )  =
RbO

£ > 2 (") =

l- l  3

1 16 

1 -  £  “  15

4 4 1
Y V ( n )  =  r  -  — T  +  =  1-83 i s  i _ i  i _ i  i _  j.

Therefore,
=  2.90er?

a22 = 3.1 6ct; 
and the ratio of noise variances is

a \
= 1.09

Consequently, the noise power in the second cascade realization is 9% larger than 
the first realization.

7.8 SUMMARY AND REFERENCES

From the treatm ent in this chapter we have seen that there are various realizations 
o f  discrete-tim e systems. FIR system s can be realized in a direct form, a cascade 
form, a frequency sampling form, and a lattice form. IIR system s can also be 
realized in a direct form, a cascade form, a lattice or a lattice-ladder form, and in 
a parallel form.

For any given system  described by a linear constant-coefficient difference  
equation, these realizations are equivalent in that they represent the sam e system  
and produce the sam e output for any given input, provided that the internal com ­
putations are perform ed with infinite precision. H ow ever, the various structures 
are not equivalent when they are realized with finite- precision arithmetic.

T he state-space form ulation provides an internal description o f  a system  and, 
as a consequence, we obtained additional system  realizations, called  state-space re­
alizations.  T hese realizations represent additional possible structures that provide 
good alternative candidate realizations for the system .

Three important factors are presented for choosing am ong the various FIR  
and IIR  system  realizations. T hese factors are com putational com plexity, m em ­
ory requirem ents, and finite-word-length effects. D epend ing on  either the time- 
domain or the frequency-dom ain characteristics o f a system , som e structures may 
require less com putation and/or less m em ory than others. H en ce our selection  
m ust consider these two im portant factors.

M uch research has b een  done over the past tw o decades on  state-space rep­
resentation and realization o f  systems. For reference, we cite the books by Chen



Sec. 7.8 Summary and References 599

(1970), D eR u sso  et al. (1965), Zadeh and D esoer (1963), and G upta (1966). The  
use o f state-space filter structures in the realization o f IIR  system s has been pro­
posed  by M ullis and R oberts (1976a,b), and further developed  by H w ang (1977), 
Jackson et al. (1979), Jackson (1979), M ills et al. (1981), and Bom ar (1985).

In deriving the transposed structures in Section 7.3, w e introduced several 
concepts and operations on signal flow graphs. Signal flow graphs are treated in 
depth in the books by M ason and Zim m erman (1960) and Chow and Cassignol 
(1962).

A nother im portant structure for IIR  system s, a wave digital filter, has been  
investigated by Fettw eis (1971) and further developed  by Sedlm eyer and Fettw eis 
(1973). A  treatm ent o f this filter structure can also be found in the book by 
A ntoniou  (1979).

Finite-w ord-length effects are an important factor in the im plem entation of  
digital signal processing system s. In this chapter w e described the effects o f a finite 
word length in digital filtering. In particular, we considered the follow ing problem s 
dealing with finite-word length effects:

1. Param eter quantization in digital filters
2. R ound-off noise in multiplication
3. O verflow in addition
4. Limit cycles

T hese four effects are internal to  the filter and influence the m ethod by which 
the system  will be im plem ented. In particular, w e dem onstrated that high-order 
systems, especially IIR  system s, should be realized by using second-order sections 
as building blocks. W e advocated the use o f the direct form II realization, either  
the conventional or the transposed form.

E ffects o f round-off errors in fixed-point im plem entations o f  FIR  and IIR  
filter structures have been  investigated by many researchers. W e cite the papers 
by G old and R ader (1966), Rader and G old (1967b), Jackson (1970a,b), Liu (1971), 
Chan and Rabiner (1973a,b,c), and O ppenheim  and W einstein (1972).

A s an alternative to  the use o f direct form  II second-order filters as building  
blocks for high-order filters, w e can use second-order state-variable forms. Such 
state-variable forms can be optim ized with respect to the state transition matrix 
to  m inim ize round-off errors. The optim ization leads to  m inim um -round-off-noise  
second-order state-variable filters that are highly robust for im plem enting both  
narrowband and w ideband filters.

For a treatm ent o f  m inim um -round-off-noise second-order state-space real­
izations, the reader can refer to the papers o f  M ullis and R oberts (1976a,b), H w ang
(1977), Jackson et al. (1979), M ills et al. (1981), Bom ar (1985), and the book  by 
R oberts and M ullis (1987).

Lim it-cycle oscillations occur in IIR  filters as a result o f quantization effects 
in fixed-point m ultiplication and rounding. Investigation o f lim it cycles in digital 
filtering and their characteristic behavior is treated in the papers by Parker and
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H ess (1971), Brubaker and G ow dy (1972), Sandberg and K aiser (1972), and Jack­
son (1969, 1979). The latter paper deals with lim it cycles in state-space structures. 
M ethods have also been devised to elim inate lim it cycles caused by round-off er­
rors. For exam ple, the papers by Barnes and Fam (1977), Fam  and Barnes (1979), 
Chang (1981), Butterweck et al. (1984), and A u er (1987) discuss this problem. 
Overflow oscillations have been treated in the paper by Ebert et al. (1969).

The effects o f  param eter quantization has been  treated in a num ber o f  papers. 
W e cite for reference the work o f R ader and G old (1967b), K now les and Olcayto  
(1968), A venhaus and Schuessler (1970), Herrm ann and Schuessler (1970b), Chan  
and Rabiner (1973c), and Jackson (1976).

Finally, w e m ention that the lattice and lattice-ladder filter structures are 
known to be robust in fixed-point im plem entations. For a treatm ent o f these types 
o f  filters, the reader is referred to the papers o f Gray and M arkel (1973), Makhoui
(1978), and M orf et al. (1977) and to the book by Markel and Gray (1976).

P R O B L E M S

7.1 Determine a direct form realization for the following linear phase filters.
(a) h(n) = {1,2,3,4,3,2,1)

t
(b) h(n) = {1,2,3,3,2,1}

t
12. Consider an FIR filter with system function

H(z) = 1 + 2.88Z"1 + 3.4048Z"2 + 1.74z"3 + 0.4z~4
Sketch the direct form and lattice realizations of the filter and determine in detail the 
corresponding input-output equations. Is the system minimum phase?

73 Determine the system function and the impulse response of the system shown in 
Fig. P7.3.

3

2 Figwe P7 J

1A Determine the system function and the impulse response of the system shown in 
Fig. P7.4.

7.5 Determine the transposed structure of the systems in Fig. P7.4 and verify that both 
the original and the transposed system have the same system function.
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Figure P7.4

7.6 Determine a,, a2, and fi and c0 in terms of b\ and b2 so that the two systems in 
Fig. P7.6 are equivalent.

7.7 Consider the filter shown in Fig. P7.7.
(a) Determine its system function.
(b) Sketch the pole-zero plot and check for stability if

(3) =  2̂ =  1, b\ =  2, «! =  1.5, fl2 =  -0 .9  
(2) b{) =  £>2 =  1, b] =  2, flj =  1,^2 =  —2

(c) Determine the response to x(n) = cos(;rn/3) if bo = 1, b\ = £>2 = 0, a, = 1, and
02 = —0.99.

7.8 Consider an LTI system, initially at rest, described by the difference equation

y(n) =  \y(n - 2) +  x(n)
(a) Determine the impulse response, h(n), of the system.
(b) What is the response of the system to the input signal

*(«) =  [(j)" +  (-f)" ]»(n )

(c) Determine the direct form II, parallel-form, and cascade-form realizations for this 
system.

<d) Sketch roughly the magnitude response |//(w)| of this system.
7.9 Obtain the direct form I, direct form II, cascade, and parallel structures for the fol­

lowing systems.
(a) y(n) =  |y (n  -  1) -  g>>(n -  2) +  x(n) + ijc(n -  1)
(b) y(n) = -O .ly O i - 1) + 0.72y(n - 2) + 0.7z(n) - 0.252*(n - 2)
(c) y(n) = -0.1;y(n -1)4- 0.2y(« - 2) + 3x(n) + 3.6x(n - 1) + 0.6jt(n - 2)

2(1 — z-1)(l +  -J2z~x +  z~2)
(d ) H(z)  =

(1 + O-Sz-Od -  0.9t-1 + 0.81z-2)
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Figure P7.6

*(«)

(e) y(n) = \y(n -  1) + iy(n - 2) + x(n) + x{n - 1)
(f) y(n) = y(n - l ) - \ y ( n - 2 ) +  x ( n )  -  x ( n  -  1) + x(n - 2)
Which of the systems above are stable?

7.10 Show that the systems in Fig. P7.10 are equivalent.
7.11 Determine all the FIR filters which are specified by the lattice parameters Ki =

K2 = 0.6, K3 = -0.7, and KA = i.
7.12 Determine the set of difference equations for describing a realization of an IIR sys- 

tem based on the use of the transposed direct form II structure for the second-order 
subsystems.
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Figure P7.10

7.13* Write a program that implements a parallel-form realization based on transposed 
direct form II second-order modules.

7.14* Write a program that implements a cascade-form realization based on regular direct 
form II second-order modules.

7.15 Determine the parameters { of the lattice filter corresponding to the FIR filter 
described by the system function

ff(z) =  A2(z ) =  1 +  2 :7 1 +  z~2

7.16 (a) Determine the zeros and sketch the zero pattern for the FIR lattice filter with
parameters

Ki =  \,  K2 =  - l  *3 =  1

( b )  The same as in part (a) but with =  - 1 .
(c) You should have found that all the zeros lie exactly on the unit drde. Can this 

result be generalized? How?
( d )  Sketch the phase response of the filters in parts (a) and (b). What did you notice? 

Can this result be generalized? How?
7.17 Consider an FIR lattice filter with coefficients K i =  0.65, K 2 =  -0 .34 , and K 3 = 0.8.

(a) Find its impulse response by tracing a unit impulse input through the lattice 
structure.

( b )  Draw the equivalent direct-form structure.
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7.18 Consider a causal IIR system with system function

1 +  2z-1 +  3z~2 + 2z~3

1 +  0.9z-1 -  0.8z-2 +  0.5z-3

(a) Determine the equivalent lattice-ladder structure.
(b) Check if the system is stable.

7.19 Determine the input-output relationship, the system function, and plot the pole-zero 
pattern for the discrete-time system shown in Fig. P7.19.

rcos $

v(n)

rcos 8 Figure P7.19

7.20 Determine the coupled-form state-space realization for the digital resonator

1
H(z) =

1 -  (2 r cos «o)z- 1  +  r2z ~2

7.21 (a) Determine the impulse response of an FIR lattice filter with parameters Aj =  0.6,
Ki =  0.3, =  0.5, and KA =  0.9.

(b) Sketch the direct form and lattice all-zero and all-pole filters specified by the 
^-parameters given in part (a).

7.22 (a) Sketch the lattice realization for the resonator

H(z) =
1

1  -  (2 r cos a> o)z-:i +  r 2z ~2

(b) What happens if r =  1?
7.23 Sketch the lattice-ladder structure for the system

1 -  0.8z_ 1  +  0.15z-2
1 +  O.lz"1 -  0.72z~2

7.24 Determine a state-space model and the corresponding realization for the following 
FIR system:
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y(n) = y(n - 1) + O.ll^n - 2) + x(n)

and sketch the type 1 and type 2 state-space realizations.
1J26 Determine the type 1 and type 2 state-space realizations for the Fibonacci system and 

its diagonal form.
7.27 By means of the z-transform, determine the impulse response of the system described 

by the state-space parameters
„ ro 0.111 ro.11-1 roi . .
F = Li i  J'  H  i J-  « = L i J -  < i =1

7.28 Determine the characteristic polynomial of the coupled-form state-space structure 
described by (7.4.68) and solve for the roots.

729 Determine the transpose structure for the coupled-form state-space structure shown 
in Fig. 7.31.

730 Consider a pole-zero system with system function

( 1  -  O.Se^'V'Xl -  0.5e -J*/4z~l )
~  ( 1  -  0 .8eJ^z~ l ) a  -  0 . 8

(a) Sketch the regular and transpose direct form II realizations of the system.
(b) Determine and sketch the type 1 and type 2 state-space realizations.
(c) Determine the impulse response of the system by inverting H(z) and by using 

state-space techniques.
(d) Determine the coupled-form state-space realization.
(e) Repeat parts (a) through (d) for the system obtained by changing the angle of 

the poles from jt/3 to n/4.
731 (a) Determine a parallel and a cascade realization of the system

7.25 Determine the state-space model for the system described by

( 1  -  z - ^ l  -  O -^ ^ Z -O d  -  O .& r-^Z-1)

(b) Determine the type 1 and type 2 state-space descriptions of the system in part (a).
7 3 2  Show how to use a lattice structure to implement the following all-pass filter

0.5 +  0.2z_1 -  0.6z- 2  +  z- 3  

“  1 -  0.6z-‘ +  0.2z- 2  +  0.5z- 3

Is the system stable?
7 3 3  Consider a system described by the following state-space equations:

T<" +  1 ) =  [-0°81  ! ] ' ’<") +  [?]*<">

y(n) =  [-1 .8 1  l]v (n ) + * (n )

(a) Determine the characteristic polynomial and the eigenvalues of the system.
(b) Determine the state transition matrix $(n ) for n > 0.
(c) Determine the system function and the impulse response of the system.

( d )  Compute the step response of the system if v(0) =  [0 1 ]'.
(e) Sketch a state-space realization  for the system.
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734 Repeat Problem 7.33 if the system is described by the state-space equations

v(n +  1 ) =  ^  J v(n) +  j x{n)

y(n) =  [ 1  0 ] v(n)

7 3 5  Repeat Problem 7.33 for the system described by the state-space equations

, ( " +  1 ) - [ ’c u  - m ] * (") +  [ o] - ' (")
y ( n )  =  [ 1 1 ] v (n ) +  x ( n )

7 3 6  Consider the system

y ( n )  =  0 .9 y (n  -  1) -  0 .08y (n  — 2 ) +  jc(r») +  x ( r t  -  1)

(a) Determine the type 1 and type 2 state-space realizations of the system.
(b) Determine the parallel and cascade state-space realizations of the system.
(c) Determine the impulse response of the system by at least two different methods,

7 3 7  Consider the causal system

y(n) = J:Kn - 1) - gyfn - 2) + x(n) + - 1)

(a) Determine its system function.
(b) Determine the type 1 state-space model.
(c) Determine the state transition matrix &(n) =  F ,  for any n, using z-transform 

techniques.
(d) Determine the system function using the formula

tf<2) =  g'UI -  F)_1q + <*
Compare the answer with that in part (a).

(e) Compute the characteristic polynomial det(zl—F) and check if the system is stable.
7 3 8  Determine the impulse response of the system

-n -  .-[?]•
using the z-transform approach.

7 3 9  A  discrete-time system is described by the following state-space model:

v(/i +  1) =  Fv(n) +  qx(n) 

y{n) =  g'v(n) +dx(n)
where

F=[-0ji —i ] ■ «-[!]■ -[?]• -
(a) Sketch the corresponding state-space structure.
(b) Calculate the impulse response for n =  0, 1 , . . . ,  5 and for n = 

state-space approach
(c) Find the difference equation description of the system.
(d) Repeat part (b) by using the difference equation.
(e) Sketch the direct form II implementation of the system.

=  2

= 17 by using the
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7.40 Determine the state-space parameters F, q, g, and d for:
(a) the all-zero lattice structure
(b) the all-pole lattice structure

7.41 The generic floating-point format for a DSP microprocessor is the following:

|  sign bit

M

exponent

The value of the number X  is given by

IOl.M x 2£ if 5 =  0 
10.M x 2e if 5 =  1

0  if £  is the most negative two’s-complement value
Determine the range of positive and negative numbers for the following two formats:

(■)

(b)

15 12 11 10 0

E S M

31 24 23 22 0

E S M

short format

single-precision format

7.42 Consider the IIR recursive filter shown in Fig. P7.42 and let h F(n), hK(n), and h(n) 
denote the impulse responses of the FIR section, the recursive section, and the overall 
filter, respectively,
(a) Find all the causal and stable recursive second-order sections with integer coef­

ficients (ax, a2) and determine and sketch their impulse responses and frequency 
responses. These filters do not require complicated multiplications or quantiza­
tion after multiplications.

Figure P7.42
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(b) Show that three of the sections obtained in part (a) can be obtained by intercon­
nection of other sections.

(c) Find a difference equation that describes the impulse response h{n) of the filter 
and determine the conditions for the overall filter to be FIR.

(d) Rederive the results in parts (a) to (c) using z-domain considerations.
7.43 This problem illustrates the development of digital filter structures using Horner’s 

rule for polynomial evaluation. To this end consider the polynomial

p(x) = atpXp +  ap- 1*'’-1 -I--- h aix + ao

which computes p(x) with the minimum cost of p multiplications and p additions.
(a) Draw the structures corresponding to the factorizations

Hr(z) =  b0(l  + b i z - l (l +  b2z - l a + b i z ^ ) ) )

H(z) = bv(z~3 +  (£] z~2 + (b2Z~ 2 +!%)))

and determine the system function, number of delay elements, and arithmetic 
operations for each structure

(b) Draw the Horner structure for the following linear-phase system:

H(z)  = Z ~ l

7.44 Let x\ and xi be (b + l)-bit binary numbers with magnitude less than 1. To compute 
the sum of xi and x2 using two’s-complement representation we treat them as (b + 1)- 
bit unsigned numbers, we perform addition modulo-2 and ignore any carry after the 
sign bit.
(a) Show that if the sum of two numbers with the same sign has the opposite sign, 

this corresponds to overflow.
(b) Show that when we compute the sum of several numbers using two’s-complement 

representation, the result will be correct, even if there are overflows, if the correct 
sum is less than 1 in magnitude. Illustrate this argument by constructing a simple 
example with three numbers.

7.45 Consider the system described by the difference equation

y(n) = ay(n - 1) - ax(n) -I- x(n — 1)

(a) Show that it is all-pass.
(b) Obtain the direct form II realization of the system
(c) If you quantize the coefficients of the system in part (b), is it still all- pass?
(d) Obtain a realization by rewriting the difference equation as

y(n) = a[y{n - 1) - x(n)] + x(n - 1)

(e) If you quantize the coefficients of the system in part (d), is it still all-pass?
7.46 Consider the system

y(n) =  \y (n  -  1) +  *(«)

(a) Compute its response to the input x(n) = (j)"n(n) assuming infinite-predsion 
arithmetic.

3

£*o +  +
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(b) Compute the response of the system y(n), 0  < n < 5 to the same input, assuming 
finite-precision sign-and-magnitude fractional arithmetic with five bits (i.e., the 
sign bit plus four fractional bits). The quantization is performed by truncation.

(c) Compare the results obtained in parts (a) and (b).
7.47  The input to the system

y(n) =  0.999y(n -  1) +  x(n)
is quantized to b =  8  bits. What is the power produced by the quantization noise at
the output of the filter?

7.48  Consider the system
y(n) =  0.875y(n — 1) — 0.125;y(n — 2) -I- x(n)

(a) Compute its poles and design the cascade realization of the system.
(b) Quantize the coefficients of the system using truncation, maintaining a sign bit 

plus three other bits. Determine the poles of the resulting system.
(c) Repeat part (b) for the same precision using rounding.
(d) Compare the poles obtained in parts (b) and (c) with those in part (a). Which 

realization is better? Sketch the frequency responses of the systems in parts (a),
(b), and (c).

7.49  Consider the system

(a) Draw all possible realizations of the system.
(b) Suppose that we implement the filter with fixed-point sign-and- magnitude frac­

tional arithmetic using (b + 1) bits (one bit is used for the sign). Each resulting 
product is rounded into b bits. Determine the variance of the round-off noise 
created by the multipliers at the output of each one of the realizations in part (a).

7.50 The first-order filter shown in Fig. P7.50 is implemented in four-bit (including sign) 
fixed-point two’s-complement fractional arithmetic. Products are rounded to four-bit 
representation. Using the input x(n) =  0.105(n), determine:

(a) The first five outputs if a  =  0.5. Does the filter go into a limit cycle?
(b) The first five outputs if a  =  0.75. Does the filter go into a limit cycle?

7 .51  The digital system shown in Fig. P7.51 uses a six-bit (including sign) fixed-point two’s- 
complement A/D converter with rounding, and the filter H(z)  is implemented us­
ing eight-bit (including sign) fixed-point two’s-complement fractional arithmetic with 
rounding. The input x(t)  is a zero-mean uniformly distributed random process hav­
ing autocorrelation yZJ(t)  =  3£(r). Assume that the A/D converter can handle input 
values up to ± 1 . 0  without overflow.
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Figure P7.51

(a) What value of attenuation should be applied prior to the A/D converter to assure 
that it does not overflow?

(b) With the attenuation above, what is the signal-to-quantization noise ratio (SNR) 
at the A/D converter output?

(c) The six-bit A/D samples can be left-justified, right-justified, or centered in the 
eight-bit word used as the input to the digital filter. What is the correct strategy 
to use for maximum SNR at the filter output without overflow?

(d) What is the SNR at the output of the filter due to all quantization noise sources?
7 .52  Shown in Fig. P7.52 is the coupled-form implementation of a two-pole filter with

poles at x =  re±je. There are four real multiplications per output point. Let c, (n), 
i =  1, 2, 3, 4 represent the round-off noise in a fixed-point implementation of the 
filter. Assume that the noise sources are zero-mean mutually uncorretated stationary 
white noise sequences. For each n the probability density function p(e) is uniform in 
the range - A f l  < e < A /2 ,  where A — 2~h.
(a) Write the two coupled difference equations for y(/i) and t>(n), including the noise 

sources and the input sequence x(rt).
(b) From these two difference equations, show that the filter system functions H\(z) 

and H2 (z) between the input noise terms ej(n) + e2 (n) and e3 (n) +  et (n) and the 
output y(n) are:

Hiiz)

m t )

We know that

H(z)  =  -— --------~2 j => Hri) =  sin(n +  l)0u(/i)
1  - 2 TCOS0 Z- 1 + r2z~2 sin#

Determine hi(n) and h%(n).
(c )  Determine a closed-form expression for the variance of the total noise from (*)> 

i =  1, 2, 3, 4 at the output of the filter.

rsin<?z-1 
1  ~lrCO&6 z~v + r 2z ~2 

1  — r cos 6 z~l 
1 -  2 rcos#z - 1  +  r2z ~2
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7.53 Determine the variance of the round-off noise at the output of the two cascade real­
izations of the filter shown in Fig. P7.53, with system function

H{z) =

where

" ■ «  ■=
2

H 2( z )  =

7.54 Quantization effects in direct-form FIR filters Consider a direct-form realization of 
an FIR filter of length Af. Suppose that the multiplication of each coefficient with 
the corresponding signal sample is performed in fixed-point arithmetic with b bits and 
each product is rounded to b bits. Determine the variance of the quantization noise 
at the output of the filter by using a statistical characterization of the round-off noise 
as in Section 7.7.3.

7.55* Consider the system specified by the system function 

*(*>
A(z)

-  la (1 -  Q-8ej," V 1)(l -  1 r  (1 + i z - ’Hi -  sz~l) 1
”  L 1 (1 -  h - W  + 3Z-1) JL 2( l - 0 . ^ - > ) ( l - 0 . 8 e- > ^ - 1)J

(a) Choose Gi and G2 so that the gain of each second-order section at to =  0 is equal 
to 1.
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x(n)
Xn)

k>-f
c,(n) *2(n)

(a) Cascade realization I

(b) Cascade realization n  

Figure P7.53

(b) Sketch the direct form 1 , direct form 2, and cascade realizations of the system.
(c) Write a program that implements the direct form 1 and direct form 2, and compute 

the first 1 0 0  samples of the impulse response and the step response of the system.
(d) Plot the results in part (c) to illustrate the proper functioning of the programs. 

736* Consider the system given in Problem 7.55 with Gi =  G2 =  1.
(a) Determine a lattice realization for the system

H(z)  =  B(z)

(b) Determine a lattice realization for the system

1

A{z)

(c) Determine a lattice-ladder realization for the system H(z)  =  B(z)/A(z).
(d) Write a program for the implementation of the lattice-ladder structure in part (c).
(e) Determine and sketch the first 100 samples of the impulse responses of the sys­

tems in parts (a) through (c) by working with the lattice structures.
(f) Compute and sketch the first 100 samples of the convolution of impulse responses 

in parts (a) and (b). What did you find? Explain your results.
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7.57* Consider the system given in Problem 7.55.
(a) Determine the parallel-form structure and write a program for its implementation.
(b) Sketch a parallel structure using second-order coupled-form state-space sections.
(c) Write a program for the implementation of the structure in part (b).
(d) Verify the programs in parts (a) and (c) by computing and sketching the impulse 

response of the system.



8
Design of Digital Filters

W ith the background that w e have developed  in the preceding chapters, w e are 
now in a position to treat the subject o f digital filter design. W e shall describe 
several m ethods for designing FIR  and IIR digital filters.

In the design o f  frequency-selective filters, the desired filter characteristics 
are specified in the frequency domain in terms o f  the desired m agnitude and phase 
response o f the filter. In the filter design process, w e determ ine the coefficients of a 
causal FIR  or IIR  filter that closely approximates the desired frequency response 
specifications. The issue o f  which type o f  filter to  design, F IR  or IIR, depends 
on the nature o f the problem  and on the specifications o f the desired frequency 
response.

In practice, FIR  filters are em ployed in filtering problem s where there is 
a requirem ent for a linear-phase characteristic within the passband o f  the filter. 
If there is no requirem ent for a linear-phase characteristic, either an IIR  or an 
FIR  filter may be em ployed. H ow ever, as a general rule, an IIR  filter has lower 
sidelobes in the stopband than an FIR filter having the sam e num ber o f parameters. 
For this reason, if som e phase distortion is either tolerable or unim portant, an IIR 
filter is preferable, primarily because its im plem entation involves few er parameters, 
requires less m em ory and has lower com putational com plexity.

In conjunction with our discussion o f digital filter design, w e describe fre­
quency transformations in both the analog and digital dom ains for transforming a 
lowpass prototype filter into either another low pass, bandpass, bandstop, or high- 
pass filter.

Today, FIR  and IIR  digital filter design is greatly facilitated by the availability 
of num erous com puter software programs. In describing the various digital filter 
design m ethods in this chapter, our primary objective is to  give the reader the 
background necessary to select the filter that best m atches the application and 
satisfies the design requirem ents.

8.1 GENERAL CONSIDERATIONS

In Section 4 .5 ,  w e  described the characteristics o f  ideal filters and d e m o n s t r a te d  

that such filters are not causal and therefore, are not physically realizable. In t® 5

614
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section, the issue o f causality and its im plications is considered in m ore detail. 
Follow ing this discussion, we present the frequency response characteristics o f  
causal FIR  and IIR  digital filters.

8.1.1 Causality and Its Implications

Let us consider the issue o f causality in m ore detail by exam ining the impulse 
response h(n)  o f  an ideal lowpass filter with frequency response characteristic

H(a>) =
C0 c < O) < 7T

T he im pulse response o f this filter is

Ct)c

h(n) =
n
coc sin a>cn

n -  0  

n ^ O

(8.1.1)

(8.1.2)

A  plot o f h{n)  for <oc =  n / 4  is illustrated in Fig. 8.1. It is clear that the ideal 
low pass filter is noncausal and hence it cannot be realized in practice.

O ne possible solution is to  introduce a large delay no in h(n)  and arbitrarily 
to set h in)  =  0 for n <  no- H ow ever, the resulting system  no longer has an 
ideal frequency response characteristic. Indeed, if we set h(n)  — 0 for n < n0, 
the Fourier series expansion o f H(to)  results in the G ibbs phenom enon, as will be 
described in Section 8.2.

A lthough this discussion is lim ited to the realization o f a lowpass filter, our 
conclusions hold, in general, for all the other ideal filter characteristics. In brief, 
none o f the ideal filter characteristics previously illustrated in Fig. 4.43 are causal, 
hence all are physically unrealizable.

A  question that naturally arises at this point is the following: W hat are the 
necessary and sufficient conditions that a frequency response characteristic H(co)

h (n )

Figure 8.1 Unit sample response of an ideal lowpass filter.
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m ust satisfy in order for the resulting filter to  be causal? T he answer to this 
question is given by the P aley-W iener theorem , which can be stated as follows:

Paley-Wiener Theorem. If h(n)  has finite energy and h(n)  =  0 for n < 0 ,  
then [for a reference, see W iener and Paley (1934)]

f  | In \H(to)\\dco <  oo (8.1.3)
J —ir

Conversely, if |//(a>)I is square integrable and if the integral in (8.1.3) is finite, then 
w e can associate with \H{a>)\ a phase response 0 (o>), so  that the resulting filter 
with frequency response

H{a>) =  \H(a>)\em w ]

is causal.

O ne important conclusion that w e draw from the P aley-W iener theorem  is 
that the m agnitude function | //(&>) I can be zero at som e frequencies, but it cannot 
be zero over any finite band o f  frequencies, since the integral then  becom es infinite. 
Consequently, any ideal filter is noncausal.

Apparently, causality im poses som e tight constraints on a linear time- 
invariant system. In addition to the P aley-W iener condition, causality also implies 
a strong relationship betw een  H r {cd) and H r (a>), the real and imaginary com po­
nents o f  the frequency response H(o>). T o illustrate this dependence, we decom ­
pose h(n)  into an even and an odd sequence, that is,

h(n) =  h e(n) +  ha(n) (8.1.4)

where

h e(n) =  \ [h (n )  +  h ( - n ) ]  (8.1.5)

and

h 0 (n) =  \ [h (n )  -  h { - n )] (8 .1 .6 )

N ow , if h(n ) is causal, it is possible to  recover h(n)  from its even  part h e{n) for
0  <  n < oo or from its odd com ponent h 0 (n) for 1  <  n < oo.

Indeed, it can be easily seen  that

h{n)  =  2 h r(n)u(n)  — he{0)S{n) n >  0 (8.1.7)

and

h (n ) =  2h 0 (n)u(n) +  h(0)S(n) n > 1 (8.1.8)

Since h 0 {n) =  0 for n =  0, w e cannot recover ft(0) from h 0 (n) and hence we also 
must know /i(0). In any case, it is apparent that h 0 (n) =  h e(n) for n > 1, so there 
is a strong relationship betw een  h 0 (n) and h t (n).

If h(n ) is absolutely sum m able (i.e., B IB O  stable), the frequency response 
H{co) exists, and

H(o>) =  HR(a>) +  j H ,  (co) (8.1.9)



In addition, if h (n) is real valued and causal, the symmetry properties o f  the Fourier 
transform im ply that

h e(n) «  H R(a>)
(8 . 1. 10)

h 0 (n) «  Hi (to)

Since h(n)  is com pletely specified by he(n),  it follow s that H(to)  is com pletely  
determ ined if w e know  H R(to). A lternatively, H(to) is com pletely determ ined  
from Hj(a>) and fc(0). In short, H R(to) and Hi(to)  are interdependent and cannot 
be specified independently if the system  is causal. E quivalently, the m agnitude 
and phase responses o f a causal filter are interdependent and hence cannot be  
specified independently.

Given Hg(w)  for a corresponding real, even, and absolutely sum m able se ­
quence he(rt), we can determ ine H(to).  T he follow ing exam ple illustrates the pro­
cedure.

Example 8 .L 1

Consider a stable LTI system with real and even impulse response h(n). Determine
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H(w) if
1 — a cos to 

HR(w) SB ----- ----------- — -  J<*j < 1
1 —2 a cos w +  a1

Solution The first step is to determine he(n). This can be done by noting that 

H r (w ) =  H r ( z )

where
H ( ) =  1 ~ Q(z +  _  z -  a(z2 +  l ) / 2

R Z 1 -  a(z +  z_1) + a 2 (z - a ) ( l ~ a z )
The ROC has to be restricted by the poles at pi =  a and pj = \ /a  and should include 
the unit circle. Hence the ROC is (oj < |z| < l/ |o |.  Consequently, ht (n) is a two- 
sided sequence, with the pole at z =  a contributing to the causal part and p2 =  1 /a 
contributing to the anticausal part. By using a partial-fraction expansion, we obtain

ht(n) =  ifl1”1 +  \&(h) (8.1.11)

By substituting (8.1.11) into (8.1.7), we obtain h(n) as 

k(n) a"«(«)

Finally, we obtain the Fourier transform of h(n) as

1

1 — ae~lto

The relationship betw een  the real and imaginary com ponents o f  the Fourier 
transform o f an absolutely sum m able, causal, and real sequence can be easily  
established from  (8.1.7). The Fourier transform relationship for (8.1.7) is

H(a>) =  H r (co) +  j H ] ( t o )  =  -  I H R( k ) U ( t o - k ) d k ~ h e(0) (8.1.12)
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w here U(u>) is the Fourier transform o f  the unit step sequence u(n).  A lthough the 
unit step sequence is not absolutely sum m able, it has a Fourier transform (see  
Section 4.2.8).

U(u)) =  n&(a>)+ 1
1  -  e-J*

r/ x 1  1  "=  7TS(a)) +  -  — y r  cot — — n  < a> < n
2 J 2 2 ~

(8.1.13)

B y substituting (8.1.13) in to (8.1.12) and carrying out the integration, w e obtain  
the relation betw een  H R(to) and Hj(a>) as

H,(to)  =  j  H„(k)  cot (8.1.14)

Thus HiUo) is uniquely determ ined from  H r (uj) through this integral relationship. 
T he integral is called a discrete Hilbert transform.  It is left as an exercise to the 
reader to establish the relationship for H R(a>) in terms o f the discrete Hilbert 
transform o f

T o sum m arize, causality has very important im plications in the design of  
frequency-selective filters. T hese are: (a) the frequency response H(a>) cannot 
be zero, except at a finite set o f points in frequency; (b) the m agnitude }tf(ti>)| 
cannot be constant in any finite range o f frequencies and the transition from pass­
band to stopband cannot be infinitely sharp [this is a consequence o f the Gibbs 
phenom enon, which results from the truncation of h(n)  to  ach ieve causality]; and
(c) the real and imaginary parts o f H(a>) are interdependent and are related by the 
discrete H ilbert transform. A s a consequence, the m agnitude \H(a>)\ and phase 
0 (<y) o f  H(a>) cannot be chosen  arbitrarily.

N ow  that w e know  the restrictions that causality im poses on the frequency  
response characteristic and the fact that ideal filters are not achievable in practice, 
w e limit our attention to the class o f linear time-invariant system s specified by the 
difference equation

N U

3,(n ) =  ~  H  aky(n -  *) +  bkX<Jl ~  k )
* = 1  * = 0

which are causal and physically realizable. A s w e have dem onstrated, such systems 
have a frequency response

H(co) =  -------------  (8.1.15)

ake
Jc=l

-jwk

T he basic digital filter design problem  is to  approximate any o f  the ideal frequency  
response characteristics w ith a system  that has the frequency response (8.1.15), by 
properly selecting the coefficients {ak} and {bt}. T he approxim ation problem  is



treated in detail in Sections 8.2 and 8.3, where w e discuss techniques for digital 
filter design.

8.1.2 Characteristics of Practical Frequency-Selective 
Filters

A s w e observed from our discussion o f the preceding section, ideal filters are 
noncausal and hence physically unrealizable for real-tim e signal processing appli­
cations. Causality im plies that the frequency response characteristic H ( a>) o f  the 
filter cannot be zero, except at a finite set o f points in the frequency range. In 
addition, H ( a>) cannot have an infinitely sharp cutoff from passband to stopband, 
that is, H(oj)  cannot drop from unity to zero abruptly.

A lthough the frequency response characteristics possessed by ideal filters may 
be desirable, they are not absolutely necessary in m ost practical applications. If we 
relax these conditions, it is possible to  realize causal filters that approxim ate the 
ideal filters as closely as we desire. In particular, it is not necessary to insist that the 
m agnitude \H{u>)\ be constant in the entire passband o f the filter. A  small am ount 
o f ripple in the passband, as illustrated in Fig. 8.2, is usually tolerable. Similarly, it 
is not necessary for the filter response (</>)|to be zero in the stopband. A  small, 
nonzero value or a small amount of ripple in the stopband is also tolerable.

The transition o f the frequency response from passband to stopband defines 
the transition b and  or transition region o f the filter, as illustrated in Fig. 8.2. The  
band-edge frequency wp defines the edge o f the passband, while the frequency ojs 
denotes the beginning o f the stopband. Thus the width of the transition band is 
aij — o)p . T he width o f the passband is usually called the bandw id th  o f  the filter. For 
exam ple, if the filter is lowpass with a passband edge frequency wp, its bandwidth  
is wp.

Sec. 8.1 General Considerations 619

Figure &2 Magnitude characteristics of physically realizable filters.
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If there is ripple in the passband o f  the filter, its value is d enoted  as 8 lt and 
the m agnitude |//(a ))| varies betw een the limits 1 ± i i .  The ripple in the stopband 
of the filter is denoted as S2.

T o accom m odate a large dynamic range in the graph o f  the frequency re­
sponse o f any filter, it is com m on practice to use a logarithm ic scale for the mag­
nitude | H(a)) |. C onsequently, the ripple in the passband is 201og 10 5] decibels, and 
that in the stopband is 2 0 1 o g 10 &2 -

In any filter design problem  w e can specify (1) the m axim um  tolerable pass­
band ripple, (2) the maximum tolerable stopband ripple, (3) the passband edge 
frequency a>p, and (4) the stopband edge frequency cos. B ased  on these speci­
fications, w e can select the param eters {a*} and {£>*} in the frequency response 
characteristic, given by (8.1.15), which best approxim ates the desired specification. 
The degree to  which H(co) approximates the specifications depends in part on the 
criterion used in the selection  of the filter coefficients {a*} and {&*) as w ell as on 
the numbers (M , N )  o f coefficients.

In the follow ing section  we present a m ethod for designing linear-phase FIR  
filters.

8.2 DESIGN OF FIR FILTERS

In this section w e describe several m ethods for designing FIR filters. Our treatment 
is focused on the important class o f linear-phase FIR  filters.

8.2.1 Symmetric and Antisymmetric FIR Filters

A n  FIR  filter o f length M  with input x (n )  and output y(n )  is described by the 
difference equation

y ( n ) s= box(n)  +  b\x (n  -  1 ) -I-------- H bM- \ x ( n  -  M  +  1 )

where {£*} is the set o f  filter coefficients. A lternatively, we can express the output 
sequence as the convolution o f  the unit sam ple response h(n)  o f the system  with 
the input signal. Thus w e have

w here the lower and upper limits on the convolution sum reflect the causality and 
finite-duration characteristics o f the filter. Clearly, (8.2.1) and (8.2.2) are identical 
in form and hence it follow s that i>* =  h(k) ,  k  =  0 , 1 , . . . ,  M  ~  1 .

T he filter can also be characterized by its system  function
M- 1

(8.2.1)

y(n) =  £  h ( k ) x ( n - k ) (8.2.2)

(8.2.3)
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which w e view  as a polynom ial o f  degree Af — 1 in the variable z _1. The roots o f  
this polynom ial constitute the zeros o f the filter.

A n FIR  filter has linear phase if its unit sam ple response satisfies the condi­
tion

h{n)  =  ± h { M  -  1 -  n) n =  0 , 1 , . . . ,  M  -  1 (8.2.4)

W hen the symmetry and antisymmetry conditions in (8.2.4) are incorporated into 
(8.2.3), w e have

H (z)  =  /i(0) +  M D z " 1 +  h ( 2 ) z ' z +  --- +  h ( M -  2)z ~(M~2) +  h ( M  -  1)

(M /2 ) - l

-m  Y ,  h(n)[ziM- l~2k)/2 ± z - ^ - 2k}/2] M  even

M  odd

(8.2.5)

N ow , if we substitute z 1 for z in (8.2.3) and multiply both sides o f  the resulting  
equation by z_tw_1), w e obtain

z- (w- i ) H( z - i )  _  ±H {Z )  (82>6)

T his result im plies that the roots o f the polynom ial H (z)  are identical to the roots 
o f the polynom ial H { z - 1). C onsequently, the roots o f  H (z )  must occur in reciprocal 
pairs. In other words, if zj is a root or a zero o f  H ( z ), then \ / z \  is also a root. 
Furtherm ore, if the unit sam ple response h(n)  o f the filter is real, com plex-valued  
roots must occur in com plex-conjugate pairs. H ence, if  zi is a com plex-valued  
root, z* is also a root. A s a consequence o f  (8.2.6), H (z )  also has a zero at 1 /z  j . 
Figure 8.3 illustrates the symmetry that exists in the location of the zeros o f a 
linear-phase FIR filter.

The frequency response characteristics o f  linear-phase FIR filters are o b ­
tained by evaluating (8.2.5) on the unit circle. This substitution yields the expres­
sion for H(w).

Figure &3 Symmetry o f zero locations 
for a linear-phase FIR filter.



W hen hin )  =  h ( M  -  1 — n), H{a>) can be expressed as

H(to)  =  Hr (co)e- jm iM ~ 1)/2 (8.2.7)

where Hr(a>) is a real function o f  co and can be expressed as

(
fu /  __ i  \ (M -3 ) f2  / __ i  \

— - — ^ 2  ^ ( n ) c o s a ) ^ — -------- n j  M  odd
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(8.2.8)
n= 0

(Af/2)—1■L7 ( M  — 1  \
Hr (co) =  2 ^  h(n) cosco ( — -------- n j M  even (8.2.9)

«=o \  '

The phase characteristic o f the filter for both M  odd and M  even  is

- t o  ’ i f  t f r fcu)  >  0

— t o  +  7 1  * i i H r ( a > ) < 0

@(<o) =

W hen

(8.2.10)

h(n)  =  —h ( M  -  1 -  n)

the unit sam ple response is antisymmetric.  For M  odd, the center point o f the 
antisymmetric h(n)  is n =  (M  -  l ) / 2 . C onsequently,

H ow ever, if M  is even , each term  in h(n)  has a matching term o f  opposite sign.
It is straightforward to  show  that the frequency response o f  an FIR  filter with  

an antisymmetric unit sam ple response can be expressed as

H(to)  =  Hr (co)e*-a>{M- ' )rz+1' f t  (8.2.11)

where

( « - 3 ) / 2  / M - 1  \

Hr (co) — 2 ^  A( n) s i na>( — -------- n l  M  odd (8.2.12)
«»o \  2  /

H r(io) =  2 ^  A ( n ) s i n o ; f — -------- n J M  even  (8.2.13)
«=o \  2  /

The phase characteristic o f the filter for both Af odd and Af even  is

©(o>) =

n  ( M - 1 \
2 "_ < w ( — 2 — ) ’ '&Hr(a>)> 0  

T ’ ~ w ( ~ 2 ~ ) ’ H H r(co) < 0

(8.2.14)

T hese general frequency response formulas can be used to design linear- 
phase F IR  filters with sym m etric and antisymm etric unit sam ple responses. W e
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note that, for a sym m etric h(n),  the number o f  filter coefficients that specify the  
frequency response is (Af +  l ) /2  w hen M  is odd or M / 2  w hen M  is even. On the  
other hand, if the unit sam ple response is antisymmetric,

so that there are (Af — l ) / 2  filter coefficients w hen M  is odd and M / 2  coefficients 
w hen M  is even  to be specified.

The choice o f a symmetric or antisymm etric unit sam ple response depends 
on the application. A s w e shall see later, a symmetric unit sam ple response is 
suitable for som e applications, w hile an antisymm etric unit sam ple response is 
m ore suitable for other applications. For exam ple, if h(n) =  — h ( M  - 1  -  ri) and M  
is odd, (8.2.12) im plies that Hr (0) =  0 and Hr ( n ) =  0. C onsequently, (8.2.12) is not 
suitable as either a lowpass filter or a highpass filter. Similarly, the antisymmetric 
unit sam ple response with M  even also results in Hr (0) =  0, as can be easily verified  
from (8.2.13). Consequently, w e would not use the antisym m etric condition in the  
design o f  a lowpass linear-phase FIR filter. On the other hand, the symmetry  
condition h(n)  =  h ( M  — 1 -  n) yields a linear-phase F IR  filter with a nonzero  
response at to =  0 , if desired, that is,

/  Af — 1 \  w - W  
tfr(0) =  / i ( — - 1 + 2  £  h{n),  M  odd (8.2.15)\ 2 /  n=0

Hr (0) =  2 J  h (n ), M  even (8.2.16)
n= 0

In summary, the problem  o f  FIR  filter design is sim ply to determ ine the Af 
coefficients A(n) , n =  0 , l , . . . , A f  — 1 , from a specification o f the desired frequency  
response Hj(to)  o f  the FIR  filter. The important param eters in the specification o f  
Hd(co) are given in Fig. 8.2.

In the follow ing subsections w e describe design m ethods based on specifica­
tion o f  Hjico).

8.2.2 Design of Linear-Phase FIR Filters Using Windows

In this m ethod w e begin with the desired frequency response specification Hj(to)  
and determ ine the corresponding unit sam ple response h j(n ) .  Indeed, hd{n) is 
related to Ha(a>) by the Fourier transform relation

ff*(o>) =  f > ( " ) * “ '“" (8.2.17)
ItsO

where
1 f *hd{n) =  —  /  Hd{co)ejamd(o (8.2.18)

2j t
Thus, given Hj((o), w e  can determ ine the unit sam ple response h j (n )  by evaluating 
the integral in (8 .2 .18).
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In general, the unit sam ple response hd{n) obtained from  (8.2.17) is infinite 
in duration and must be truncated at som e point, say at n =  M  — 1 , to  yield an 
FIR filter o f length Af. Truncation o f  hd (n) to a length M  — 1 is equivalent to  
multiplying hd(n) by a “rectangular w indow ,” defined as

" " - { i  othervrise " ^  ~ 1 <8 '2 1 9 )

Thus the unit sam ple response o f the FIR  filter becom es

h{n)  =  hd(n)win)

_  |  hd in), n =  0 , 1 .........M - 1  (8 .2 .2 0 )
{ 0 , otherwise

It is instructive to consider the effect o f the window function on the de­
sired frequency response Hdito). R ecall that m ultiplication o f the w indow function  
w in)  with hd(n) is equivalent to convolution o f  Hd (w) with Wi<o), where W(<o) is 
the frequency-dom ain representation (Fourier transform) o f the window function, 
that is,

A f-1

W iw)  =  Y i  w ( n ) e - jwn (8.2.21)
n= 0

Thus the convolution of Hdi<o) with W iw )  yields the frequency response of the 
(truncated) FIR  filter. That is,

1 f *
H iw )  =  —  /  Hd( v ) W ( w -  v )dv  (8.2.22)

2n  J .„

T he Fourier transform of the rectangular window is

Af-1
W(w) =  Y  e~jan

(8.2.23)n* 0

=  =  sin(a>M/2 )
1 — e~iw sin(a>/2 )

This w indow function has a m agnitude response

\W(<o)\ =  - 7t < w < 7t  (8.2.24)
|sm(<u/2 )|

and a piecew ise linear phase

— co ^ ~ 2 ~ )  ’ w hen sin(£uAf/2) >  0

}  M  — 1 \
—& I — - —  I +  n ,  w hen sm(tuAf/2) <  0

T he m agnitude response o f the w indow  function is illustrated in Fig. 8.4 for M  =  31 
and 61. The width o f  the main lobe [width is m easured to the first zero o f  W(tu)]

© (oj) = (8.2.25)
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Figure 8.4 Frequency response 
for rectangular window of lengths 
(a) M  =  31, (b) M  =  61.

is 4jt/ M .  H ence, as M  increases, the main lobe becom es narrower. H ow ever, the  
sidelobes o f |W(a>)| are relatively high and remain unaffected by an increase in M .  
In fact, even though the width o f each sidelobe decreases with an increase in M ,  
the height o f each sidelobe increases with an increase in M  in such a manner that 
the area under each sidelobe remains invariant to changes in M .  This character­
istic behavior is not evident from observation of Fig. 8.4 because W ( oj) has been  
norm alized by M  such that the norm alized peak values o f the sidelobes remain  
invariant to an increase in M.

T he characteristics o f the rectangular w indow  play a significant role in deter­
mining the resulting frequency response o f the FIR filter obtained by truncating 
hd(n)  to length M.  Specifically, the convolution o f Hd{u)) with W(a)) has the effect 
o f sm oothing A s M  is increased, W(a») becom es narrower, and the sm ooth­
ing provided by W(cv) is reduced. On the other hand, the large sidelobes o f W(a>) 
result in som e undesirable ringing effects in the FIR  filter frequency response  
H(co), and also in relatively larger sidelobes in H(a>). T hese undesirable effects 
are best alleviated by the use o f w indows that do not contain abrupt discontinu­
ities in their tim e-dom ain characteristics, and have correspondingly low  sidelobes  
in their frequency-dom ain characteristics.

Table 8.1 lists several w indow  functions that possess desirable frequency re­
sponse characteristics. Figure 8.5 illustrates the tim e-dom ain characteristics o f the  
windows. T he frequency response characteristics o f the Hanning, H am ming, and 
Blackm an window s are illustrated in Figs. 8 . 6  through 8 .8 . A ll o f these w indow  
functions have significantly low er sidelobes com pared with the rectangular w in­
dow. H ow ever, for the sam e value o f M, the width o f the main lobe is also wider 
for these window s com pared to  the rectangular window. Consequently, these win­
dow  functions provide m ore sm oothing through the convolution operation in the 
frequency dom ain, and as a result, the transition region in the FIR filter response 
is wider. T o  reduce the width o f this transition region, w e can simply increase the 
length o f the w indow which results in a larger filter. T able 8.2 summarizes these  
im portant frequency-dom ain features o f  the various w indow  functions.

The w indow  technique is best described in terms o f a specific exam ple. Sup­
p ose that w e want to  design a sym m etric low pass linear-phase FIR  filter having a
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TABLE 8.1 WINDOW FUNCTIONS FOR FIR FILTER DESIGN

Name of 
window

Time-domain sequence,
h(n), 0 < n <  M  — 1

Bartlett (triangular) 

Blackman 

Hamming 

Hanning

Kaiser

Lanczos

Tukey

M - l

M -  1

0.42 — 0.5 cos +  0.08 cos ^ ”M - l  ' M - l
2nn

0.54 — 0.46 cos M - l
1 / .  2n n  \  
-  11 — c o s ------- r
2 \  M - l J

* [ . ( ! ? ) ]

, 1 A/ — 1 ] M - l
1. « -------— < a -------  0 < or <I 2  I “ 2

2 L V (1 — ot)(M — l) /2  ) \

L > 0

a(A/ — l) /2  < n —

a )(M  — l) /2  
A f - 1  I A / - 1

desired frequency response

tfrfM  =  ( 0  s  M  <  o>c ( 8  2 .2 6 )
1 0, o th e r w is e

A  delay o f (M  — l ) / 2  units is incorporated into Hd(w) in anticipation o f  forcing 
the filter to be o f length M .  The corresponding unit sam ple response, obtained by 
evaluating the integral in (8.2.18), is

hd(n) =  ^ -  f  e ^ - ^ d c o  
2n  J_Uc

/  M - l \  n *  2

V  2 )
Clearly, hd(n) is noncausal and infinite in duration.

- _ 1 (*2.27,
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0.8
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/ /  ^  Rectangular

f t  \  
f  t  y  Hamming
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M -  1

Figure 8J5 Shapes of several window

Figure 8.6 Frequency responses of 
Hanning window for (a) M — 31 and 
(b) M  =  61.

Figure 8.7 Frequency responses for 
Hamming window for (a) M  =  31 an<
(b) M  =  61.
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Figure &8 Frequency responses for 
Blackman window for (a) M  =  31 and
(b) M  =  61.

TABLE 8.2 IMPORTANT FREQUENCY-DOMAIN 
CHARACTERISTICS OF SOME WINDOW FUNCTIONS

Type of window

Approximate 
transition width of 

main lobe
Peak sidelobe 

(dB)

Rectangular Ait/M - 1 3
Bartlett &7T/M -2 7
Hanning %ixjM -3 2
Hamming &JI/M -4 3
Blackman YItz/M -5 8

If we multiply h j (h )  by the rectangular w indow sequence in (8.2.19), we 
obtain an FIR  filter o f length M  having the unit sample response

sin a),
h(n)  = 0  < n < M  — 1  -  (8.2.28)

(8.2.29)

If M  is selected to be odd, the value o f  h (n ) at n =  (M  — Y)/2  is

. ( — ) , =

The m agnitude o f the frequency response H(o)) o f this filter is illustrated 
in Fig. 8.9 for M  =  61 and M  =  101. W e observe that relatively large oscilla­
tions or ripples occur near the band edge o f  the filter. The oscillations increase in 
frequency as M  increases, but they do not diminish in am plitude. A s indicated pre­
viously, these large oscillations are the direct result o f  the large sidelobes existing  
in the frequency characteristic W (a>) o f  the rectangular w indow . A s this window  
function is convolved  with the desired frequency response characteristic 
the oscillations occur as the large constant area sidelobes o f  W ( cd) m ove across 
the discontinuity that exists in Since (8.2.17) is basically a Fourier series
representation o f  the m ultiplication o f  h j ( n )  with a rectangular window  is
identical to truncating the Fourier series representation o f  th e  desired filter char-
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Normalized frequency

(b)

Figure 8.9 Lowpass filter designed with 
a rectangular window (a) M =  61 and 
(b) M  =  101.

acteristic H j  (co). The truncation o f the Fourier series is known to introduce ripples 
in the frequency response characteristic H(co) due to the nonuniform  convergence  
o f the Fourier series at a discontinuity. The oscillatory behavior near the band  
edge o f the filter is called the G ibbs  p h e n o m e n o n .

T o alleviate the presence o f  large oscillations in both the passband and the  
stopband, w e should use a w indow  function that contains a taper and decays to ­
ward zero gradually, instead o f abruptly, as it occurs in a rectangular window. 
Figures 8.10 through 8.13, illustrate the frequency response o f the resulting filter 
w hen som e o f the w indow functions listed in Table 8.1 are used to taper hd(n). A s  
illustrated in Figs. 8.10 through 8.13, the w indow  functions do indeed elim inate the  
ringing effects at the band edge and do result in lower sidelobes at the expense o f  
an increase in the width o f the transition band o f the filter.

Fignv 8.10 Lowpass FIR filter 
designed with rectangular window 
(M =  61).
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Figure 8.11 Lowpass FIR filter 
designed with Hamming window 
(Af =  61).

Figure 8-12 Lowpass FIR filter 
designed with Blackman window 
(Af =  61).

Figure 8.13 Lowpass FIR filter 
designed with a  =  4 Kaiser wind* 
(Af =  61).

8.2.3 Design of Linear-Phase FIR Filters by the 
Frequency-Sampling Method

In the frequency sampling m ethod for FIR  filter design, w e specify the desired  
frequency response Hj(co) at a set o f  equally spaced frequencies, namely

M - l
Vk =  tj-(* +  “ ) * =  0 , 1 , M  odd

M (8.2.30)

and solve for the unit sample response h ( n ) of the FIR filter from these equally
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spaced frequency specifications. T o reduce sidelobes, it is desirable to  optim ize the  
frequency specification in the transition band o f the filter. This optim ization can be  
accom plished numerically on a digital com puter by m eans o f linear program ming  
techniques as shown by Rabiner et al. (1970).

In this section w e exploit a basic sym m etry property o f the sam pled frequency  
response function to simplify the com putations. Let us begin with the desired  
frequency response o f the FIR filter, which is [for sim plicity, w e drop the subscript 
in Hd(a>)],

M- 1

H(a>) =  h(n)e~ iwn (8.2.31)
«=o

Suppose that we specify the frequency response o f the filter at the frequencies 
given by (8.2.30). Then from (8.2.31) we obtain

H (k  +  a)  =  H ^ - i k  +  a y j

M - 1

H (k  +  a )  s  Y  h (n )e~ i2n{k+a)n,M k  =  0 , 1 , . . . .  Af — 1 (8.2.32)
n=0

It is a sim ple m atter to  invert (8.2.32) and express h{n) in terms o f H (k  +  a) .  
If w e multiply both sides of (8.2.32) by the exponential, z x p ( j 2 x k m / M ) ,  m — 0,
1 . . . . ,  M  — 1, and sum over k =  0, 1 , Af  ~  1, the right-hand side o f (8.2.32) 
reduces to A fh ( m ) e x p ( —j 2 n a m / A f ) .  Thus w e obtain

i M - 1

=  77 Y L  H (k  +  ct)ej2,T(k+a)nlM n =  0 , 1 , . . . , A /  — 1 (8.2.33)
*=o

The relationship in (8.2.33) allows us to com pute the values o f the unit sam ple  
response h(n)  from the specification of the frequency sam ples H (k  +  a ) ,  k  =  0 ,
1 . . . . ,  M  — 1. N ote that when a  =  0, (8.2.32) reduces to the discrete Fourier 
transform (D FT ) o f the sequence [h(n)} and (8.2.33) reduces to the inverse D F T  
(ID FT ).

Since (fc(/i)} is real, we can easily show that the frequency sam ples { H ( k + a ) }  
satisfy the symmetry condition

H ( k  +  a )  =  H*(Af — k — a )  (8.2.34)

This sym m etry condition, along with the sym m etry conditions for \h(n)) ,  can be  
used to reduce the frequency specifications from M  points to  (M  +  l ) / 2  points for 
M  odd and M f l  points for M  even. Thus the linear equations for determ ining  
{h(n)} from [H (k  +  a)} are considerably simplified.

In particular, if (8.2.11) is sam pled at the frequencies =  2n ( k  +  a ) / M ,  
k  =  0, 1 , . . . ,  Af — 1, we obtain

/  2 jt
H (k  +  a)  =  Hr l  — (k +  a )  J  (8.2.35)
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where j3 =  0 when is symmetric and p  =  1 w hen {h(n)} is antisymmetric. A
sim plication occurs by defining a set o f real frequency sam ples {G(k +  m)}

G(k  +  a)  =  ( ~ l ) kHr +  k  =  0 ,1 .........M - l  (8.2.36)

W e use (8.2.36) in (8.2.35) to  elim inate Hr(a>k). Thus w e obtain

H (k  +  a)  =  G ik  +  (8.2.37)

N ow  the sym m etry condition for H (k  +  a ) given in (8.2.34) translates into a corre­
sponding symmetry condition for G(k  +  a ) , which can be exploited  by substituting 
into (8.2.33), to  sim plify the expressions for the FIR  filter im pulse response {h(n)) 
for the four cases ar =  0, a  =  j ,  =  0, and f$ =  \ .  The results are summarized in 
Table 8.3. The detailed derivations are left as exercises for the reader.

A lthough the frequency sampling m ethod provides us with another m eans for 
designing linear-phase FIR  filters, its major advantage lies in the efficient frequency  
sampling structure, which is obtained w hen m ost o f  the frequency sam ples are zero, 
as dem onstrated in Section 7.2.3.

The follow ing exam ples illustrate the design o f  linear-phase FIR  filters based  
on the frequency sam pling m ethod. The optim um  values for the sam ples in the 
transition band are obtained from the tables in A ppendix C which are taken from  
the paper by Rabiner et al. (1970).

Example 8 .2 . 1

Determine the coefficients of a linear-phase FIR filter of length M — 15 which has a 
symmetric unit sample response and a frequency response that satisfies the conditions

1, * =  0 ,1 ,2, 3 
0.4, k = 4 
0. k =  5 , 6 , 7

Solution Since h(n) is symmetric and the frequencies are selected to correspond to 
the case a  =  0, we use the corresponding formula in Table 8.3 to evaluate h(n). In 
this case

' 2 n k \
u j

The result of this computation is

G(k) = ( ~ l ) kHr ) k = 0 ,1 ........7

*(0) = A(14) = -0.014112893
A(l) = A (13) = -0.001945309
h (2) = A (12) = 0.04000004
A( 3) = A (ll) = 0.01223454
h( 4) = *(10) -0.09138802
h( 5) = A (9) = -0.01808986
h{ 6) = A (8) = 0.3133176
A(7) = 0.52
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TABLE 8.3 UNIT SAMPLE RESPONSE: h(n) = ±h{M ~ 1 -  n)

Symmetric

a  =  0

_ l

H(k) = G(k)e>*k/M k = 0,1...., M - 1 

G(Jt) « C—l)*«r <?(*) = ~G(M - *)

=  * G(0) + 2 £  G(*) cos + i)
Jk=l

M - l

f->-

M

M odd 

A/ even

tf (* + i) = G (k + A) e->*/2e>»0*+D/2*f

G ( * + i )  =  ( - l)* ffr 

G (i + i) = G (M -  k - i)
2 ^ . ,  , v . 2 jt

|(‘+»
^ = M E C (* + 2 ) Sin (* +  5) (" +  5)

Antisymmetric

=  0

H(k) = G(k)eJ,r/2eJ,lk/M k = 0,1,..., M -  1 

G{k) = (-1 )kHr ( j p j  G(k) = G(M -  k)

h{n) = —-̂ 7 V  G(fc)sin^^ (n + ;) Af odd 
Af ' Af v

*(«) = {— l)"+1G(A//2) - 2 G(&)sin (« + j) Af even 

(* + i) = G (* + i) e» 0k+l)fUI 

G{k + \) = ( - l ) kHr \ ~  (* + l)j 

G (k + i) = -G (Af - k -  \) ; G(M/2) = 0 for Af odd

* ( n ) = j; 12 G (k+5) 005 ( * + j )  (w + 2)

V  =

Af -  3

2 ’
Af odd 

Af even
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3ir
44 2

Figure 8.14 Frequency response of linear-phase FIR filter in Example 8.2.1.

The frequency response characteristic of this filter is shown in Fig. 8.14. We should 
emphasize that Hr{w) is exactly equal to the values given by the specifications above 
at a)k = 2jr)t/15.

Determine the coefficients of a linear-phase FIR filter of length M = 32 which has a 
symmetric unit sample response and a frequency response that satisfies the condition

where T\ = 0.3789795 for a = 0, and 7\ = 0.3570496 for a = 5. These values of T\ 
were obtained from the tables of optimum transition parameters given in Appendix C.

Solution The appropriate equations for this computation are given in Table 8.3 for 
a = 0 and a = These computations yield the unit sample responses shown in 
Table 8.4. The corresponding frequency response characteristics are illustrated in 
Figs. 8.15 and 8.16, respectively. Note that the bandwidth of the filter for a = 5 is 
wider than that for a = 0.

T he optim ization o f the frequency sam ples in the transition region of the 
frequency response can be explained by evaluating the system  function H (z) ,  given  
by (7.2.12), on the unit circle and using the relationship in (8.2.37) to  express H (u>)

Example HJ- 2

k ~ 0 , 1,2,3,4, 5 
k =  6

* = 7, 8,.... 15
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TABLE 8.4
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M = 32 M * 32
ALPHA 0. ALPHA 0 . 5
T1 * 0 . 3789795E+00 T1 = 0 . 35704 9 6E+ 00

h ( 0) = - 0 . 7 1 4 1 9 7 8 E - 0 2 h (  0) = - 0 . 40 B 91 2 0E -0 2
h (  1) = - 0 . 3 0 7 0 8 0 I E - 02 h (  1) = - 0 . 9 9 7 3 7 7 9 E - 0 2
h (  2) 0 . 5 B 91327E-02 h ( 2) = - 0 . 7 3 7 9 8 9 1 E - 0 2
h (  3) = 0 . 1 3 4 9 9 2 3 E -0 1 h (  3) = 0 . 5 9 4 9 7 9 9 E - 0 2
h (  4) = 0 . 8 0 8 7 0 3 3 E -0 2 h ( 4) = 0 . 1 7 2 7 0 5 6 E - 0 1
h ( 5) * - 0 . 1 1 0 7 2 5 8 E - 0 1 h (  5) = 0 . 7 8 7 8 4 1 2 E - 0 2
h (  6) - 0 . 2 4 2 0 6 8 7 E - 0 1 h ( 6) = - 0 . 1 7 9 8 5 9 0 E - 0 1
h (  7) - 0 . 94 4 65 5 0 E -0 2 h ( 7) = - 0 . 2 6 7 0 5 8 4 E - 0 1
h (  8) = 0 . 2 5 4 4 4 6 4 E - 0 1 h (  8) = 0 . 3 7 7 8 5 4 9 E -0 2
h (  9) = 0 . 3 9 8 5 0 5 0 E - 0 1 h (  9) = 0 . 4 1 9 1 0 2 2 E - 0 1
h ( 1 0 ) 0 . 2 7 5 3 0 3 6 E -0 2 h ( 1 0 ) = 0 . 2 8 3 9 3 4 4 E - 0 1
h ( l l ) = - 0 . 5 9 1 3 9 5 9 E -0 1 h  (11) = - 0 . 4 1 6 3 1 4 4 E -0 1
h  (12) = - 0 . 6 8 4 1 6 6 0 E -0 1 h  (12) = - 0 . 8 2 5 4 9 6 2 E - 0 1
h ( 1 3 ) = 0 . 3 1 7 57 4 1 E -0 1 h ( 1 3 ) = 0 . 2 8 0 2 2 1 2 E - 0 2
h  (14) = 0 . 2 0 8 0 9 8 1 E + 0 0 h  (14) = 0 . 20136 5 5E+ 00
h  (15) = 0 . 3471138E+00 h ( 1 5 ) = 0 . 37175 3 2E+ 00

Figure 8.15 Frequency response of linear-phase FIR filter in Example 8.2.2 (M = 
32 and a = 0).
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Figure 8.16 Frequency response of linear-phase FIR filter in Example 8.2.2 (M =  
32 and a  =  5).

in term s of G{k  +  a) .  Thus for the sym m etric filter w e obtain

sin
a)M

M- 1 G(k  +  a)
M

l)/2

where
[ - G ( M - k ) ,  a  =  0 

G{k +  or) _  |  C (M  _  k _  j ^ a s c i

(8.2.38)

(8.2.39)

Similarly, for the antisymm etric linear-phase FIR  filter w e obtain  

sin
H(co) =

. ( w M  \

M
G (k  +  a)

[u> IX 1
2 ~ M (k +  a)\

where

r ( l r , , f  G ( M  — k) ,  a  =  0 (8.2.41)

W ith these expressions for the frequency response H(co) g iven in term s o f the 
desired frequency sam ples {G (*+<*)}, we can easily explain the m ethod  for selecting  
the parameters {G(k  +  a )} in the transition band which result in m inim ising the 
peak sidelobe in the stopband. In brief, the values o f  G ( k + a )  in the passband are
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set to  (—1)* and those in the stopband are set to  zero. For any choice o f G(k +ot) 
in the transition band, the value o f H (w )  is com puted at a dense set o f frequencies 
(e.g., at co„ =  2n n / K ,  n =  0, 1 , . . . ,  K  — 1, w here, for exam ple, K  =  10M ).  The 
value o f the maximum  sidelobe is determ ined, and the values o f the parameters 
[G(k  +  a)} in the transition band are changed in a direction o f steepest descent, 
which, in effect, reduces the m aximum  sidelobe. The com putation o f H(a>) is now  
repeated with the new  choice o f {G(k  +  a )}. The m axim um  sidelobe o f H ( a>) is 
again determ ined and the values o f the param eters {G (ik+a)} in the transition band 
are adjusted in a direction o f  steepest descent that, in turn, reduces the sidelobe. 
This interactive process is perform ed until it converges to the optim um  choice o f  
the param eters {G(jfc +  a)} in the transition band.

There is a potential problem  in the frequency-sam pling realization o f the FIR  
linear-phase filter. The frequency sampling realization o f the FIR  filter introduces 
poles and zeros at equally spaced points on the unit circle. In the ideal situation, the 
zeros cancel the poles and, consequently, the actual zeros o f  H (z )  are determ ined  
by the selection  o f the frequency sam ples { / / ( i k - f a ) } .  In a  practical im plem entation  
o f the frequency-sam pling realization, how ever, quantization effects preclude a 
perfect cancellation o f the poles and zeros. In fact, the location o f poles on the 
unit circle provide no damping of the round-off noise that is introduced in the 
com putations. A s a  result, such noise tends to increase with tim e and, ultimately, 
may destroy the normal operation o f  the filter.

T o m itigate this problem , we can m ove both the p o les and zeros from the 
unit circle to  a circle just inside the unit circle, say at radius r =  1 — e, where e 
is a very small number. Thus the system  function of the linear-phase FIR filter 
becom es

The corresponding tw o-pole filter realization given in Section 7.2.3 can be m odified  
accordingly. T he damping provided by selecting r <  1 ensures that roundoff noise 
will be bounded and thus instability is avoided.

8.2.4 Design of Optimum Equiripple Linear-Phase FIR

The window m ethod and the frequency-sam pling m ethod are relatively simple 
techniques for designing linear-phase FIR  filters. H ow ever, they also possess som e  
minor disadvantages, described in Section 8.2.6, which m ay render them undesir­
able for som e applications. A  major probiem  is the lack o f  precise control o f  the  
critical frequencies such as cop and ws .

The filter design m ethod described in this section is form ulated as a Cheby- 
shev approxim ation problem . It is view ed as an optim um  design criterion in the 
sense that the w eighted approxim ation error betw een  the desired frequency re­
sponse and the actual frequency response is spread evenly across the passband

(8.2.42)

Filters



and evenly across the stopband o f the filter m inim izing the m aximum  error. The 
resulting filter designs have ripples in both the passband and the stopband.

T o describe the design procedure, let us consider the design of a lowpass 
filter with passband edge frequency a>p and stopband edge frequency oos. From  
the general specifications given in Fig. 8.2, in the passband, the filter frequency 
response satisfies the condition

1 -  «i < Hr (w) <  1 +  Si M  < o)p (8.2.43)

Similarly, in the stopband, the filter frequency response is specified  to fall betw een  
the limits ± 5 2  > that is,

— 8 2  <  Hr ((D) < S2 M  >  OJ, (8.2.44)

Thus Si represents the ripple in the passband and &2 represents the attenuation or 
ripple in the stopband. T he rem aining filter param eter is M ,  the filter length or 
the number o f filter coefficients.

Let us focus on the four different cases that result in a linear-phase FIR  filter. 
T hese cases w ere treated in Section 8.2.2 and are sum m arized below .

Case 1: Symmetric unit sample response h(n) = h(M  — 1 — n) and M  Odd.
In this case, the real-valued frequency response characteristic Hr (io) is

H r{co) =  h i — - — X  h(ri) COS c u f — -------- n )  (8.2.45)

If we let k =  (M  — l ) /2  — n and define a new set o f filter param eters (a(Jk)} as 

* ( ^ ) -  —
V 7  (8.2.46)
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a(k)  =

( ^ - 0 -
then (8.2.45) reduces to the com pact form

(M-1 ) /2

Hr (a>) — ^  a (k) cos (ok (8.2.47)
kse0

Case 2: Symmetric unit sample response /i(n) = h(M  — 1 — n) and M  Even.
In this case, H r(co) is expressed as

H r{(d) =  2 ^  / i ( « ) c o s g j | — -------- n l  (8.2.48)
n=o \  2  /

A gain , we change the sum m ation index from n to  k  =  M /2  — n and define a new  
set o f filter param eters {£>(*)} as

( M \



W ith these substitutions (8.2.48) becom es
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up. /  1 \
H r(w) =  X  b(k)  cos to [ k  -  -  j  (8.2.50)

In carrying out the optim ization, it is convenient to rearrange (8.2.50) further into  
the form

(A//2 ) —1 _
Hr (o>) =  cos — Hk)cosa>k  (8.2.51)

o

w here the coefficients {£(*)] are linearly related to  the coefficients {i>(fc)}. In fact, 
it can be shown that the relationship is

m  =  \ h  i )

b(k)  =  2b(k) -  b(k -  1) k =  1 , 2 , 3 , . . . ,  y - 2  (8.2.52)

Case 3: Antisym m etric unit sam ple response h ( n ) = —h ( M  — 1 — n )  and
M  O dd. The real-valued frequency response characteristic Hr (co) for this case is

(M—'i) /2 /  M _ 1 \
Hr (to) =  2 A( « ) s i na>f — -------- n l  (8.2.53)

n=o \  2  /

If we change the sum m ation in (8.2.53) from n to  k =  (M  — I ) /2  — n and define a 
new  set o f  filter param eters {c(*)} as

c(jk) =  2h ~  * =  L 2 .........(Af — l ) /2  (8.2.54)

then (8.2.53) becom es

(* f-l)/2

Hr (co)=  5 Z  c(Jfc) sin (ok (8.2.55)
*«=i

A s in the previous case, it is convenient to  rearrange (8.2.55) into the form

(W-3)/2
Hr (u>) =  sin a> ^  c(k) cos tok (8.2.56)

w here the coefficients {c(Jfc)} are linearly related to the param eters {c(Jfc)}. This d e­
sired relationship can be derived from (8.2.55) and (8.2.56) and is sim ply
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' M - l

given as

c
2

m - ’-m
c(k  — 1) — c(k  4- 1) =  2c(k)  2 <  k <  

5(0) +  \ c (  2 ) =  c( l )

(8.2.57)

M  - 5

Case 4: Antisymmetric unit sample response h(ri) -  —h (M  — 1 — n) and 
M  Even. In this case, the real-valued frequency response characteristic Hr (co) is

( M f2 ) —1 /  M  _ 1 \
H r (a>) =  2 X  /i(n)sincti ( — - —- — n \  (8,2.58)

«=o \  2  /

A  change in the sum m ation index from n to k = M  f l —n com bined with a definition  
of a new  set o f  filter coefficients {^(*)), related to {/i(n)} according to

d ( k ) ~ 2 h ( ^ - k ^ j  * =  l , 2 , . . . , y  (8.2.59)

results in the expression

M/2 , j  \
Hr ((o) =  X ^ ( i)s in & >  ( k  — -  1 (8.2.60)

'  '

A s in the previous two cases, w e find it convenient to rearrange (8.2.60) into the 
form

(j) ft t mm
Hr (a>) =  s i n — £  d(k)cosa>k  (8.2.61)

*=o

where the new  filter param eters {d(fc)} are related to {<*(£)} as follows:

H t - ' H ©

M
d(k  -  1 ) -  d(k)  =  2 d (k )  2  < k  < ——  1 (8.2.62)

d ( 0 ) -  \ d (  1 ) =  d (  1 )

The expressions for Hr (a>) in these four cases are sum m arized in Table 8.5. 
W e note that the rearrangem ents that w e m ade in cases 2, 3, and 4 have allowed
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TABLE 8.5 REAL-VALUED FREQUENCY RESPONSE 
FUNCTIONS FOR LINEAR-PHASE FIR FILTERS

Filter type Q(<o) P(co)

h(n) ~  h(M -  1 -  n) 
M  odd 
(case 1 )

1 y '  a(k)coscok 
k=0

h(n) = h(M -  1 -  n) 
Af even 
(case 2 )

CO
COS — 

2

(M/2J- 1

b(k) cos cok
M

h(n) = ~ h (M  -  I -  n) 
Af odd 
(case 3)

sin to
(M-31/2 

Y  cfc) cos cok
km0

h(n) =  —h{M — 1  — n) 
M  even 
(case 4)

. co 
sin — 

2

(*/2)-l
d(k) cos cok

kmO

us to express Hr (co) as

where

H r(co) =  Q(co)P(co)

Q(<o) =
COS — 

2
sin co

. CO
sin —

2

case 1  

case 2  

case 3 
case 4

and P(co) has the com m on form

P(co) =  7 > ( f c ) c o s ^

(8.2.63)

(8.2.64)

(8.2.65)

with {«(*)} representing the param eters o f  the filter, which are linearly related to  
the unit sam ple response h(n)  o f the F IR  filter. The upper limit L  in the sum is 
L  =  (M  -  l ) /2  for Case 1, L  =  (Af — 3 )/2  for Case 3, and L  =  Af/2 — 1 for Case 2 
and Case 4.

In addition to the com m on framework given above for the representation  
o f H r (eo), w e also define the real-valued desired frequency response H jr ((o) and 
the w eighting function W(co) on the approximation error. The real-valued de­
sired frequency response Hdr (co) is sim ply defined to be unity in the passband and 
zero in the stopband. For exam ple, Fig. 8.17 illustrates several d ifferent types 
o f  characteristics for Hdr(co). The weighting function on the approxim ation er­
ror allows us to  choose the relative size o f the errors in the different frequency  
bands (i.e., in the passband and in the stopband). In particular, it is convenient to  
norm alize W(co) to  unity in the stopband and set W(a>) =  B2/& 1  in the passband,
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that is,

0

l

0

H dr{w)

1

(a)

(b)

0  (o] o>2

(c)

1

0  tlj 4lj (t) 4
<d)

W(a>) I S2 /S 1 ,

tu Figure 8.17 Desired frequency 
response characteristics for different 
types of filters.

co in the passband  
& in the stopband

(8.2.66)

Then w e simply select W(a>) in the passband to reflect our em phasis on  the relative 
size o f the ripple in the stopband to the ripple in the passband.

W ith the specification of Hdr(oi) and W O ), w e can now  define the weighted  
approximation error as

E(a>) =  W (o )[H dr(co) -  Hr (a>)\

=  W (w)[Hdr((o) -  Q(co)P(w)]



Sec. 8.2 Design of FIR Filters 643

=  W(co)Q(co)
’ Hdr(co) 

. Q(C0 )
P(co) (8.2.67)

For m athem atical convenience, w e define a m odified w eighting function W (co) and 
a m odified desired frequency response Hdr(co) as

W(a>) =  W(co)Q(co) 

Hdr(co) (8.2.68)
Hdr(co) =

Q(co)
T hen the w eighted approximation error may be expressed as

E(co) =  W(co)[Hdr(co) ~  P(o>)\ (8.2.69)

for all four different types o f  linear-phase FIR filters.
G iven the error function E(co), the Chebyshev approxim ation problem is 

basically to determ ine the filter parameters (of(Jt)} that m inim ize the maximum  
absolute value o f  E(co) over the frequency bands in which the approximation is to 
be perform ed. In m athem atical terms, we seek the solution to the problem

L

max \W(co)[Hdr(co) — y ^ g ( * ) c o s  cok]\
. WfS *=o

(8.2.70)
where 5 represents the set (disjoint union) o f frequency bands over which the 
optim ization is to  be perform ed. Basically, the set 5 consists o f the passbands and 
stopbands o f the desired filter.

The solution to this problem  is due to Parks and M cClellan (1972a), who 
applied a theorem  in the theory of Chebyshev approxim ation. It is called the 
al ternation theorem,  which we state without proof.

min max [£ (oj)| =  min
over (a ( i) J toeS over jo<(t)}

Alternation Theorem: Let 5 be a com pact subset o f the interval [0, tt). A  
necessary and sufficient condition for

i
P(co) =  y ^ g (fc )c o s  cok 

k= 0

to  be the unique, best w eighted C hebyshev approximation to Hdr(co) in S, is that 
the error function E  (co) exhibit at least L  +  2 extrem al frequencies in S. That is, 
there must exist at least L + 2  frequencies {co,} in 5 such that co\ < c&i < ■ ■ ■ < coL+2, 
E(coj) =  —E(a>i+j), and

jfOoi)! =  m a x \E(cv)\ i =  1 , 2 , . . . ,  L  +  2
axS

W e n ote  that the error function E(co) alternates in sign betw een  tw o succes­
sive extrem al frequencies. H ence the theorem  is called the alternation theorem.

T o  elaborate on the alternation theorem , let us consider the design o f a 
low pass filter with passband 0 <  co <  cop  and stopband cos <  co <  tt . Since the
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desired frequency response Hdr(&) and the w eighting function W(w)  are p iecew ise  
constant, we have

d E {w )  d
~ —  =  —  ( W O ) [Hdr(w) -  H r{w) } 

d w  a w
_  d  H r (w) = Q

dw
Consequently, the frequencies {oj,} corresponding to the peaks o f E(w )  also cor­
respond to peaks at which H r(w) m eets the error tolerance. Since H r(w) is a 
trigonometric polynom ial o f  degree L,  for Case 1, for exam ple,

L

Hr (w) — Y _  a(k )  cos wk  
k = 0

l  V  k 

~  ]P a r(* ) X^ni(COSW )n 
i=0

L

=  ][V (Jfc)(cosa>)k (8.2.71)
*=o

it follow s that Hr (w) can have at m ost L  — 1 local maxima and minima in the open  
interval 0 < w < n .  In addition, w  =  0  and w  =  n  are usually extrem a o f Hr (w) and, 
also, o f E{w).  Therefore, H r {w) has at m ost L - l - l  extrem al frequencies. Further­
m ore. the band-edge frequencies wp and ws are also extrem a o f E(w),  since |£(a>)| 
is maximum at w =  wp and w  =  ws . A s a consequence, there are at m ost L  +  3 ex­
tremal frequencies in £ ( w) for the unique, best approxim ation o f the ideal lowpass 
filter. On the other hand, the alternation theorem  states that there are at least L + 2  
extremal frequencies in E(w).  Thus the error function for the lowpass filter design 
has either L  +  3 or L +  2 extrem a. In general, filter designs that contain more than 
L +  2 alternations or ripples are called extra ripple filters. W hen the filter design  
contains the maximum num ber o f alternations, it is called a m a x im a l  ripple filter.

The alternation theorem  guarantees a unique solution for the Chebyshev  
optim ization problem  in (8.2.70). A t the desired extrem al frequencies {w„}, we 
have the set o f equations

W (wn)[Hdr(wn) -  P (w n)] =  ( - i y \ 5  « =  0 ,1 .........L +  1 (8.2.72)

where & represents the m aximum  value o f the error function E(w).  In fact, if we 
select W(w)  as indicated by (8.2.66), it follow s that S =  S2.

The set o f  linear equations in (8.2.72) can be rearranged as

( - 1 )"$
P((On) +  V - —  =  Hdr(wn) n =  0 ,1 .........L  +  1

W(o>„)

or, equivalently, in the form

a (k )c o s w „ k  +  ^  =  Hdr((On) « =  0 , 1 , . . . ,  L  +  1 (8.2.73)
t o  W (v* )
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I f  we treat the {«(£)} and S as the param eters to  be determ ined, (8.2.73) can be 
expressed in matrix form as

1 cos COo cos 2cdo ■ ■ ■ cos Lwo 

1  cos cd\ cos 2 o>] ■ ■ - cos Lcoi

1 co sw t+ i c o s 2 a>z,+i ••• cosZ.gj£+ i

1

W(coo)
- 1

W(<ui)

( - l ) i

a ( 0 ) Hdr (<*>0 )

a ( l )
= Hdr(0h )

a (L )

S
_H dr (&1 +1 )_

(8.2.74)
Initially, we know  neither the set o f  extrem al frequencies {io„} nor the pa­

ram eters {(*(£)} and S. T o solve for the param eters, w e use an iterative algorithm, 
called the R e m e z  exchange algorithm  [see Rabiner et al. (1975)], in which w e  
begin by guessing at the set o f  extrem al frequencies, determ ine P(w )  and <5, and 
then com pute the error function E(w).  From £ (w ) w e determ ine another set o f  
L  +  2 extrem al frequencies and repeat the process iteratively until it converges to 
the optim al set o f extrem al frequencies. A lthough the matrix equation in (8.2.74) 
can be used in the iterative procedure, matrix inversion is tim e consum ing and 
inefficient.

A  m ore efficient procedure, suggested in the paper by Rabiner et al. (1975), 
is to  com pute <5 analytically, according to the formula

S =
yoHdr((oo) +  y\ Hdr (<oi) H--------1- yL+\Hdr O l+ i)

tf> Y\

w here

W(o)o) W (w i)
( - r V u i

W{  a>t+ i)

“ cos (Ok — cos (on
nykk

(8.2.75)

(8.2.76)

The expression for S in (8.2.75) fo llow s im m ediately from the matrix equation in
(8.2.74). Thus with an initial guess at the L + 2  extrem al frequencies, w e com pute 5. 

N ow  since P(a>) is a trigometric polynom ial o f the form

L
P(co) =  Y a ( k ) x k x  =  cosa)

*«o

and since w e know  that the polynom ial at the points x„ =  cos ( o „ , n ~  0 , 1 , . . . ,  L + 1, 
has the corresponding values

(—1)"5
P(a>n) -  Hjr((On) ~  ------

W(con)
n = 0 , 1 . . . . . L  +  1 (8.2.77)
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w e can use the Lagrange interpolation formula for P(a>). Thus P(to) can be ex­
pressed as [see Ham m ing (1962)]

H aving the solution for P(co), we can now com pute the error function E(co) from

on a dense set o f frequency points. U sually, a number o f points equal to 16Af, 
w here M  is the length of the filter, suffices. If |£(&))| > 8  for som e frequencies on 
the dense set, then a new set o f frequencies corresponding to the L + 2  largest peaks 
o f |£(<y)| are selected  and the com putational procedure beginning with (8.2.75) 
is repeated. Since the new set o f L +  2 extremal frequencies are selected to 
correspond to the peaks o f the error function |£(a>)|, the algorithm forces 5 to 
increase in each iteration until it converges to the upper bound and hence to the 
optimum solution for the Chebyshev approximation problem . In other words, 
when [£(a>)| <  5 for all frequencies on the dense set, the optim al solution has 
b een  found in terms o f the polynom ial H(co).

A  flowchart o f the algorithm  is shown in Fig. 8.18 and is due to R em ez (1957).
O nce the optim al solution has been obtained in term s o f P(co), the unit 

sam ple response h(n)  can be com puted directly, without having to com pute the 
parameters (ar(fc)}. In effect, we have determ ined

which can be evaluated at co =  2n k / M ,  k  =  0, 1 , . . . ,  (Af — l ) /2 ,  for Af odd, or 
Af/2 for M  even . Then, depending on the type o f filter being designed, h(n)  can 
be determ ined from the formulas given in Table 8.3.

A  com puter program written by Parks and M cClellan (1972b) is available for 
designing iinear phase FIR  filters based on the Chebyshev approxim ation criterion 
and im plem ented with the R em ez exchange algorithm . This program can be used 
to  design lowpass, highpass or bandpass filters, differentiators, and H ilbert trans­
formers. The latter tw o types o f filters are described in the follow ing sections. A  
number o f software packages for designing equiripple linear-phase FIR  filters are 
now available.

T he Parks-M cC lellan program requires a number o f input param eters which 
determ ine the filter characteristics. In particular, the follow ing param eters must

L

£ > ( o * ) [ & / ( *  -  JC*)]

(8.2.78)

w here P(a>n) is given by (8.2.77), x  =  cosw , x k =  cosw*, and

(8.2.79)

£(o>) =  W{u>)[Hdr{a>) -  P(co)] (8.2.80)

H r(co) =  Q(oj) P ( co)
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Input filter parameters

Initial guess of 
M  +  2 extremal freq.

Fifnre 8.18 Flowchart o f Remez algorithm.

be specified:

L IN E  1

N F 1 LT: The filter length, denoted above as M .

JT Y P E : Type o f  filter
JTY PE =  1 results in a m ultiple passband/stopband filter.
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N B A N D S:

LG R ID :

L I N E  2 

E D G E :

L I N E  3 

FX:

L I N E  4 

WTX;

JTY PE =  2 results in a differentiator.
JTYPE =  3 results in a H ilbert transformer.
The num ber o f frequency bands from 2 (for a lowpass filter) to  
a m aximum  o f 1 0  (for a m ultiple-band filter).
The grid density for interpolating the error function E{u>). The 
default value is 16 if left unspecified.

The frequency bands specified by low er and upper cutoff fre­
quencies, up to a maximum  o f  1 0  bands (an array o f size 2 0 , 
m axim um ). The frequencies are given in terms o f the variable 
/  =  a ) /2 n , where /  =  0.5 corresponds to  the folding frequency.

A n array o f  m axim um  size 10 that specifies the desired fre­
quency response Hdr (&>) in each band.

A n array o f  maximum  size 10 that specifies the weight function  
in each band.

The follow ing exam ples dem onstrate the use o f this program to design a 
lowpass and a bandpass filter.

Example 8.23

Design a lowpass filter of length M =  61 with a passband edge frequency f p =  0.1 
and a stopband edge frequency f s =  0.15.

Solution The lowpass filter is a two-band filter with passband edge frequencies 
(0,0.1) and stopband edge frequencies (0.15,0.5). The desired response is (1, 0) and 
the weight function is arbitrarily selected as (1 , 1 ).

61, 1, 2
0.0, 0.1,0.15,0.5
1.0. 0.0
1.0, 1.0

The result of this design is illustrated in Table 8 .6 , which gives the filter coefficients. 
The frequency response is shown in Fig. 8.19. The resulting filter has a stopband 
attenuation of -5 6  dB and a passband ripple of 0.0135 dB.

If w e increase the length o f the filter to  M  =  101 w hile maintaining all the 
other param eters given above the sam e, the resulting filter has the frequency re­
sponse characteristic show n in Fig. 8.20. N ow , the stopband attenuation is —85 dB 
and the passband ripple is reduced to  0.00046 dB.

W e should indicate that it is possib le to  increase the attenuation in the stop­
band by keeping the filter length fixed, say at Af =  61, and decreasing the weighting  
function W(co) =  S2 /S 1 in the passband. W ith Af =  61 and a weighting function



TABLE 8.6 PARAMETERS FOR LOWPASS FILTER DESIGN IN 
EXAMPLE 8.2.3

FINITE IMPULSE RESPONSE (FIR) 

LINEAR PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 

F ILTER LENGTH = 6 1

IMPULSE RESPONSE *** **

H ( 1) = -0.12109351E-02 = H ( 61)

H ( 2) = -0.67270687E-03 = H ( 60)

H ( 3) = 0.98090240E-04 = H ( 59)

H( 4) = 0.13536664E-02 = H ( 58)

H  ( 5) 0 . 22969784E-02 H ( 57)

H ( 6) = 0 . 19963495E-02 = H ( 56)

H ( 7) = 0.97026095E-04 = H( 55)

H ( 8) = -0.26466695E-02 = H ( 54)

H ( 9) = -0.45133103E-02 = H ( 53)

H (10) = - 0.37704944E-02 = H ( 52)

H (11) = 0 . 13079655E-04 = H ( 51)

HS12) = 0.517 913 56E-02 = H( 50)

H (13) = 0 . 84883478E-02 = H ( 49)

H (14) = 0 . 69532110E-02 = H ( 48)

H (15) = 0.71037059E-04 = H ( 47)

H (16) = -0.904 07 897E-02 = H ( 46)

H (17) = -0.14723047E-01 = H ( 45)

H (18) = -0.11958945E-01 = H ( 44)

H (19) = -0.29799214E-04 = H ( 43)

H (20) = 0 . 15713422E-01 = H ( 42)

H (21) = 0 .25657151E-01 = H ( 41)

H (22) = 0.21057373E - 01 = H { 40)

H (23) = 0. 68637768E-04 = H  ( 39)

H (24) = -0. 28902054E-01 = H ( 38)

H (25) = -0.4 9118541E-01 = H ( 37)

H (26) - 0.42713970E-01 = H ( 36)

H (27) = - 0.50114304E-04 = H ( 35)

H (28) = 0.73574215E-01 = H ( 34)

H (29) = 0 . 15782040E+00 = H( 33)

H (30) = 0.22465512E+00 = H ( 32)

H (31) = 0.25007001E+'p0 = H ( 31)

BAND 1 B AND 2

LOWER BAND EDGE 0.0000000 0.1500000

UPPER BAND EDGE 0.1000000 0.5000000

DESIRED VALUE 1.0000000 0.0000000

WEIGHTING 1.0000000 1.0000000

DEVIATION 0.0015537 0.0015537

DEVIATION IN DB 0.0134854 -56.1724014 

EXTREMAL FREQUENCIES--MAXIMA OF THE ERROR CURVE 

0.0000000 0.0252016 0.0423387 0.0584677 0.0735887 

0.0866935 0.0957661 0.1000000 0.1500000 0.1540323 

0.1631048 0.1762097 0.1903225 0.2054435 0.2215725 

0.2377015 0.2538306 0.2699596 0.2860886 0.3022176 

0.3183466 0.3354837 0.3516127 0.3677417 0.3848788 

0.4010078 0.4171368 0.4342739 0.4504029 0.4665320 

0.4836690 0.5000000
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Figure 8.19 Frequency response o f M =  61 FIR filter in Example 8.2.3.

Figure Frequency response of M  — 101 FIR filter in Example 8.2.3.

(0 .1 ,1 ), w e obtain a filter that has a stopband attenuation o f —65 dB and a pass­
band ripple o f  0.049 dB.

Example 8*2,4

Design a bandpass filter of length M =  32 with passband edge frequencies fpi = 0.2 
and fpi = 0.35 and stopband edge frequencies of f M\ = 0.1 and f ,2 = 0.425.
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Solution This passband filter is a three-band filter with a stopband range of (0,0.1), a 
passband range of (0.2,0.35), and a second stopband range of (0.425,0.5). The weight­
ing function is selected as (1 0 .0 , 1 .0 , 1 0 .0 ), or as (1 .0 , 0 .1 , 1 .0 ), and the desired response 
in the three bands is (0.0,1.0,0.0). Thus the input parameters to the program are

32,1,3
0.0,0.1,0.2,0.35,0.425,0.5  
0.0, 1.0, 0.0
10.0, 1.0, 10.0

The results of this design are shown in Table 8.7, which gives the filter coefficients. 
We note that the ripple in the stopbands Bz is 10 times smaller than the ripple in

TABLE 8.7 PARAMETERS FOR BANDPASS FILTER IN EXAMPLE 8.2.4

FINITE IMPULSE RESPONSE (FIR) 

LINEAR PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 

BANDPASS FILTER 

FILTER LENGTH = 3 2  

***** IMPULSE RESPONSE *****

H ( 1) = -0 .57534026E-02 = H ( 32)

H ( 2) = 0 .99026691E-03 = H ( 31)

H< 3) = 0 .75733471E-02 = H ( 30)

H ( 4) -0 . 65141204E-02 = H ( 29)

H ( 5) = 0 .13960509E-01 = H ( 28)

H ( 6) = 0 . 22951644E-02 = H ( 27)

H ( 7) = -0 . 19994041E-01 = H( 26)

H ( 8) = 0,.71369656E-02 = H ( 25)

H< 9} = - 0 .. 39657373E-01 H( 24)

H (10) e 0 ., 11260066E-01 = H ( 23)

H(ll> = 0 .. 66233635E-01 = H ( 22)

H (12) * -0., 10497202E-01 = H ( 21)

H (13) = 0 ., 85136160E-01 = H( 20)

H (14) = -0.. 12024988E+00 = H ( 19)

H (15) = - 0 ., 29678580E+00* = H( 18)

H (16) = 0 . 30410913E+00 = H( 17)

BAND 1 BAND 2

LOW E R  B AND EDGE 0.0000000 0.2000000 0.4250000

U P P E R  B A N D  EDGE 0.1000000 0.3500000 0.5000000

DES I R E D  VALUE 0.0000000 1.0000000 0.0000000

WE I G H T I N G  10.0000000 1.0000000 10.0000000

D E V I ATION 0.0015131 0.0151312 0.0015131

D E V I ATION IN DB -56.4025536 0.1304428 -56.4025536 

E X TREMAL FREQUENCIES— MAXIMA OF THE ERROR CURVE 

0.0000000 0.0273438 0.0527344 0.0761719 0.0937500 

0.1000000 0.2000000 0.2195313 0.2527344 0.2839844 

0.3132813 0.3386719 0.3500000 0.4250000 0.4328125 

0.4503906 0.4796875
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Figure JL21 Frequency response of M  =  32 FIR filter in Example 8.2.4.

the passband due to the fact that errors in the stopband were given a weight of 10 
compared to the passband weight of unity. The frequency response of the bandpass 
filter is illustrated in Fig. 8.21.

T hese exam ples serve to illustrate the relative ease with which optimal low- 
pass, highpass, bandstop, bandpass, and m ore general m ultiband linear-phase FIR  
filters can be designed based on the Chebyshev approxim ation criterion im ple­
m ented by m eans o f the R em ez exchange algorithm . In the next tw o sections we 
consider the design o f differentiators and H ilbert transformers.

8.2.5 Design of FIR Differentiators

Differentiators are used in many analog and digital system s to take the derivative 
o f  a signal. A n ideal differentiator has a frequency response that is linearly pro­
portional to frequency. Similarly, an ideal digital differentiator is defined as one 
that has the frequency response

Hd(ao) =  j t o  — 7r < u) < n  (8.2.81)

The unit sample response corresponding to Hj(co)  is

M « )  =  2 ”  /  Hd((*>)eiwnda>

=  f  j(jDeJconda>
2 n

— c o s n n  — oo < n < oo, n ^  0 (8.2.82)
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W e observe that the ideal differentiator has an antisym m etric unit sam ple response  
[i.e., h d(n) =  —h d(—n)]. H ence, h d(0) =  0.

In this section w e consider the design o f linear-phase FIR  differentiators 
based on the Chebyshev approximation criterion. In view  o f the fact that the  
ideal differentiator has an antisymm etric unit sam ple response, w e shall confine  
our attention to FIR  designs in which h(n)  =  — h ( M  — 1 — n). H en ce we consider  
the filter types classified in the preceding section, as Case 3 and Case 4.

W e recall that in Case 3, w here Af is odd, the real-valued frequency response  
o f  the FIR  filter Hr(co) has the characteristic that H r (0) =  0. A  zero response at 
zero frequency is just the condition that the differentiator should satisfy, and w e  
see from Table 8.5 that both filter types satisfy this condition. H ow ever, if a full- 
band differentiator is desired, this is im possible to  achieve with an FIR  filter having  
an odd num ber o f coefficients, since H r(n)  =  0 for Af odd. In practice, how ever, 
full-band differentiators are rarely required.

In m ost cases o f practical interest, the desired frequency response character­
istic need only be linear over the limited frequency range 0  <  co < 2 n f p , w here f p 
is called the bandwidth o f the differentiator. In the frequency range 2n f p < co < n ,  
the desired response m ay be either left unconstrained or constrained to be zero.

In the design o f FIR  differentiators based on the Chebyshev approxim ation  
criterion, the w eighting function W(co) is specified in the program as

W  (co) =  — 0 <  co < 2 n f p 
co

in order that the relative ripple in the passband be a constant. Thus 
error betw een  the desired response co and the approxim ation Hr(co) 
co varies from  0 to 2n f p. H ow ever, the weighting function in (8.2.83) 
the relative error

8  =  max {W(co)[(o-  Hr(a>)]}
Os a><2nfp

(8.2.84)

is fixed within the passband of the differentiator.

Example 8^5
Use the Remez algorithm to design a linear-phase FIR differentiator of length hi =  
60. The passband edge frequency is 0.1 and the stopband edge frequency is 0.15.

Solution The input parameters to the program are 
60, 2 , 2  

0.0, 0.1, 0.15, 0.5
1.0, 0.0
1.0, 1.0

The results of this design including the filter coefficients are shown in Table 8 .8 . The 
frequency response characteristic is illustrated in Fig. 8.22. Also shown in the same 
figure is the approximation error over the passband 0  < /  < 0 . 1  of the filter.

max 1  -
H r  (CO)

(8.2.83)

the absolute  
increases as 
ensures that



TABLE 8.8 PARAMETERS FOR FIR DIFFERENTIATOR IN EXAMPLE 8.2.5

FINITE IMPULSE RESPONSE (FIR) 

LINEAR-PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM  

D IFFERENTIATOR 

FILTER LENGTH = 6 0

IMPULSE RESP O N S E  '

H ( 1) = -0.12478075E-02 = -H{ 60)

H ( 2) - 0.15 7 1 3 5 6 0E-02 = -H( 59)

H ( 3) = 0.36846737E-02 = -H ( 58)

H ( 4) = 0.19298020E-02 = -H ( 57)

H( 5) = 0 . 1 4 26414IE-02 = -H ( 56)

H ( 6) = -0.17615277E-02 = -H( 55)

H ( 7) = -0.43110573E ~ 02 = -H( 54)

H ( 8) -0.46953405E-02 = -H( 53)

H ( 9) = - 0.14105244E-02 * -H( 52)

H (10) 0.41694222E-02 = -H( 51)

H (11) = 0.8573 6215E-02 -H ( 50)

H (12) = 0.79813031E-02 = -H( 49)

H(13) 0.11833385E-02 = “H ( 48)

H (14) = -0.87396065E-02 = -H( 47)

H (15) = -0.15401847E-01 = “H ( 46)

H (16) K -0.12878445E-01 = -H ( 45)

H (17) = -0.18826872E-03 = ~H( 44)

H (18) = 0.1662 0506E-01 = -H ( 43)

H (19) ss 0.26741523E-01 = -H( 42)

H (20) = 0.2 0892018E-01 = -H ( 41)

H(21) = -0.18584095 E - 02 = -H( 40)

H (22) = - 0.31109909E-01 = -H ( 39)

H (23) = -0.48822176E-01 = -H( 38)

H (24) = -0.38673453E - 01 = "H ( 37)

H (2 5) = 0 . 36760122E-02 = -H( 36)

H (26) = 0 .65462478E-01 = -H ( 35)

H (27) = 0.12066317E+00 = -H( 34)

H (28) = 0.14182134E+00 = -H( 33)

H (29) = 0.11403757E+00 * -H( 32)

H(30> = 0.43620080E-01 = -H ( 31)

BAND 1 BAND 2

LOWER BAND EDGE 0.0000000 0.1500000 

UPPER BA N D  EDGE 0.1000000 0.5000000 

DESIRED SLOPE 10.0000000 0.0000000

W EIGHTING 1.0000000 1.0000000

D EVIATION 0.0073580 0.0073580

EXTREMAL FREQUENCIES--- MAX I M A  OF THE ERROR CURVE

0.0010417 0.0156250 0.0312500 0.0468750 0.0614583 

0.0750000 0.0875000 0.0968750 0.1000000 0.1500000 

0.1552083 0.1666667 0.1822916 0.1979166 0.2156249 

0.2322916 0.2489582 0.2666668 0.2843754 0.3020839 

0.3187508 0.3364594 0.3541680 0.3718765 0.3906268 

0.4083354 0.4260439 0.4447942 0.4625027 0.4812530 

0.5000000
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Normalized frequency

Fifure Frequency response and approximation error for M  =  60 FIR differentiator of 
Example 8.2.5.

The im portant param eters in a differentiator are its length Af, its bandwidth  
{band-edge frequency) f p, and the peak relative error S o f  the approximation. The  
interrelationship am ong these three parameters can be easily displayed param et­
rically. In particular, the value o f  20 log10 S versus f p with Af as a param eter is 
show n in Fig. 8.23 for Af even and in Fig. 8.24 for Af odd. T hese results, due to  
Rabiner and Schafter (1974a), are useful in the selection  o f the filter length, given  
specifications on the inband ripple and the cutoff frequency f p.

A  com parison o f  the graphs in Figs. 8.23 and 8.24 reveals that even-length  
differentiators result in a significantly sm aller approxim ation error S than com pa­
rable odd-length differentiators. D esigns based on  Af odd are particularly poor if
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Passband cutoff frequency {fp)

Figure &23 Curves of 20 log10 5 versus f p for M  =  4, 8, 16, 32, and 64. [From 
paper by Rabiner and Schafer (1974a). Reprinted with permission of AT&T.]

the bandwidth exceeds f p =  0.45. T he problem  is basically the zero in the fre­
quency response at co =  n ( f  =  1 /2). W hen f p <  0.45, good  designs are obtained  
for M  odd, but com parable-length differentiators with M  even  are always better 
in the sense that the approximation error is smaller.

In view o f the obvious advantage o f  even-length over odd-length differentia­
tors, a conclusion might be that even-length differentiators are always preferable in 
practical systems. This is certainly true for m any applications. H ow ever, w e should 
note that the signal delay introduced by any linear-phase F IR  filter is (M — 1)/2, 
which is not an integer when M  is even. In m any practical applications, this is 
unimportant. In som e applications where it is desirable to  have an integer-valued  
delay in the signal at the output o f the differentiator, w e must se lect M  to  be odd.

T hese numerical results are based on designs resulting from  the Chebyshev 
approxim ation criterion. W e wish to indicate it is also possib le and relatively
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Passband cutoff frequency (fp)

Figure 8-24 Curves of 201ogto S versus Fp for M  — 5, 9, 17, 33 and 65. [From 
paper by Rabiner and Schafer (1974a). Reprinted with permission of AT&T.]

easy to design linear phase FIR differentiators based on  the frequency sampling 
m ethod. For exam ple, Fig. 8.25 illustrates the frequency response characteristics o f  
a w ideband ( f p =  0.5) differentiator, o f  length M  — 30. T he graph o f  the absolute  
value o f the approximation error as a function o f frequency is also shown in this 
figure.

8.2.6 Design of Hilbert Transformers

A n  ideal H ilbert transformer is an all-pass filter that imparts a 90° phase shift 
on the signal at its input. H en ce the frequency response o f the ideal H ilbert 
transformer is specified as

(8.285)
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Figure fL25 Frequency response and approximation error for M  =  30 FIR differentiator 
designed by frequency sampling method.

H ilbert transformers are frequently used in com m unication systems and signal 
processing, as, for exam ple, in the generation o f  single-sideband m odulated signals, 
radar signal processing, and speech signal processing.

The unit sam ple response o f an idea! H ilbert transformer is

hd(n) =  —  J  Hd(u>)eja,ndco
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2 sin2(jrn/2)
n n (8.2.86)
0,

A s expected, hd(n) is infinite in duration and noncausal. W e note that hd(n) is 
antisymm etric [i.e., hd(n) =  —k d(—n)].  In view  o f  this characteristic, w e focus our  
attention on the design o f  linear-phase FIR H ilbert transformers with antisym m et­
ric unit sam ple response [i.e., h(n) — —h (M — 1 — n)]. W e also observe that our  
choice o f  an antisym m etric unit sam ple response is consistent with having a purely  
imaginary frequency response characteristic Hd(co).

W e recall once again that w hen h{n) is antisymm etric, the real-valued fre­
quency response characteristic H,(co) is zero at co =  0 for both M  odd and even  
and at co =  n  when M  is odd. Clearly, then, it is im possible to  design an all-pass 
digital H ilbert transformer. Fortunately, in practical signal processing applications, 
an all-pass H ilbert transformer is unnecessary. Its bandwidth need only cover the  
bandwidth o f the signal to  be phase shifted. C onsequently, we specify the desired  
real-valued frequency response o f  a Hilbert transform filter as

where f t and /„  are the low er and upper cutoff frequencies, respectively.
It is interesting to note that the ideal H ilbert transformer with unit sam ple  

response hd(n) as given in (8.2.86) is zero for n even. This property is retained by 
the FIR H ilbert transformer under som e sym m etry conditions. In particular, let 
us consider the Case 3 filter type for which

and suppose that f t  =  0.5 — f u. This ensures a sym m etric passband about the  
m idpoint frequency /  =  0.25. If w e have this sym m etry in the frequency response, 
Hr (co) =  Hr(n  — co) and hence (8.2.88) yields

Hdr(co) =  1 2 :z f  <  co <  2n f u (8.2.87)

(W-l)/2
(8.2.88)

(*

IM-D/2

J '  c(k)  sin<w/k c o s 7T/k 
fc-i 

(M-D/2 
7 ! c(k)(—1)*+1 sin£i>*

or equivalently,
(M-1)/2

(8.2.89)

Clearly, c(k)  m ust be equal to zero for jfc — 0, 2, 4,
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N ow , the relationship betw een  (c(£)} and the unit sam ple response {/?(«) j is, 
from (8.2.54),

U nfortunately, (8.2.91) holds only for M  odd. It d oes not hold for M  even. This 
m eans that for com parable values o f M,  the case M  odd is preferable since the 
com putational com plexity (number o f  m ultiplications and additions per output 
point) is roughly one half o f that for M  even.

W hen the design o f the Hilbert transformer is perform ed by the Chebyshev  
approximation criterion using the R em ez algorithm , w e se lect th e  filter coefficients 
to  m inim ize the peak approximation error

Thus the weighting function is set to unity and the optim ization is perform ed over 
the single frequency band (i.e., the passband o f th e  filter).

Example 8.2.6

Design a Hilbert transformer with parameters M =  31, // =  0.05, and / ,  =  0.45.

Solution We observe that the frequency response is symmetric, since f u =  0.5 -  fi- 
The parameters for executing the Remez algorithm are

The result of this design is the unit sample response coefficients and the peak ap­
proximation error & =  0.0026803 or —51.4 dB given in Table 8.9. We observe that, 
indeed, every other value of h(n) is essentially zero (these values are of the order of 
10~7). The frequency response of the Hilbert transformer is shown in Fig. 826.

or, equivalently,

(8.2.90)

If c(k) is zero for k =  0, 2, 4 , . . . ,  then (8.2.90) yields

h{k) =
0, 0 ,2 , 4 , . . . .  for -

2
even

(8.2.91)
0, k — 1, 3 , 5 , . . . ,  for ^   ̂ odd

S =  max [Hdr(ai) — Hr(co) ]
2jt ft <a><2xfm

(8.2.92)
=  max [1 -  Hr ((t>)]

2jr fi<w<2x / ,

31. 3, 1 
0.05, 0.45 
1.0 

1.0
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TABLE 8.9 PARAMETERS FOR FIR HILBERT TRANSFORM FILTER IN
EXAMPLE 8.2.6

FINITE IMPULSE RESPONSE (FIR) 

L INEAR PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 

HILBERT TRANSFORMER 

FILTER LENGTH = 3 1
* ★★* * IMPULSE RESPONSE * ★ * * *

H { 1) = 0 .41957516E-02 = -H< 31)

H ( 2) = 0 .64310257E-07 = ~H( 30)

H ( 3) = 0 .92822444E-02 = -H ( 29)

H  ( 4) = 0 . 5 2 693927E-07 = -H< 28)

H ( 5) = 0,. 18835988E-01 = -H ( 27)

H ( 6) = 0 . 82308283E-07 = -H( 26)

H  { 7) = 0..34401190E-01 = -H ( 25)

H ( 8) = 0.. 93328794E-07 = -H( 24)

H( 9) = 0.,59551738E-01 = -H( 23)

H {10) = 0.. 50821171E-07 = -H( 22)

H (11) = 0. 10303782E+00 = ~H( 21)

H (12) = 0. 17612138E-07 = -H( 20)

H (13) = 0. 19683167E+00 = -H< 19)

H (14) = -0. 23977606E-07 = -H ( 18)

H {15) = 0. 63135374E+00 = -H ( 17)

H (16) = 0. 0

BAND 1

LOWER BAND EDGE 0.0500000 

UPPER BAND EDGE 0.4500000 

DESIRED VALUE 1.0000000

WEIGHTING 1.0000000

DEVIATION 0.0026803

EXTREMAL FREQUENCIES--- MAXIMA OF THE ERROR CURVE

0.0500000 0.0562500 0.0750000 0.1000000 0.1291666 

0.1583333 0.1874999 0.2187499 0.2499998 0.2812498 

0.3124998 0.3416664 0.3708331 0.3999997 0.4249997

Rabiner and Schafer (1974b) have investigated the characteristics o f Hilbert 
transformer designs for both M  odd and M  even . If the filter design is restricted  
to a sym m etric frequency response, then there are basically three parameters o f  
interest, M,  8 , and f\ .  Figure 8.27 is a plot o f 201og10<5 versus f i  with M  as a 
param eter. W e observe that for com parable values o f M,  there is no perform ance  
advantage o f using M  odd over M  even, and vice versa. H ow ever, the com puta­
tional com plexity in im plem enting a filter for M  odd is less by a factor o f 2 over  
M  even as previously indicated. Therefore, M  odd is preferable in practice.

For design purposes, the graphs in Fig. 8.27 suggest that, as a rule o f  thumb,

Mfi % -0 .61  log10 8 (8.2.93)
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Figure 8.26 Frequency response of FIR Hilbert transform filter in Example 8.6.6.

H ence this formula can be used to estim ate the size o f one o f  the three basic filter 
parameters w hen the other two param eters are specified.

In concluding this section, we wish to show  that H ilbert transformers can 
also be designed by the window m ethod and the frequency sam pling m ethod. 
For exam ple, Fig. 8.28 illustrates the frequency response o f  an M  =  31 Hilbert 
transformer designed using the frequency sam pling m ethod. The corresponding 
values o f the unit sam ple response are given in T able 8.10. A  com parison o f these 
filter parameters with those given in Table 8.9 indicates som e small differences. 
In particular, it appears that the Chebyshev approxim ation criterion gives signifi­
cantly smaller values for the filter coefficients that should be zero. In general, the 
C hebyshev approximation criterion results in better filter designs.

8.2.7 Com parison of D esign M ethods for Linear-Phase  
FIR Filters

H istorically, the design m ethod based on the use o f  w indow s to truncate the 
im pulse response hd(n) and obtaining the desired spectral shaping, was the first 
m ethod proposed for designing linear-phase FIR  filters. T he frequency-sampling  
m ethod and the C hebyshev approxim ation m ethod were developed  in the 1970s 
and have since becom e very popular in the design o f  practical linear-phase FIR  
filters.

The major disadvantage o f  the w indow  design m ethod is the lack o f  precise 
control o f  the critical frequencies, such as cop and tos , in the design o f a lowpass 
FIR  filter. The values o f  wp and cos, in general, depend on the type o f window and 
the filter length M.
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Transition width ( Af )

Figure JL27 Curves o f 201og10 S versus A f  for M  — 3, 4, 7, 8, 15, 16, 31, 32, 63,
64. [From paper by Rabiner and SchafeT (1974b). Reprinted with permission of 
AT&T.]

The frequency sam pling m ethod provides an im provem ent over the win­
dow design m ethod, since Hr(ui) is specified at the frequencies cok — 2n k / M  or 
cok =  n(2k  +  1 )/M  and the transition band is a m ultiple o f 2n / M .  This filter d e­
sign m ethod is particularly attractive w hen the FIR  filter is realized either in the  
frequency dom ain by m eans o f  the D F T  or in any o f the frequency sampling re­
alizations. The attractive feature o f these realizations is that Hr (cok) is either zero  
or unity at all frequencies, except in the transition band.

The Chebyshev approximation m ethod provides total control o f the filter 
specifications, and, as a consequence, it is usually preferable over the other two  
m ethods. For a lowpass filter, the specifications are given in terms o f  the param­
eters <Dp, (ds , $i, 52, and Af. W e can specify the param eters cdp, u>s, Af and 8 , and 
optim ize the filters relative to 82- B y  spreading the approximation error over the
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Figure 8-28 Frequency response of M — 31 FIR Hilbert transform filter designed by the 
frequency sampling method.

passband and the stopband o f the filter, this m ethod results in an optim al filter d e­
sign, in the sense that for a given set o f specifications just described, the maximum  
sidelobe level is minim ized.

T he C hebyshev design procedure based on the R em ez exchange algorithm  
requires that w e specify the length o f the filter, the critical frequencies iop and ws, 
and the ratio S2/Si- H ow ever, it is m ore natural in filter design to specify iop , cos , 5j, 
and S2 and to determ ine the filter length that satisfies the specifications. A lthough  
there is no sim ple formula to determ ine the filter length from these specifications, 
a number o f approximations have been proposed for estim ating M  from cop , ojs , 
Si, and S2. A  particularly sim ple formula attributed to Kaiser for approximating 
M  is

A = - 2 0 1 o g , , ( ^ ) - 1 3 + 1

14.6 A f
where A f  is the transition band, defined as A f  =  (cos -  a)p) f l u . This formula 
has been given in the paper by Rabiner et al. (1975). A  m ore accurate formula 
proposed by Herrm ann et al. (1973) is

£>oo(Si, S2) -  f ( S u  S2) ( A f )2 
M  =  ”  * 2n }>  + 1  (8.2.95)

A /
where, by definition,

£>00(51, S2) =  [0.005309(loglo <5; )2 +  0 .07114(log105i) -  0.4761 J(Iog10 S2)

-  [0.00266(log10 Sx )2 +  0.5941 lo g 10 5i +  0.4278] (8.2.96)

/(S i, 52) =  11.012 +  0.51244(log10 5i -  log10 S2)  (8.2.97)



Sec. 8 2  Design of FIR Filters 665

TABLE 8.10 PARAMETERS A FOR M =  31 HILBERT 
TRANSFORM FILTER DESIGNED BY THE FREQUENCY- 
SAMPLING METHOD

L INEAR PHASE FIR H ILBERT TRANSFORM 

FREQUENCY SAMPLING METHOD

FILT E R  LENGTH =31

L O WER CUTOFF FREQUENCY (RELATIVE) = 0.5000000E-01 

U P PER CUTOFF FREQUENCY (RELATIVE) = 0.4500000E+00

IMPULSE RESPONSE:

H ( 0) = -0.1342662E-03

H ( 1) = 0.2133148E-02

H ( 2) 0.4848863E-02

H ( 3) = 0.2286159E-02

H ( 4) 0.1423532E-01

H ( 5) = 0.1517075E-02

H< 6) = 0.3001805E-01

H ( 7) = 0.5263533E-03

H ( 8) = 0 .5574721E-01

H ( 9) = -0.2281570E-03

H (10) = 0.1001032E+00

H  (11) -0. 5338326E-03

H(12) = 0.1949848E+00

H (13) = -0.3994641E-03

H(14) = 0.6307253E+00

H {15) = -0.9335956E-06

H  (16) s -0.6307245E+00

H ( 1 7 ) = 0.3996222E-03

H (18) = -0.1949853E+00

H (19) = 0.5341307E-03

H (20) = -0.1001035E+00

H  (21) = 0.2285338E-03

H (22) = -0.5574735E-01

H ( 2 3 ) = -0.5263340E-03

H(24) = -0.3001794E-01

H(25) = -0.1517240E-02

H (26) = -0.1423557E-01

H (27) = -0.2285915E-02

H  (28) = -0.4848215E-02

H  (29) = -0.2133800E-02

H  (30) = 0 . 1344162E-03



666 Design of Digital Filters Chap. 8

T hese formulas are extrem ely useful in obtaining a good  estim ate o f the filter 
length required to achieve the given specifications A / ,  61, and 82. The estim ate  
is used to carry out the design and if the resulting 8 exceeds the specified 82 ,  the 
length can be increased until w e obtain a sidelobe level that m eets the specifica­
tions.

Just as in the design of FIR  filters, there are several m ethods that can be used to 
design digital filters having an infinite-duration unit sample response. The tech­
niques described in this section are all based on converting an analog filter into 
a digital filter. A nalog filter design is a mature and well developed  field, so it is 
not surprising that we begin the design o f a digital filter in the analog domain and 
then convert the design into the digital domain.

A n analog filter can be described by its system  function.

0

where {a*} and {/S*} are the filter coefficients, or by its im pulse response, which is 
related to Ha(s) by the Laplace transform

A lternatively, the analog filter having the rational system  function H(s)  given in
(8.3.1), can be described by the linear constant-coefficient d ifferential equation

w here x( t )  denotes the input signal and ;y(f) denotes the output o f the filter.
Each of these three equivalent characterizations o f an analog filter leads to  

alternative m ethods for converting the filter into the digital dom ain, as will be 
described in Sections 8.3.1 through 8.3.4. W e recall that an analog linear time- 
invariant system with system  function H ( s ) is stable if all its p o les lie in the left 
half o f  the j-plane. Consequently, if the conversion technique is to  be effective, it 
should possess the follow ing desirable properties:

8.3 DESIGN OF IIR FILTERS FROM ANALOG FILTERS

M

(8.3.1)

(8.3.2)

(8.3.3)

L  T he j Q  axis in the s-plane should map into the unit circle in the z-plane. 
Thus there w ill be a direct relationship betw een  the tw o frequency variables 
in the two domains.
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2. The left-half plane (LH P) o f the 5-plane should map into the inside o f the 
unit circle in the z-plane. Thus a stable analog filter will be converted to a 
stable digital filter.

W e m entioned in the preceding section that physically realizable and stable 
IIR  filters cannot have linear phase. R ecall that a linear-phase filter m ust have a 
system  function that satisfies the condition

H(z)  =  ± z ~ n H ( z ~ 1) (8.3.4)

where z~N represents a delay o f N  units o f  tim e. But if this w ere the case, the 
filter w ould have a mirror-image p ole outside the unit circle for every p ole inside 
the unit circle. H ence the filter w ould be unstable. C onsequently, a causal and 
stable IIR filter cannot have linear phase.

If the restriction on physical realizability is rem oved, it is possible to obtain 
a linear-phase IIR filter, at least in principle. This approach involves perform ing a 
tim e reversal o f the input signal x( n ), passing x ( —n) through a digital filter H(z) ,  
tim e-reversing the output o f H(z) ,  and finally, passing the result through H(z)  
again. This signal processing is com putationally cum bersom e and appears to offer  
no advantages over linear-phase FIR  filters. C onsequently, when an application  
requires a linear-phase filter, it should be an FIR  filter.

In the design of IIR  filters, we shall specify the desired filter characteristics 
for the m agnitude response only. This does not m ean that we consider the phase 
response unimportant. Since the m agnitude and phase characteristics are related, 
as indicated in Section 8.1, we specify the desired m agnitude characteristics and 
accept the phase response that is obtained from the design m ethodology.

8.3.1 IIR Filter Design by Approximation of Derivatives

O ne o f the sim plest m ethods for converting an analog filter into a digital filter is to  
approxim ate the differential equation in (8.3.3) by an equivalent d ifference equa­
tion. This approach is often used to solve a linear constant-coefficient differential 
equation numerically on a digital com puter.

For the derivative d y { t ) / d t  at tim e t — n T , w e substitute the backward  dif­
ference  ^ (n T )  — y (nT — l ) ] / 7 \  Thus

dy( t )
dt

y (nT)  -  y i n T  -  T)

(g.3.5)

w here T represents the sampling interval and y(n) =  y {nT) .  T he analog differ­
entiator with output d y ( t ) / d t  has the system  function H(s)  =  s, while the digi­
tal system  that produces the output [y(n) — >-(n — 1 ) ] /T  has the system  function  
H (z )  =  (1 —z ~ y) / T .  C onsequently, as shown in Fig. 8.29, the frequency-dom ain
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yit)
H(s) = s

(a)

y(n)
H(Z)

i - z

dyjt)
dt

y(n) -  v(n-l)

(b)

equivalent for the relationship in (8.3.5) is

1 - z "1

FigHre fL29 Substitution of the 

backward difference for the derivative 

implies the mapping s — (1 — z~l)/T.

(8.3.6)

The second derivative d 2y ( t ) / d t 2 is replaced by the second difference, which  
is derived as follows:

d 2y{t) d ' d y ( t ) ‘
d t 2 i = n T  dt t = n T

\ y (nT)  -  y ( nT  -  T ) ] / T  -  [y(nT -  T) -  y { n T  -  2 T ) ] / T

- I n 2

y(n)  -  2 y(n  -  1) +  y(n  -  2)
r2

In the frequency dom ain, (8.3.7) is equivalent to

2 1 —  2 z “ ] +  Z ~ 2 ( \  - z _ 1

s  T 2 ~  \  T

It easily follow s from the discussion that the substitution for the Jfcth derivative 
of y ( t )  results in the equivalent frequency-dom ain relationship

k
s~ =  t — =—  I (8.3.9)

(8.3.7)

(8.3.8)

Consequently, the system  function for the digital IIR  filter obtained as a result of 
the approximation o f the derivatives by finite d ifferences is

H(z)  =  (8.3.10)

where Ha(s) is the system  function o f the analog filter characterized by the differ­
ential equation given in (8.3.3).

Let us investigate the im plications o f the m apping from the s-plane to the 
z-plane as given by (8.3.6) or, equivalently,

1
2 1 - s T

If w e substitute s =  jQ,  in (8.2.11), w e find that

1

(8.3.11)
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1 . QT
1 +  & T 2 + J \  +  & T 2

(8.3.12)

A s Q  varies from —oo to oo, the corresponding locus o f  points in the z-plane is a 
circle o f  radius \  and with center at z — as illustrated in Fig. 8.30.

It is easily dem onstrated that the m apping in (8.3.11) takes points in the  
L H P o f  the 5-plane into corresponding points inside this circle in the z-plane and 
points in the R H P o f  the 5-plane are mapped into points outside this circle. C on­
sequently, this m apping has the desirable property that a stable analog filter is 
transformed into a stable digital filter. H ow ever, the possible location o f  the poles 
o f  the digital filter are confined to  relatively small frequencies and, as a conse­
quence, the mapping is restricted to  the design o f  low pass filters and bandpass 
filters having relatively sm all resonant frequencies. It is not possible, for exam ­
ple, to  transform  a highpass analog filter into a corresponding highpass digital

In an attem pt to overcom e the lim itations in the m apping given above, m ore 
com plex substitutions for the derivatives have been proposed. In particular, an 
Lth-order difference o f  the form

has been proposed, where {a*} are a set o f param eters that can be selected  to  
optim ize the approximation. The resulting mapping betw een  the 5-plane and the 
z-plane is now

filter.

y(nT +  kT) — y(nT — kT) _ _ (8.3.13)

(8.3.14)

Unit circle

j-plane

a

Figure 8 3 0  The mapping s =  (1 — z l ) / T  takes LHP in the J-plane into points 
inside the circle of radius j  and center r =  j  in the 2-plane.
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W hen z =  w e have
L

j — Y ak sinw * (8.3.15)
*=i

which is purely imaginary. Thus

2 x—̂
£1 =  — ^  a* sin<uJt (8.3.16)

* k=l

is the resulting m apping betw een  the tw o frequency variables. B y  proper choice 
o f the coefficients {a*} it is possible to  m ap the j £ l -axis in to the unit circle. Fur­
therm ore, points in the L H P in 5- can be m apped into points inside the unit circle 
in z.

D esp ite  achieving the tw o desirable characteristics w ith the m apping of
(8.3.16), the problem  o f  selecting the set o f coefficients (a*} rem ains. In general, 
this is a difficult problem . Since sim pler techniques exist for converting analog 
filters in to IIR  digital filters, w e shall not em phasize the use o f  the Lth-order 
difference as a substitute for the derivative.

Example 83.1
Convert the analog bandpass filter with system function

H“{S) =  (*'+0.1)2 +  9 

into a digital IIR filter by use of the backward difference for the derivative.

Solution Substitution for s from (8.3.6) into H(s) yields

1
H(z)  =

( i ^ + 0.l)’ + 9

r 2/( i + o . 2 r  +  9.oir2) 
2(1 +  0.17) , 1

1 + 0 . 2 7  +  9.01 f 2 l + 0 . 2 7  +  9 . 0 i r 2 

The system function H(z) has the form of a resonator provided that T is selected 
small enough (e.g., T < 0 .1 ), in order for the poles to be near the unit circle. Note 
that the condition af < 4ai is satisfied, so that the poles are complex valued.

For example, if T =  0.1 , the poles are located at

P i,2 =  0.91 ±  jO.27

= 0.949e±yi6'5°

W e note that the range o f resonant frequencies is lim ited to  low  frequencies, due to 
the characteristics o f the m apping. T he reader is encouraged to p lot the frequency  
respoose H(co) o f  the digital filter for d ifferent values o f  T  and com pare the results 
with the frequency response o f  the analog filter.



Example 8-3.2
Convert the analog bandpass filter in Example 8.3.1 into a digital IIR filter by use of 
the mapping

1 ,
s =  j ( z ~ z - ' )

Solution By substituting for j in H (j), we obtain
1
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H{z) *
+ 9

z 2 T 2

~ z4 + 0.27V + (2 + 9.01 T2)z2 -  02Tz + 1 
We observe that this mapping has introduced two additional poles in the con­

version from Ha(s) to H(z). As a consequence, the digital filter is significantly more 
complex than the analog filter. This is a major drawback to the mapping given above.

8.3.2 IIR Filter Design by Impulse Invariance

In the im pulse invariance m ethod, our objective is to  design an IIR filter having a 
unit sam ple response h(n) that is the sampled version o f the im pulse response o f  
the analog filter. That is,

h(n) =  h(nT)  n =  0 , 1 , 2 , . . .  (8.3.17)

w here T is the sam pling interval.
T o exam ine the im plications o f (8.3.17), we refer back to  Section 4.2.9. R ecall 

that when a continuous time signal xa(t) with spectrum  X a (F)  is sam pled at a 
rate Fs — \ / T  samples per second, the spectrum  o f  the sam pled signal is the  
periodic repetition of the scaled spectrum FsX a(F)  with period Fs . Specifically, 
the relationship is

OO
X ( f )  =  Fs £  X a[ ( f  r  k)F,]  (8.3.18)

**-00
w here /  =  F/ Fs is the norm alized frequency. A liasing occurs if the sampling rate 
Fj is less than twice the highest frequency contained in X a(F).

Expressed in the context o f sam pling the im pulse response o f  an analog 
filter with frequency response Ha(F),  the digital filter with unit sam ple response 
h(n)  s  ha{nT)  has the frequency response

OO

W )  =  F, £  Ha[ ( f  -  k)Fs] (8.3.19)
**—00

or, equivalently,
00

H(a>) =  Fs Y  H a[( to -2nk)F s] (8.3.20)
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HJC iT )

Figure 8J1 Frequency response H„(&) of the analog filter and frequency re­
sponse of the corresponding digital filter with aliasing.

or

H & T )  =  J  £ ;  Ha ( n  -  (8.3.21)

Figure 8.31 depicts the frequency response o f a lowpass analog filter and the 
frequency response o f the corresponding digital filter.

It is clear that the digital filter w ith frequency response H(<d) has the fre­
quency response characteristics o f the corresponding analog filter if the sampling 
interval T is selected  sufficiently sm all to  com pletely avoid or at least m inim ize 
the effects o f aliasing. It is also clear that the im pulse invariance m ethod is in­
appropriate for designing highpass filters due the to spectrum aliasing that results 
from the sampling process.

T o  investigate the m apping o f points betw een  the z-plane and the j-p lane  
im plied by the sam pling process, w e rely on a generalization o f (8.3.2 1) which 
relates the z-transform o f h(n)  to  the Laplace transform o f  ha(t).  This relation­
ship is

f l ( z ) i « *  =  j Y  H° (*  -  ^ •3-22)
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where
OO

H(z)  =  X > ( n ) z - n
73=0
OO

*  Y h M e ' sTn <8-3-23)

N ote  that when s =  j Q ,  (8.3.22) reduces to (8.3.21), where the factor o f j  in Ha(Q) 
is suppressed in our notation.

Let us consider the mapping o f points from the s-p lane to the z-plane implied  
by the relation

z -  esT (8.3.24)

If we substitute j  =  a  +  jQ.  and express the com plex variable z in polar form as 
e =  re jai, (8.3.24) becom es

re j “ =  eaTejnT
Clearly, we must have

r  =  eaT
(8.3.25)

co =  Q.T
C onsequently, a  < 0 im plies that 0 <  r <  1 and a  > 0 im plies that r > 1. W hen 
a  =  0, w e have r ~  1. T herefore, the LH P in s is m apped inside the unit circle in 
z and the R H P in s is m apped outside the unit circle in z.

A lso, the j Q-ax\s  is m apped into the unit circle in z as indicated above. H ow ­
ever, the m apping of the y'fi-axis into the unit circle is not one-to-one. Since co 
is unique over the range (—tt, tt), the mapping co =  Q.T im plies that the interval 
—n / T  <  £2 <  n / T  m aps into the corresponding values o f  — tt <  co <  n.  Fur­
therm ore, the frequency interval n / T  <  Cl <  3 n / T  also maps into the interval 
—n  <  co <  7i  and, in general, so does the interval (2k -  V) n/ T  <  £2 <  (2k -(- \ ) t t / T , 
when k is an integer. Thus the m apping from the analog frequency £2 to  the fre­
quency variable co in the digital dom ain is m any-to-one, which simply reflects the 
effects o f aliasing due to sampling. Figure 8.32 illustrates the m apping from the 
j-p lane to the z-plane for the relation in (8.3.24).

T o  explore further the effect o f  the im pulse invariance design m ethod on  
the characteristics o f the resulting filter, let us express the system  function o f the 
analog filter in partial-fraction form. On the assumption that the poles o f the 
analog filter are distinct, w e can write

N

Ha(s) =  Y — —  (8.3.26)

where {/>*} are the poles o f the analog filter and {c*} are the coefficients in the 
partial-fraction expansion. Consequently,

N

M O  =  Y CkePkt 1 -  0 (8.3.27)
k-  i
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Figure 8_32 The mapping of z — e*T 
maps strips of width 2n / T  (for cr < 0) in 
the 5-plane into points in the unit circle 
in the z-plane.

If we sample ha(t) periodically at t ~  nT,  w e have

h ( n )  =  h A n T )

(8.3.28)

Now, with the substitution o f (8.3.28), the system  function of the resulting digital 
IIR filter becom es

H(z)  =  ] T / i ( n ) z - n
w*0
oo /  N

=  E
n=0 \*=1

N

i= l «=o

The inner sum in (8.3.29) converges because p* <  0 and yields

Therefore, the system  function o f the digital filter is

H ( z ) =  Y - -------— f
f t  1 -  e » Tz - 1

W e observe that the digital filter has po les at
_  ffPkTZk =  e k =  1 , 2 , . . . ,  AT

(8.3.29)

(8.3.30)

(8.3.31)

(8.3.32)
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A lthough the poles are m apped from the .y-plane to  the z-plane by the relationship  
in (8.3.32), w e should em phasize that the zeros in the tw o dom ains do not satisfy the 
sam e relationship. Therefore, the im pulse invariance m ethod does not correspond  
to  the sim ple mapping o f points given by (8.3.24).

T he developm ent that resulted in H(z)  given by (8.3.31) was based on a filter 
having distinct poles. It can be generalized to include m ultiple-order poles. For 
brevity, how ever, we shall not attem pt to  generalize (8.3.31).

Example 833
Convert the analog filter with system function

into a digital IIR filter by means of the impulse invariance method.

Solution We note that the analog filter has a zero at s = -0.1 and a pair of complex- 
conjugate poles at

as illustrated in Fig. 8.33.
We do not have to determine the impulse response ha{t) in order to design 

the digital IIR filter based on the method of impulse invariance. Instead, we directly 
determine H{z), as given by (8.2.31), from the partial-fraction expansion of Ha(s). 
Thus we have

pk = -0.1 ± j 3

l
2

Then
i l

X

a

x
Figure 8 3 3  Pole-zero locations for
analog filter in Example 83.3.
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Since the two poles are complex conjugates, we can combine them to form a 
single two-pole filter with system function

H{z) =
1 — (e 017 cos3T)z~

1 — (2e~0 lT cos 3T)z~l +  e~°2Tz~
The magnitude of the frequency response characteristic of this filter is plotted 

in Fig. 8.34 for T = 0.1 and T = 0.5. For purpose of comparison, we have also plotted 
the magnitude of the frequency response of the analog filter in Fig. 8.35, We note 
that aliasing is significantly more prevalent when T — 0.5 than when T = 0.1. Also, 
note the shift of the resonant frequency as T changes.

Figure 8.35 Frequency response of  
analog filler in Example 8.3.3.

The preceding exam ple illustrates the im portance o f  selecting a small value 
for T to  m inimize the effect o f aliasing. D u e to the presence o f  aliasing, the 
im pulse invariance m ethod is appropriate for the design o f low pass and bandpass 
filters only.

8.3.3 IIR Filter Design by the Bilinear Transformation

T he IIR  filter design techniques described in the preceding tw o sections have a 
severe lim itation in that they are appropriate only for lowpass filters and a limited  
class o f  bandpass filters.

In this section w e describe a m apping from the J-plane to  the z-plane, called  
the bilinear transformation, that overcom es the lim itation o f the other two design
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m ethods described previously. T he bilinear transformation is a conform al m apping  
that transforms the yft-axis into the unit circle in the z-plane only once, thus 
avoiding aliasing o f frequency com ponents. Furtherm ore, all points in the LH P o f  
s are m apped inside the unit circle in the z-plane and all points in the R H P o f s 
are m apped into corresponding points outside the unit circle in the z-plane.

The bilinear transformation can be linked to the trapezoidal formula for 
numerical integration. For exam ple, let us consider an analog linear filter with 
system  function

H(s)  =  ——  (8.3.33)
s +  a

This system  is also characterized by the differential equation

dy( t )
— ------h ay( t )  — bx( t )  (8.3.34)

at
Instead o f substituting a finite d ifference for the derivative, suppose that we in­
tegrate the derivative and approximate the integral by the trapezoidal formula. 
Thus

=  / > '  J/o
y O ) =  /  y ' <j )dr +  y( t0) (8.3.35)

w here y'(t)  denotes the derivative o f  y( t ) .  The approxim ation o f the integral in 
(8.3.35) by the trapezoidal formula at r ~  nT and t0 =  nT — T yields

y ( nT)  =  j [ y \ n T )  +  y' (nT  -  T)] +  y {nT -  T) (8.3.36)

N ow  the differential equation in (8.3.34) evaluated at t =  n T  yields

y ' (nT) — - a y ( n T )  +  bx(nT)  (8.3.37)

W e use (8.3.37) to substitute for the derivative in (8.3.36) and thus obtain a dif­
ference equation for the equivalent discrete-tim e system. W ith y(n) =  y(nT ) and 
x(n)  =  x(nT) ,  w e obtain the result

^1 +  y 'J y ( n) ~  “  ~ f )  y(~n ~ f l x (n ) +  x (n ~  (8.3.38)

The z-transform o f  this difference equation is

( i  +  ~ )  y ( z )  -  ( ! ~  y )  z ~l y ( z )  =  T (1 +  Z“1)X(Z)

C onsequently, the system  function o f the equivalent digital filter is

=  (bT pL)(\ +  z~')
{Z) X( z )  1 + a T / 2  ~  (1 — a T  pL)z~l

or, equivalently,

H(z) =  ------  (8.3.39)
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Clearly, the m apping from the j -plane to the z-plane is

5 = H r r £ )  (8'3'40>
This is called the bilinear transformation.

A lthough our derivation o f the bilinear transformation w as perform ed for a 
first-order differential equation, it holds, in general, for an N th-order differential 
equation.

T o investigate the characteristics o f the bilinear transformation, let

z  =  r e i(u 

s  =  a  +  j i 2

Then (8.3.40) can be expressed as 

=  2 z ~ 1 

T z  +  1
2 re Ja> -  1
T re>w + 1

r2 — 1 2r sin co
+  j -

Consequently,

=  - ( -T \  1 +  r 2 +  2r cos co J 1 +  r 2 +  2r  cos co,

2 r 2 - ‘ (8.3.41)
T 1 +  r2 +  2 r  cos <

_  2  2 r  sin co
A  =  -------------— ---------- -- (8 .3 .4 2 )

T l + r 2 +  2r cos co
First, we n ote that if r <  1, then a  <  0, and if r >  1, then a  >  0. C onse­

quently, the LH P in s maps into the inside o f the unit circle in the z-plane and the 
R H P in s maps into the outside o f the unit circle. W hen r  =  1, then a  =  0 and

^ 2 sin to 
Q =  —

T 1 +  cos co

or, equivalently,

=  -  tan -  (8.3.43)
T 2  K ’

o  T
c o = 2 t a n ~ 1 —  (8.3.44)

T he relationship in (8.3.44) betw een  the frequency variables in the tw o domains 
is illustrated in Fig. 8.36. W e observe that the entire range in £2 is m apped only 
once into the range — n  <  a> <  n .  H ow ever, the m apping is highly nonlinear. W e 
observe a frequency com pression or f requency warping,  as it is usually called , due 
to the nonlinearity o f the arctangent function.

It is also interesting to note that the bilinear transformation m aps the point 
s =  oo into the point z  — —1. C onsequently, the single-pole low pass filter in
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Figure 836 Mapping between the frequency variables to and Q resulting from 
the bilinear transformation.

(8.3.33), which has a zero at s = oo, results in a digital filter that has a zero at 
z =  — 1.

Example 83.4
Convert the analog filter with system function

into a digital IIR filter by means of the bilinear transformation. The digital filter is 
to have a resonant frequency of wr = jt/2.

Solution First, we note that the analog filter has a resonant frequency = 4. This 
frequency is to be mapped into cur = jt/2 by selecting the value of the parameter T. 
From the relationship in (8.3.43), we must select T  =  \ in order to have cor -  it  f l .  
Thus the desired mapping is

We note that the coefficient of the z~l term in the denominator of H(z) is extremely 
small and can be approximated by zero. Thus we have the system function

The resulting digital filter has the system function

0.128 +  0.006Z’ 1 -  0 .122r 2 

(Z) “  1 +  0 .0 0 0 6 z -5 +  0 .975z-2

0.128 +  0 .006z-1 -  0 .122z-2 
;----------

This filter has p o les  at

p i .2 =  0.987e±,’r/2
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Therefore, we have succeeded in designing a two-pole filter that resonates near u) =
nfl .

In this exam ple the param eter T  was selected  to  map the resonant frequency 
of the analog filter into the desired resonant frequency o f  the digital filter. Usually, 
the design of the digital filter begins with specifications in the digital dom ain, which 
involve the frequency variable <d. T hese specifications in frequency are converted  
to  the analog domain by m eans o f the relation in (8.3.43). T he analog filter is then  
designed that m eets these specifications and converted to a digital filter by m eans 
o f  the bilinear transformation in (8.3.40). In this procedure, the param eter T  is 
transparent and may be set to  any arbitrary value (e.g., T =  1). The follow ing  
exam ple illustrates this point.

Example 8.3.5

Design a single-pole lowpass digital filter with a 3-dB bandwidth of 0.2jt, using the
bilinear transformation applied to the analog filter

His)  =

where is the 3-dB bandwidth of the analog filter.

Solution The digital filter is specified to have its -3-dB  gain at wc =  0.2n. In the
frequency domain of the analog filter we — 0 .2n  corresponds to

2
fZc =  — tan0.l7r 

_  065 
7

Thus the analog filter has the system function

0.65/7

and zeros at

z i.2 =  - 1 ,  0 .95

j  +  0 .6 5 /7

This represents our filter design in the analog domain.
Now, we apply the bilinear transformation given by (8.3.40) to convert the 

analog filter into the desired digital filter. Thus we obtain

II(z)
( ) ~  1 - 0 .5 0 9 Z - 1 

where the parameter 7  has been divided ou t
The frequency response of the digital filter is

0.245(1 +  e~ju)
] 1 -  0 .509c-.'* '

At w =  0, H(0) =  1, and at a> =  0.2?r, we have |//(0.2jr)| =  0.707, which is the desired 
response.
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8.3.4 The Matched-z Transformation

A nother m ethod for converting an analog filter into an equivalent digital filter is to 
map the poles and zeros o f  H ( s ) directly into poles and zeros in the z-plane. Sup­
p ose that the system  function of the analog filter is expressed in the factored form

M
Y [ ( S ~ z k)

H(s)  =  *=!------------ (8.3.45)

r > -  p a  
*=i

where {z*} are the zeros and {p*} are the poles of the filter 
function for the digital filter is

M
Y [ ( l - e ^ Tz ~x)

f ] a - ^ V ' )
*=i

w here T is the sampling interval. Thus each factor o f the form (s — a)  in H(s)  
is m apped into the factor (1 — eaTz ~ l ). This m apping is called the matched-z  
transformation.

W e observe that the poles obtained from the m atched-z transformation are 
identical to the poles obtained with the impulse invariance m ethod. H ow ever, the  
tw o techniques result in different zero positions.

To preserve the frequency response characteristic o f  the analog filter, the  
sam pling interval in the m atched-z transformation must be properly selected to  
yield the pole and zero locations at the equivalent position in the z-plane. Thus 
aliasing must be avoided by selecting T sufficiently small.

8.3.5 Characteristics of Commonly Used Analog Filters

A s w e have seen from our discussion above, IIR  digital filters can easily be ob­
tained by beginning with an analog filter and then using a m apping to transform the 
s -plane into the z-plane. Thus the design o f a digital filter is reduced to designing 
an appropriate analog filter and then perform ing the conversion from H(s)  to H(z) ,  
in such a way so as to preserve as much as possible, the desired characteristics o f  
the analog filter.

A nalog filter design is a w ell-developed field and m any books have been  
written on the subject. In this section w e briefly describe the important character­
istics o f com m only used analog filters and introduce the relevant filter parameters. 
Our discussion is lim ited to lowpass filters. Subsequently, w e describe several 
frequency transformations that convert a low pass prototype filter into either a 
bandpass, highpass, or band-elim ination filter.

. Then the system

(8.3.46)
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Butterworth filters. Lowpass Butterworth filters are all-pole filters char­
acterized by the m agnitude-squared frequency response

1H  (S2) 12 =  l +  (£2/nc)2* =  i + cH n/np)M (8'3’47)

where N  is the order o f the filter, £2C is its —3-dB frequency (usually called the  
cutoff frequency), Qp is the passband edge frequency, and 1/(1  +  e 2) is the band- 
edge value o f |H(£2)|2. Since H ( s ) H ( —s)  evaluated at j  =  j £ l  is simply equal to 
| / /(£ 2) |2, it follow s that

H(sW-s) - t t f W  <8-3'48)
The poles o f H ( s ) H ( —s) occur on a circle o f  radius £2C at equally spaced points. 
From (8.3.48) we find that

=  ( - l ) 1//v =  e j & + » * / *  k =  0 , 1 , . . . ,  N -  1

and hence

sk -  n ce j 7r/2e j(2k+l)7r/2N * =  0 ,1 .........N  — 1 (8.3.49)

For exam ple, Fig. 8.37 illustrates the pole positions for an N =  4 and N — 5 
Butterworth filters.

The frequency response characteristics o f  the class o f Butterworth filters are 
shown in Fig. 8.38 for several values o f N.  W e note that (£2)|2 is m onotonic  
in both the passband and stopband. The order o f the filter required to m eet an 
attenuation 82 at a specified frequency £2, is easily determ ined from (8.3.47). Thus 
at £2 =  £2* w e have

* -2
i  +  e H n I / a p ) 2 N  6 1

and hence

_  tog [ ( l /g ) - 1 ]  _  . W O M  
21og(G,/£W log(SJ,/n,)

where, by definition, <52 =  l / V l  +  82. Thus the Butterworth filter is com pletely  
characterized by the param eters N,  82, e,  and the ratio Qs /£ lp.

Example 8.3.6

Determine the order and the poles of a lowpass Butterworth filter that has a -3-dB  
bandwidth of 500 Hz and an attenuation of 40 dB at 1000 Hz.

Solution The critical frequencies are the —3-dB frequency Qc and the stopband 
frequency £2, ,  which are

=  IOOOjt

£2, =  2000jt
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Figure 8.37 Pole positions for Butterworth filters.

For an attenuation of 40 dB, S2 =  0.01. Hence from (8.3.50) we obtain

log,o (10* -  1)
21ogio2 

= 6.64

To meet the desired specifications, we select N =  7. The pole positions are 

st  =  \0007rei{nfl+cu+l,*/u] 0 , 1 . 2 . . . . .  6

Chebyshev filters. There are tw o types o f  Chebyshev filters. T ype I 
Chebyshev filters are all-pole filters that exhibit equiripple behavior in the pass- 
band and a m onotonic characteristic in the stopband. On the other hand, the 
family o f type II Chebyshev filters contains both p o les and zeros and exhibits a
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m onotonic behavior in the passband and an equiripple behavior in the stopband. 
T he zeros o f  this class o f  filters lie on the imaginary axis in the s -plane.

The m agnitude squared o f  the frequency response characteristic o f  a type I 
C hebyshev filter is given as

|t f ( f i)|2 = ------- — J------------ (8.3.51)
i  +  €2r 2( n / n , )

where e is a param eter o f  the filter related to the ripple in the passband and Tn (x ) 
is the Wth-order C hebyshev polynom ial defined as

t  _  \  cos(Af cos- 1 * ), |x |  < 1  ,  o x
c o s h w c o d .-1*), | X | > 1  (8 J '52)
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The Chebyshev polynom ials can be generated by the recursive equation

where 7oU ) =  1 and T\(x) =  x.  From (8.3.53) we obtain T^C*) =  2*2 — 1- T-six) — 
4 r 3 — 3x ,  and so on.

Som e o f the properties o f these polynom ials are as follows:

1 . | 7VU) |  <  1 for all 1*1 <  1.
2. 7V(1) =  1 for all N.
3. A ll the roots of the polynom ial T?j(x) occur in the interval —1 <  * <  1.

The filter param eter € is related to the ripple in the passband, as illustrated 
in Fig. 8.39, for N  odd and N  even. For N  odd, TN(0) =  0 and hence | / / ( 0 )|2 =  1. 
On the other hand, for N  even, TN(0) =  1 and hence | / / ( 0 )|2 =  1/(1 -f e 2). A t the 
band edge frequency SI =  Qp, we have T,y(l) =  1 , so that

or, equivalently.

where <$i is the value o f the passband ripple.
The poles o f a type I C hebyshev filter lie on an ellipse in the j-p lane with 

major axis

Tn+ i (.x ) =  2xTN(x) -  Tn „ i ( x )  AT =  1 , 2 , . . . (8.3.53)

(8.3.55)

iffrti)!*

■p

N  odd N  even

Figure 8-39 Type I Chebyshev filter characteristic.
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- 1

20

where is related to e according to the equation

v T +72  +  1
1 / N

(8.3.56)

(8.3.57)

The pole locations are m ost easily determ ined for a filter o f order N  by first locating  
the po les for an equivalent iVth-order Butterworth filter that lie on circles o f radius 
rj or radius r2, as illustrated in Fig. 8.40. If w e d enote the angular positions o f the 
poles o f the Butterworth filter as

(2k +  1)7T

2 N
(8.3.58)

then the positions o f the poles for the C hebyshev filter lie on the ellipse at the 
coordinates (xk, yt ) ,  k =  0, 1 , . . . ,  N  — 1 , where

xk =  r2 cos <pk, 

yk =  r  i sin <pk.

k =  Q , l , . . . , N - l

k =  0 ,1 ,  . . . , N  - 1
(8.3.59)

Figure 8.40 Determination o f the pole locations for a Chebyshev filter.
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A  type II C hebyshev filter contains zeros as well as poles. T he m agnitude 
squared o f  its frequency response is given as

Sec. 8.3 Design of IIR Filters From Analog Filters

\H (£2)|2 = (8.3.60)

where Ty(x)  is, again, the N th-order Chebyshev polynom ial and £2* is the stopband  
frequency as illustrated in Fig. 8.41. The zeros are located on the imaginary axis 
at the points

Sk =  j -
sin fa

k =  0 , 1 , . . . ,  N  -  1

The poles are located at the points (vk, w k), where 

Slsxk
vk =

w k

yf*l
* =  0, 1 , N - 1

+  Vk 

Q y k
* =  0 , 1 , . . . ,  A f - 1

(8.3.61)

(8.3.62)

(8.3.63)

y/xk +  y 2k

where j**} and {yk} are defined in (8.3.59) with 0  now related to the ripple in the 
stopband through the equation

1 +  J l - S 2'
1/jV

(8.3.64)

From this description, w e observe that the Chebyshev filters are characterized  
by the param eters N,  e, S2, and the ratio Q.s /Slp . For a given set o f specifications

IWDI2 |tf(n)P

n , n,
N  odd N  even

Figure 8.41 Type II Chebyshev filters.
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N =
log

l ( v
f l - S l  +  y / l - S l d + ^ j / e S !

log (ns/Qp) +  y/ ( n s / n p)2 - 1 (8.3.65)

cosh (5/e)
cosh -1  (£2, / ^ )  

where, by definition, S2 =  1 / V l  +  <52.

Example 83.7
Determine the order and the poles of a type I lowpass Chebyshev filter that has a 
1-dB ripple in the passband, a cutoff frequency £2P = IOOOjt, a stopband frequency 
of 2000jt, and an attenuation of 40 dB or more for £2 > S2s.

Solution First, we determine the order of the filter. We have
101og10(l + e2) = 1

1 + €2 = 1.259

€2 = 0.259

e = 0.5088
Also,

20 log10 <52 = -40

82 =  0.01
Hence from (8.3.65) we obtain

N = °̂Sio 196.54 
log10(2 +V3)

= 4.0
Thus a type I Chebyshev filter having four poles meets the specifications.

The pole positions are determined from the relations in (8.3.55) through (8.3.59). 
First, we compute /?, n, and r2. Hence

P = 1.429

ri =  1.06£2P

r2 = 0.3650,
The angles {0*} are

<Pt = 2 +
n (2k + 1 )7T

8
k = 0,1,2,3

Therefore, the poles are located at

*1 + jy 1 = ~0.1397£2P ± j0.979np 

+ jyi = —0.337£2,, ±  _/'0.4056Qp
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The filter specifications in Exam ple 8.3.7 are very similar to the specifications 
given in Exam ple 8.3.6, which involved the design of a Butterworth filter. In 
that case the number o f po les required to m eet the specifications was seven. On  
the other hand, the Chebyshev filter required only four. This result is typical o f  
such com parisons. In general, the C hebyshev filter m eets the specifications with a 
few er num ber o f  poles than the corresponding Butterworth filter. A lternatively, if 
w e com pare a Butterworth filter to  a Chebyshev filter having the sam e number  
o f  poles and the sam e passband and stopband specifications, the C hebyshev filter 
will have a sm aller transition bandwidth. For a tabulation o f the characteristics o f  
C hebyshev filters and their p o le-zero  locations, the interested reader is referred 
to the handbook o f Zverev (1967).

Elliptic filters. Elliptic (or Cauer) filters exhibit equiripple behavior in both  
the passband and the stopband, as illustrated in Fig. 8.42 for N  odd and N  even. 
T his class o f filters contains both poles and zeros and is characterized by the 
m agnitude-squared frequency response

|H(^ )|2 =  1 u .  277~;0 / o  , (8-3-66)

w here UN{:r) is the Jacobian elliptic function o f  order N , which has been  tabulated 
by Z verev (1967), and e is a parameter related to the passband ripple. T he zeros 
lie on the ;'fi-axis.

W e recall from our discussion of FIR  filters that the m ost efficient designs 
occur w hen w e spread the approximation error equally over the passband and the 
stopband. E lliptic filters accomplish this objective and, as a consequence, are the 
m ost efficient from the view point o f yielding the sm allest-order filter for a given

IW(Q)|2

1 + e2
\ S M

N  odd

Figure 8.42 Magnitude-squared frequency characteristics of elliptic filters.
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set o f specifications. Equivalently, w e can say that for a given order and a given  
set o f  specifications, an elliptic filter has the sm allest transition bandwidth.

The filter order required to achieve a given set o f specifications in passband  
ripple Si, stopband ripple 62, and transition ratio ftp/ft* is given as

K ( n pM ) K  U i - f i / s * ) )
N  = --------------- v — L  (8.3.67)

K W K  ( y i  -  ( 8 , / n ,  )2j

w here K ( x )  is the com plete elliptic integral o f  the first kind, defined as

r a  d$
K ( X )  =  /  - ........... . (8.3.68)

• '0  v  1  —  jc 2 s u v 6

and 62 =  1 /V l  +  62. V alues o f this integral have been tabulated in a number 
o f texts [e.g., the books by Jahnke and E m de (1945) and D w ight (1957)]. The  
passband ripple is 10 log10( l  +  e2).

W e shall not attem pt to  describe elliptic functions in any detail because such 
a discussion w ould take us too  far afield. Suffice to  say that com puter programs are 
available for designing elliptic filters from the frequency specifications indicated  
above.

In view  o f the optim ality o f elliptic filters, the reader m ay question the reason  
for considering the class o f Butterworth or the class o f C hebyshev filters in practical 
applications. O ne important reason that these other types o f filters might be prefer­
able in som e applications is that they possess better phase response characteristics. 
The phase response o f  elliptic filters is m ore nonlinear in the passband than a com ­
parable Butterworth filter or a C hebyshev filter, especially near the band edge.

Bessel filters. B essel filters are a class o f all-pole filters that are charac­
terized by the system  function

H(s)  =  — (8. 3. 69)
B n ( s )

w here Bn(s)  is the N th-order B esse l polynom ial. These polynom ials can be ex­
pressed in the form

N

B * (j)  =  £ a * j *  (8-3.7°)
0

w here the coefficients {a*} are given as

& N - t y  ,
“' 2 »->*!(*-*)! * - ( U ....N  <8-371)

A lternatively, the B essel polynom ials may be generated recursively from the rela­
tion

B n (s) =  (2N  -  1 )B*_j(i) +  s 2B n . 2(s) (8.3.72)

with Bo(s) =  1 and f li(s ) =  s  +  1 as initial conditions.
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Magnitude

Phase

Figure 8.43 Magnitude and phase responses o f Bessel and Butterworth filters of 
order N  =  4.

A n im portant characteristic o f  B essel filters is the linear-phase response over  
the passband o f  the filter. For exam ple, Fig. 8.43 show s a com parison o f  the  
m agnitude and phase responses o f  a B esse l filter and Butterworth filter o f order 
N  =  4. W e note that the B essel filter has a larger transition bandwidth, but 
its phase is linear within the passband. H ow ever, w e should em phasize that the
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linear-phase chacteristics o f  the analog filter are destroyed in the process o f con­
verting the filter into the digital dom ain by m eans o f  the transform ations decribed 
previously.

8.3.6 Some Examples of Digital Filter Designs Based on 
the Bilinear Transformation

In this section we present several exam ples o f digital filter designs obtained from  
analog filters by applying the bilinear transformation to convert H(s)  to  H(z).  
T hese filters designs are perform ed with the aid o f one of several software packages 
now available for use on a personal com puter.

A  lowpass filter is designed to m eet specifications o f  a m aximum  ripple o f
-  dB in the passband, 60-dB attenuation in the stopband, a passband edge fre­
quency o f (i)p =  0.25;r, and a stopband edge frequency o f cos =  0.30tt.

A  Butterworth filter o f order N  =  37 is required to satisfy the specifications. 
Its frequency response characteristics are illustrated in Fig. 8.44. If a Cheby­
shev filter is used, a filter o f  order N  =  13 satisfies the specifications. The fre­
quency response characteristics for a type I and type II C hebyshev filters are 
shown in Figs. 8.45 and 8.46, respectively. The type I filter has a passband rip­
ple o f 0.31 dB. Finally, an elliptic filter o f order N — 7 is designed which also 
satisfied the specifications. For illustrative purposes, we show  in Table 8.11, the 
numerical values for the filter parameters and the resulting frequency specifica­
tions are shown in Fig. 8.47. The follow ing notation is used for the parameters in 
the function H(z):

, r r  W '  °> +  W ' 1)z_1 +  k(i, 2) z~2 /C Q w(8.3.73)

A lthough we have described only lowpass analog filters in the preceding section, it 
is a sim ple m atter to  convert a lowpass analog filter into a bandpass, bandstop, or 
highpass analog filter by a frequency transformation, as is described in Section 8.4. 
The bilinear transformation is then applied to convert the analog filter into an 
equivalent digital filter. A s in the case o f the low pass filters described above, the 
entire design can be carried out on a com puter.

8.4 FREQUENCY TRANSFORMATIONS

The treatm ent in the preceding section is focused primarily on the design o f low- 
pass IIR  filters. If we wish to design a highpass or a bandpass or a bandstop filter, 
it is a simple m atter to take a lowpass prototype filter (Butterw orth, Chebyshev, 
elliptic, B esse l) and perform  a frequency transformation.

O ne possibility is to  perform the frequency transform ation in the analog 
domain and then to convert the analog filter into a corresponding digital filter 
by a m apping o f the 5-plane into the z-plane. A n  alternative approach is first to
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Figure 8.44 Frequency response characteristics of a 37-order Butterworth filter.

convert the analog lowpass filter into a lowpass digital filter and then to transform 
the lowpass digital filter into the desired digital filter by a digital transformation. 
In general, these two approaches yield different results, except for the bilinear 
transformation, in which case the resulting filter designs are identical. These two 
approaches are described below.

8.4.1 Frequency Transformations in the Analog Domain

First, we consider frequency transformations in the analog domain. Suppose that 
we have a lowpass filter with passband edge frequency Qp and we wish to convert
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Figure 8.45 Frequency response characteristics o f a 13-order type I Chebyshev filter.

it to  another lowpass filter with passband edge frequency £2̂ ,. T he transformation  
that accom plishes this is

j — ► —y s  (low pass to  lowpass) (8.4.1)

Thus we obtain a lowpass filter with system  function Hi(s) =  Hp[(Qp/ t t p)s], 
w here Hp(s) is the system  function o f  the prototype filter w ith passband edge  
frequency Qp.



Sec. 8.4 Frequency Transformations 695

Figure M 6 Frequency response characteristics of a 13-order type II Chebyshev filter.

If w e wish to convert a lowpass filter into a highpass filter with passband  
edge frequency Q!p, the desired transformation is

s — ►-------- (lowpass to  highpass) (8.4.2)
s

T he system  function o f  the highpass filter is Hk(s) — Hp(Q.pQ!p/s).
The transformation for converting a lowpass analog filter with passband edge  

frequency S2P into a band filter, having a low er band edge frequency Qj and an 
upper band ed ge frequency £2„, can be accom plished by first converting the lowpass
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TABLE 8.11 FILTER COEFFICIENTS FOR A 7-ORDER ELLIPTIC FILTER

INFINITE IMPULSE RESPONSE (IIR) 

ELLIPTIC LOWPASS FILTER 

UNQUANTIZED COEFFICIENTS 

FILTER ORDER = 7

SAMPLING FREQUENCY = 2.000 KILOHERTZ

I. A(I, 1) A(I, 2) B (I , 0} B (I , 1) B (I , 2)

I -.790103 .000000 .104948 .104948 .000000

2 -1.517223 .714088 .102450 -.007817 .102232

3 -1.421773 .861895 .420100 -.399842 .419864

4 -1.387447 .962252 .714929 -.826743 .714841

*** CHARACTERISTICS OF DESIGNED FILTER ***

BAND 1 BAND 2

LOWER BAND EDGE .00000 .30000

UPPER BAND EDGE .25000 1.00000

NOMINAL GAIN 1.00000 .00000

NOMINAL RIPPLE .05600 .00100

M AXIMUM RIPPLE .04910 .00071

RIPPLE IN DB .41634 -63.00399

filter into another lowpass filter having a band edge frequency Sl'p =  1 and then 
performing the transformation

s  — ► S (lowpass to bandpass) (8.4.3)
s(£lu — S2/)

Equivalently, we can accom plish the sam e result in a single step  by m eans o f the 
transformation

s 2 +  £2/ S2„
s — y Qp ——------—  (lowpass to  bandpass) (8.4.4)

j(£2u — £2i)
where

£2/ =  low er band edge frequency  

S2U =  upper band edge frequency

Thus w e obtain

(  s 2 +  £2i £2B \

Finally, if we wish to convert a lowpass analog filter with band edge frequency  
£2p into a bandstop filter, the transformation is sim ply the inverse o f (8.4.3) with  
the additional factor Slp serving to norm alize for the band edge frequency o f  the  
lowpass filter. Thus the transformation is

j  — ► £lpS-2—■ - ^ - (lowpass to bandstop) (8.4.5)
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Figure 8.47 Frequency response characteristics of a 7-order elliptic filter.

which leads to

T he m appings in (8.4.1), (8.4.2), (8.4.3), and (8.4.5) are summarized in 
Table 8.12. T he m appings in (8.4.4) and (8.4.5) are nonlinear and may appear 
to distort the frequency response characteristics o f the low pass filter. H ow ever, 
the effects o f the nonlinearity on the frequency response are m inor, primarily af­
fecting the frequency scale but preserving the am plitude response characteristics 
of the filter. Thus an equiripple low pass filter is transformed into an equiripple 
bandpass or bandstop or highpass filter.
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TABLE 8.12 FREQUENCY TRANSFORMATIONS FOR 
ANALOG FILTERS (PROTOTYPE LOWPASS FILTER 
HAS BAND EDGE FREQUENCY ftp)

Type of 
transformation Transformation

Band edge 
frequencies of  

new filter

Lowpass
n p

s — *■ ftp

Highpass ^ ^
s

Bandpass

Bandstop

_  s2 + Sit
S --- ► iin -------------—

p s ( n u -  n ()

s --- ► —----------—
p s2 + n u n .

ft/, ftp 

Qt, Clu

Example 8.4.1
Transform the single-pole lowpass Butterworth filter with system function

H ŝ) =  - T 7 T

into a bandpass filter with upper and lower band edge frequencies £2„ and respec­
tively.
Solution The desired transformation is given by (8.3.4). Thus we have 

H(s) =  1
s -f-

i(n„ - a,) +
(K„ — K/)j 

s2 +  (£2„ — S2j)s +  
The resulting filter has a zero at s = 0 and poles at

2

8.4.2 Frequency Transformations in the Digital Domain

A s in the analog dom ain, frequency transformations can be perform ed on a digital 
lowpass filter to convert it to  either a bandpass, bandstop, or highpass filter. The  
transformation involves replacing the variable z -1  by a rational function g (z -1 ), 
which must satisfy the follow ing properties.

L  The mapping z_1 — ► g (z -1 ) m ust map points inside the unit circle in the 
z-plane into itself.

2. The unit circle must also be m apped into itself.
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C ondition (2) im plies that for r =  1,

e~Ja -  g(e - J,°) =  g(u})

It is clear that we must have |g(ti>)| =  1 for all oj. That is, the mapping must be  
all-pass. H ence it is o f the form

(8.4.6)S ( z - ’ ) =  ± n f r
Z - a k

akz-

where \ak \ <  1 to  ensure that a stable filter is transformed into another stable filter 
(i.e., to  satisfy condition 1 ).

From the general form in (8.4.6), w e obtain the desired set o f  digital trans­
form ations for converting a prototype digital lowpass filter into either a bandpass, 
a bandstop, a highpass, or another lowpass digital filter. T hese transformations 
are tabulated in Table 8.13.

TABLE 8.13 FREQUENCY TRANSFORMATION FOR DIGITAL FILTERS
(PROTOTYPE LOWPASS FILTER HAS BAND EDGE FREQUENCY a>P)

Type of 
transformation Transformation Parameters

Lowpass

Highpass

1 -  az'

1 +  az~x

Bandpass
z 1 — aiz + a ;  

a2z~2 -  a\z~l +  1

(o'p — band edge frequency 
of new filter 

sin[(^p -  w'p) p \  

sin[(a>p + w'p)p.]

w'p =  band edge frequency 
new filter 

cos[(top +  to'p) /2] 

cos[(a>p -  a>p)/2]

wi =  lower band edge frequency 
toy = upper band edge frequency
0l = —2aK/(K  +  1) 
a2 = ( K -  1 )/(K + 1)

COs[ (tD, +  Ci>;)/2]

K  as COt

c o s K c D j,  — c d / ) / 2 ]  

— 0>1
tan -r-

2

Bandstop
•aiz- 1 + 1

o>i =  lower band edge frequency 
co„ =  upper band edge frequency
a{ = - 2a/(K + 1)
02 =  {I -  K) / (  1 + K) 

cos [(£i>u +  <u;)/2]

K — tan

cos[(a)a — <u/)/2]
a>M — a>i CL



700 Design of Digital Filters Chap. 8

Example 8.42

Convert the single-pole lowpass Butterworth filter with system function

0 .2 4 5 (1 + Z ' 1)
H(z)

1 -  0 .5 0 9 Z -1

into a bandpass filter with upper and lower cutoff frequencies a>u and a>i, respectively. 
The lowpass filter has 3-dB bandwidth cop =  0.2jt (see Example 8.3.5).

Solution The desired transformation is

_i z~2 - a i z ~ l + a 2
Z ----►----------z------------;------

a2z~2 -  aiz ' 1 +  1
where a\ and a2 are defined in Table 8.13. Substitution into H(z)  yields

z~l ~ aiz~' +  a2
0.245

H(z) =
1 -

a2z~2 -  fliZ-1 +  1

1 +  o.509
\ a 2z~2 -  + 1 /

^ ________0.245(1 - a2)( 1 - r 2)________
(1 + 0.509o2) - 1.509fliz-1 + (a2 + 0.509)z~2

Note that the resulting filter has zeros at z =  ±1 and a pair of poles that depend on 
the choice of o>u and a>t.

For example, suppose that o>u =  3jt/5 and a>i =  2tt/5. Since wn =  0.2?r, we find 
that K  =  1, a2 =  0, and ay =  0. Then

=  °-245(1 ~ Z~2)
() l+0.509z~2 

This filter has poles at z =  ±y'0.713 and hence resonates at <d =  np..

Since a frequency transformation can be perform ed either in the analog do­
main or in the digital dom ain, the filter designer has a choice as to  which ap­
proach to take. H ow ever, som e caution must be exercised depending on the  
types o f filters being designed. In particuiar, we know that the im pulse invari­
ance m ethod and the m apping o f  derivatives are inappropriate to  use in designing  
highpass and many bandpass filters, due to the aliasing problem . C onsequently, 
one would not em ploy an analog frequency transformation follow ed by conver­
sion o f  the result into the digital dom ain by use o f  these tw o m appings. Instead, 
it is much better to perform  the m apping from  an analog lowpass filter into a 
digital lowpass filter by either o f  these mappings, and then to  perform the fre­
quency transformation in the digital domain. Thus the problem  o f aliasing is 
avoided.

In the case o f the bilinear transformation, where aliasing is not a problem , it 
does not m atter w hether the frequency transformation is perform ed in the analog  
domain or in the digital dom ain. In fact, in this case only, the two approaches 
result in identical digital filters.
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8.5 DESIGN OF DIGITAL FILTERS BASED ON LEAST-SQUARES 
METHOD

Except for the im pulse invariance m ethod, the design techniques for IIR  filters d e­
scribed in Section 8.3 involved the conversion o f  an analog filter into a digital filter 
by som e m apping from the ,y-plane to the z-plane. A s an alternative, one can design  
digital IIR  filters directly in the z-dom ain w ithout reference to the analog domain.

W e now  describe several m ethods for designing digital filters directly. In the  
first three techniques, the Pade approximation m ethod  and least-squares design  
m ethods, the specifications are given in the time dom ain and the design is carried  
out in the tim e dom ain. The final section describes a least-squares technique in 
which the design is carried out in the frequency dom ain.

8.5.1 Pade Approximation Method

Suppose that the desired im pulse response hj{n)  is specified for n >  0. The filter 
to be designed has the system  function

M

where h(k)  is its unit sam ple response. The filter has L =  M  +  N  +  1 parameters, 
nam ely, the coefficients [ak} and {&*}, which can be selected  to minimize som e  
error criterion.

T he least-squares error criterion is often used in optim ization problem s of  
this type. Suppose that we m inim ize the sum  o f  the squared errors

with respect to  the filter param eters {a*} and {£>*}, w here U  is som e preselected  
upper limit in the sum m ation.

In general, h(n)  is a nonlinear function o f  the filter param eters and hence the  
m inim ization o f  £  involves the solution o f a set o f nonlinear equations. H ow ever, 
if we select the upper limit as U  =  L — 1, it is possib le to  match h(n) perfectly  
to  the desired response hd(n) for 0 <  n <  Af +  N.  This can be achieved in the  
follow ing manner.

T he difference equation for the desired filter is

Y bkZ k
H(z) =

(8.5.1)

u
(8.5.2)

y(n) =  - a i y ( n  -  1 ) -  a2y(n  -  2) ---------- aNy{n -  N)

+  box(n)  +  b\x(n  -  1) H--------1- bMx(n -  M) (8.5.3)
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Suppose that the input to  the filter is a unit sam ple [i.e., x(n)  — S(n)]. Then the 
response o f  the filter is y(/i) =  h(n)  and hence (8.5.3) becom es

h(n)  =  — a\h{n — 1) — aihin — 2) — -------ash{ n — N)

Since S(n — Jt) =  0 except for n =  k,  (8.5.4) reduces to

h(n)  =  — a \ h ( n ~  1) — ajh(n — 2 ) ----------a \ h ( n  — N)  +  bn 0 <  n <  M  (8.5.5)

For n >  Af, (8.5.4) becom es

The set o f linear equations in (8.5.5) and (8.5.6) can be used to  solve for the 
filter parameters {a*} and {b*}. W e set h(n)  =  hd {n) for 0 <  n <  Af -I- N,  and 
use the linear equations in (8.5.6) to  solve for the filter param eters {a*}. Then  
we use values for the {a*} in (8.5.5) and solve for the param eters {£>*}. Thus we 
obtain a perfect match betw een  h(n)  and the desired response hj (n)  for the first 
L values o f the im pulse response. This design technique is usually called the Pade  
approximat ion procedure.

The degree to which this design technique produces acceptable filter designs 
depends in part on the number o f filter coefficients se lected . Since the design  
m ethod m atches /i</(n) only up to the number o f filter param eters, the m ore com ­
plex the filter, the better the approxim ation to hj (n)  for 0 <  n <  M  +  N . H owever, 
this is also the major lim itation with the Pade approxim ation m ethod, namely, the 
resulting filter must contain a large number of poles and zeros. For this reason, 
the Pade approximation m ethod has found lim ited use in filter designs for practical 
applications.

Example 8.5.1
Suppose that the desired unit sample response is 

hj(n) =  2(i)"w(n)
Determine the parameters of the filter with system function

using the Pad6 approximation technique.

Solution In this simple example, H(z) can provide a perfect match to Hjiz),  by 
selecting bo =  2, f>i =  0, and Let us apply the Pad6 approximation to see if
we indeed obtain the same result.

-)- boS(n) -I- b\S(n — 1) H--------1- bMS(n — Af) (8.5.4)

h(n) — —a\h(n — 1 ) — aih(n — 2 ) aNh(n -  N) (8.5.6)
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With the substitution for hd(ri), we obtain ai = — j. To solve for b̂  and b\, we use 
the form (8.5.5) with h(n) = hj(n). Thus

h<t(n) = ~ M «  -  1) +  b08(n) +  bxS(n -  1)

For n = 0 this equation yields b0 = 2. For n = 1 we obtain the result b\ = 0. Thus
H(z) « HAz).

This exam ple illustrates that the Pade approxim ation results in a perfect 
match to Hd(z)  when the desired system function is rational and we have prior 
know ledge o f the number of poles and zeros in the system . In general, however, 
this is not the case in practice, since hd (n) is determ ined from som e desired fre­
quency response specifications a>). In such a case the Pade approximation may 
not result in a good filter design. T o illustrate a potential problem  and suggest a 
solution, let us consider the follow ing exam ples.

Example 8.5.2
A fourth-order Butterworth filter has the system function 

_ 4.8334 x 10-3(; + l)4
A:} ~ (z2 - 1.3205- + 0.6326)(z2 - 1.0482z + 0.2959)

The unit sample response corresponding to /̂ (z) is illustrated in Fig. 8.48. Use the 
Pade approximation method to approximate //rf(~).

Solution We observe that the desired filter has M = 4 zeros and jV = 4 poles. It is 
instructive to determine the coefficients in the Pade approximation when the number 
of zeros and/or poles are not identical to the desired number of filter parameters.
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Magnitude
response

4 2 4

Figure 8.49 Filter designs based on Pade approximation (Example 8.5.2).

In Fig. 8.49 we plot the frequency response of the filter obtained by the Padd 
approximation method. We have considered four cases: M = 3, N = 5; M = 3, N = 4; 
M = 4, N = 4; M = 4, N = 5. We observe that when M = 3, the resulting frequency 
response is a relatively poor approximation to the desired response. However, an 
increase in the number of poles from A' = 4 to N = 5 appears to compensate in part 
for the lack of the one zero. When M is increased from three to four, we obtain a 
perfect match with the desired Butterworth filter not only for N = 4 but for N = 5, 
and, in fact, for larger values of N.

Example 8.5.3

A  three-pole and three-zero type II lowpass Chebyshev digital filter has the system 
function

0.3060(1 + z“‘)(0.2652 - 0.09z-' + 0.2652z~2)
" (1 - OJSSOz-^d - 1.1318z-> + 0.5387z-2)

Its unit sample response is illustrated in Fig. 8.50. Use the Padf approximation 
method to approximate Hj(z).

Solution By following the same procedure as in Example 8.5.2, we determined the 
Pad6 approximation of H</(z) based on the selection of M = 2, N = 3; M = 2, N = 4; 
M = 3, N = 3; M = 3, N = 4. The frequency responses of the resulting designs are 
illustrated in Fig. 8.51.
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Figure fL50 Impulse response hj i n)  of type II Chebyshev digital filter given in 
Example 8.5.3.

Magnitude
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As in Example 8.5.2, we note that when we underestimate the number of zeros 
we obtain a relatively poor design, as evidenced by the two cases in which M = 2. 
On the other hand, if M = 3, we obtain a perfect match for N = 3 and N = 4.

T hese two exam ples suggest that an effective approach in using the Pade 
approximation is to  try different values o f  M  and N  until the frequency responses o f  
the resulting filters converge to the desired frequency response within som e small, 
acceptable approximation error. H ow ever, in practice, this approach appears to  
be cum bersom e.

8.5.2 Least-Squares Design Methods

A gain, let us assume that hd{n) is specified for n >  0. W e begin with the simple 
case in which the digital filter to  be designed contains only poles, that is,

N ow , consider the cascade connection o f the desired filter Hd(z) w ith the reciprocal, 
all-zero filter 1 / / /  (z), as illustrated in Fig. 8.52. N ow  suppose that the cascade 
configuration in Fig. 8.52 is excited by the unit sam ple sequence S(n).  Thus the 
input to the inverse system 1 / H { z )  is hd(n) and the output is v(n). Ideally, yd(n) =  
S(n). The actual output is

T he condition that >v(0) =  _y(0) — 1 is satisfied by selecting bo — hd{0). For 
n >  0, y(n)  represents the error betw een the desired output yd{n) — 0 and the 
actual output. H ence the parameters {a*} are selected  to m inim ize the sum of

H(z)  = N
(8.5.7)

(8.5.8)

H d ( z )
M ”) yin) /■~ns S(n)

H(z)
T

error

Minimize 
the sum of 
squared errors

Figure 8J?2 Least-squares inverse filter design method.
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squares o f  the error sequence,

£  =  X > 2(«)
n=l

;v

Z . 1n=l
hd ( n ) +  Y akhdin -  k)

k=\
h2A 0 )

(8.5.9)

B y differentiating with respect to the param eters {a*}, it is easily established  
that w e obtain the set o f  linear equations o f the form

N

J 2 w hh(k, l )  =  - r hh( l , 0 ) / =  1 , 2 , . . . ,  W (8.5.10)
k - \

w here, by definition,
OO

rkh(k,l)  =
rt=l
00

=  £ m * ) M «  +  * -  n  =  rhhik -  l ) (8.5.11)
n=0

T he solution o f  (8.5.10) yields the desired param eters for the inverse system  
1 / H(z ) .  Thus we obtain the coefficients o f  the all-pole filter.

In a practical design problem , the desired im pulse response hd(n) is specified  
for a finite set o f points, say 0 <  n <  L, w here L > >  N.  In such a case, the 
correlation sequence rdd(k) can be com puted from  the finite sequence hd(n) as

L —\k—l\

?hh (k — I) — hd(n)hd(n +  k -  I) 0 < k - l < N  (8.5.12)

and these values can be used to solve the set o f linear equations in (8.5.10).
The least-squares m ethod can also be used in a p o le -zero  approximation for 

Hd (z). If the filter H(z)  that approximates Hd (z) has both poles and zeros, its 
response to  the unit im pulse <5(n) is

S  M

^ )  =  - J f l i A(fi“ t ) + ^ M ( « - i t )  n >  0 (8.5.13)
* -i *=o

or, equivalently,

h(n) «  -  Y a*h(n - V + b *  0 <  n <  M  (8.5.14)
**i

For n >  M,  (8.5.13) reduces to
N

h(n) =  — ^ a * h ( n  — k) n > M  (8.5.15)
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Clearly, if Hj i z )  is a p o le-zero  filter, its response to Bin) w ould satisfy the same 
equations (8.5.13) through (8.5.15). In general, how ever, it d oes not. N evertheless, 
we can use the desired response hj (n)  for n >  M  to  construct an estim ate o f hd(n), 
according to (8.5.15). That is,

Then w e can select the filter param eters {a*} to m inim ize the sum  of squared errors

The m inimization of £\,  with respect to the pole param eters {a*}, leads to the set 
o f linear equations

Thus these linear equations yield the filter param eters {a*}. N o te  that these equa­
tions reduce to the all-pole filter approxim ation w hen M  is set to  zero.

The param eters {bk} that determ ine the zeros o f the filter can be obtained  
simply from (8.5.14), where h(n)  =  hd(rt), by substitution o f the values [ak] ob­
tained by solving (8.5.18). Thus

Therefore, the param eters {a*} that determ ine the poles are obtained by the 
m ethod o f least squares while the param eters {bk} that determ ine the zeros are 
obtained by the the Pade approxim ation m ethod. The foregoing approach for 
determ ining the poles and zeros o f H(z)  is som etim es called P r o n y ’s me t hod .

The least-squares m ethod provides good  estim ates for the p ole parameters 
{ak}. H ow ever, Prony’s m ethod may not be as effective in estim ating the pa­
rameters {£>*}, primarily because the com putation in (8.5.20) is not based on the 
least-squares m ethod.

hd(n) -  -  *) (8.5.16)

betw een the desired response hd(n) and the estim ate hd(n) for n >  M.  Thus we 
have

OO
ihd^  ~  hd(n)]2

n=M+1

(8.5.17)

Y airhh(k,l) =  ~ r hh( k , 0 ) k =  1 , 2 , . . . , N (8.5.18)

where rhh(k, l )  is now defined as

r>,h(k, l )= Y  hd(n -  k)hd (n -  I) (8.5.19)
n~M+1

bn =  hd(n) +  ^  akhd(n — k) 0 < n < M (8.5.20)
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«(n) all-pole all-zero
filter filter M")

W , ( z )  H 2 ( z )

Figure 8^ 3 Least-squares method for determining the poles and zeros of a filter.

A n alternative m ethod in which both sets o f param eters {fl*) and {£*} are d e­
term ined by application o f  the least-squares m ethod has been proposed by Shanks 
(1967). In Shanks’ m ethod, the param eters {a*) are com puted on the basis o f the 
least-squares criterion, according to (8.5.18), as indicated above. This yields the 
estim ates {a*}, which allow us to  synthesize the all-pole filter.

Hi(z)  = ------- rr--------- (8-5.21)

i+£akz k

The response o f this filter to the im pulse <5(n) is

u(rc) =  — ^  fl;v(n — k) +  S(n) n >  0 (8.5.22)

If the sequence (u(n)} is used to excite an all-zero filter with system  function

H 2( z ) = (8.5.23)

as illustrated in Fig. 8.53, its response is

hd(n)  =  ^ & * u (n  -  k) (8.5.24)

N ow  w e can define an error sequence e(n ) as

e{n) =  hd{n) -  hd{n)

=  hd (n) -  Y b*v (n ~  k) (8.5.25)

and, consequently, the parameters {&*} can also be determ ined by m eans of the 
least-squares criterion, namely, from the m inim ization of

-l2

M « )  -  J ^ M ( «  ~ k ) (8.5.26)

Thus we obtain a set o f  linear equations for the param eters {bk}, in the form

M
Y  btrvv(k,l) = r*„(0  / =  0 ,1 ........ Af (8.5.27)
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w here, by definition,
OO

rvv(k, I) =  Y  v (n ~  k^ n -  *> (8.5.28)
r*=0
oo

rhvik) =  hd (n)v(n -  Jt) (8.5.29)
n=0

Example 8.5.4

Approximate the fourth-order Butterworth filter given in Example 8.5.2 by means of 
an all-pole filter using the least-squares inverse design method.

Solution From the desired impulse response hd(n), which is illustrated in Fig. 8.48, 
we computed the autocorrelation sequence rkh(kj) = rhh(k -  /) and solved to set 
of linear equations in (8.5.10) to obtain the filter coefficients. The results of this 
computation are given in Table 8.14 for N = 3, 4, 5, 10, and 15. In Table 8.15 we list 
the poles of the filter designs for N = 3, 4, and 5 along with the actual poles of the 
fourth-order Butterworth filter. We note that the poles obtained from the designs 
are far from the actual poles of the desired filter.

TABLE 8.14 ESTIMATES OF FILTER COEFFICIENTS 
{ a k } IN LEAST-SQUARES INVERSE FILTER DESIGN 
METHOD

iV = 3
0) = 0.254295E + 01
02 = —0.241800E + 01
a-s = 0.853829E + 00
N = 4
a { = 0.319047£ + 01
a2 = —0.425176£ + 01
a3 = 0.278234£ + 01
a4 = 0.758375E + 00
JV = 5
fl! = 0.368733E + 01
a2 = —0.607422£ + 01
a2 = 0.556726E + 01
aj, = -0.284813£ + 01
a5 = 0.654996E + 00
N = 10
ai = 5.008451
a2 - -12.660761

= 21.557365
04 = -27.804110
as = 28.683949
“6 = -24.058558
a7 = 16.156847
flg ss -8.247148
ag = 2.854789
flio — -0.502956

N - 15
ai = 2.993620
a2 = -1.143053

= -12.132861
a4 ~ 39.663433
ai = -75.749001
06 = 109.247757
a7 = -129.513794
a 8 = 131.026794
a9 ~ -114.905266

flio = 87.449211
an = -57.031906
<312 = 30.915134
a 13 = -13.124536
014 = 3.879295
015 = -0.597313
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TABLE 8.15 ESTIMATES OF POLE 
POSITIONS IN LEAST-SQUARES 
INVERSE FILTER DESIGN METHOD 
(EXAMPLE 8.5.4)

Number of 
poles Pole positions

N = 3 0.9305
0.8062 ±  yO.5172

N  =  4 0.8918 ±  j'0.2601
0.7037 ±  yO.6194

N =  5 0.914
0.8321 ±  y0.4307
0.5544 ±  j'0.7134

N  = 4 0.6603 ±  y0.4435
Butterworth 0.5241 ±  yo.1457
filter

The frequency responses of the filter designs are plotted in Fig. 8.54. We note 
that when N is small, the approximation to the desired filter is poor. As N is increased 
to N = 10 and N = 15, the approximation improves significally. However, even for 
N = 15, there are large ripples in the passband of the filter response. It is apparent 
that this method, which is based on an all-pole approximation, does not provide good 
approximations to filters that contain zeros.

Example 8.5.5

Approximate the type II Chebyshev lowpass filter given in Example 8.5.3 by means 
of the three least-squares methods described above.

Solution The results of the filter designs obtained by means of the least-squares 
inverse method, Prony’s method and Shanks’ method, are illustrated in Fig. 8.55. 
The filter parameters obtained from these design methods are listed in Table 8.16.

The frequency response characteristics in Fig. 8.55 illustrate that the least- 
squares inverse (all-pole) design method yields poor designs when the filter contains 
zeros. On the other hand, both Prony’s method and Shanks’ method yield very good 
designs when the number of poles and zeros equals or exceeds the number of poles 
and zeros in the actual filter. Thus the inclusion of zeros in the approximation has a 
significant effect in the resulting filter design.

8.5.3 FIR Least-Squares Inverse (Wiener) Filters

In the preceding section  we described the use o f the least-squares error criterion  
in the design o f  p o le -zero  filters. In this section w e use a similar approach to  
determ ine a least-squares FIR  inverse filter to  a desired filter.

The inverse to  a linear time-invariant system  with im pulse response h(n) and 
system  function H(z) is defined as the system  w hose im pulse response hr(n) and
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(a )

Figure &54 Magnitude responses for filter designs based on the least-squares inverse filter 
method.

system  function H/ ( z ), satisfy the respective equations.

h ( n ) * h , ( n )  =  5(o) (8.5.30)

H( z) H,  (z) =  1 (8.5.31)

In general, H,{z)  is IIR, unless H{z)  is an all-pole system , in which case H,{z)  is 
H R .
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F ifu n  &55 Filter designs based on least-squares methods (Example 8-5.5): 
(a) least-squares design; (b) Prony’s method; (c) Shank’s method.
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TABLE 8.16 POLE-ZERO LOCATIONS FOR FILTER DESIGNS IN EXAMPLE 8.5.5

Chebyshev Filter:
Zeros: -1 .0 .1738311 ±  ;0.9847755 
Poles: 0.3880,0.5659 ±  y'0.467394

Filter Poles in
Order Least-Squares Inverse

N  =  3 0.8522
0.6544 ±  j0.6224  

N  =  4 0.7959 ±  y‘0.3248 
____________________ ___________________0.4726 ±  j'0.7142___________________

Prony’s Method Shanks’ Method 
Filter ________________ 1__________________________________________________

Order Poles Zeros Poles Zeros

N  =  3 0.5332 0.5348
M  =  2 0.6659 ±  j 0.4322 -0 .1497 ±  j0.4925 0.6646 ±  j‘0.4306 -0 .2437  ±  y0.5918

N  =  4 0.7092 0.7116
-0 .2919 -0.2921

M  =  2 0.6793 ±  y0.4863 -0 .1982 ±  ;0.37 0.6783 ±  _/0.4855 0.306 ±  y0.4482

N - 3 0.3881 -1 0.3881 -1
M  =  3 0.5659 ±  J0.4671 0.1736 ±  /0.9847 0.5659 ±  _/0.4671 0.1738 ±  y'0.9848

N =■ 4 -0 .00014 -1 -0 .00014 -1
0.388 0.388

M =  3 0.5661 ±  y0.4672 0.1738 ±  ;0.9848 0.566 ±  ;0.4671 0.1738 ±  y0.9848

In many practical applications, it is desirable to restrict the inverse filter to 
be FIR. Obviously, one sim ple m ethod is to truncate In so doing, w e incur
a total squared approxim ation error equal to

CO

£ , =  Y  * / (")  (8.5.32)
fi—Af+1

where Af + 1  is the length o f the truncated filter and E, represents the energy in 
the tail o f the im pulse response /i/(n ).

A lternatively, we can use the least-squares error criterion to optim ize the 
Af +  1 coefficients o f  the FIR  filter. First, let d(n)  d enote the desired output  
sequence  o f the FIR  filter o f length Af -I-1 and let h(n)  be the input sequence. 
Then, if y(n)  is the output sequence o f the filter, as illustrated in Fig. 8.56, the 
error sequence betw een  the desired output and the actual output is

M
e(n) =  d(n)  — ^ £ * / i ( n  — k) (8.5.33)

k=0

where the {£*} are the FIR filter coefficients.



d(n) = S(n)
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m -
FIR
filter
(M

~ ~ r~

v(")

e(n)

Minimize 
the sum of 

squared errors

Figure 8.56 Least-squares FIR inverse filter. 

The sum o f squares o f  the error sequence is

OC
2

(8.5.34)d{n )  -  ^ b k h i r i  -  k)
n=0 l  i -0

W hen £  is m inim ized with respect to the filter coefficients, w e obtain the set o f  
linear equations

M
Y , b k r hh{ k - l )  =  rdh{l) I =  0, 1.........M  (8.5.35)
*=o

where rhh(l) is the autocorrelation o f h(n),  defined as
00

rhhd) =  Y^h{n)h{n  -  I) (8.5.36)
«=0

and rdh{n) is the crosscorrelation betw een the desired output d(n)  and the input 
sequence h(rt), defined as

OO
rdh{l) =  Y , d ( n ) h { n - l )  (8.5.37)

«=o

T he optim um , in the least-squares sense, FIR  filter that satisfies the linear 
equations in (8.5.35) is called the Wiener filter,  after the fam ous mathem atician  
Norbert W iener, w ho introduced optimum least-squares filtering m ethods in engi­
neering [see book  by W iener (1949)].

If the optim um  least-squares FIR  filter is to  be an approxim ate inverse filter, 
the desired response is

d(n)  =  S(n) (8.5.38)

T he crosscorrelation betw een  d(n)  and h(n)  reduces to

^ ( / ) = { J (0) / = °  . (8.5.39)1 0 otherwise
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Therefore, the coefficients o f the least-squares FIR  filter are obtained from the 
solution o f the linear equations in (8.5.35), which can be expressed in matrix form 
as

~ r hh (0) 
^ a(I)

rhhi 1 ) 
rhh(0)

rhh (2 ) 
rhh(l)

. rhh{ M ) rhh{ M ~ l )

rhh(M) 
rhfl( M - l )

rhhi 0 )

- " bo ~ ' H O ) !
b\ = 0

- b u - o

(8.5.40)

W e observe that the matrix is not only sym m etric but it also has the special 
property that all the elem ents along any diagonal are equal. Such a matrix is 
called a Toeplitz matrix and lends itself to efficient inversion by m eans o f  an 
algorithm due to Levinson (1947) and Durbin (1959), which requires a number of 
com putations proportional to M 2 instead o f the usual M 3. T he Levinson-D urbin  
algorithm is described in Chapter 11.

T he m inimum value o f the least-squares error obtained with the optimum  
FIR filter is

=  L d(n)  -  ^ b k h i n  -  k)
o

M

d{n)

-  ^ ^ ( n )  -  ^ 2 b krdh(k) (8.5.41)

In the case where the FIR filter is the least-squares inverse filter, d(n)  =  S(n) and 
rdh(n) — h(0)8(n). Therefore,

Erin =  1 -  h(0)bo (8.5.42)

Example 8.5.6

Determine the least-squares FIR inverse filter of length 2 to the system with impulse 
response

1 , n = 0  

h(n) -  —a, n = 1

. 0 , otherwise

where |a| < 1. Compare the least-squares solution with the approximate inverse 
obtained by truncating hj(n).

Solution Since the system has a system function H(z) =  1 — a z ~ \  the exact inverse 
is IIR and is given by

H,{z) =
1  -  az"

or, equivalently,

hi(n) =  a"u(n)
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If this is truncated after n terms, the residual energy in the tail is

£,  =  a 2^ !  +  a 2 +  a 4 H------- )

From (8.5.40) the least-squares FIR filter of length 2 satisfies the equations

which have the solution

1 +  a 2 4- a 4

For purposes of comparison, the truncated inverse filter of length 2 has the 
coefficients bo = 1 , b\ =  a.

The least-squares error is

which compares with

for the truncated approximate inverse. Clearly, €, > £„„„, so that the least-squares 
FIR inverse filter is superior.

In this exam ple, the impulse response h(n)  o f the system  was minim um  phase. 
In such a case w e selected  the desired response to be J(0) =  1 and d(n)  =  0, n >  1. 
On the other hand, if the system  is nonm inim um  phase, a delay should be inserted  
in the desired response in order to obtain a good  filter design. The value o f the ap­
propriate delay depends on the characteristics o f h(n).  In any case we can com pute  
the least-squares error filter for different delays and se lect the filter that produces 
the sm allest error. The follow ing exam ple illustrates the effect o f the delay.

Example 8-5.7
Determine the least-squares FIR inverse of length 2 to the system with impulse re-

^  ~  1  +

sponse

—a, n =  0  

h(n) = 1 , n =  1

0 , otherwise

where |a| < 1.
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Solution T his is a m axim um -phase system . If  we select d(n) =  [ 1 0 ] we obtain the 
same solution as in E xam ple 8.5.6, with a minimum least-squares error

E m  =  1 -  h(0 )bo

l + a 2
=  1  +  a

1  +  a 2 +  a 4

If  0 <  a  < 1 ,  then >  1, which represents a poor inverse filter. I f  —1 <  a  <  0, then 
£ mjn <  1. In particular, for a  — we obtain  £ min =  1.57. F o r a  =  - 5 . £ m =  0.81 , 
which is still a  very large value for the squared error.

Now suppose that the desired response is specified as d(n) =  & ( n  — 1). T hen  
the set o f equations for the filter coefficients, obtained from (8 .5 .35), are the solution 
to the equations

f l  + a 2 - a  -I p o ]  _  [ M D ]  _  r 1 1 
L —a  l + a 2 J Lf c 1J  L/i(0)J L - o f J

T h e solution o f these equations is

1  +  a 2  +  a 4

—O'3

1 +  a 2 +  or4

T h e least-squares error, given by (8.5.41), is

£mm =  1 -  b(,rdh(0) -  birdh(l) 

=  1 - M ( 1 ) - M ( 0)

1m̂in — 1 1  ̂ . "t"
1 +  a 2 +  a 4 I  +  a 2 +  a 4 

1 -  a4
1 +  a 2 +  a 4

In particular, suppose that a  =  ± j .  T hen £ min =  0.29. C onsequently, the desired 
response d(n) =  S(n -  1) results in a significantly better inverse filter. F u rther im ­
provem ent is possible by increasing the length o f the inverse filter.

In general, when the desired response is specified to contain a delay D ,  then  
the crosscorrelation rd/,(l), defined in (8.5.37), becom es

r dh(l)  =  h ( D  -  I)  l  =

The set o f linear equations for the coefficients o f  the least-squares FIR  inverse 
filter given by (8.5.35) reduce to

M
] T V a / . ( *  -  0  =  h ( D  - 1) 1 =  0 ,1 .........M  (8.5.43)
*=o

Then the expression for the corresponding least-squares error, given in general by



(8.5.41), becom es
u

f t r i n s l  - J ^ b M D - k )  (8.5.44)
*=o

Least-squares FIR  inverse filters are often used in m any practical applications for  
deconvolution, including com m unications and seism ic signal processing.

8.5.4 Design of HR Filters in the Frequency Domain

The IIR  filter design m ethods described in Sections 8.5.1 through 8.5.3 are carried 
out in the tim e domain. There are also direct design techniques for IIR  filters 
that can be perform ed in the frequency domain. In this section  w e describe a 
filter param eter optim ization technique carried out in the frequency dom ain that 
is representative o f frequency-dom ain design m ethods.

T he design is m ost easily carried out with the system  function for the IIR  
filter expressed in the cascade form as
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1 +  + a k2Z~2
(8.5.45)

where the filter gain G  and the filter coefficients {a*i], {£**2 ], {#ti}, {Pki} are to be  
determ ined. The frequency response o f the filter can be expressed as

H{to) =  GA(w)e>B(a,) (8.5.46)

where

1 +  Pk\Z~l +  f$k2Z~2
A((D) -  ]""[ (8.5.47)

1  + a * U - 1  + a * 2Z“ 2

and ®(a>) is the phase response.
Instead o f dealing with the phase o f  the filter, it is m ore convenient to  deal 

with the envelope delay as a function o f  frequency, which is

</©(*»)

or, equivalently,

Zg (u>) =  Tg ( z ) I z« > -

_ r d Q (z )~[

L d z  JWJ 

It can be shown that r?(z) can be expressed as

K r Atiz +  2/5*2 a*iz +  2a*2

dz

db)

(8.5.48)

(8.5.49)

zg(z) =  R e
£ [i« l L

(8.5.50)

where R e (u ) denotes the real part o f  the com plex-valued quantity u.
N ow  suppose that the desired magnitude and delay characteristics A(a>) and  

Tg(co) are specified at arbitrarily chosen  discrete frequencies coi, in
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the range 0 <  M  < n .  Then the error in m agnitude at the frequency cok is 
GA(cok) — A d(cok) where A d(cok) is the desired m agnitude response at cok. Simi­
larly, the error in delay at a>k can be defined as zg(a>k) — zd (a>k), where zd(cok) is 
the desired delay response. H ow ever, the choice o f zd(a>k) is com plicated by the 
difficulty in assigning a nom inal delay to the filter. H ence, w e are led to define the 
error in delay as zg(cok) — rg(wo) — zd (a>k), where rg(wo) is the filter delay at som e  
nom inal center frequency in the passband o f the filter and zd (wk) is the desired  
delay response o f  the filter relative to r?(o^). B y defining the error in delay in 
this manner, w e are willing to accept a filter having w hatever nom inal delay zg (a>o) 
results from the optim ization procedure.

A s a perform ance index for determ ining the filter param eters, one can choose  
any arbitrary function of the errors in m agnitude and delay. T o be specific, let 
us select the total w eighted least-squares error over all frequencies &i, a>2, . . . ,  <oL, 
that is,

L

£ ( p ,  G)  =  ( 1  -  A )  £  wn[GA(co„) -  A d (con ) ] 2

n —1

L
+  A  v„[zg(a)„) -  (o>o) -  zd (con)]2 (8.5.51)

71 = 1

where p denotes the 4 K -dim ensional vector o f filter coefficients {a*i}, {<**2 }, (An), 
and {/tah  and A ,  {u>„}, and {t>„} are weighting factors se lected  by the designer. 
Thus the em phasis on the errors affecting the design may be placed entirely on the 
m agnitude ( A  =  0), or on the delay ( A  =  1) or, perhaps, equally w eighted betw een  
m agnitude and delay ( A  =  1/2). Similarly, the w eighting factors in frequency {u;„} 
and {u„} determ ine the relative em phasis on the errors as a function o f frequency.

The squared-error function E (p, G) is a nonlinear function o f (AK +  1) pa­
rameters. The gain G that m inim izes £  is easily  determ ined and given by the 
relation

L
Y ^ u „ M v n) A d(con)

G  =  ^ —L---------------------  (8.5.52)

^ i o nA2 (a)„)
n=l

T he optim um  gain C can be substituted in (8.5.51) to  yield

L
£(p , G)  =  (1 — *) £  v)n[GA(a>„) -  A d (co„)]2

n* 1
L

+  k  v”K > ~  zs ( t o n ) ] 2 (8.5.53)
n —1

D u e to the nonlinear nature o f  £(p, G) ,  its m inim ization over the remaining 
4 K  param eters is perform ed by an iterative num erical optim ization m ethod such
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as the Fletcher and Pow ell m ethod (1963). O ne begins the iterative process by 
assuming an initial set o f  param eter values, say p (0). With the initial values substi­
tuted in (8.5.51), we obtain the least-squares error £ (p (0), G). If w e also evaluate  
the partial derivatives d £ / d a k\, d £ / d a k2, 3£/3/J*i, and b £ /b 0 k2 at the initial value  
p (0), w e can use this first derivative information to change the initial values o f the 
param eters in a direction that leads toward the minim um  o f the function £(p . G)  
and thus to a new set o f  parameters p(1).

R epetition  o f the above steps results in an iterative algorithm  which is d e­
scribed m athem atically by the recursive equation

p (m+l) _  p (m) A (m)Q(»)g(m) m _  0, 1, 2, . . .

where A (m) is a scalar representing the step size o f  the iteration, Q (m) is a (4K x 4 K )  
matrix, which is an estim ate o f the H essian, and g (m) is a (4K  x 1) vector consisting  
o f the four AT-dimensional vectors o f gradient com ponents o f £  (i.e., d£ /da \n , 
d £ / d a kl , d £ /d p kU d £ /d p k2), evaluated at a kl =  or‘" \  a k2 =  a ^ \  /3k] =  and 
fik2 =  Th*s iterative process is term inated when the gradient com ponents 
are nearly zero and the value o f  the function £ (p , G)  d oes not change appreciably 
from on e iteration to another.

The stability constraint is easily incorporated into the com puter program  
through the param eter vector p. W hen la^ l > 1 for any k =  1 , . . . ,  K ,  the param­
eter a k2 is forced back inside the unit circle and the iterative process continued. A  
similar process can be used to force zeros inside the unit circle if a m inim um-phase 
filter is desired.

The major difficulty with any iterative procedure that searches for the param ­
eter values that m inim ize a nonlinear function is that the process may converge  
to a local m inimum instead o f a global m inimum. Our only recourse around this 
problem  is to start the iterative process w ith different values for the parameters 
and observe the end result.

Example 8.5.8

Let us design a lowpass filter using the Fletcher-Powell optimization procedure just 
described. The filter is to have a bandwidth of 0.3n  and a rejection band commencing 
at 0.45jr. The delay distortion can be ignored by selecting the weighting factor X =  0.

Solution We have selected a two-stage (K  =  2) or four-pole and four-zero filter 
which we believe is adequate to meet the transition band and rejection requirements. 
The magnitude response is specified at 19 equally spaced frequencies, which is con­
sidered a sufficiently dense set of points to realize a good design. Finally, a set of 
uniform weights is selected.

This filter has the response shown in Fig. 8.57. It has a remarkable resemblance 
to the response of the elliptic lowpass filter shown in Fig. 8.58, which was designed 
to have the same passband ripple and transition region as the computer-generated 
filter. A  small but noticeable difference between the elliptic filter and the computer­
generated filter is the somewhat flatter delay response of the latter relative to the 
former.
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Frequency
(a)

(b)

Figure (L57 Filter designed by Fletcher-Powell optimization method (Exam­
ple 8.5.8).

Example 8.5.9

Design an IIR filter with magnitude characteristics

Arf(a>) =

and a constant envelope delay in the passband

smm,

0 , -  < \ ( 0 \  < 7 t

Chap. 8
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Frequency

Figure &58 Amplitude and delay response for elliptic filter.

Solution The desired filter is called a modified duobinary filter and finds application 
in high-speed digital communications modems. The frequency response was specified 
at the frequencies illustrated in Fig. 8.59. The envelope delay was left unspecified 
in the stopband and selected to be flat in the passband. Equal weighting coefficients 
{ujn} and {t>„} were selected. A weighting factor of A =  1/2 was selected.

A  two-stage (four-pole, four-zero) filter is designed to meet the foregoing spec­
ifications. The result of the design is illustrated in Fig. 8.60. We note that the 
magnitude characteristic is reasonably well matched to sin a> in the passband, but the 
stopband attenuation peaks at about -2 5  dB, which is rather large. The envelope 
delay characteristic is relatively flat in the passband.
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n n
2

Figure 8^9 Frequency response of an ideal modified duobinary filter.

A four-stage (eight-pole, eight-zero) filter having the same frequency response 
specifications was also designed. This design produced better results, especially in 
the stopband where the attenuation peaked at —36 dB. The envelope delay was also 
considerably flatter.

8.6 SUMMARY AND REFERENCES

W e have described in som e detail the m ost important techniques for designing FIR  
and IIR  digital filters based on either frequency-dom ain specifications expressed  
in terms of a desired frequency response Hd(to), or in terms o f the desired impulse 
response hd(n).

A s a general rule, FIR  filters are used in applications where there is a need  
for a linear-phase filter. This requirem ent occurs in many applications, especially in 
telecom m unications, where there is a requirem ent to separate (dem ultiplex) signals 
such as data that have been frequency-division m ultiplexed, w ithout distorting 
these signals in the process of dem ultiplexing. O f the several m ethods described  
for designing FIR  filters, the frequency sampling design m ethod and the optimum  
Chebyshev approxim ation m ethod yield the best designs.

IIR filters are generally used in applications where som e phase distortion  
is tolerable. O f the class o f IIR  filters, elliptic filters are the m ost efficient to  
im plem ent in the sense that for a given set o f specifications, an elliptic filter has a 
low er order or few er coefficients than any other IIR  filter type. W hen compared 
with FIR filters, elliptic filters are also considerably m ore efficient. In view  of  
this, one m ight consider the use o f an elliptic filter to obtain the desired frequency  
selectivity, fo llow ed then by an all-pass phase equalizer that com pensates for the 
phase distortion in the elliptic filter. H ow ever, attem pts to  accom plish this have 
resulted in filters with a number o f coefficients in the cascade com bination that



Sec. 8.6 Summary and References 725

Frequency (kHz)

4.000 

3.500

3.000 

|  2.500
'I
S' 2 000 

2  1.500u tt
1.000 

0.500 

0.000
0.00 0.48 0.96 . 1.44 1.92 2.40

Frequency (kHz)

Figare &60 Frequency response of filter in Example 8.5.9. Designed by the 
Fletcher-Powell optimization method.

equaled or exceeded  the number o f coefficients in an equivalent linear-phase FIR  
filter. C onsequently, no reduction in com plexity is achievable in using phase- 
equalized elliptic filters.

In addition to the filter design m ethods based on the transformation o f  analog  
filters into the digital dom ain, w e also presented several m ethods in which the  
design is done directly in the discrete-tim e dom ain. T he least-squares m ethod is 
particularly appropriate for designing IIR  filters. T he least-squares m ethod is also  
used for the design o f  FIR  W iener filters.
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Such a rich literature now exists on the design o f digital filters that it is not 
possible to cite all the important references. W e shall cite on iy a few. Som e of 
the early work on digital filter design was done by Kaiser (1963, 1966), Steiglitz 
(1965), G olden and Kaiser (1964), R ader and G old (1967a), Shanks (1967), H elm s 
(1968), Gibbs (1969, 1970), and G old and R ader (1969).

T he design o f  analog filters is treated in the classic books by Storer (1957), 
G uillem in (1957), W einberg (1962), and D aniels (1974).

The frequency sampling m ethod for filter design was first proposed by Gold  
and Jordan (1968, 1969), and optim ized by Rabiner et al. (1970). A dditional 
results were published by Herrmann (1970), Herrmann and Schuessler (1970a), 
and H ofstetter et al. (1971). The Chebyshev (m inim ax) approxim ation m ethod for 
designing linear-phase FIR filters was proposed by Parks and M cClellan (1972a,b) 
and discussed further by Rabiner et al. (1975). T he design of elliptic digital filters is 
treated in the book by G old and R ader (1969) and in the paper by Gray and Markel 
(1976). The latter includes a com puter program for designing digital elliptic filters.

The use o f frequency transformations in the digital dom ain was proposed by 
Constantinides (1967,1968, 1970). T hese transformations are appropriate only for 
IIR filters. The reader should note that when these transformations are applied 
to  a lowpass FIR  filter, the resulting filter is IIR.

D irect design techniques for digital filters have been considered in a num­
ber o f papers, including Shanks (1967), Burras and Parks (1970), Steiglitz (1970), 
D eczky (1972), Brophy and Salazar (1973), and Bandler and Bardakjian (1973).

P R O B L E M S

8.1 Design an FIR linear phase, digital filter approximating the ideal frequency response

1 , 

0 ,
HAco) =

for \a)\ < — 
6

for — < \w\ < n  
6

(a) Determine the coefficients of a 25-tap filter based on the window method with a 
rectangular window.

(b) Determine and plot the magnitude and phase response of the filter.
(c) Repeat parts (a) and (b) using the Hamming window.
(d) Repeat parts (a) and (b) using a Bartlett window.

8.2 Repeat Problem 8.1 for a bandstop filter having the ideal response

HAo>) =

for M  < —
6

t  n i . n  for |  < M  < j

for — < \w\ < jt

8 J  Redesign the filter of Problem 8.1 using the Hanning and Blackman windows.
8.4 Redesign the filter of Problem 8.2 using the Hanning and Blackman windows.
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8 ^  Determine the unit sample response {h(n)} of a linear-phase FIR  filter of length M =  4 
for which the frequency response at u> =  0 and w =  n/2 is specified as

- © - IHA 0) =  1 H,

8.6 Determine the coefficients {A(n)} of a linear-phase FIR filter of length M =  15 which 
has a symmetric unit sample response and a frequency response that satisfies the 
condition

/27T*\ f l ,  * =  0 ,1 .2 ,3  
r V 15 j  ~  I 0, * =  4, 5, 6, 7

8.7 Repeat the filter design problem in Problem 8.6 with the frequency response specifi­
cations

1 * =  0 .1 ,2 ,3
0.4 * =  4 
0 * = 5 .6 ,7

» , i f

8.8 The ideal analog differentiator is described by

dxa (r)
y. ( 0  =

where •*„(/) is the input and ya(t) the output signal.
(a) Determine its frequency response by exciting the system with the input jc„ (/) =

e j l x F t

(b ) Sketch the magnitude and phase response of an ideal analog differentiator band- 
limited to B hertz.

(c) The ideal digital differentiator is defined as

H(w)  sc ja> |w| < x

Justify this definition by comparing the frequency response \H(w)|, 4. H(<d) with 
that in part (b).

(d) By computing the frequency response H(o>), show that the discrete-time system

y(n) = x (n )  - x ( n  -  1)

is a good approximation of a differentiator at low frequencies.
(e) Compute the response of the system to the input

x(n) =  A cos(a>on +  6)

8.9 Use the window method with a Hamming window to design a 21-tap differentiator 
as shown in Fig. P8.9. Compute and plot the magnitude and phase response of the 
resulting filter.

W,f(»)l

Figure P8.9
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8.10 Use the matched-z transformation to convert the analog filter with system function

5 + 0 .1  
H ( s ) ~  (s +  0.1)2 +  9

into a digital IIR  filter. Select T =  0.1 and compare the location of the zeros in H (z) 
with the locations of the zeros obtained by applying the impulse invariance method 
in the conversion of H(s).

8.11 Convert the analog bandpass filter designed in Example 8.4.1 into a digital filter by 
means of the bilinear transformation. Thereby derive the digital filter characteristic 
obtained in Example 8.4.2 by the alternative approach and verify that the bilinear 
transformation applied to the analog filter results in the same digital bandpass fil­
ter.

8.12 An ideal analog integrator is described by the system function Ha(s) =  1 fs. A digital 
integrator with system function //(z) can obtained by use of the bilinear transforma­
tion. That is,

7  1 +  z - 1
W(z) — 2 1 - - i  =

(a) Write the difference equation for the digital integrator relating the input x ( n ) to 
the output v(n).

(b) Roughly sketch the magnitude and phase ©(ft) of the analog integra­
tor.

(c) It is easily verified that the frequency response of the digital integrator is

. T  cos(<u/2) . T u)
H (a>) =  - J -  ■ ; =  - J —  COt -

2 sin(a>/2) 2 2

Roughly sketch |W(w)| and 6(w).
(d) Compare the magnitude and phase characteristics obtained in parts (b) and (c). 

How well does the digital integrator match the magnitude and phase character­
istics of the analog integrator?

(e) The digital integrator has a pole at z =  1. If you implement this filter on a digital 
computer, what restrictions might you place on the input signal sequence x ( n )  to 
avoid computational difficulties?

8.13 A z-plane pole-zero plot for a certain digital filter is shown in Fig. P8.13. The filter 
has unity gain at dc.
(a) Determine the system function in the form

H(  z)
(1 +  aiz~1)(l +  b\Z 1 +  biz
(1 +CiZ_‘)(l +<fiz- 1  +  d2z3 ]

giving numerical values for the parameters A, ai, b\, bj, c\, d\, and d2.
(b) Draw block diagrams showing numerical values for path gains in the following 

forms:
(1) Direct form II (canonic form)
(2) Cascade form (make each section canonic, with real coefficients)

8.14 Consider the pole-zero plot shown in Fig. P8.14.
(a) Does it represent an FIR filter?
(b) Is it a linear-phase system?
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Figure P8.13

Figure P8.14

(c) Give a direct form realization that exploits all symmetries to minimize the number 
of multiplications. Show all path gains.

8.15* A  digital low-pass filter is required to meet the following specifications:
Passband ripple: < 1 dB 
Passband edge: 4 kHz 
Stopband attenuation: > 40 dB 
Stopband edge: 6 kHz 
Sample rate: 24 kHz

The filter is to be designed by performing a bilinear transformation on an analog 
system function. Determine what order Butterworth, Chebyshev, and elliptic analog 
designs must be used to meet the specifications in the digital implementation.
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8.16* An IIR digital low-pass filter is required to meet the following specifications: 
Passband ripple (or peak-to-peak ripple): < 0.5 dB 
Passband edge: 1.2 kHz 
Stopband attenuation: > 40 dB 
Stopband edge: 2.0 kHz 
Sample rate: 8.0 kHz 

Use the design formulas in the book to determine the required filter order for
(a) A digital Butterworth filter
(b) A  digital Chebyshev filter
(c) A  digital elliptic filter

8.17* Determine the system function H(z) of the lowest-order Chebyshev digital filter that 
meets the following specifications:
(a) 1-dB ripple in the passband 0 < \co\ < 0.3jt.
(b) At least 60 dB attentuation in the stopband 0.35jt < |w] < jr. Use the bilinear 

transformation.
8.18* Determine the system function H(z) of the lowest-order Chebyshev digital filter that 

meets the following specifications:
(a) |-dB  ripple in the passband 0 < |a>) < 0.24jt.
(b) At least 50-dB attenuation in the stopband 0.35 jt <  |£u| <  jr. Use the bilinear 

transformation.
8.19* An analog signal x (r) consists of the sum of two components jri(r) and jr2(r). The 

spectral characteristics of x(t)  are shown in the sketch in Fig. P8.19. The signal x{t) is 
bandlimited to 40 kHz and it is sampled at a rate of 100 kHz to yield the sequence *(n).

It is desired to suppress the signal x 2(f) by passing the sequence *(n) through a 
digital lowpass filter. The allowable amplitude distortion on |X i(/) | is ±2% (Si =  0.02) 
over the range 0 < |F | < 15 kHz. Above 20 kHz, the filter must have an attenuation 
of at least 40 dB (52 =  0.01).
(a) Use the Remez exchange algorithm to design the minimum -order linear-phase 

FIR filter that meets the specifications above. From the plot of the magni­
tude characteristic of the filter frequency response, give the actual specifications 
achieved by the filter.

(b) Compare the order M obtained in part (a) with the approximate formulas given 
in equations (8.2.94) and (8.2.95).

(c) For the order M obtained in part (a), design an FIR digital lowpass filter using the 
window technique and the Hamming window. Compare the frequency response 
characteristics of this design with those obtained in part (a).

\ X ( F ) \

Frequency in kilohertz Figure P8.14
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(d) Design the minimum-order elliptic filter that meets the given amplitude specifica­
tions. Compare the frequency response of the elliptic filter with that of the FIR 
filter in part (a).

(e) Compare the complexity of implementing the FIR filter in part (a) versus the 
elliptic filter obtained in part (d). Assume that the FIR filter is implemented in 
the direct form and the elliptic filter is implemented as a cascade of two-pole 
filters. Use storage requirements and the number of multiplications per output 
point in the comparison of complexity.

8.20 The impulse response of an analog filter is shown in Fig. P8.20.

Figure P&20

(a)

(b)

Let h(n) =  h„(nT), where T =  1, be the impulse response of a discrete-time filter. 
Determine the system function H(z) and the frequency response H{w) for this 
FIR filter.
Sketch (roughly) \H{w) and compare this frequency response characteristic with

(c) The FIR filter with unit sample response h{n) given above is to be approximated 
by a second-order IIR filter of the form

bgzG(z) =
1  -  ayz~ a2z '

Use the least-squares inverse design procedure to determine the values of the 
coefficients &o, ai, and a2.

8.21 In this problem you will be comparing some of the characteristics of analog and digital
implementations of the single-pole low-pass analog system

HAs) =  —J—  <► M O  =  e~t" s -(- Of.
(a) What is the gain at dc? At what radian frequency is the analog frequency re­

sponse 3 dB down from its dc value? At what frequency is the analog frequency 
reponse zero? At what time has the analog impulse response decayed to 1/e of 
its initial value?

(b) Give the digital system function H(z)  for the impulse-invariant design for this 
filter. What is the gain at dc? Give an expression for the 3-dB radian frequency. 
At what (real-valued) frequency is the response zero? How many samples are 
there in the unit sample time-domain response before it has decayed to 1/e o f its 
initial value?

(c) “Prewarp” the parameter a  and perform the bilinear transformation to obtain 
the digital system function H(z)  from the analog design. What is the gain at dc? 
At what (real-valued) frequency is the response zero? Give an expression for 
the 3-dB radian frequency. How many samples in the unit sample time-domain 
response before it has decayed to 1 /e of its initial value?
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JL22 We wish to design a FTR bandpass filter having a duration M  =  201. Hj(co) represents 
the ideal characteristic of the noncausal bandpass filter as shown in Fig. P8.22.

------------ ------------------- —--------------- ------------  W
- jt —O.Sjt —0.4k  0 0.4k  0.5k  jt

Figure P&22

(a) Determine the unit sample (impulse) response hd(n) corresponding to Hj(a>),
(b) Explain how you would use the Hamming window

/  2 * \  M - l  M - l
u>(n) =  0.54 +  0.46 cos j ------ - ) ------ -—  < n < — -—

\ M - 1 J  2 ~  ~  2

to design a FIR bandpass filter having an impulse response h(n) for 0 < n < 
200.

(c) Suppose that you were to design the FIR filter with M  =  201 by using the fre­
quency sampling technique in which the DFT coefficients H(k) are specified 
instead of h(n). Give the values of H(k) for 0 < k < 200 corresponding to 
Hd{eJU) and indicate how the frequency response of the actual filter will differ 
from the ideal. Would the actual filter represent a good design? Explain your 
answer.

623 We wish to design a digital bandpass filter from a second-order analog lowpass But­
terworth filter prototype using the bilinear transformation. The specifications on the
digital filter are shown in Fig. P8.23(a). The cutoff frequencies (measured at the half
power points) for the digital filter should lie at w =  5jt/12 and co — ln/12.

The analog protoype is given by

H(s) ----------- l- ------
s2 +  v 2 j +  1

with the half-power point at £2 =  1 .
(a) Determine the system function for the digital bandpass filter.
(b) Using the same specs on the digital filter as in part (a), determine which of the 

analog bandpass prototype filters shown in Fig. P.8.23(b) could be transform ed 
directly using the bilinear transformation to give the proper digital filter. Only 
the plot of the magnitude squared of the frequency is given.

624 Figure P8.24 shows a digital filter designed using the frequency sampling method.
(a) Sketch a z-plane pole-zero plot for this filter.
(b) Is the filter lowpass, highpass, or bandpass?
(c) Determine the magnitude response \H(a>) at the frequencies wk ~  n k /6  for k =  0,

1, 2, 3, 4, 5, 6 .
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(d) Use the results of part (c) to sketch the magnitude response for 0 < a> < n  and 
confirm your answer to part (b).

8.25 An analog signal of the form xa(t) =  a(t) cos 2000^/ is bandlimited to the range 
900 < F < 1100 Hz. It is used as an input to the system shown in Fig. P8.25.
(a) Determine and sketch the spectra for the signals x(n) and w(n).
(b) Use a Hamming window of length M  =  31 to design a lowpass linear phase FIR 

filter H(w) that passes (c(n)}.
(c) Determine the sampling rate of the A/D converter that would allow us to elim­

inate the frequency conversion in Fig. P8.25.
8.26 System identification Consider an unknown LTI system and an FIR system model 

as shown in Fig. P8.26. Both systems are excited by the same input sequence (x(n)}. 
The problem is to determine the coefficients (A(n), 0 < n <  M -  1} of the FIR model
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R x = ~  = 2500 cos (0.8 n n )

Figure P8.25

Figure P8.26

of the system to minimize the average squared error between the outputs of the two 
systems.
(a) Use the least-squares criterion to determine the equations for the optimum FIR 

filter coefficients.
(b) Repeat part (a) if the output of the unknown system is corrupted by an additive 

white noise {u>(«)} sequence with variance cr2.
8.27 Determine the least-squares FIR inverse of length 3 to the system with impulse re­

sponse
2 , n =  0 

h(n) = 1 . n =  1
0. otherwise

Also, determine the minimum squared error £min.
8.28 Determine the least-squares FIR inverse filter of length 3 for the system with im­

pulse response h(n) given in Example 8.5.6, when a  =  |  and the desired response is 
specified as d(n) = 8(n — 2). Also compute the minimum least-squares error.
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8.29* A linear time-invariant system has an input sequence x(n)  and an output sequence 
y(n). The user has access only to the system output y(n). In addition, the following 
information is available.
(a ) The input signal is periodic with a given fundamental period N  and has a flat 

spectral envelope, that is,
N- 1

jt(n) = ^ 2 cte Ji2xmk" all n 
k=0

where c*k — 1 for all k.
(b) The system H(z) is all-pole, that is,

H(z)  = ------- ± --------

i + X > - *
*=4

but the order p  and the coefficients (a*, 1 < k < p) are unknown. Is it possible to 
determine the order p  and the numerical values of the coefficients {ak, 1 < k < p\  
by taking measurements on the output y(n)7 If yes, explain how. Is this possible 
for every value of p i

(c) Repeat Problem 8 . 3 1  for a system with system function
M

Y ,  b*: ~k
H  (z) =  -----------

k=\

(d) FIR system modeling Consider an “unknown” FIR system with impulse response 
h ( n ) ,  0 < n  < 11, given by

h(0) =  /i( 1 1 )  =  0 . 3 0 9 8 2 8  x  1 0 ~ ‘

h ( l )  =  / i ( 1 0 )  =  0 . 4 1 6 9 0 1  x  1 0 ~ ‘

h(2) =  A  ( 9 )  =  - 0 . 5 7 7 0 8 1  x  l O - 1

h(3) =  h ( 8) =  - 0 . 8 5 2 5 0 2  x  1 0 " 1

h( 4 )  =  h( 7 )  =  0 . 1 4 7 1 5 7  x  10°

h ( 5 )  =  h(6 ) =  0 . 4 4 9 1 8 8  x  10°

A potential user has access to the input and output of the system but does not 
have any information about its impulse response other than that it is FIR. In 
an effort to determine the impulse response of the system, the user excites it 
with a zero mean, random sequence x(n)  uniformly distributed in the range 
[— 0 . 5 , 0 . 5 ] ,  and records the signal x(n)  and the corresponding output y(n) for
0  <  n <  1 9 9 .

(1) By using the available information that the unknown system is FIR, the 
user employs the method of least-squares to obtain an FIR model h(n), 
0 < n < M — 1. Set up the system of linear equations, specifying the param­
eters /i(0), A (l),. . . ,  h(M  — 1). Specify formulas we should use to determine 
the necessary autocorrelation and crosscorrelation values.
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(2) Since the order of the system is unknown, the user decides to try models of 
different orders and check the corresponding total squared error. Clearly, 
this error will be zero (or very close to it if the order of the model be­
comes equal to the order of the system). Compute the FIR  models hM{n), 
0 < n < M -  1 for M  =  8, 9, 10, 11, 12, 13, 14 as well as the corre­
sponding total squared errors EM, M =  8, 9........14. What do you ob­
serve?

(3) Determine and plot the frequency response of the system and the models 
for M =  1 1 ,12, 13. Comment on the results.

(4) Suppose now that the output of the system is corrupted by additive noise, 
so instead of the signal v(n), 0 < n < 199, we have available the sig­
nal

v(n) =  y(n) + O.Oliy(n)

where w(n) is a Gaussian random sequence with zero mean and variance 
ff2 = 1 .

Repeat part (b) by using u(n) instead of _v(n) and comment on the results. The 
quality of the model can be also determined by the quantity

OC

J2h2(n)
n=0



9
Sampling and Reconstruction 
of Signals

In Chapters 1 and 4 we treated the sam pling o f continuous-tim e signals and dem on­
strated that if the signals are bandlim ited, it is possible to reconstruct the original 
signal from the sam ples, provided that the sam pling rate is at least twice the highest 
frequency contained in the signal. W e also briefly described the subsequent oper­
ations o f quantization and coding that are necessary to convert an analog signal 
to a digital signal appropriate for digital processing.

In this chapter we consider tim e-dom ain sampling, analog-to-digital (A /D )  
conversion (quantization and coding), and digital-to-analog (D /A ) conversion (sig­
nal reconstruction) in greater depth. First, we consider the sampling o f the spe­
cial class o f signals that are characterized as bandpass signals. Then w e treat 
analog-to-digital converters and their characteristics. O f particular interest is 
the use o f  oversam pling and sigm a-delta m odulation in the design o f  high pre­
cision A /D  converters. T he final topic o f the chapter is d igital-to-analog conver­
sion or, simply, the reconstruction o f  the continuous-tim e signal from its sampled  
values.

9.1 SAMPLING OF BANDPASS SIGNALS

Our main focus in this section is the sam pling o f  bandpass signals. W e begin by 
describing the time and frequency domain representations o f  bandpass signals.

9.1.1 Representation of Bandpass Signals

Suppose that a real-valued signal x ( t )  has a frequency content concentrated in a 
narrow band o f frequencies in the vicinity o f  a frequency Fc, as shown in Fig. 9.1. 
Our objective is to develop  a m athem atical representation o f such signals. First, 
w e construct a signal that contains on ly the positive frequencies in x ( t ) .  Such a 
signal can be expressed as

X+( F)  =  2 V ( F ) X ( F )  (9.1.1)

738



Sec. 9.1 Sampling of Bandpass Signals 739

|X(F)|

-Fr
F  Figure 9.1 Spectrum of a bandpass 

signal.

where X ( F )  is the Fourier transform o f x ( t )  and V (F )  is the unit step function. 
The equivalent tim e-dom ain expression for (9.1.1) is

x +(t) / OC

X+( F )e i2* f ' d F

-OC

=  f - 1 [2 V ( F ) ] * F “ , [^ (^ )]
(9.1.2)

The signal A+(r) is called the analytic signal  or the pre-envelope  o f jr(r). W e note  
that F ~ l [X (F)]  =  x ( t )  and

/r“ ‘[2 V < /)] =  <$(r) +  ^ -
7T /

H ence,

W e define x{ t)  as

-M O  = SU) + —
TT t

* x ( t )

— x ( t )  +  j —  * x ( t )
TT 1

x ( t )  =  —  ★ x ( t )  
n t

=  i  r  ^
H J —oc t ^

(9.1.3)

(9.1.4)

(9.1.5)

The signal x ( t )  can be viewed as the output o f the filter with impulse response

h i t )  = — , 
n t

—00  < t < oo (9.1.6)

w hen excited by the input signal * ( /) . Such a filter is called a Hilbert transformer.  
The frequency response of this filter is simply

/ OO
h ( t)e~ j2,lF,d t

*00

- I f  i.
n  J .oc t

e d t

(F  >  0) 
(F =  0) 
(F  <  0)

(9.1.7)

We observe that |tf(F )| = 1 and that the phase response ©(F) = - I n  for F  > 0



and @ (F) =  jjr for F  <  0. Therefore, this filter is basically a 90° phase shifter 
for all frequencies in the input signal, and it is akin to the discrete-tim e Hilbert 
transform filter described in Section 8.2.6.

The analytic signal * + (/)  is a bandpass signal. W e can obtain an equivalent 
lowpass representation by perform ing a frequency translation o f X + (F) .  Thus, we 
define X ,(F ) as

X ,(F )  =  X +(F  +  Fc) (9.1.8)

The equivalent tim e-dom ain relation is

* /(/) =  x +(l)e~]2”Fr'

=  [*(f) +  ; x ( r ) K j2* fr' (9.1.9)

or, equivalently,
* (/)  +  j x ( t )  =  x , ( t ) e j2nF'' (9.1.10)

In general, the signal x/(t)  is com plex-valued (see Problem  9.3), and can be 
expressed as

jc, ( 0  =  M / )  +  jf' M 0  (9.1.11)

If we substitute for x/( t)  in (9.1.10) and equate real and imaginary parts on each  
side, we obtain the relations

x(r)  =  u< (t) c o s 2 n F ct -  u s (t) s in 2 j tF ct (9.1.12)

x ( t ) =  «,.(/) sin 2?r Fct +  u s {t) cos 27rF,t (9.1.13)

The expression (9.1.12) is the desired form for the representation o f  a band­
pass signal. The low-frequency signal com ponents uc(t) and us (t) can be viewed  
as amplitude m odulations im pressed on the carrier com ponents cos 2 n F ct and 
s in 2 n F ct, respectively. Since these carrier com ponents are in phase quadrature, 
uc(t) and us (t) are called the quadrature com ponen ts  o f the bandpass signal x( t ) .  

A nother representation o f the signal in (9.1.12) is

x ( t )  =  R e{[Wf(r) +  y«.t ( r ) y 2jr̂ }

=  R e M f W 2^ ' ]  (9.1.14)

where Re denotes the real part o f  the com plex-valued quantity in the brackets 
follow ing. The lowpass signal x/(r)  is usually called the com p lex  envelope  o f the 
real signal j(? ), and is basically the equivalent lowpass signal.

Finally, a third possible representation o f  a bandpass signal is obtained by 
expressing * ,( /)  as

x,U) =  a ( t )e Jfnn (9.1.15)
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where

a(t)  =  yju l ( t )  +  u](t )  (9.1.16)
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Then

.r(r) =  R e[x,(r)e-/2irF'']

=  R e [ a ( f ) ^ 23rF‘,+^>J]

=  a (r )co s[2 jr /v / + 0 (0 ] (9.1.18)

The signal a ( t ) is called the envelope  o f jc(r), and 6(t)  is called the phase  o f jc(r). 
T herefore, (9.1.12), (9.1.14), and (9.1.18) are equivalent representations o f band­
pass signals.

The Fourier transform of x ( t )  is

where X i(F )  is the Fourier transform of x/(t) .  This is the basic relationship betw een  
the spectrum of the real bandpass signal x ( t ) and the spectrum o f the equivalent 
lowpass signal xi( t).

It is apparent from (9.1.21) that the spectrum o f the bandpass signal x ( t )  
can be obtained from the spectrum o f the com plex signal x t (t) by a frequency  
translation. T o be m ore precise, suppose that the spectrum  o f the signal *;(/) 
is as shown in Fig. 9.2(a). Then the spectrum X ( F ) for positive frequencies is 
simply X f(F )  translated in frequency to the right by Fc and scaled in am plitude by 
5 . The spectrum  X ( F ) for negative frequencies is obtained by first folding X /(F )  
about F =  0 to obtain X i ( - F ), conjugating X t( ~ F )  to  obtain X * ( - F ) ,  translating 
X * ( - F )  in frequency to the left by /> , and scaling the result by The folding  
and conjugation o f X i(F )  for the negative-frequency com ponent o f the spectrum  
result in a m agnitude spectrum |X (F )| that is even and a phase spectrum 2̂ X ( F )  
that is odd as shown in Fig. 9.2(b). T hese symmetry properties must hold since 
the signal x ( t )  is real valued. H ow ever, they do not apply to the spectrum o f the 
equivalent com plex signal Xi(t) .

T he developm ent above im plies that any bandpass signal x ( t )  can be repre­
sented by  an equivalent lowpass signal x/(t). In general, the equivalent lowpass 
signal x /( t)  is com plex valued, whereas the bandpass signal x ( t )  is real. The latter 
can be obtained from the form er through the tim e-dom ain relation in (9.1.14) or 
through the frequency-dom ain relation in (9.1.21).

f  [Re[xi(t)ej27fFr']}e - i2,tF,d t (9.1.19)

U se o f the identity

R e (f)  =  i ( * + n (9.1.20)

in (9.1.19) yields the result

X ( F )  =  l-  f X [x,(t)eJ2*F' ' + x ; « ) e - J2* F' ' ] e - J2* F'dt
J -oc

=  \ [ X t (F  — Fc) +  X j i —F — F(.)] (9.1.21)
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- f 2 0 F,

&i(F)

(P

(a)

|X(F)|

- F - F ,  - F - F + F , F -  F-, - Fr F + F,

K X ( n

Figure 9.2 (a) Spectrum of the lowpass signal and (b) the corresponding spectrum 
for the bandpass signal.

9.1.2 Sampling of Bandpass Signals

W e have already dem onstrated that a continuous-tim e signal with highest fre­
quency B  can be uniquely represented by sam ples taken at the minim um  rate 
(N yquist rate) o f  2 B  sam ples per second. H ow ever, if  the signal is a bandpass 
signal with frequency com ponents in the band B\ < F  < B i,  as shown in Fig. 9.3, 
a blind application of the sam pling theorem  w ould have us sam pling the signal at 
a rate o f  2B 2 sam ples per second.

If that w ere the case and B2 was an extrem ely high frequency, it would 
certainly be advantageous to perform a frequency shift o f  the bandpass signal by
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X(F)

-B, B-,

Figure 9.3 Bandpass signal with 
frequency components in the range 
B\ < F 5  B2.

an am ount

Fc =
B x +  B2

(9.1.22)

and sam pling the equivalent lowpass signal. Such a frequency shift can be achieved  
by multiplying the bandpass signal as given in (9.1.12) by the quadrature carriers 
cos 2jtFc[ and sin 2n F ct and lowpass filtering the products to elim inate the signal 
com ponents at 2 Fc. Clearly, the m ultiplication and the subsequent filtering are first 
perform ed in the analog domain and then the outputs o f  the filters are sam pled. 
T he resulting equivalent lowpass signal has a bandwidth B /2 ,  w here B  =  B2 — B\.  
T herefore, it can be represented uniquely by sam ples taken at the rate o f B  sam ples 
per second for each o f  the quadrature com ponents. Thus the sampling can be 
perform ed on each o f the lowpass filter outputs at the rate o f B  sam ples per second, 
as indicated in Fig. 9.4. Therefore, the resulting rate is 2 B sam ples per second.

In view  o f the fact that frequency conversion to lowpass allows us to reduce 
the sampling rate to I B  sam ples per second, it should be possible to sample the 
bandpass signal at a com parable rate. In fact, it is.

Suppose that the upper frequency Fc +  B p ,  is a m ultiple o f the bandwidth B  
(i.e., Fc +  B /2  =  k B ) ,  where k is a positive integer. If w e sample * ( /)  at the rate

Figure 9.4 Sampling of a bandpass signal by first converting to an equivalent 
low-pass signal.



2B  =  1 / r  sam ples per second, w e have

x ( n T )  =  uc(nT)  o o s 2 n  Fcn T  — us ( n T ) s in 2 j i  Fcn T

n n (2 k  -  1) . n n {2 k  -  1 ) (9.1.23) 
=  uc(n T )  c o s ------- ------------us {nT)  s in -------- --------

where the last step is obtained by substituting Fc ~ k B  — B[2  and T  =  1 /2 B.
For n even , say n =  2m, (9.1.23) reduces to

x ( 2 m T ) =  x (m T \ )  =  uc(mTi)  cos 7rm(2k — 1) =  (—l ) muc(mT])  (9.1.24)

where T\ =  2 T  =  1 /B . For n odd, say n =  2m — 1, (9.1.23) reduces to

x ( 2 m T  - T )  =  x  (m T i  -  ^  =  us ('m T j -  ^  ( - l )m +t+1 (9.1.25)

Therefore, the even-num bered sam ples o f x{t) ,  which occur at the rate o f  B  sam ­
ples per second, produce sam ples o f  the low pass signal com ponent uc(t). The 
odd-num bered sam ples o f  x ( t ) ,  which also occur at the rate o f  B  sam ples per 
second, produce sam ples o f  the lowpass signal com ponent K,(f).

N ow , the sam ples {uc{mT\)} and the sam ples (w,(m7i — 7 \/2 ))  can be used  
to  reconstruct the equivalent lowpass signals. Thus, according to the sam pling 
theorem  for low pass signals with T\ =  1 /B ,

^  , „ .,s in (7 r /r i) ( / - m 7 j )  , n 1 ^
u A t)  =  2 ^  u ^ m T 0  , / T  Ul------- =rr- (9.1.26)( x / T \ ) ( t  — mT\)

f . \  V '  (  t  ^  ^ sin(?r/7i)(r — mT\  +  7 \/2 )

M , ) = J L r n  _  2 )  - M w = * T r + T r m -  ( M 2 7 )

Furtherm ore, the relations in (9.1.24) and (9.1.25) allow us to  express uc(t) and 
« 3(i) directly in term s o f sam ples o f x( t ) .  N ow , since x ( t )  is expressed as

x ( t ) =  u c(t) c o s 2 n F ct — u s(t) s m 2 n  Fct (9.1.28)

substitution from (9.1.27), (9.1.26), (9.1.25), and (9.1.24) into (9.1.28) yields

'O  \ ,  ^  s in ( j r /2 r ) ( r - 2 m 7 )  „ „

=  °  X Q a  ) ( n / 2 T W - 2 r , T ) - C° S2* F’ '
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But

and

(9.1.29)

(—l ) m cos2 ti Fct = c o s 2 jr  Fc{t —2m T )

(—l ) m+* sin27r Fct =  cos2nrFc(r — 2m T  +  T)
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W ith these substitutions, (9.1.29) reduces to

^  sin(jr/27')(/ -  m T )
x ( i ) =  T  x ( m T )  ■ ------ — - c o s l n F c{ t - m T )  (9.1.30)

[ n /2 T ) ( t  -  m T )

w here T  =  1 /2 B. This is the desired reconstruction formula for the bandpass signal 
x ( i ) ,  with sam ples taken at the rate o f I B  sam ples per second, for the special case 
in which the upper band frequency Fc + B f 2 is a m ultiple o f the signal band­
width B.

In the general case, where only the condition Fc > B f 2 is assum ed to hold, 
let us define the integer part o f the ratio Fc +  B /2  to B  as

Fc + B /2  

B
(9.1.31)

W hile holding the upper cutoff frequency Fc +  B /2  constant, we increase the 
bandwidth from B to B'  such that

Fc + B /2
=  r  (9.1.32)

D

Furtherm ore, it is convenient to define a new center frequency for the increased  
bandwidth signal as

+  (9.1.33)

Clearly, the increased signal bandwidth B'  includes the original signal spectrum of 
bandwidth B.

N ow  the upper cu toff frequency Fc +  B /2  is a m ultiple o f B', C onsequently, 
the signal reconstruction formula in (9.1.30) holds with Fc replaced by F'c and T  
replaced by T \  where T'  =  1 /2 B \  that is,

^  /2 T '){ t  — m T ')
*«> -  ^ r ) l d r w - » r ) . c m 2 7 ,F ‘ {' ~  m T  )

This proves that x{t)  can be represented by sam ples taken at the uniform rate
1 / T  — 2 B r ' / r ,  where r'  is the ratio

, Fc +  B /2  Fc 1 n „
✓  j — - 7  +  -  (9 .1 .3 5 )

and r =  \r 'J.
W e observe that when the upper cutoff frequency Fc +  B /2  is not an integer  

m ultiple o f the bandwidth B,  the sampling rate for the bandpass signal must be  
increased by the factor r ' f r .  H ow ever, note that as Fc/ B  increases, the ratio r ' f r  
tends toward unity. C onsequently, the percent increase in sam pling rate tends to  
zero.

The derivation given above also illustrates the fact that the lowpass signal 
com ponents u c(t) and u s(t) can be expressed in term s o f sam ples o f the bandpass
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signal. Indeed , from (9.1.24), (9.1.25), (9.1.26), and (9.1.27), w e obtain the result

mo - j l  <-ir,
and

» ,« >  =  V  -  r ) Sjn(" /? r ') ( , ~ 2" r + n  (9 .U 7 )
(ff /2 r ')( f  - 2 n T '  +  V )

w here r =  Lr'J.
In conclusion, we have dem onstrated that a bandpass signal can be repre­

sented  uniquely by sam ples taken at a rate

2 B  < Fs < 4B

w here B is the bandwidth o f the signal. T he low er limit applies w hen the upper 
frequency Ft. +  B /2  is a m ultiple o f B, The upper limit on Fs is obtained under 
worst-case conditions when r =  1 and r' % 2 .

9.1.3 Discrete-Time Processing of Continuous-Time Signals

A s indicated in our introductory remarks in Chapter 1, there are numerous ap­
plications where it is advantageous to process continuous-tim e (analog) signals on 
a digital signal processor. Figure 9.5 illustrates the general configuration of the 
system  for digital processing o f an analog signal. In designing the processing to 
be perform ed, w e must first select the bandwidth o f the signal to be processed  
since the signal bandwidth determ ines the m inimum sam pling rate. For exam ple, 
a speech signal, which is to  be transmitted digitally, can contain frequency com po­
nents above 3000 H z, but for purposes o f speech  intelligibility and speaker iden­
tification, the preservation o f frequency com ponents below  3000 H z is sufficient. 
Consequently, it would be inefficient from a processing view point to preserve the 
higher-frequency com ponents and wasteful o f channel bandwidth to transmit the 
extra bits needed  to represent these higher-frequency com ponents in the speech  
signal. O nce the desired frequency band is selected we can specify the sampling 
rate and the characteristics o f the prefilter, which is also called  an antialiasing filter.

Antialiasing filter The antialiasing filter is an analog filter which has a 
tw ofold purpose. First, it ensures that the bandwidth o f the signal to be sampled  
is limited to the desired frequency range. Thus any frequency com ponents o f  
the signal above the folding frequency Fs f l  are sufficiently attenuated so  that the

Figure 9.5 Configuration of system for digital processing of an analog signal.
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am ount o f signal distortion due to aliasing is negligible. For exam ple, the speech  
signal to be transmitted digitally over a telephone channel would be filtered by 
a low pass filter having a passband extending to 3000 H z, a transition band of  
approxim ately 400 to 500 Hz, and a stopband above 3400 to 3500 Hz. The speech  
signal m ay be sam pled at 8000 H z and hence the folding frequency w ould be 
4000 H z. Thus aliasing would be negligible.

A nother reason for using an antialiasing filter is to limit the additive noise  
spectrum and other interference, which often corrupts the desired signal. U su ­
ally, additive noise is wideband and exceeds the bandwidth o f the desired signal. 
By prefiltering we reduce the additive noise pow er to that which falls within the 
bandwidth o f the desired signal and we reject the out-of-band noise.

Ideally, we would like to em ploy a filter with steep  cutoff frequency response  
characteristics and with no delay distortion within the passband. Practically, how ­
ever, we are constrained to em ploy filters that have a finite-width transition region, 
are relatively simple to im plem ent, and introduce som e tolerable am ount o f delay  
distortion. Very stringent filter specifications, such as a narrow transition region, 
result in very com plex filters. In practice, w e may ch oose  to sam ple the signal well 
above the Nyquist rate and thus relax the design specifications on the antialiasing  
filter.

O nce we have specified the prefilter requirem ents and have selected the d e­
sired sampling rale, we can proceed with the design o f the digital signal processing  
operations to be perform ed on the discrete-tim e signal. The selection of the sam ­
pling rate Fs =  1 / 7 ,  where T  is the sampling interval, not only determ ines the 
highest frequency (Fsf 2) that is preserved in the analog signal, but also serves as a 
scale factor that influences the design specifications for digital filters and any other  
discrete-tim e systems through which the signal is processed.

For exam ple, suppose that we have an analog signal to be differentiated that 
has a bandwidth o f 3000 Hz. A lthough differentiation can be perform ed directly 
on the analog signal, we choose to do it digitally in discrete time. H ence we 
sam ple the signal at the range Fs =  8000 H z and design a digital differentiator as 
described in Sec. 8.2.4. In this case, the sampling rate Fs =  8000 H z establishes  
the folding frequency o f 4000 H z, which corresponds to the frequency w =  n  
in the discrete-tim e signal. H ence the signal bandwidth o f 3000 H z corresponds 
to the frequency wc =  0.75tt. C onsequently, the discrete-tim e differentiator for 
processing the signal would be designed to have a passband o f 0 < \w\ < 0.75jt.

A s another exam ple o f digital processing, the speech signal that is bandlim ­
ited to  3000 Hz and sampled at 8000 H z m ay be separated into two or m ore 
frequency subbands by digital filtering, and each subband o f  speech is digitally en ­
coded with different precision, as is done in subband coding (see Section 10.9.5 for 
m ore details). The frequency response characteristics o f  the digital filters for sep­
arating the 0- to 3000-H z signal into subbands are specified relative to the folding  
frequency o f  4000 H z, which corresponds to the frequency co =  n  for the discrete­
time signal. Thus we may process any continuous-tim e signal in the discrete-tim e 
dom ain by perform ing equivalent operations in discrete time.



The one implicit assumption that w e have m ade in this discussion on the 
equivalence o f continuous-tim e and discrete-tim e signal processing is that the quan­
tization error in analog-to-digital conversion and round-off errors in digital signal 
processing are negligible. T hese issues are further discussed in this chapter. H ow ­
ever, w e should em phasize that analog signal processing operations cannot be 
done very precisely either, since electronic com ponents in analog system s have 
tolerances and they introduce noise during their operation. In general, a digi­
tal system  designer has better control o f tolerances in a digital signal processing  
system  than an analog system  designer w ho is designing an equivalent analog 
system.
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9.2 ANALOG-TO-DIGITAL CONVERSION

T he discussion in Section 9.1 focused on the conversion o f continuous-tim e signals 
to discrete-tim e signals using an ideal sampler and ideal interpolation. In this 
section we deal with the devices for perform ing these conversions from analog to  
digital.

R ecall that the process o f converting a continuous-tim e (analog) signal to 
a digital sequence that can be processed by a digital system  requires that we 
quantize the sam pled values to a finite num ber o f levels and represent each level 
by a number o f bits. The electronic device that performs this conversion from an 
analog signal to a digital sequence is called an analog-to-digital (A /D )  converter  
(A D C ). On the other hand, a digital-to-analog (D /A )  converter  (D A C ) takes a 
digital sequence and produces at its output a voltage or current proportional to  
the size o f the digital word applied to  its input. D /A  conversion is treated in 
Section 9.3.

Figure 9.6(a) shows a block diagram o f the basic elem ents o f an A /D  con­
verter. In this section we consider the perform ance requirem ents for these e l­
em ents. A lthough we focus mainly on ideal system  characteristics, we shall also 
m ention som e key im perfections encountered in practical devices and indicate how  
they affect the perform ance o f the converter. W e concentrate on those aspects that 
are more relevant to  signal processing applications. The practical aspects o f A /D  
converters and related circuitry can be found in the m anufacturers’ specifications 
and data sheets.

9.2.1 Sample-and-Hold

In practice, the sam pling o f an analog signal is perform ed by a sam ple-and-hold  
(S/H ) circuit. The sampled signal is then quantized and converted to digital form. 
U sually, the S/H  is integrated into the A /D  converter.

The S/H  is a digitally controlled analog circuit that tracks the analog input 
signal during the sample m ode, and then holds it fixed during the hold m ode to  
the instantaneous value o f  the signal at the tim e the system  is sw itched from the
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(a)

Tracking

Figure 9.6 (a) Block diagram of basic elements of an A/D converter; (b) time- 
domain response of an ideal S/H circuit.

sam ple m ode to the hold m ode. Figure 9.6(b) shows the tim e-dom ain response o f  
an ideal S/H circuit (i.e., a S/H that responds instantaneously and accurately).

The goal o f the S/H  is to continuously sample the input signal and then to 
hold that value constant as long as it takes for the A /D  converter to obtain its 
digital representation. The use o f an S/H allows the A /D  converter to operate  
more slow ly com pared to the time actually used to acquire the sam ple. In the 
absence o f a S/H, the input signal must not change by m ore than one-half o f  the  
quantization step during the conversion, which may be an impractical constraint. 
C onsequently, the S/H  is crucial in high-resolution (12 bits per sam ple or higher) 
digital conversion o f  signals that have large bandwidths (i.e., they change very  
rapidly).

A n ideal S/H introduces no distortion in the conversion process and is ac­
curately m odeled  as an ideal sampler. H ow ever, tim e-related degradations such 
as errors in the periodicity o f the sampling process (“jitter”), nonlinear variations 
in the duration o f  the sam pling aperture, and changes in the voltage held during 
conversion ( “droop”) do occur in practical devices.

The A /D  converter begins the conversion after it receives a convert com ­
mand. T he time required to com plete the conversion should be less than the 
duration o f  the hold m ode o f the S/H. Furthermore, the sam pling period T should  
b e larger than the duration o f the sam ple m ode and the hold m ode.

In the follow ing sections w e assume that the S/H introduces negligible errors 
and we focus on the digital conversion o f  the analog samples.



9.2.2 Quantization and Coding

The basic task o f the A /D  converter is to convert a continuous range o f input 
am plitudes into a discrete set o f digital code words. This conversion involves the 
processes o f quantiza tion  and coding.  Q uantization is a nonlinear and noninvert- 
ible process that m aps a given am plitude x(n)  =  x ( n T )  at tim e t =  n T  into an 
am plitude x k, taken from a finite set o f values. The procedure is illustrated in 
Fig. 9.7(a), w here the signal am plitude range is divided into L  intervals

h  =  {** < x(n)  < x*+ i} k =  1 , 2 , . . . ,  L  (9.2.1)

by the L  +  1 decision levels x \ ,  x L, . . . ,  x L+\- The possible outputs o f the quantizer 
(i.e., the quantization levels) are denoted as x\ ,  x 2, . . . , x i .  T he operation of the 
quantizer is defined by the relation

*<?(«) =  G [*(n)j =  *k if *(n) € Ik (9.2.2)
In m ost digital signal processing operations the m apping in (9.2.2) is indepen­

dent o f n (i.e., the quantization is m em oryless and is simply d en oted  as xq =  Q[x]).  
Furtherm ore, in signal processing we often use u n i fo rm  or linear quantizers  defined  
by

4 + i  - x k =  A  k  =  l , 2 , . . . , L - l
(9.2.3)

Xk+i -  x k =  A for finite x k, x t+] 

where A is the quantizer step size. U niform  quantization is usually a requirem ent 
if the resulting digital signal is to be processed by a digital system . H ow ever, 
in transm ission and storage applications o f signals such as speech , nonlinear and 
time-variant quantizers are frequently used.

If a zero is assigned a quantization level, the quantizer is o f the midtread  
type. If zero is assigned a decision level, the quantizer is called  a midrise  type.

Quantization Decision
levels levels <

\ \ r ~
*3 *3 *4 H x5 ■■■ xk xk xk*\

Instantaneous amplitude -------»-
(a)

x > ~ xl x2 *2 x3 x5 *4 *4 -*5 x5 x6 X1 X1 xi  -*8 -*9= 00
! - 4 A - 3A - 2A - A O  A 2A 3A I

> Instantaneous amplitude-------■— !

!—--------------------------- Range of quantizer------------------------------ -I

(b)
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Figure 9.7 Quantization process and an example o f a midtread quantizer.
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Figure 9 .7 (b ) illustrates a m idtread quantizer with L =  8  levels. In theory, the  
extrem e decision  levels are taken as *i =  —oo and x l +i =  oo, to cover the total 
dynam ic  range  o f the input signal. H ow ever, practical A /D  converters can handle 
only a finite range. H ence we define the range R  o f  the quantizer by assuming 
that /] =  I I  =  A. For exam ple, the range o f the quantizer shown in Fig. 9.7(b) is 
equal to  8 A , In practice, the term ful l-scale range  (FSR ) is used to describe the 
range o f an A /D  converter for bipolar signals (i.e., signals with both positive and 
negative am plitudes). The term f u l l  scale (FS) is used for unipolar signals.

It can be easily seen that the quantization error eq(n) is always in the range 
- A / 2  to A /2:

A A
-  — < eq{n) < — (9.2.4)

In other words, the instantaneous quantization error cannot exceed  half o f  the 
quantization step. If the dynamic range o f  the signal, defined as xmax — jcmjn, is 
larger than the range o f the quantizer, the sam ples that exceed the quantizer 
range are clipped, resulting in a large (greater than A /2 )  quantization error.

T he operation o f the quantizer is better described by the quantization char­
acteristic function, illustrated in Fig. 9.8 for a m idtread quantizer with eight

Figure 9.8 Example of a midtread quantizer.
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quantization levels. This characteristic is preferred in practice over the midriser 
because it provides an output that is insensitive to  infinitesim al changes o f the 
input signal about zero. N ote that the input am plitudes o f a midtread quantizer 
are rounded to the nearest quantization levels.

The coding  process in an A /D  converter assigns a unique binary number to 
each quantization level. If we have L  levels, we n eed  at least L  different binary 
numbers. With a word length o f b +  1 bits w e can represent 2b+l distinct binary 
numbers. H ence we should have 2b+1 >  L  or, equivalently, b +  1 >  log2 L.  Then  
the step size or the resolution  o f the A /D  converter is given by

where R is the range o f  the quantizer.
There are various binary coding schem es, each with its advantages and dis­

advantages. Table 9.1 illustrates som e existing schem es for 3-bit binary coding. 
T hese number representation schem es w ere described in detail in Section 7.5.

The tw o’s-com plem ent representation is used in m ost digital signal pro­
cessors. Thus it is convenient to  use the sam e system  to represent digital sig­
nals because we can operate on them directly w ithout any extra format conver-

TABLE 9.1 COMMONLY USED BIPOLAR CO DES

Decimal Fraction

Positive Negative Sign + Two's Offset One’s
Number Reference Reference Magnitude Complement Binary Complement

+7 + i
7
8 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

+6 + i
h
K 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0

+5 + 5
5
* 0 1 0  1 0 1 0  1 1 1 0  1 0 1 0  1

+4 +i
4
5 0 1 0 0 0 1 0  0 1 1 0 0 0 1 0 0

+3 + 1
3
K 00 1 1 0 0 1 1 1 0  1 1 00  1 1

+2 + 1
2

“ S 0 0 1 0 0 0 1 0 1 0  1 0 00 1 0

+1 1
“ 8 0 0 0  1 0 0 0  1 1 0 0  1 0 0 0  1

0 0+ 0- 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0- 0+ 1 0 0 0 (0 0 0 0) ( 1 0 0 0) 1 1 1 1

- 1 1
B +s 1 0 0  1 1 1 1 1 0 1 1 1 1 1 1 0

- 2 2
s 1 0  1 0 1 1 1 0 0 1 1 0 1 1 0  1

-3 3
+ 1 1 0  1 1 1 1 0  1 0 1 0  1 1 1 0 0

-4 4
~S + i! 1 1 0 0 1 1 0 0 0 1 0  0 1 0  1 1

-5 5
~s + ! 1 1 0  1 1 0  1 1 00 1 1 1 0  1 0

- 6 6
~s + ! 1 1 1 0 1 0  1 0 00 1 0 1 0  0 1

-7 7
~g +1 1 1 1 1 1 0  0 1 0 0 0  1 1 0 0 0

- 8 8
“ S + i (1 0 0 0) (0 0 0 0)
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sion. In general, a (b +  1) -bit binary fraction o f the form  ■ ■ ■ Pb has the
value

-A > -2 °  +  f t  • 2 -1 +  02 • 2~2 H--------h fo  ■ 2~b

if w e use the tw o’s-com plem ent representation. N ote that 0 q is the m ost signifi­
cant bit (M SB) and 0 b is the least significant bit (LSB). A lthough the binary code  
used to represent the quantization levels is im portant for the design o f the A /D  
converter and the subsequent num erical com putations, it d oes not have any effect 
in the perform ance o f the quantization process. Thus in our subsequent discus­
sions w e ignore the process o f coding when we analyze the perform ance o f A /D  
converters.

Figure 9.9(a) show s the characteristic o f  an ideal 3-bit A /D  converter. The 
only degradation introduced by an ideal converter is the quantization error, which 
can be reduced by increasing the number o f bits. This error, that dom inates the 
perform ance o f practical A /D  converters, is analyzed in the next section.

Practical A /D  converters differ from  ideal converters in several ways. V arious 
degradations are usually encountered in practice. A  num ber o f these perform ance 
degradations are illustrated in Fig. 9 .9 (b )-(e ). W e note that practical A /D  convert­
ers may have offset  error (the first transition may not occur at exactly +  |L S B ), 
scale-factor (or gain) error (the difference betw een the values at which the first 
transition and the last transition occur is not equal to  FS — 2LSB ), and linearity 
error (the differences betw een  transition values are not all equal or uniformly 
changing). If the differential linearity  error is large enough, it is possible for one  
or m ore code words to be missed. Performance data on com m ercially available 
A /D  converters are specified in the m anufacturers’ data sheets.

9.2.3 Analysis of Quantization Errors

T o determ ine the effects o f quantization on the perform ance o f an A /D  converter, 
w e adopt a statistical approach. The dependence o f the quantization error on the 
characteristics o f the input signal and the nonlinear nature o f the quantizer make 
a determ inistic analysis intractable, except in very sim ple cases.

In the statistical approach, w e assum e that the quantization error is random  
in nature. W e m odel this error as noise that is added to  the original (unquan­
tized) signal. If the input analog signal is within the range o f  the quantizer, the 
quantization error eq(n) is bounded in m agnitude [i.e., \eq{n)\ <  A /2 ], and the 
resulting error is called granular noise.  W hen the input falls outside the range o f  
the quantizer (clipping), eq (n) becom es unbounded and results in overload noise.  
This type o f noise can result in severe signed distortion w hen it occurs. Our only  
rem edy is to scale the input signal so that its dynamic range falls within the range 
o f the quantizer. The follow ing analysis is based on the assum ption that there is 
no overload noise.

The m athem atical m odel for the quantization error ev (n)  is shown in Fig. 9.10. 
T o carry out the analysis, w e m ake the follow ing assum ptions about the statistical
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Normalized analog input

(a)

(b) (c)

(d)
2

(e)
Figure 9.9 Characteristics of ideal and 
practical A/D converters.

properties o f eq(n ):

L  The error eq(n)  is uniformly distributed over the range — A /2  < eq{n) < A /2.
2. The error sequence is a stationary w hite noise sequence. In other

words, the error eq(n ) and the error eq(m)  for m  are uncorrelated.
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x ( n )
Quantizer
GM»>]

xAn)

(a) Actual system

x(n)-
&

X(fn) = x (n) + e^n)

eq{n)

(b) Mathematical model
Figure 9.10 M athematical model of 
quantization noise.

3. T he error sequence {eQ(n)} is uncorrelated with the signal sequence x(n).

4. T he signal sequence x (n )  is zero m ean and stationary.

T hese assum ptions do not hold, in general. H ow ever, they do hold when  
the quantization step size is small and the signal sequence x ( n ) traverses several 
quantization levels betw een  tw o successive sam ples.

U nder these assum ptions, the effect o f the additive noise eq(n) on the desired  
signal can be quantified by evaluating the signal-to-quantization noise (pow er) 
ratio (SQ N R ), which can be expressed on a logarithm ic scale (in decibels or 
dB ) as

SQ N R  =  101og10 £
MI

(9.2.6)

w here Px =  a j  =  E [x 2{n)} is the signal pow er and P„ =  a ]  — E[e^(n)]  is the pow er  
o f the quantization noise.

If the quantization error is uniformly distributed in the range (—A /2 , A /2 )  
as show n in Fig. 9.11, the m ean value o f the error is zero and the variance (the  
quantization noise pow er) is

/A/2 i  f

. , / m d e = z L

A/2 A 2

A/2
(9.2.7)

Pie)

1
A

A
2

0 A 
2

Figure 9.11 Probability density
function for the quantization error.
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By com bining (9.2.5) with (9.2.7) and substituting the result into (9.2.6), the 
expression for the SQ N R  becom es

SQ N R  =  10 log —  =  20 log —
P„ a,

(9.2.8)

=  6.02* +  16.81 -  20 log —  dB  
ox

The last term in (9.2.8) depends on  the range R  o f the A /D  converter and the  
statistics o f the input signal. For exam ple, if w e assume that jf(n) is Gaussian 
distributed and the range o f the quantizer extends from — 3ax to  3ax (i.e., R  =  6ax ), 
then less than 3 out o f every 1000 input signal am plitudes w ould result in an 
overload on the average. For R =  6ax , (9.2.8) becom es

SQ N R  =  6.02* +  1.25 dB

The formula in (9.2.8) is frequently used to specify the precision needed in an 
A /D  converter. It simply m eans that each additional bit in the quantizer increases 
the signal-to-quantization noise ratio by 6  dB. (It is interesting to note that the 
sam e result was derived in Section 1.4 for a sinusoidal signal using a determ inistic 
approach.) H ow ever, we should bear in mind the conditions under which this 
result has been derived.

D u e to limitations in the fabrication o f A /D  converters, their performance 
falls short o f the theoretical value given by (9.2.8). A s a result, the effective number 
of bits may be som ew hat less than the number o f  bits in the A /D  converter. For 
instance, a 16-bit converter may have only an effective 14 bits o f accuracy.

9.2.4 Oversampling A/D Converters

The basic idea in oversam pling A /D  converters is to increase the sampling rate 
o f the signal to  the point where a low -resolution quantizer suffices. B y oversam ­
pling. w e can reduce the dynamic range o f  the signal values betw een successive  
sam ples and thus reduce the resolution requirem ents on the quantizer. A s we  
have observed in the preceding section, the variance o f the quantization error in 
A /D  conversion is cr,2 =  A 2/12 , where A =  R f l b+l. Since the dynamic range of  
the signal, which is proportional to  its standard deviation ox , should match the 
range R  o f the quantizer, it follow s that A is proportional to  ax . H ence for a given 
number o f bits, the power o f the quantization noise is proportional to the variance 
of the signal to be quantized. C onsequently, for a given fixed SQ N R , a reduction 
in the variance o f the signal to  be quantized allow s us to reduce the number of  
bits in the quantizer.

The basic idea for reducing the dynamic range leads us to  consider differential  
quantization.  T o illustrate this point, let us evaluate the variance o f  the difference 
betw een tw o successive signal sam ples. Thus w e have

d(n)  — x (n )  — jc (n — 1) (9.2.9)
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The variance o f d(n)  is

u l  =  E[d2(n)] =  £ {[x (n ) -  x (n  -  l ) ] 2}

=  E [ x \ n ) }  -  2 E [x (n )x (n  -  1)] +  E [ x 2(n -  1)] (9.2.10)

=  2<7j[1 -  y* A  1 )]

where yxx( l )  is the value o f the autocorrelation sequence yxx(m)  o f  x(n )  evaluated  
at m  =  1. If Yx.r (l)  >  0.5, w e observe that aJ <  cr .̂ U nder this condition, it 
is better to  quantize the difference d{n)  and to recover x(n )  from the quantized  
values {d9(n)}. To obtain a high correlation betw een successive sam ples o f the 
signal, w e require that the sampling rate be significantly higher than the Nyquist 
rate.

A n even  better approach is to  quantize the difference

d(n)  =  x (n )  — ax(n  — 1) (9.2.11)

where a is a param eter selected to m inim ize the variance in d{n).  This leads to  
the result (see Problem  9.7) that the optim um  choice o f  a is

a  =  Y x x ^  =  Y x x ^

Yxx (0)
and

a 2d =  a 2x [\ -  a2] (9.2.12)

In this case, ctJ <  a 2, since 0 <  a < 1. The quantity ax(n  — 1 ) is called a first-order 
predictor o f jc(«).

Figure 9.12 show s a m ore general differential  predictive  signal quantizer sys­
tem . This system  is used in speech  encoding and transmission over telephone  
channels and is known as differential pulse code m odulation (D PC M ). The goal 
o f  the predictor is to provide an estim ate x (n )  o f x(n )  from  a linear com bination  
o f  past values o f  x (n ) ,  so  as to reduce the dynamic range o f the difference signal 
d (n )  =  x {n ) — x(n).  Thus a predictor o f order p  has the form

p
x(n )  =  ^ 2  akx (n -  k ) (9.2.13)

Figure 9.12 Encoder and decoder for differential predictive signal quantizer 
system.
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The use o f the feedback loop around the quantizer as show n in Fig. 9.12 is nec­
essary to avoid the accum ulation of quantization errors at the decoder. In this 
configuration, the error e(n ) =  d(n)  — dq(n) is

e(n) =  d(n)  -  dq(n) =  x(n) -  x (n) -  dq(n) =  Jf(n) -  x q(n)

Thus the error in the reconstructed quantized signal xq (n) is equal to  the quan­
tization error for the sam ple d(n).  The decoder for D PC M  that reconstructs the 
signal from the quantized values is also shown in Fig. 9.12.

The sim plest form o f differential predictive quantization is called delta m o d ­
ulation  (D M ). In D M , the quantizer is a sim ple 1-bit (tw o-level) quantizer and the 
predictor is a first-order predictor, as shown in Fig. 9.13(a). Basically, D M  pro­
vides a staircase approximation o f the input signal. A t every sam pling instant, the 
sign o f  the difference betw een the input sample x(n )  and its m ost recent staircase 
approximation x (n )  =  a x q (n — 1 ) is determ ined, and then the staircase signal is 
updated by a step  A in the direction o f the difference.

From Fig. 9.13(a) we observe that

x q(n) =  a x g(n -  1) +  dq{n) (9.2.14)

which is the discrete-tim e equivalent of an analog integrator. If a =  1, we have 
an ideal accum ulator (integrator) whereas the choice a < 1  results in a “leaky 
integrator.” Figure 9.13(c) shows an analog m odel that illustrates the basic prin­
ciple for the practical im plem entation o f a D M  system. T he analog lowpass filter 
is necessary for the rejection of out-of-band com ponents in the frequency range 
betw een B and Fs f l , since Fs >  >  B  due to oversampling.

The crosshatched areas in Fig. 9.13(b) illustrate tw o types o f quantization  
error in D M , slope-overload distortion and granular noise. Since the maximum  
slope A ( T  in x (n )  is lim ited by the step size, slope-overload distortion can be 
avoided if m ax \d x ( t ) /d t \  <  A / T . The granular noise occurs when the D M  tracks 
a relatively flat (slow ly changing) input signal. W e note that increasing A reduces 
overload distortion but increases the granular noise, and vice versa.

O ne way to reduce these tw o types o f distortion is to  use an integrator in 
front o f the D M , as show n in Fig. 9.14(a). This has tw o effects. First, it em phasizes 
the low frequencies o f x (t) and increases the correlation o f the signal into the D M  
input. Second, it sim plifies the D M  decoder because the differentiator (inverse 
system ) required at the decoder is canceled by the D M  integrator. H ence the 
decoder is sim ply a lowpass filter, as shown in Fig. 9.14(a). Furtherm ore, the two 
integrators at the encoder can be replaced by a single integrator placed before 
the com parator, as shown in Fig. 9.14(b). This system  is known as sigma-delta  
modula t ion  (SD M ).

SDM  is an ideal candidate for A /D  conversion. Such a converter takes 
advantage of the high sam pling rate and spreads the quantization noise across the 
band up to Fsf2.  Since Fs >>  B,  the noise in the signal-free band B < F  < F , f l  
can be rem oved by appropriate digital filtering. T o illustrate this principle, let
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Coder Decoder
(a)

(b)

T T

(c)

Figure 9.13 Delta modulation system and two types of quantization errors.

us consider the discrete-tim e m odel o f SD M , shown in Fig. 9.15, where w e have 
assum ed that the com parator ( 1 -bit quantizer) is m odeled  by an additive white 
noise source with variance a f  =  A2 /12. T he integrator is m odeled by the discrete­
tim e system  with system  function

(9.2.15)
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Figure 9.14 Sigma-detta m odulation system.

H{z) ein)

The z-transform o f the sequence {dq(n)} is

1

1 +  H {z)  1 +  H (z )

=  H A z )X ( z )  +  H „(z)E(z)

E(z )
(9.2.16)

w here H s{z) and H„{z) are the signal and noise system  functions, respectively. A  
good SD M  system  has a flat frequency response Hs{co) in the signal frequency
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band 0 < F  < B.  On the other hand, H„(z) should have high attenuation in the  
frequency band 0  <  F  < B  and low  attenuation in the band B < F  < Fs/2.

For the first-order SD M  system  with the integrator specified by (9.2.15), we
have

Thus Hs (z) does not distort the signal. The perform ance o f the SD M  system  is 
therefore determ ined by the noise system  function H n(z),  which has a m agnitude 
frequency response

as shown in Fig. 9.16. The in-band quantization noise variance is given as

where Se( F ) =  a ] j F s is the pow er spectral density o f the quantization noise. 
From this relationship we note that doubling Fs (increasing the sampling rate by 
a factor o f  2), while keeping B fixed, reduces the pow er o f the quantization noise  
by 3 dB. This result is true for any quantizer. H ow ever, additional reduction may 
be possible by properly choosing the filter H (z) .

For the first-order SD M , it can be show n (see Problem  9.10) that for Fs >>  
2 B,  the in-band quantization noise power is

N ote that doubling the sam pling frequency reduces the noise pow er by 9 dB of  
which 3 dB is due to  the reduction in St (F)  and 6  dB is due to the filter charac­
teristic H„(F).  A n additional 6 -dB reduction can be achieved by using a double  
integrator (see Problem  9.11).

In summary, the noise pow er can be reduced by increasing the sam ­
pling rate to  spread the quantization noise ppwer over a larger frequency band  
( - F J 2, Fs/ 2), and then shaping the noise pow er spectral density by m eans o f  an

Hs (z) =  z ~ 1 Hn(z) =  l - z ~ 1 (9.2.17)

J (/^) I =  2  sin
Fs

(9.2.18)

(9.2.19)

(9.2.20)

F,
~ T

F,
2

F

Figure 9.16 Frequency (magnitude) response of noise system function.
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SDM - to - PCM Converter

Figure 9.17 Basic elements o f an oversam pling A /D  converter.

appropriate filter. Thus, SD M  provides a 1-bit quantized signal at a sampling fre­
quency Fs =  2IB ,  where the oversam pling (interpolation) factor I determ ines the 
SNR of the SD M  quantizer.

N ext, we explain how to convert this signal into a b-bit quantized signal at 
the Nyquist rate. First, w e recall that the SD M  decoder is an analog low pass filter 
with a cutoff frequency B. The output o f this filter is an approxim ation to the 
input signal x(r) .  G iven the 1-bit signal dq{n) at sampling frequency Fs , we can 
obtain a signal x q{n) at a low er sampling frequency, say the Nyquist rate o f 2 B  
or som ewhat faster, by resampling the output o f the lowpass filter at the 2 B  rate. 
T o avoid aliasing, we first filter out the out-of-band (fl, F J 2) no ise by processing 
the wideband signal. The signal is then passed through the lowpass filter and 
resampled (dow nsam pled) at the lower rate. The downsam pling process is called  
decimation  and is treated in great detail in Chapter 10.

For exam ple, if the interpolation factor is I  =  256, the A /D  converter output 
can be obtained by averaging successive non-overlapping blocks o f 128 bits. This 
averaging would result in a digital signal with a range o f values from zero to 
256{b as 8 bits) at the Nyquist rate. The averaging process also provides the 
required antialiasing filtering.

Figure 9.17 illustrates the basic elem ents o f an oversam pling A /D  converter. 
Oversampling A /D  converters for voice-band (3-kH z) signals are currently fab­
ricated as integrated circuits. Typically, they operate at a 2-M H z sam pling rate, 
downsam ple to 8  kH z, and provide 16-bit accuracy.
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9-3 DIGITAL-TO-ANALOG CONVERSION

In Section 4.2.9 we dem onstrated that a bandlimited low pass analog signal, which  
has been sam pled at the Nyquist rate (or faster), can be reconstructed from its 
sam ples w ithout distortion. The ideal reconstruction formula or ideal interpolation  
formula derived in Section 4.2.9 is

sin(:rr/T)(r — n T )

( n / T ) ( t  - n T )
(9.3.1)

where the sam pling interval T — l / F s =  1 /2 B , Fs is the sam pling frequency and 
B is the bandwidth o f the analog signal.

W e have view ed the reconstruction o f the signal x{ t )  from its samples as an 
interpolation problem  and have described the function

s in ^ r /T )
g(t)  =

n t / T
(9.3.2)

as the ideal interpolation function. The interpolation formula for x(r), given by
(9.3.1), is basically a linear superposition o f tim e-shifted versions o f g(t).  with each  
g(t — n T )  w eighted by the corresponding signal sam ple x ( n T ) .

A lternatively, w e can view the reconstruction o f the signal from its sam ples as 
a linear filtering process in which a discrete-time sequence o f short pulses (ideally  
im pulses) with am plitudes equal to the signal sam ples, excites an analog filter, as 
illustrated in Fig. 9.18. The analog filter corresponding to the ideal interpolator 
has a frequency response

H ( F )  =
T,

0 ,

I F f  <

1

2 T
1

|F | >
2 T

Fs

T (9.3.3)

H ( F )  is sim ply the Fourier transform of the interpolation function g{t).  In other 
words, H { F )  is the frequency response o f an analog reconstruction filter w hose

Input signal

Y .  x ( n T ) & ( t  ~  n T )

Ideal analog 
lowpass filter 

H ( F )

F .

Reconstructed signal

oc sin — 0  -  r i T )  

x ( t ) =  Y l  x ( n T ) ~ — --------------
n=-oc —(! — nT)

Figure 9.18 Signal reconstruction viewed as a filtering process.
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(a)

hU)

(b)

Figure 9.19 Frequency response (a) and the impulse response (b) of an ideal 
low-pass filter.

impulse response is h(t)  =  g(t) .  A s shown in Fig. 9.19, the ideal reconstruction  
filter is an ideal lowpass filter and its im pulse response extends for all time. H ence  
the filter is noncausal and physically nonrealizable. A lthough the interpolation  
filter with im pulse response given by (9.3.1) can be approxim ated closely with 
som e delay, the resulting function is still impractical for m ost applications where 
D /A  conversion is required.

In this section we present som e practical, albeit nonideat. interpolation tech­
niques and interpret them  as linear filters. A lthough m any sophisticated poly­
nom ial interpolation techniques can be devised and analyzed, our discussion is 
lim ited to constant and linear interpolation. Q uadratic and higher polynom ial in-
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terpolation is often used in numerical analysis, but is it less likely to be used in 
digital signal processing.

9.3.1 Sample and Hold

In practice, D /A  conversion is usually perform ed by com bining a D /A  converter 
with a sam ple-and-hold (S/H ) and follow ed by a lowpass (sm oothing) filter, as 
shown in Fig. 9.20. The D /A  converter accepts at its input, electrical signals that 
correspond to a binary word, and produces an output voltage or current that is 
proportional to  the value o f the binary word. Ideally, its input-output characteristic 
is as shown in Fig. 9.21(a) for a 3-bit bipolar signal. The line connecting the dots is 
a straight line through the origin. In practical D /A  converters, the line connecting  
the dots may deviate from the ideal. Som e o f the typical deviations from ideal 
are offset errors, gain errors, and nonlinearities in the input-output characteristic. 
These types o f errors are illustrated in Fig. 9.21(b).

A n important param eter o f a D /A  converter is its settling t ime , which is 
defined as the time required for the output o f the D /A  converter to reach and 
remain within a given fraction (usually, i^ L S B )  o f the final value, after applica­
tion o f the input code word. O ften, the application o f the input code word results 
in a high-am plitude transient, called a “glitch.” This is especially the case when  
tw o consecutive code words to the A /D  differ by several bits. The usual way to  
rem edy this problem  is to use a S/H circuit designed to serve as a “deglitcher.” 
H ence the basic task o f the S/H is to  hold the output o f  the D /A  converter con ­
stant at the previous output value until the new  sam ple at the output o f the D /A  
reaches steady state, then it sam ples and holds the new value in the next sampling 
interval. Thus the S/H approximates the analog signal by a series o f rectangular 
pulses w hose height is equal to the corresponding value o f the signal pulse. F ig­
ure 9.22(a) illustrates the approximation o f the analog signal x ( t )  by a S/H. A s  
show n, the approximation, denoted as x ( t ), is basically a staircase function which  
takes the signal sam ple from the D /A  converter and holds it for T  seconds. W hen  
the next sample arrives, it jumps to the next value and holds it for T  seconds, and 
so on.

W hen view ed as a linear filter, as shown in Fig. 9.22(b), the S/H has an 
im pulse response

h(t)  =
1, 0 < t < T  
0 , otherwise

(9.3.4)

Digital
input
signal

Digital-
to-analog
convener

Sample
and
hold

Lowpass
smoothing

filter

Analog
output
signal

Figure 9.20 Basic operations in converting a digital signal into an analog signal.
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Figure 9.21 (a) Ideal D/A converter characteristic and (b) typical deviations from 
ideal performance in practical D/A converters.
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Sampled signal - S /H -x(t)

(b)

*(/)

T

(c)

Figure 9.22 (a) Approximation of an 
analog signal by a staircase; (b) linear 
filtering interpretation; (c) impulse 
response of the S/H.

This is illustrated in Fig. 9.22(c). The corresponding frequency response is

/ OO
h{t)e->2”F'd t

■00

_  [ T e - j2* F,d t  
Jo

=  r  ( s i n n F T \
\  7T F T  )

(9.3.5)

, - j x F T

The m agnitude and phase o f H ( F )  are plotted in Figs. 9.23. For com parison, the 
frequency response o f  the ideal interpolator is superim posed on  the m agnitude 
characteristics.

It is apparent that the S/H does not possess a sharp cutoff frequency re­
sponse characteristic. This is due to  a large extent to  the sharp transitions o f  
its im pulse response h(t) .  A s a consequence, the S/H  passes undesirable aliased  
frequency com ponents (frequencies above Fsf 2) to its output. T o  rem edy this 
problem , it is com m on practice to  filter i ( r )  by passing it through a lowpass filter
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9 ( F )

which highly attenuates frequency com ponents above F J 2. In effect, the lowpass 
filter follow ing the S/H sm ooths the signal x( t )  by rem oving the sharp discontinu­
ities.

9.3.2 First-Order Hold

A  first-order hold approxim ates x ( t )  by straight-line segm ents which have a slope 
that is determ ined by the current sam ple x { n T ) and the previous sam ple x ( n T  — T). 
A n illustration o f  this signal reconstruction techniques is given in Fig. 9.24.

The m athem atical relationship betw een the input sam ples and the output 
waveform  is

s(r) = x ( n T )  + ~ T )  ~  X̂ n T ~  T - (t -  raf) n r < K ( n  +  l)r (9.3.6)
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W hen view ed as a linear filter, the im pulse response o f the first-order hold is

h(t)  =
1  +  T '  

t

0 < t  < T

1  T  
0 ,

(9.3.7)
T  <  t < I T  

otherwise

This im pulse response is depicted in Fig. 9.25(a). The Fourier transform o f h(t)  
yields the frequency response, which can be expressed in the form

H ( F )  =  T ( \ + A n F 2T 2)X fl ( ^ ^ ^ j  e} 

w here the phase 0 (F ) is

© (F ) =  —n F T  +  tan - 1  2 n F T

j m F ) (9.3.8)

(9.3.9)

T hese frequency response characteristics are graphically illustrated in Fig. 9.25(b) 
and (c).

Since this reconstruction technique also suffers from distortion due to passage 
o f frequency com ponents above Fs/ 2, as can be observed from Fig. 9.25(b), it is 
follow ed by a lowpass filter that significantly attenuates frequencies above the 
folding frequency Fs f l .

T he peaks in H { F )  within the band |F | <  Fsf l  m ay be undesirable in som e  
applications. In such a case it is possible to  m odify the im pulse response by 
reducing the slope by som e factor 0  < 1. This results in the impulse response h(t)  
illustrated in Fig. 9.26(a). The corresponding frequency response is given by

- r [ i - 0  +  0(1 + j l n  F T )
sin n  F T  

n F T  *
, - jxFT I  sin jrF T

J n  F T
(9.3.10)

T he m agnitude | / / ( F ) |  is illustrated in Fig. 9.26(b) for 0  =  0.5, 0  =  0.3, and 
0  =  0.1. W e note that the peak in H ( F )  is relatively small for 0  =  0.3 and
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(b)

9 ( F )

Figure 9.25 Impulse response (a) and frequency response characteristics (b) and 
(c) for a first-order hold.
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MF)!

T T T 2T IT T T T
(b)

Figure 9.26 Impulse response (a) and frequency (magnitude) response (b) for a 
modified first-order hold.

does not exist when 0  =  0.1. Thus this m odified first-order hold exhibits better 
frequency response characteristics in the frequency range |F | <  Fs/ 2.

9.3.3 Linear Interpolation with Delay

The first-order hold perform s signal reconstruction by com puting the slope o f  the  
straight line based on the current sam ple x ( n T )  and th e  past sam ple x ( n T  — T )  o f
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the signal. In effect, this technique linearly extrapolates  or attem pts to l inearly p re ­
dict  the next sample o f the signal based on the sam ples x ( n T )  and x { n T  -  T).  A s  
a consequence, the estim ated signal waveform  i(r )  contains jum ps at the sam ple 
points.

The jumps in x ( t )  can be avoided by providing a one-sam ple delay in the re­
construction process. Then successive sam ple points can be connected  by straight- 
line segm ents. Thus the resulting interpolated signal x ( t )  can be expressed as

x ( t )  =  x { n T  - T )  +
x ( n T )  — x ( n T  — 7")

(t — n T )  n T  < t < (n +  1)T (9.3.11)

W e observe that at t — n T , x {n T )  =  x ( n T  — T )  and at t =  n T  +  T , x ( n T  +  T)  =  
x ( n T ) .  Therefore, x ( t )  has an inherent delay o f T  seconds in interpolating the 
actual signal jc(r). Figure 9.27 illustrates this linear interpolation technique.

V iew ed as a linear filter, the linear interpolator with a 7 -secon d  delay has 
an impulse response

i t  I T .  
h i t )  =  2 - t / T .

1 0 .
The corresponding frequency response is

+ ( 2 - r

(9.3.13)
-j2x Fi

0 <  t < T  
T  <  t <  2T  
otherw ise

(9.3.12)

dt

The impulse response and frequency response characteristics o f this interpolation  
filter are illustrated in Fig. 9.28. W e observe that the m agnitude characteristic 
falls off rapidly and contains small sidelobes beyond the sam pling frequency Fs. 
Furthermore, its phase characteristic is linear due to the delay T. By follow ing  
this interpolator with a lowpass filter that has a sharp cutoff beyond the frequency  
Fs/2,  the high-frequency com ponents in x ( t )  can be further reduced.

Figure 9.27 Linear interpolation of x{t) with a 7-second delay.
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(a)
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(b)

9(F)

(c)

Figure 9.28 Impulse response (a) and frequency response characteristics (b) and 
(c) for the linear interpolator with delay.
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Figure 93.9 Elements of an oversampling D/A converter.

This concludes our discussion o f  signal reconstruction based on sim ple inter­
polation techniques. The techniques that we have described are easily incorporated  
into the design o f practical D /A  converters for the reconstruction o f analog signals 
from digital signals. W e shall consider interpolation again in Chapter 10 in the 
context of changing the sam pling rate in a digital signal processing system.

9.3.4 Oversampling D/A Converters

The elem ents o f an oversam pling D /A  converter are shown in Fig. 9.29. A s we 
observe, it is subdivided into a digital front end follow ed by an analog section. The 
digital section consists o f an interpolator w hose function is to increase the sampling 
rate by som e factor / ,  and then is follow ed by a SDM . The interpolator simply 
increases the digital sampling rate by inserting I — 1 zeros betw een successive 
low rate samples. The resulting signal is then processed by a digital filter with 
cutoff frequency Fc =  B /F s in order to  reject the im ages (replicas) o f the input 
signal spectrum. This higher rate signal is fed to the SD M , which creates a noise­
shaped 1-bit sam ple. Each 1-bit sam ple is fed to the 1-bit D /A . which provides 
the analog interface to the antialiasing and sm oothing filters. The output analog  
filters have a passband o f  0 <  F  <  B  hertz and serve to sm ooth the signal and to 
rem ove the quantization noise in the frequency band B < F  < Fs/2.  In effect, the 
oversampling D /A  converter uses SD M  with the roles of the analog and digital 
sections reversed com pared to  the A /D  converter.

In practice, oversam pling D /A  (and A /D ) converters have many advantages 
over the more conventional D /A  (and A /D ) converters. First, the high sampling 
rate and the subsequent digital filtering m inim ize or rem ove the need for com plex  
and expensive analog antialiasing filters. Furtherm ore, any analog n oise introduced  
during the conversion phase is filtered out. A lso , there is no n eed  for S/H circuits. 
O versampling SD M  A /D  and D /A  converters are very robust with respect to  vari­
ations in the analog-circuit param eters, are inherently linear, and have low  cost.

9.4 SUMMARY AND REFERENCES

T he major focus o f this chapter was on the sampling and reconstruction o f sig­
nals. In particular, we treated the sam pling o f continuous-tim e signals and the 
subsequent operation o f  A /D  conversion. T hese are necessary operations in the
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digital processing o f analog signals, either on a general-purpose com puter or on a 
custom -designed digital signal processor. The related issue o f D /A  conversion was 
also treated. In addition to the conventional A /D  and D /A  conversion techniques, 
w e also described another type o f  A /D  and D /A  conversion, based on the principle 
o f  oversam pling and a type o f  waveform  encoding called sigm a-delta m odulation. 
Sigm a-delta conversion technology is especially suitable for audio band signals due  
to  their relatively small bandwidth (less than 20 kH z) and in som e applications, 
the requirem ents for high fidelity.

The sam pling theorem  was introduced by N yquist (1928) and later popular­
ized in the classic paper by Shannon (1949). D /A  and A /D  conversion techniques 
are treated in a book by Sheingold (1986). O versam pling A /D  and D /A  conver­
sion has been treated in the technical literature. Specifically, we cite the work o f  
Candy (1986), Candy et al. (1981) and Gray (1990).

P R O B L E M S

9.1 Consider the sampling of the bandpass signal whose spectrum is illustrated in Fig. P9.1. 
Determine the minimum sampling rate Fx to avoid aliasing.

X ( F )

9 2  Consider the sampling of the bandpass signal whose spectrum is illustrated in Fig. P9.2. 
Determine the minimum sampling rate Fs to avoid aliasing.

X(F)

9.3 Prove that xi(t) is generally a complex-valued signal and give the condition under 
which it is real. Assume that x(t)  is a real-valued bandpass signal.

9.4 Consider the two systems shown in Fig. P9.4.
(a) Sketch the spectra of the various signals if xa(t) has the Fourier transform shown 

in Fig. 9.4(b) and F, =  2B. How are >](f) and ^(z) related to xa(t)f
(b )  Determine >i(r) and ^(z) if xa(t) =  cos2nFot, Fo =  20 Hz, and F, =  50 Hz or 

Fs =  30 Hz.
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F, F,

(a)

XJF)

- B O B
(b)

Figure P9.4

9.5 A continuous-tim e signal xa(t) with bandwidth B and its echo xa(t -  r) arrive simul­
taneously at a T V  receiver. T h e  received anaiog signal

sa(t) = xa(r) + axa( t - T )  |« | < 1

is processed by the system shown in Fig, P9.5. Is it possible to  specify F, and H (z )  
so  that ya(t) =  xa(t) [i.e., rem ove the “ghost” xa(i -  r )  from  the received signal]?

F,

Figure P9J

9 j6 A bandlim ited continuous-tim e signal x„(t) is sam pled at a sam pling frequency F s >  
2 B . D eterm in e the energy E d o f the resulting discrete-tim e signal x(n) as a function 
o f th e energy o f the analog signal, E a, and th e sampling period T  =  1 / F S.

9 .7  L e t x(n) be a zero-m ean stationary process with variance and autocorrelation  y j l ) .
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aj  = a 2[l + a2 -  2apx(l)]

where px(l) = j'x(l)/?'* (0) is the normalized autocorrelation sequence,
(b) Show that <rj attains its minimum value

for a = Kv(l)/Xr(°) =  ArC1)■
(c) Under what conditions is aj  < a ;?
(d) Repeat steps (a) to (c) for the second-order prediction error

d(n) = x(n)  — a^x(rt — 1) — aixln — 2)

9 .8  Consider a DM coder wilh input ,v(n) =  A cos(2nnF/F,  ). What is the condition for 
avoiding slope overload? Illustrate this condition graphically.

9.9 Let x„(t) be a bandlimited signal with fixed bandwidth B and variance rr*.
(a) Show that the signal-lo-quantization noise ratio. SQNR =  101og,n(fl7/<v). in­

creases by 3 dB each time we double the sampling frequency F,. Assume that 
the quantization noise model discussed in Section 9.2.3 is valid.

(b) If we wish to increase the SQNR of a quantizer by doubling its sampling fre­
quency, what is the most efficient way to do it? Should we choose a linear 
muUibil A/D converter or an oversampling one?

9.10 Consider the first-order SDM model shown in Fig. 9.15.
(a) Show that the quantization noise power in the signal band {- B . B ) is given by

(b ) Using a two-term Taylor series expansion of the sine function and assuming that 
Fs > >  B, show that

9.11 Consider the second-order SDM model shown in Fig. P 9 .ll.
(a) Determine the signal and noise system functions H,(z) and H„(z), respectively.
(b ) Plot the magnitude response for the noise system function and compare it with 

the one for the first-order SDM, Can you explain the 6-dB difference from these 
curves?

(c) Show that the in-band quantization noise power a 2 is given approximately by

which implies a 15-dB increase for every doubling of the sampling frequency.
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e(n)

Figure P 9 .ll

9.12 Figure P9.12 illustrates the basic idea for a lookup table based sinusoidal signal gen­
erator. The samples of one period of the signal

' 2n
x ( n )  =  cos ( —  n n =  0 ,1 ........N - l

are stored in memory. A digital sinusoidal signal is generated by stepping through 
the table and wrapping around at the end when the angle exceeds 2x.  This can be 
done by using modulo-N addressing (i.e.. using a “circular” buffer). Samples of x ( n )  
are feeding the ideal D/A converter every T  seconds.
(a) Show that by changing F, we can adjust the frequency F{, of the resulting analog 

sinusoid.
(b) Suppose now that Fs = l / T  is fixed. How many distinct analog sinusoids can be 

generated using the given lookup table? Explain.

xa(t) = cos 2tt F0t

Figure P9.12

9.13 Suppose that we represent an analog bandpass filter by the frequency response

H(F)  =  C(F -  Fc) + C*{—F -  Fc)

where C ( f )  is the frequency response of an equivalent lowpass filter, as shown in 
Fig. P9.13.
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(a) Show that the impulse response c(r) of the equivalent lowpass filter is related to 
the impulse response h(t) of the bandpass filter as follows:

(b) Suppose that the bandpass system with frequency response H ( F ) is excited by a 
bandpass signal of the form

where u(r) is the equivalent lowpass signal. Show that the filter output may be 
expressed as

9.14* Consider the sinusoidal signal generator in Fig. P9.14, where both the stored sinusoidal

and the sampling frequency Fs =  1 / T  are fixed. An engineer wishing to produce a 
sinusoid with period 2N  suggests that we use either zero-order or first-order (linear) 
interpolation to double the number of samples per period in the original sinusoid as 
illustrated in Fig. P9.14(a).
(a) Determine the signal sequences v(n) generated using zero-order interpolation 

and linear interpolation and then compute the total harmonic distortion (THD) 
in each case for N  =  32, 64. 128.

(b) Repeat part (a) assuming that all sample values are quantized to 8 bits.
(c) Show that the interpolated signal sequences y(n) can be obtained by the system 

shown in Fig. P9.14(b). The first module inserts one zero sample between suc­
cessive samples of x(n ). Determine the system H(z)  and sketch its magnitude 
response for the zero-order interpolation and for the linear interpolation cases. 
Can you explain the difference in performance in term s of the frequency response 
functions?

h(t) =  2Re[c(t)ej2jrF{']

x(t) =  Re[u(f)e-'2’rF,''3

y(r) =  Re[r(/)e-'2)rfV']

where

(Hint: Use the frequency domain to prove this result.)

C(F)

F
- 8 0 B Figure P9.13

data
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Interpolated values

(a> Figure P9.13 (a)

Insert jc/n)
U(r\

zeros n \ i )

0» Rpire P9.13 (b)

(d) Determine and sketch the spectra of the resulting sinusoids in each case both 
analytically [using the results in part (c)] and evaluating the DFT of the resulting 
signals.

(e) Sketch the spectra of x, (n) and j»(n), if x(n) has the spectrum shown in Fig. P9.14(c) 
for both zero-order and linear interpolation. Can you suggest a better choice for
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0 n
3 3

(c) Figure P9.13 (c)

9.15 Let xa(t) be a time-limited signal: that is, xa(t) =  0 for |/| > t , with Fourier transform 
X „ (F ) .  The function X „ ( F )  is sampled with sampling interval &F =  1/T<.
(a) Show that the function

(b) Show that X „(F) can be recovered from the samples Xa(kSF), - o c  < k < oc if 
T , >  2 t .

(c) Show lhal if Tx < 2r. there is “time-domain aliasing” that prevents exact recon­
struction of XU(F).

(d) Show that if 7, > 2r, perfect reconstruction of X a(F) from the samples X(k5F)  
is possible using the inlerpolation formula

CC

can be expressed as a Fourier series with coefficients

1
ct =  y X J k & F )

OO sin{ ( j i /S F ) ( .F  ~ k S F ) ]  

( n / 8 F ) ( F  - k S F )
X J F )  =  ^ 2  X a(k&F)



10
Multirate Digital Signal 
Processing

In m any practical app lica tions o f d igital signal processing , o n e  is faced w ith th e  
p rob lem  o f changing the  sam pling  ra te  o f  a signal, e ith e r  increasing  it o r decreasing  
it by som e am o u n t. F o r exam ple , in te lecom m unication  system s th a t transm it and  
receive d ifferen t types o f signals (e.g., te le type , facsim ile, speech , v ideo, e tc .), th e re  
is a req u irem en t to  process the  various signals a t d iffe ren t ra te s  co m m en su ra te  w ith  
the  co rre spond ing  bandw id ths o f th e  signals. T h e  process o f converting  a signal 
from  a given ra te  to  a d iffe ren t ra te  is called sampl ing  rate conversion.  In tu rn , 
system s th a t em ploy  m ultip le  sam pling  ra tes  in th e  p rocessing  o f d ig ita l signals are  
called  multirale digital signal  process ing systems.

Sam pling ra te  conversion  o f a d igital signal can be  accom plished  in o n e  of 
tw o general m ethods. O n e  m e th o d  is to  pass th e  digital signal th ro u g h  a D /A  
converter, filter it if necessary , and  th e n  to  resam ple  the resu ltin g  analog  signal at 
the  desired  ra te  (i.e., to  pass th e  analog  signal th ro u g h  an A /D  co n v erte r). T he 
second m eth o d  is to  p erfo rm  th e  sam pling  ra te  conversion  en tire ly  in th e  d igital 
dom ain .

O n e  ap p a re n t ad v an tag e  o f the  first m eth o d  is th a t th e  new  sam pling  ra te  
can be arb itra rily  se lec ted  an d  need  n o t have any  special re la tio n sh ip  to  th e  old 
sam pling  ra te . A  m ajo r d isadv an tag e , how ever, is th e  signal d is to rtio n , in tro d u c ed  
by th e  D /A  co n v e rte r  in th e  signal reco n stru c tio n , and  by the  q u an tiza tio n  effects 
in the  A /D  conversion . Sam pling  ra te  conversion  p e rfo rm ed  in  th e  d igital dom ain  
avoids this m ajo r d isadvan tage .

In th is c h a p te r  w e describ e  sam pling  ra te  conversion  an d  m u ltira te  signal 
processing  in th e  d ig ita l d om ain . F irs t w e describe  sam pling  ra te  conversion  by a 
ra tio n a l fac to r an d  p resen t severa l m eth o d s fo r im p lem en ting  th e  ra te  co n v erte r, in ­
cluding single-stage and  m ultis tag e  im p lem en ta tio n s. T h en , w e d escribe  a m ethod  
fo r sam pling  ra te  conversion  by an  a rb itra ry  fac to r and  discuss its im p lem en ta tion . 
Finally , we p resen t severa l app lica tions o f sam pling  ra te  co n version  in m u ltira te  
signal p rocessing  system s, w hich inc lude  th e  im p lem en ta tio n  o f  n arro w b an d  fil­
ters, digital filter banks, an d  q u a d ra tu re  m irro r filters. W e a lso  discuss the  use o f

782
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q u a d ra tu re  m irro r filters in su b b an d  coding, transm u ltip lex ers , and  finally over- 
sam pling A /D  and  D /A  converters.

10.1 INTRODUCTION

T he p rocess o f sam pling  ra te  conversion  in th e  d ig ital d om ain  can  be v iew ed as 
a linear filtering o p e ra tio n , as illu stra ted  in Fig. 10.1(a). T h e  inp u t signal jr(n) 
is ch aracterized  by th e  sam pling  ra te  Fx =  \ / T x an d  the  o u tp u t signal y ( m)  is 
ch arac te rized  by th e  sam pling  ra te  Fv =  1/7V, w here  Tx an d  Ty are  th e  c o rre ­
sp o nd ing  sam pling  in tervals. In  th e  m ain  p a r t o f  o u r  tre a tm e n t, th e  ra tio  Fy/ F x is 
co n stra in ed  to  be ra tional,

£ = L
Fx D

w here D  an d  /  a re  relatively  p rim e in tegers. W e shall show  th a t th e  linear filter 
is charac te rized  by a tim e-varian t im pulse response , d en o ted  as h ( n ,m ) .  H en ce  
th e  inp u t x(n)  and  th e  o u tp u t v(m)  a re  re la ted  by the  co n vo lu tion  sum m ation  for 
tim e-v a rian t system s.

T h e  sam pling  ra te  conversion  process can also be u n d e rsto o d  from  the po in t 
o f view of digital resam pling  o f the  sam e analog  signal. L et x( i )  be  th e  a n a ­
log signal th a t is sam pled  at th e  first ra te  Fx to  g en e ra te  x(n) .  T he  goal o f 
ra te  conversion  is to  o b ta in  a n o th e r  se quence  y(m ) d irec tly  from  jr(n). w hich 
is equal to  the  sam pled  values o f x( t )  a t a  second ra te  Fy. A s is d ep ic ted  in 
Fig. 10.1(b), y(m ) is a tim e-sh ifted  version o f * (n ). Such a tim e shift can be

x(n) Linear filter y{i")
k(n, m)

Fx mT
Tx

(a)
ky

(b)

Figure 10.1 Sampling rate conversion viewed as a linear filtering process.
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rea lized  by using  a lin e a r  filter th a t has a flat m agn itu d e  resp o n se  an d  a linear 
p h ase  response  (i.e., it has a frequency  resp o n se  o f e~>u>r‘, w h ere  r, is th e  tim e 
delay  g en e ra ted  by th e  filter). If  the  tw o sam pling  ra te s  a re  n o t equ a l, the  re ­
q u ired  am o u n t o f tim e shifting  will vary  from  sam ple  to  sam ple , as show n in 
Fig. 10.1(b). T h u s th e  ra te  c o n v e rte r  can be  im p lem en ted  using  a  se t o f linear 
filters th a t have th e  sam e flat m ag n itu d e  re sp o n se  b u t g e n e ra te  d iffe ren t tim e 
delays.

B e fo re  considering  th e  gen era l case o f  sam pling  ra te  conversion , we shall 
co n sid er tw o special cases. O n e  is th e  case o f  sam pling  ra te  re d u c tio n  by an  in teger 
fac to r D,  and  th e  second is th e  case o f  a  sam pling  ra te  increase  by  an  in te g e r facto r 
I .  T h e  process o f  red u c in g  th e  sam pling  ra te  b y  a  fac to r D  (d o w nsam pling  by D)  
is called  decimation.  T he  process o f  in creasing  th e  sam pling  ra te  by an  in teg er 
fac to r I  (upsam pling  by  I )  is ca lled  interpolation.

10.2 DECIMATION BY A FACTOR D

L et us assum e th a t th e  signal x(n)  w ith sp e c tru m  X(co) is to  be dow nsam pled  
by an  in teg er fac to r D.  T h e  spec tru m  X(a>) is assum ed  to  be  n o n zero  in the  
frequency  in te rv a l 0  <  )co\ < n  o r, equ ivalen tly , \F\ < Fx /2.  W e know  th a t  if we 
red u ce  th e  sam pling  ra te  sim ply  by se lecting  every  D th  value o f  x (n) ,  th e  resu lting  
signal will be an aliased  version  o f jr(n), w ith a  fo ld ing  f req u e n cy  o f FX/ 2D.  T o  
avoid  aliasing, w e m ust first red u ce  th e  bandw id th  o f x(n)  to  Fmax =  FX/ 2 D  or, 
equivalen tly , to  a>max =  n j D .  T hen  we m ay dow nsam ple by D  an d  thus avoid 
aliasing.

"Hie decim atio n  p rocess is illu stra ted  in  Fig. 10.2. T h e  in p u t se q u en ce  x{n)  is 
p assed  th ro u g h  a low pass filter, ch a rac te rized  by th e  im pulse resp o n se  h ( n ) and  a 
frequency  response  HD(a>), w hich ideally  satisfies th e  co n d itio n

H d (o>) =  ( J ’ M * * ! D  (10.2.1)
10 , o therw ise

T h u s th e  filter e lim in a tes  th e  spectrum  o f  X (a>) in the  range n / D  < w < n .  O f 
course, th e  im plication  is th a t on ly  the  frequ en cy  co m p o n en ts  o f  x i n )  in th e  range 
M  < tc/ D  a re  o f  in te rest in fu rth e r  p rocessing  o f th e  signal.

T h e  o u tp u t o f th e  filter is a  se q u en ce  v(n)  g iven as
OC

v(n)  =  Y ^ ^ ) x ( n  -  k) (10.2.2)
t=o

X(fl)
h(n)

i<n) 1! Downsampler yim)
W

1 i\ Fx

Figure 103. Decimation by a factor D.
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w hich is th en  dow nsam pled  by th e  fac to r D  to  p ro d u ce  y(m).  T hus

y (m)  =  v ( m D )

=  h( k )x { mD  — k)
(10.2.3)

A lth o u g h  th e  filtering o p e ra tio n  on  x(n)  is iin ea r  and  tim e invarian t, the 
d ow nsam pling  o p e ra tio n  in com bin a tio n  w ith the filtering  resu lts in a tim e-varian t 
system . T h is is easily verified. G iven  the  fact th a t x  (n) p ro d u ces y(m),  w e n o te  
th a t x ( n  — no) does n o t im ply y(n  — no) unless no is a m u ltip le  o f D.  C onsequen tly , 
th e  o vera ll linear o p e ra tio n  ( lin ear filtering fo llow ed by dow nsam pling) on x(n)  is 
n o t tim e invarian t.

T h e  frequency-dom ain  characteristics o f th e  o u tp u t sequence  y (m)  can be 
o b ta in ed  by re la tin g  th e  spectrum  o f  y (m ) to  th e  sp e c tru m  of th e  inp u t sequence  
x(n) .  F irs t, it is conven ien t to  define a se q uence  v(n)  as

C learly , v(n)  can be view ed as a sequence  o b ta in ed  by m ultiplying v(n)  w ith a 
period ic  tra in  o f im pulses p (n ), w ith p erio d  D,  as illu stra ted  in Fig. 10.3. T h e  
d isc re te  F o u rie r  se ries rep re sen ta tio n  o f p(n)  is

n =  0, ± D ,  ± 2 D , . . .  
o therw ise

(10.2.4)

(10.2.5)

H ence

v(n)  =  v(n)p(n) (10.2 .6)

and

y ( m)  =  v (mD)  =  v ( m D ) p ( m D )  — v ( mD ) (10.2.7)

- 6  - 5  - 4  - 3  - 2  (-1 0 1 2 3 4 5
n

Pin)

n
-6 -3 0 3 6

Figure 10 3  Multiplication of v(n) with a periodic impulse train pin) with period
D = 3.



N ow  th e  z -transfo rm  o f the  o u tp u t se q uence  y (m)  is
OO

y ( z )  =  £
m=—oc

oo
=  J 2  v(rnD)z~m (10.2.8)

ms=—oc 

00
Y(z)  =  ] T  v ( m ) z - m/D

m=—oc

w here th e  last s tep  follow s fro m  th e  fact th a t v(m)  =  0, excep t a t m u ltip les o f D. 
B y m ak ing  use o f th e  re la tio n s  in (10.2.5) an d  (10.2.6) in (10.2.8), we o b ta in
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1 u ~ l  i __ ejlxmk/D | „-m/DY(z)  =  v
m=—cc 

j  D—1 oc

*=0 m=-oo

<t=0

j2nk/D 1/D^-m

(10.2.9)

" * - 0

=  7J £  HD( e- i2* t /Dz l/D) X ( e - W > z l /D)
*=0

w here th e  last step  follow s from  th e  fact th a t V(z) =  H q {z ) X ( z ).
By evaluating  y ( 2) in th e  u n it circle, we o b ta in  the  sp e c tru m  o f th e  o u tp u t 

signal y{m).  S ince th e  ra te  o f  y (m)  is Fy =  1/TV, th e  frequency  variab le , w hich we 
d e n o te  as wv, is in rad ian s and  is re la tiv e  to  the sam pling  ra te  F v,

ti)y =  =  2 n F T s. (10.2.10)
Fy

Since the sam pling  ra tes  a re  re la te d  by th e  expression

Fy =  ^  (10.2.11)

it follow s th a t th e  frequency  v a riab les wy and

2tr F
cox =  — - =  2 n F T x (10.2.12)

Fx

a re  re la ted  by

a>v =  D ojx (10.2.13)

T hus, as expected , th e  frequency  ran g e  0  <  \ojx \ <  n / D  is s tre tc h e d  in to  th e  
co rre sp o n d in g  frequency  ran g e  0 <  \a>y l < n  by th e  dow nsam pling  process.
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W e conclude th a t th e  sp ec tru m  Y (wv), w hich is o b ta in e d  by evaluating  (10.2.9) 
on  the un it circle, can be expressed  as

W ith  a p ro p e rly  designed  fitter H D(a)), the  aliasing  is e lim in a ted  an d , consequently , 
all b u t the first te rm  in (10.2.14) vanish. H en ce

fo r 0 < |wv| <  tt. T he sp e c tra  fo r the sequences x i n) ,  v{n),  an d  y(m)  a re  illu stra ted  
in Fig. 10.4.

10.3 INTERPOLATION BY A FACTOR I

A n increase in the sam pling  rate  by an in teger fac to r o f I  can be accom plished 
by in te rp o la tin g  I — 1 new  sam ples betw een  successive values o f th e  signal. T he 
in te rp o la tio n  process can be accom plished in a variety  o f ways. W e shall describe 
a process th a t p reserves th e  spectra l shape o f th e  signal se q uence  x(n) .

an d  its sam pling  ra te  is iden tical to  th e  ra te  o f y{m).  T his seq u en ce  has a z-  
tran sfo rm

T he co rre sp o n d in g  sp ectrum  of v(m)  is o b ta in ed  by ev a lu a tin g  (10.3.2) o n  the  unit 
circle. T hus

w here  <uv d en o tes  the  frequency  variab le  re lative to  th e  new  sam pling  ra te  F, (i.e., 
o)y =  2n F / F y ) .  N ow  th e  re la tionsh ip  b e tw een  sam pling  ra te s  is Fy =  1 Fx and  
h ence , th e  frequency  variab les (oI and  toy a re  re la ted  acco rd ing  to  th e  fo rm ula

(10.2.14)

(10.2.15)

L et u(m) d en o te  a sequence  w ith a ra te  F v =  I Fx , which is o b ta in ed  from  
x i n )  by add ing  /  -  1 zeros betw een  successive values o f x{n) .  T hus

(10.3.1)

V(z)  =  Y ,  v ^ z ~ m
m = —oc 

oc

(10.3.2)

=  X i z ' )

Vicoy) =  X { w yI) (10.3.3)
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I Via,)I

Figure 10.4 Spectra of signals in the 
decimation of x(n)  by a factor D.

T h e  sp e c tra  X(a>x) an d  V(a>y) are  illu stra ted  in Fig. 10.5. W e obse rv e  th a t the 
sam pling  ra te  increase , o b ta in ed  by th e  ad d itio n  o f  /  — 1 ze ro  sam ples betw een  
successive values o f  x(n) ,  resu lts in a signal w hose sp ectrum  V(<wv) is an  /-fo ld  
period ic  rep e titio n  o f  the  in p u t signal sp ec tru m  X

Since only  th e  frequency  co m p o n en ts  o f  x  (n) in th e  ra n g e  0 <  coy < n j l  
a re  un ique , th e  im ages o f  X ( oj) above coy =  n f l  shou ld  b e  re je c te d  by  passing 
th e  se q uence  v ( m ) th rough  a low pass filter w ith  freq u en cy  re sp o n se  Hi(a>y) tha t
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Figure 10.5 Spectra of .run and run  
where V(a>v) - X(wvl).

ideally  has th e  characteristic

Hl((i}y) = C. 0 < |a>v| < n / I  
0. o therw ise

(10.3.5)

w h ere  C is a scale fac to r req u ired  to  p ro p erly  norm alize  the  o u tp u t sequence  v(/7?). 
C o n seq u en tly , the  o u tp u t spectrum  is

(10.3.6)

T h e  scale fac to r C is se lec ted  so th a t th e  o u tp u t y ( m ) =  jc ( m/ 1)  fo r m =  0, 
± / ,  +2 1 .........F o r m athem atica l conven ience , we select th e  po in t m  =  0. T hus

y(0) =  2~  /

-  £. r
~ J_n

(10.3.7)

X  {(I)vI)d(Dx

(10.3.8)

Since a>y =  tox / I , (10.3.7) can be exp ressed  as

c  i r
v(0) =  — —  /  X ( wx)dwx 

I  2n

C
=  - x ( 0 )

T h ere fo re , C  =  /  is th e  desired  no rm aliza tion  factor.
F inally , we ind ica te  th a t th e  o u tp u t sequence  y (m)  c an  be exp ressed  as a 

co nvo lu tion  o f  th e  se q u en ce  v(n)  w ith  th e  unit sam ple  resp o n se  h(n)  o f th e  low pass



filter. T hus
OC

y ( m)  =  Y 2  h(m — k)v(k)  (10.3.9)
k = —oc

Since v(k)  =  0 excep t a t m ultip les o f  / ,  w h ere  v ( k l )  =  x(k) ,  (10.3.9) becom es

OO
y ( m )=  Y 2  h { m - k l ) x ( k )  (10.3.10)
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10.4 SAMPLING RATE CONVERSION BY A RATIONAL FACTOR U D

H aving  discussed th e  special cases o f decim ation  (dow nsam pling  by a fac to r D ) 
and  in te rp o la tio n  (upsam pling  by a  fac to r  / ) ,  w e now  co n s id er th e  genera l case 
o f sam pling  ra te  conversion  by a  ra tio n a l fac to r I / D .  Basically , we can achieve 
th is sam pling  ra te  conversion  by first p e rfo rm in g  in te rp o la tio n  by  the fac to r I  and  
th en  decim ating  th e  o u tp u t o f the  in te rp o la to r  by the  fac to r D.  In  o th e r  w ords, a 
sam pling  ra te  conversion  by th e  ra tio n a l fac to r I ( D  is accom plished  by cascading 
an in te rp o la to r  w ith a  d ec im ato r, as illu stra ted  in Fig. 10.6.

W e em phasize th a t th e  im p o rtan c e  o f p e rfo rm in g  th e  in te rp o la tio n  first and  
th e  decim ation  second , is to  p reserv e  th e  desired  spec tra l characte ris tics  o f x(n).  
F u rth e rm o re , w ith th e  cascade configu ra tion  illu stra ted  in Fig. 10.6, th e  tw o filters 
w ith im pulse response  {/»„(/)} and  {hd (l)\  a re  o p e ra te d  at the  sam e ra te , nam ely  I F X 
and  h ence  can be com bined  in to  a single low pass filter w ith im pu lse  response  h(l)  
as illu stra ted  in Fig. 10.7. T h e  freq u en cy  resp o n se  H(tov) of th e  com bined  filter 
m ust in co rp o ra te  th e  filtering o p e ra tio n s  fo r b o th  in te rp o la tio n  and  decim ation , 
and  h ence  it shou ld  ideally  possess the  frequency  resp o n se  charac te ris tic

0 <  \&v\ < m m ( n / D , n / 1 )  
o therw ise

(10.4.1)

w h ere  cut. =  2x F / F v =  2n F / I  Fx =  a)x/ / .

Rate =  /F t Rate =  — Fx =  Fv 
D

Figure 10.6 Method for sampling rate conversion by a factor f /D .
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x(n) Upsampler u(t) Lowpass
filter
h(D

w([) Down sampler v(m)

Rate = F, T / 4D

Rate =

Rate =  IFX =  Fv

Figure 10.7 Method for sampling rate conversion by a factor 1/D.

In  the  tim e dom ain , th e  o u tp u t o f the  u p sam p le r is th e  sequence  

( / / / ) ,  / =  0, ± / ,  ± 2 / , . . .
u (0  =  ( j ( ,[ 0. o therw ise

and  the o u tp u t of th e  lin ear tim e-invarian t filter is
OO

w(l)  =  ^  h(! — k)v(k)
k=-oc

oc
=  h(l  — k l ) x ( k )

(10.4.2)

(10.4.3)

Finally, th e  o u tp u t o f th e  sam pling  ra te  co n v e rte r  is th e  seq u en ce  (y(m)}, w hich is 
o b ta in ed  by dow nsam pling  the se q uence  {«>(/)} by a fac to r  o f D.  T hus

v(m) =  w{mD)

~  (10.4.4)
=  2_j h ( m D  — k l ) x ( k )

k——oc

It is illum inating  to  express (10.4.4) in a d iffe ren t fo rm  by m ak ing  a change 
in variab le . L et

mD
k = (10.4.5)

w h ere  the  n o ta tio n  [ r j  d en o te s  the  largest in teg er c o n ta in ed  in r. W ith  th is change 
in variab le , (10.4.4) becom es

y ( m)  =  Y j h ( m D  — -----  ~  ” 1  (10.4.6)
oc V - ^ - /  V - ^ _ /

W e no te  th a t

m D  —
m D

I  -  m D m o d u lo  I

=  (mD)!

C o nsequen tly , (10.4.6) can  be ex p ressed  as

00 /  L) \
y ( m ) -  Y j  h(~n I  +  (m D ) i ) x  ( —j -  ~  n ) (10.4.7)

n=-oc  VL J  /



It is a p p a re n t from  th is fo rm  th a t th e  o u tp u t y (m)  is o b ta in e d  by passing  the  
inpu t sequence  x(n)  th rough  a tim e-v a rian t filter w ith  im pulse resp o n se

g ( n , m )  — h ( n l  + ( m D ) i )  — o o < m , n < o o  (10.4.8)

w here  h(k)  is th e  im pulse resp o n se  o f the  tim e-invarian t low pass filter o p era tin g  
at th e  sam pling  ra te  1FX. W e fu rth e r  o b se rve , th a t fo r any in te g e r  k,

g ( n , m -I- k l )  =  h ( n l  -I- ( mD  -I- k D I ) , )

=  h ( n l  +  ( m D ) , )  (10.4.9)

=  g ( n , m )

H en ce  g(n,  m)  is p eriod ic  in  th e  variab le  m  w ith p e rio d  I.
T h e  frequency-dom ain  re la tio n sh ip s can be o b ta in ed  by com b in in g  th e  resu lts 

o f th e  in te rp o la tio n  and  decim ation  processes. T hus the  sp e c tru m  a t th e  o u tp u t of 
the  lin ear filter w ith im pulse resp o n se  h(l)  is

V (a) v) =  H(aiv)X(a>vl )

I X ( w vI ) ,  0 <  IojJ <  m in (7 r /0 , n / I )  (10.4.10)
0, o therw ise

T he spectrum  o f  th e  o u tp u t se q uence  y(m ), o b ta in ed  by d ec im atin g  th e  sequence  
v(n)  by a fac to r o f  D , is

=  ao .4 .1 1 )

w here  w v =  D(ov. Since th e  lin ear filter p rev en ts  aliasing  as im p lied  by (10.4.10), 
the  sp ectrum  o f  th e  o u tp u t seq u en ce  given by (10.4.11) red u ces to
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o therw ise

10.5 FILTER DESIGN AND IMPLEMENTATION FOR SAMPLING-RATE 
CONVERSION

A s in d ica ted  in th e  discussion ab ove, sam pling  ra te  conversion  b y  a  fac to r I } D  can 
be ach ieved  by first increasing  th e  sam pling  ra te  by  1, accom plished  by inserting  
7 - 1  zeros betw een  successive values o f  th e  in p u t signal x(n) ,  fo llow ed  by linear 
filtering  o f the resu lting  se q uence  to  elim inate  th e  u n w an ted  im ag es o f X  (co), and  
finally, by dow nsam pling  the  filte red  signal by th e  fac to r  D.  In  th is sec tion  we 
consid er th e  design  an d  im p lem en ta tio n  o f th e  lin ear filter.



Sec. 10.5 Filter Design and Implementation for Sampling-Rate Conversion 793

10.5.1 Direct-Form FIR Filter Structures

In  p rinc ip le , the sim plest rea liza tion  o f the filter is th e  d irec t-fo rm  F IR  s tru c tu re  
w ith system  function

M -l

H{z)  =  Y b( k] z~k (10-5 -1)
t =o

w here  {/j {/:)} is the un it sam ple response  o f the  F IR  filter. T he low pass filter 
can  be desig n ed  to  have lin ear p hase , a specified p assb an d  ripp le  an d  sto p b an d  
a tte n u a tio n . A ny  o f th e  stan d ard , well know n F IR  filter design tech n iq u es (e.g., 
w indow  m eth o d , frequency  sam pling  m e th o d ) can be used  to  carry  o u t this design. 
T h u s we will have the  filter p aram e te rs  {/j (£)}, w hich allow  us to  im p lem en t the 
F IR  filter d irec tly  as show n in Fig. 10.8.

A lth o u g h  th e  d irec t-fo rm  F IR  filter rea liza tion  illu stra ted  in Fig. 10.8 is sim ­
ple , it is a lso  very inefficient. T he inefficiency resu lts fro m  th e  fact th a t the  up- 
sam pling  p rocess in troduces /  — 1 zeros b e tw een  successive p o in ts  o f the  inpu t 
signal. If  I  is large, m ost o f the  signal co m p o n en ts  in th e  F IR  filter are  zero. C o n ­
sequen tly , m ost o f the m ultip lications and  ad d itions resu lt in zeros. F u rth e rm o re , 
th e  dow nsam pling  p rocess at th e  o u tp u t o f th e  filter im plies th a t only one o u t o f

Figure 10.8 Direct-form realization of FIR filter in sampling rate conversion by
factor I/D.
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every  D  o u tp u t sam ples is re q u ire d  a t th e  o u tp u t o f  th e  filter. C o n seq u en tly , only 
o ne  o u t o f every  D  possib le  va lues a t th e  o u tp u t o f  the  filter sh o u ld  be com pu ted .

T o  develop  a m o re  efficient filter s tru c tu re , le t us beg in  w ith  a  d ec im ato r  th a t 
reduces the sam pling  ra te  by an  in teg e r  fac to r D.  F rom  o u r  p rev ious discussion, 
th e  decim ato r is o b ta in ed  by passing  th e  in p u t se q uence  x ( n ) th ro u g h  an  F IR  filter 
and  th en  dow nsam pling  th e  filter o u tp u t by a fac to r £>, as illu stra ted  in Fig. 10.9a. 
In  this configuration , th e  filter is o p e ra tin g  a t th e  high sam pling  ra te  Fx, while 
only o ne  o u t o f every  D  o u tp u t sam p les is ac tually  needed . T h e  logical so lu tion  
to  th is inefficiency p ro b lem  is to  em b ed  th e  dow nsam pling  o p e ra tio n  w ith in  the  
filter, as illustra ted  in th e  filter rea liza tio n  given in Fig. 10.9b. In  this filter s tru c­
tu re , all the  m u ltip lica tions and  ad d itio n s a re  p erfo rm ed  a t th e  low er sam pling  
ra te  Fx / D.  T hus we have ach ieved  th e  d es ired  efficiency. A d d itio n a l red u c tio n  in 
com pu ta tion  can  be ach ieved  by exp lo iting  th e  sym m etry  charac te ris tics  of 
F igure 10.10 illu stra tes an  efficient rea liza tion  o f th e  d ec im ato r  in w hich th e  F IR  
filter has linear phase , and  h en ce  {/i{&)} is sym m etric .

N ext, let us consider th e  efficient im p lem en ta tio n  o f an  in te rp o la to r , which 
is realized  by first inse rting  I  — l  ze ro s b e tw een  sam ples o f x ( n)  and  th en  filtering 
th e  resu lting  sequence. T h e  d irec t-fo rm  rea liza tio n  is illu stra ted  in  Fig. 10.11. T h e  
m ajo r p rob lem  w ith this s tru c tu re  is th a t th e  filter co m p u ta tio n s are  p erfo rm ed  at 
th e  high sam pling ra te  1FX. T h e  d es ired  sim plification  is ach ieved  by first using the 
tran sp o sed  form  o f the  F IR  filter, as illu stra ted  in Fig. 10.12a, a n d  th en  em bedding  
the  upsam pler w ithin th e  filter, as show n in Fig. 10.12b. T hus, all th e  filter m ultip li­
ca tions are  perfo rm ed  at th e  low ra te  Fx, w hile th e  upsam pling  process in tro d u ces 
1 — 1 zeros in each  o f  the  filte r b ran ch es o f th e  stru c tu re  show n in Fig. 10.12b. T he 
re a d e r  can  easily verify th a t th e  tw o filteT s tru c tu res  in Fig. 10.12 a re  equ ivalen t.

It is in teresting  to  n o te  th a t th e  s tru c tu re  o f  the in te rp o la to r , show n in 
Fig. 10.12b, can b e  obtained by tran sp o sin g  th e  s tru c tu re  o f  th e  d ec im a to r  show n 
in Fig. 10.9. W e observe th a t th e  tran sp o se  o f  a d ec im ato r is an  in te rp o la to r , and  
vice versa. T hese re la tio n sh ip s are  illu stra ted  in Fig. 10.13, w h ere  (b ) is obtained 
by transposing  (a ) an d  (d) is obtained by tran sp o sin g  (c). C onseq u en tly , a deci­
m a to r  is the dual o f an in te rp o la to r , an d  vice versa. F rom  th ese  re la tionsh ips, it 
follow s th a t th e re  is an  in te rp o la to r  w hose s tru c tu re  is th e  dual o f the  decimatoT 
show n in Fig, 10.10, w hich exp lo its th e  sym m etry  in h(n).

10.5.2 Polyphase Filter Structures

T h e  com puta tional efficiency o f th e  filter s tru c tu re  show n in Fig. 10.12 can also 
be achieved by reducing  th e  large F IR  filter o f  leng th  M  in to  a  se t o f  sm aller 
filters o f length  K  =  M / 1 , w here M  is se lec ted  to  b e  a  m u ltip le  o f  I .  T o  d e m o n ­
s tra te  th is po in t, le t us consid er th e  in te rp o la to r  given in Fig. 10.11. Since the  
upsam pling  p rocess inse rts 1 — 1 ze ro s betw een  successive valu es o f x(n) ,  on ly  K  
o u t o f  th e  M  inp u t values s to red  in th e  F IR  filter a t any o ne  tim e a re  nonzero . 
A t o ne  tim e in stan t, th e se  n o n ze ro  values coincide and  a re  m u ltip lied  by  th e  fil­
te r  coefficients h{0), h ( I ) ,  h ( 2 l ) , . . . ,  h ( M  — I) .  In  th e  fo llow ing tim e in stan t, the
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(a)

Figure 10.9 Decimation by a factor D.
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h(M -  2)

M M -  1)
Figure 10.11 Direct-form realization of 
FIR filter in interpolation by a factor /,

n o n zero  values o f th e  in p u t se q uence  coincide an d  a re  m u ltip lied  by the filter co­
efficients /?(!). h ( I  +  1), h(2I  +  1)___ h ( M  - 7  +  1), and  so on . T h is o b se rv a tio n
leads us to  define a se t o f sm aller filters, called p o lyphase  filters, w ith un it sam ple 
responses

pt (n)  =  h(k + n ! )  k =  0 , 1 , . . . ,  7 — 1
(10.5.2)

n = 0 , ~  1
w h ere  K  =  A//7 is an in teger.

F rom  th is  discussion it follow s th a t th e  se t o f 7 p o lyphase  filters can be 
a rra n g e d  as a p a ra lle l rea liza tion , and  th e  o u tp u t o f each  filter can be se lec ted  
by  a  co m m u ta to r  as illu stra ted  in  Fig. 10.14. T h e  ro ta tio n  o f  th e  co m m u ta to r  is 
in th e  coun terc lockw ise  d irec tio n  beg inn ing  w ith  th e  p o in t a t m ~  0. T hus, th e  
po ly p h ase  filters p erfo rm  th e  com p u ta tio n s a t th e  low  sam pling  ra te  Fx , and  the  
ra te  conversion  resu lts from  th e  fact th a t 7 o u tp u t sam ples a re  g en e ra ted , o ne  
from  each  o f  th e  filters, fo r each  in p u t sa m p le .’

T h e  d eco m p o sitio n  o f {/r{£)} in to  th e  se t o f 7 subfilters w ith  im pulse response  
Pk(n),  k  =  0, 1 , . . . ,  7 — 1, is consisten t w ith o u r  p rev io u s o b se rv a tio n  th a t th e  in p u t 
signal w as b e in g  filte red  by a period ically  tim e-v a rian t lin ea r  filter w ith  im pulse 
response

g ( n , m )  =  h ( n l  + (mD)[ )  (10.5.3)

w h ere  D  =  1 in the  case  o f th e  in te rp o la to r . W e n o te d  prev iously  th a t g(n,  m)  
varies period ica lly  w ith  p erio d  7. C onsequen tly , a  d iffe ren t se t o f coeffic ients a re  
u sed  to  g en e ra te  th e  se t o f  7 o u tp u t sam ples y (m) ,  m  =  0, 1 , . . . ,  I  -  1.

A d d itio n a l insigh t can be gained  ab o u t th e  characteristics o f the  se t o f p o ly ­
p h ase  sub filte rs by  n o tin g  th a t pk(n)  is o b ta in ed  from  h(n)  by decim ation  w ith  a 
fac to r  7. C o n seq u en tly , if  th e  o rig ina l filter frequency  re sp o n se  H  {co) is flat o v er 
th e  ran g e  0 <  M  <  co/ I , each  o f th e  po lyphase  subfilters possesses a re latively  flat



(b)

Figure 10.12 Efficient realization of an interpolator.
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(a) <b)

(O (d)
Figure 10.13 Duality relationships obtained through transposition.

Pi- i<")
Rate - Fr - IFX

Rate = Fx Rate = F,
Figure 10.14 Interpolation by use of polyphase filters.

response  o v er th e  range 0 <  |a>| < n  (i.e., th e  po lyp h ase  subfilters a re  basically  
all-pass filters an d  d iffer prim arily  in th e ir phase  ch aracteristics). T h is explains the  
reason  fo r th e  term  “p o ly p h ase” in describ in g .th ese  filters.

T he p o lyphase  filter can also  be  view ed as a se t o f  I  subfilters connec ted  to  a 
com m on delay  line. Ideally , th e  fcth subfilter will g e n e ra te  a fo rw ard  tim e sh ift o f
(.k / I ) T x, fo r k =  0, 1. 2 ........./  — 1, re la tive  to  the  ze ro th  subfilter. T h e re fo re , if th e
zero th  filter g en era tes  zero  delay , th e  frequency  resp o n se  o f  th e  Jtth subfilter is

pk((o) = e)wk/I

A  tim e sh ift o f an  in teger n u m b er o f inpu t sam pling  in tervals (e.g., ITX) can be 
g en e ra te d  by shifting th e  in p u t d a ta  in th e  d elay  line by I sam ples and  using th e  
sam e subfilters. By com bin ing  th ese  tw o m eth o d s, w e can  g en e ra te  an  o u tp u t th a t 
is sh ifted  fo rw ard  by an  am o u n t (/ +  i / I ) T x re la tiv e  to  th e  p rev ious ou tp u t.

By tran sp o sin g  th e  in te rp o la to r  s tru c tu re  in Fig. 10.14, we o b ta in  a com m u ­
ta to r  s tru c tu re  fo r a d ec im ato r based  on  the  para lle l b a n k  o f  p o lyphase  filters, as 
illu stra ted  in Fig. 10.15. T h e  un it sam ple respo n ses o f  th e  po lyphase filters a re
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Figure 10.15 Decimation by use of polyphase filters.

now  defined  as
Pk{n) =  h(k +  nD)  k =  0, 1____ O - l

(10.5.4)
n = 0 , 1 .........K - l

w h ere  K  =  M / D  is an in teg er w hen M  is se lec ted  to  be a m u ltip le  o f D.  T he 
co m m u ta to r  ro ta te s  in a  counterclockw ise d irec tion  sta rting  w ith  th e  filter po(n)  at 
m =  0 .

A lth o u g h  th e  tw o c o m m u ta to r  s tru c tu res fo r the  in te rp o la to r  and  th e  deci­
m a to r  ju st described  ro ta te  in a counterc lockw ise  d irec tion , it is also  possib le to  
derive  an equ ivalen t p a ir  o f c o m m u ta to r  s tru c tu res  having a clockw ise ro ta tion . 
In  th is a lte rn a tiv e  fo rm ula tion , th e  se ts o f p o lyphase  filters a re  defined to  have 
im pulse responses

P k ( n )  =  h ( n l  — k) k =  0 , 1 , . . . , / -  1 (10.5.5)

Pk( n ) = h { n D  - k )  * =  0 ,1 .........D -  1 (10.5.6)

fo r  the  in te rp o la to r  an d  d ec im ato r, respectively .

10.5.3 Time-Variant Filter Structures

H aving  described  the  filter im p lem en ta tio n  fo r  a  d ec im a to r  a n d  an  in te rp o la to r , 
let us now  consider the  genera l p ro b lem  o f sam pling  ra te  co n version  by th e  fac to r 
I / D .  In  th e  g enera l case o f sam pling  ra te  conversion  by a fa c to r  I / D ,  th e  filtering 
can b e  accom plished  by m ean s o f th e  lin ear tim e-v a rian t filte r d escrib ed  by the  
response  function

g(n,  m)  =  h ( n l  — (m D )/)  (10.5.7)

w here h(n)  is th e  im pulse response  o f th e  low -pass F IR  filter, w hich ideally , has 
th e  freq u en cy  resp o n se  specified by (10.4.1). F o r  conven ience  w e se lect th e  length 
o f  th e  F IR  filter {/i(n)} to  a m u ltip le  o f I  (i.e., M  =  K I ) .  A s a  co n sequence , th e  
se t o f  coeffic ients {#(«, m)} fo r each  m  = 0 ,  1, 2 , — 1, co n ta in s K  elem ents.
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Since g(n,  m)  is also  period ic  w ith  p erio d  I ,  as d e m o n s tra te d  in (10.4.9), it follow s 
th a t th e  o u tp u t y{m)  can be exp ressed  as

y ( m ) =  X I #  -  [_ y j  l ) x  - n )  (10.5.8)
n—0 \L  J  /

C o n cep tually , w e can th in k  o f  p e rfo rm in g  th e  co m p u ta tio n s specified by 
(10.5.8) by  p rocessing  blocks o f  d a ta  o f len g th  AT by a  se t o f  K  filter coeffic ients 
g ( n , m  — j_ m / l \ I ) ,  n =  0 , 1 , . . . ,  K  — 1. T h e re  are  I  such se ts o f coefficients, one 
se t fo r each  block o f  I  o u tp u t p o in ts  o f y{m) .  F o r  each  b lock o f 1 o u tp u t po in ts, 
th e re  is a  co rre sp o n d in g  b lock o f  D  in p u t p o in ts o f  x( n)  th a t e n te r  in the  co m p u ­
ta tio n .

T h e  b lock processing  a lg o rith m  for com pu ting  (10.5.8) can be visualized as 
illu stra ted  in Fig. 10.16. A  block  o f  D  in p u t sam ples is bu ffe red  and  sh ifted  in to  
a second  b u ffe r o f  leng th  K , o n e  sam ple a t a  tim e. T h e  shifting  from  th e  in p u t 
b u ffe r  to  th e  second  bu ffe r occurs a t a ra te  o f  one sam p le  each  tim e th e  q u an tity  
\ m D / I J increases by one. F o r each  o u tp u t sam ple  y( f ) ,  th e  sam ples from  the  
second  b u ffe r  a re  m ultip lied  by th e  co rre sp o n d in g  se t o f  filter coefficients g(n,  I) 
fo r n =  0, 1 ,___K  — 1, and  the  K  p ro d u c ts  a re  accu m u la ted  to  give y (/), fo r 1 =  0,

x(n) Coefficient storage

Figure 10.16 Efficient implementation of sampling-rate conversion by block pro­
cessing.
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1 , — 1. T hus th is com p u ta tio n  p ro d u ces /  o u tpu ts. I t is th en  re p e a te d  fo r a 
new  se t o f D  inp u t sam ples, and  so on.

A n  a lte rn a tiv e  m e th o d  fo r com pu ting  th e  o u tp u t o f the  sam ple  ra te  converte r, 
specified by (10.5.8), is by  m ean s o f  an  F IR  filter s tru c tu re  w ith  p eriod ica lly  varying 
filter coefficients. Such a s tru c tu re  is illu stra ted  in Fig. 10.17. T h e  inp u t sam ples 
x{n)  a re  p assed  in to  a sh ift reg iste r th a t  o p e ra te s  a t th e  sam pling  ra te  Fx and  is of 
leng th  K  =  M / 1 , w here  M  is th e  leng th  o f the  tim e-in v arian t F IR  filter specified by 
the  frequency  resp o n se  g iven by (10.4.1). E ach  stage  o f the reg is te r  is connec ted  to  
a ho ld-and -sam ple  device th a t serves to  coup le th e  inpu t sam ple  ra te  Fx to  th e  o u t­
p u t sam ple ra te  Fy =  (I / D ) F X. T he sam ple  at th e  inpu t to  each  ho ld-and-sam ple  
dev ice is held  until th e  nex t in p u t sam ple arrives an d  th en  is d iscarded . T h e  o u tp u t
sam ples of th e  h o ld -and-sam ple  dev ice are  tak en  a t tim es m D / l ,  m =  0, 1, 2 ........
W hen  b o th  th e  inp u t an d  o u tp u t sam pling  tim es co incide (i.e .. w hen  m D / I  is an 
in teg er), th e  inp u t to  th e  h o ld -and-sam ple  is changed  first and  th en  the  o u tp u t 
sam ples the new  inpu t. T h e  K  o u tp u ts  from  the  K  ho ld -an d -sam p le  devices are  
m ultip lied  by th e  period ica lly  tim e-vary ing  coeffic ients g(n,  m -  \ m / I \ l ) ,  fo r n =  0, 
1 , . . . ,  K -  1, and  the  resu lting  p ro d u c ts  are  sum m ed  to  yield y(m ). T he com pu­
ta tio n s a t the  o u tp u t o f th e  ho ld -and-sam ple  dev ices are  re p e a te d  a t th e  o u tp u t 
sam pling  ra te  o f F v =  ( I / D ) F X.

Finally, ra te  conversion  by a  ra tio n a l fac to r 1 / D  can also  be p e rfo rm ed  by 
use o f a polyphase filter having  1 subfilters. If  we assum e th a t the  m th sam ple

n(0.l).l = 0. I......./ -  I

Figure 10.17 Efficient realization of sampling-rate conversion by a factor //£>.



y ( m ) is com puted by taking the output o f the imth subfilter with input data x(n) ,  
x ( n  - 1 ) , . . . ,  x( n  — K  + 1 ) ,  in the delay line, the next sam ple y ( m + 1) is taken from  
the (i«+ i)st subfilter after shifting lm+j new sam ples in the delay lines where im+i =  
(i„ +  D )mod / and lm+1 is the integer part o f (im +  D ) / I . The integer im+i should be 
saved to  be used in determ ining the subfilter from which the next sam ple is taken.

Let us now dem onstrate the filter design procedure, first in the design o f  a 
decim ator, second in the design o f  an interpolator, and finally, in the design of a 
rational sam ple-rate converter.

Example 10.5.1
Design a decimator that downsamples an input signal x(n)  by a factor D = 2. Use 
the Remez algorithm to determine the coefficients of the FIR  filter that has a 0.1-dB 
ripple in the passband and is down by at least 30 dB in the stopband. Also determine 
the polyphase filter structure in a decimator realization that employs polyphase filters.

Solution A  filter of length M = 30 achieves the design specifications given above. 
The impulse response of the FIR filter is given in Table 10.1 and the frequency 
response is illustrated in Fig. 10.18. Note that the cutoff frequency is wc =  jr/2.

The polyphase filters obtained from h{n)  have impulse responses

p*(n) =  h(2n +  k) k =  0,1; n =  0 ,1 , , . . ,1 4

Note that po(n) =  h(2n) and p\{tt) =  h(2n + 1). Hence one filter consists of the even- 
numbered samples of h(n) and the other filter consists of the odd-numbered samples 
of h(n).

Example 10.5.2
Design an interpolator that increases the input sampling rate by a factor of I = 5. Use 
the Remez algorithm to determine the coefficients of the FIR  filter that has 0.1-dB 
ripple in the passband and is down by at least 30 dB in the stopband. Also, determine 
the polyphase filter structure in an interpolator realization based on polyphase filters.

Solution A  filter of length M  =  30 achieves the design specifications given above. 
The frequency response of the FIR  filter is illustrated in Fig. 10.19 and its coefficients 
are given in Table 10.2. The cutoff frequency-is wc = n/5.

The polyphase filters obtained from h(n) have impulse responses

pk{n) =  h(Sn +  jt) * =  0 ,1 ,2 ,3 ,4

Consequently, each filter has length 6.

Example 10.53

Design a sample-rate converter that increases the sampling rate by a factor 2.5. Use 
the Remez algorithm to determine the coefficients of the FIR  filter that has 0.1-dB 
ripple in the passband and is down by at least 30 dB in the stopband. Specify the 
sets of time-varying coefficients g(n,m)  used in the realization of the sampling-rate 
converter according to the structure in Fig. 10.17.

Solution The FIR filter that meets the specifications of this problem is exactly the 
same as the filter designed in Example 10.5.2. Its bandwidth is tt/5.

Sec. 10.5 Fitter Design and Implementation for Sampling-Rate Conversion 803
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F I N I T E  I M P U L S E  R E S P O N S E  (FIR) 

L I N E A R - P H A S E  D I G I T A L  F I L T E R  D E S I G N  

R E M E Z  E X C H A N G E  A L G O R I T H M

F I L T E R  L E N G T H  = 3 0

TABLE 10.1 COEFFICIENTS OF LINEAR-PHASE FIR FILTER IN
EXAMPLE 10.5.1

I M P U L S E  R E S P O N S E  ’

H  { 1) = 0 .6 0 2 5 6 1 6 5 E - 0 2 = H  ( 30)

H ( 2) = -0 .1 2 8 1 7 1 4 3 E - 0 1 = H  ( 29)

H ( 3) -0..2 8 5 8 2 0 6 6 E - 0 2 = HI 28)

H( 4) = 0..1 3 6 6 3 3 4 6 E - 0 1 H  ( 27)

H( 5) = -0,,4 6 6 8 8 9 6 1 E - 0 2 = H  ( 26)

H( 6) = -0,.1 9 7 0 4 4 1 5 E - 0 1 = H ( 25)

H ( 7) = 0,.1 5 9 8 4 6 2 3 E - 0 1 = H  ( 24)

H( 8) = 0 . 2 1 3 8 4 8 8 6 E - 0 1 = H  ( 23)

H( 9) = -0..3 4 9 7 9 4 4 0 E - 0 1 = H( 22)

H (10) = -0 ..1 5 6 1 5 5 2 2 E - 0 1 = H ( 21)

H  (11) = 0.. 6 4 0 0 6 1 1 3 E - 0 1 = H( 20)

H  (12 ) = -0 .7 3 4 5 1 7 7 2 E - 0 2 = H  ( 19)

H(13) = -0. 1 1 8 7 3 1 8 5 E + 0 0 H( 18)

H  (14) = 0. 9 8 0 4 7 8 4 5 E - 0 1 = H{ 17)

H  (15) = 0. 4 9 2 2 5 0 6 8 E + 0 0 = H( 16)

B A N D  1 B A N D  2

L O W E R  B A N D E D G E 0 . 0 0 0 0 0 0 0 0..310 0 0 0 0

U P P E R  B A N D E D G E 0 . 2 5 0 0 0 0 0 0..500 0 0 0 0

D E S I R E D V A L U E 1 . 0 0 0 0 0 0 0 0..000 0 0 0 0

W E I G H T I N G 2 . 0 0 0 0 0 0 0 1.. 0 0 0 0 0 0 0
D E V I A T I O N 0 . 0 1 0 7 1 5 1 0..0 2 1 4 3 0 2

D E V I A T I O N  I N D B 0 . 0 9 2 5 7 5 3 •33. 3 7 9 4 7 4 6

E X T R E M A L  F R E Q U E N C I E S - M A X I M A  O F  T H E  E R R O R  C U R V E  

0 . 0 0 0 0 0 0 0  0 . 0 4 1 6 6 6 7  0 . 0 7 9 1 6 6 7  0 . 1 1 6 6 6 6 6  0 . 1 5 2 0 8 3 3  

0 . 1 8 5 4 1 6 6  0 . 2 1 4 5 8 3 2  0 . 2 3 9 5 8 3 2  0 . 2 5 0 0 0 0 0  0 . 3 1 0 0 0 0 0  

0 . 3 2 2 5 0 0 0  0 . 3 4 9 5 8 3 3  0 . 3 8 0 8 3 3 3  0 . 4 1 4 1 6 6 6  0 . 4 4 7 4 9 9 9  

0 . 4 8 2 9 1 6 5

The coefficients of the filter are given by (10.4.8) as 

g(n,m)  ~  h(rtl + (mD)/)

mD Ai l  + mD  —

By substituting 1 = 5  and D = 2, we obtain

g(n, m) = h { 5 n  + 2 m - 5

=  h ^nl  

=  2, we 

x,m) = h ^5

I

2m \y\)
By evaluating g(n, m) for n =  0, 1 , . . . .  5 and m =  0 , 1 , . . . ,  4 we obtain the following



Sec. 10.5 Filter Design and Implementation for Sampling-Rate Conversion 805

Figure 10.18 Magnitude response of linear-phase FIR filter of length M =  30 in 
Example 10.5.1.

Figure 10.19 Magnitude response o f linear-phase FIR filter of length M  =  30 in 
Example 10.5.2.

coefficients for the time-variant filter:

*(0,m) =  {*(0) *(2) h{ 4) *(1) *(3)}
* (l,m ) =  {*(5) *(7) *( 9) *( 6) A(8)J
g ( 2 , m )  =  {*(10) *(12) *(14) *(11) *(13)} 
g ( 3 , m )  =  {*(15) *(17) *(19) *(16) *(18)} 
g ( 4 , m )  = {*(20) *(22) *(24) *(21) *(23)}
g ( 5 , m )  =  {*(25) *(27) *(29) *(26) *(28)}

A polyphase filter implementation would employ five subfilters, each of length 
six. To decimate the output of the polyphase filters by a factor of D =  2 simply means
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TABLE 10.2 COEFFICIENTS OF LINEAR-PHASE FIR FILTER IN
EXAMPLE 10.5.2

F I N I T E  I M P U L S E  R E S P O N S E  (FIR) 

L I N E A R - P H A S E  D I G I T A L  F I L T E R  D E S I G N  

R E M E Z  E X C H A N G E  A L G O R I T H M

F I L T E R  L E N G T H  = 3 0

I M P U L S E  R E S P O N S E  ’

H ( 1) = 0 . 6 3 9 8 7 2 1 6 E - 0 2 = H  ( 30!

H  ( 2) = -0.. 1 4 7 6 1 3 0 4 E - 0 1 = H  ( 29)

H< 3) = -0.. 1 0 8 8 6 5 7 7 E - 0 2 = H  ( 28)

H  ( 4) = -0.. 2 8 7 1 4 9 5 7 E - 0 2 = H  { 27)

H  ( 5) 0 . 1 0 4 8 6 4 3 0 E - 0 1 = H< 26)

H( 6) = 0 . 2 1 4 7 7 1 4 2 E - 0 1 = H ( 25)

H  ( 7) = 0,. 1 9 4 7 9 3 6 2 E - 0 1 H( 24)

H< 8) = -0,. 3 1 0 6 7 4 3 1 E - 0 3 = H( 23)

H( 9) = -0 ,. 3 0 0 5 3 0 3 3 E - 0 1 = H  ( 22)

H  (10) = -0 .4 9 8 7 7 0 2 9 E - 0 1 = H  ( 21)

H  {11) = -0 .3 7 3 7 1 2 8 5 E - 0 1 = H  { 20)

H (12) = 0. 1 8 4 8 2 8 9 6 E - 0 1 = H( 19)

H  (13) = 0. 1 0 7 4 7 1 4 1 E + 0 0 = H  { 18)

H  (14) 0..1 9 9 5 1 0 9 8 E + 0 0 = H ( 17)

H(15) = 0 .2 5 7 9 4 8 2 8 E + 0 0 = H ( 16)

B A N D  1 B A N D  2

L O W E R  B A N D E D G E 0 . 0 0 0 0 0 0 0 0 .. 160 0 0 0 0

U P P E R  B A N D E D G E 0 . 1 0 0 0 0 0 0 0. 5 0 0 0 0 0 0

D E S I R E D V A L U E 1 . 0 0 0 0 0 0 0 0.,0000000

W E I G H T I N G 3 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0

D E V I A T I O N 0 . 0 0 9 7 5 2 4 0,. 0 2 9 2 5 7 2

D E V I A T I O N  :IN D B 0 . 0 8 4 2 9 7 8 •30. 6 7 5 3 3 4 9

E X T R E M A L  F R E Q U E N C I E S - M A X I M A  O F  T H E  E R R O R  C U R V E  

0 . 0 0 0 0 0 0 0  0 . 0 3 3 3 3 3 3  0 . 0 6 4 5 8 3 4  0 . 0 8 9 5 8 3 3  0 . 1 0 0 0 0 0 0  

0 . 1 6 0 0 0 0 0  0 . 1 7 4 5 8 3 3  0 . 2 0 1 6 6 6 6  0 . 2 3 7 0 8 3 3  0 . 2 7 0 4 1 6 6  

0 . 3 0 5 8 3 3 2  0 . 3 4 1 2 4 9 8  0 . 3 7 6 6 6 6 5  0 . 4 1 2 0 8 3 1  0 . 4 4 7 4 9 9 7  

0 .4829 1 6 4

that we take every other output from the polyphase filters. Thus the first output v(0) 
is taken from pQ(n), the second output y(l) is taken from P2(n), the third from p*(n), 
the fourth from pi(n),  the fifth from p-i(n). and so on.

10.6 MULTISTAGE IMPLEMENTATION OF SAMPLING-RATE 
CONVERSION

In practical applications o f sam pling-rate conversion w e often encounter decim a­
tion factors and interpolation factors that are m uch larger than unity. For exam ­
ple, suppose that w e are given the task o f  altering the sampling rate by the factor
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I / D  =  130/63. A lth o u g h , in th eo ry , th is ra te  a lte ra tio n  can b e  ach ieved  exactly , 
th e  im p lem en ta tio n  w ould  req u ire  a b ank  o f 130 p o lyphase  filters an d  m ay be 
co m p u ta tio n a lly  inefficient. In  th is section we consid er m eth o d s fo r  perfo rm ing  
sam pling -ra te  conversion  fo r e ith e r  D » 1  a n d /o r  7 >  1 in m u ltip le  stages.

F irst, le t us co n s id e r in te rp o la tio n  by a  fac to r 7 »  1 and  le t us assum e th a t 
7 can be fac to re d  in to  a p ro d u c t o f  positive in teg ers  as

'-fl* (10.6 .1)

T h en , in te rp o la tio n  by a  fac to r 7 can  be accom plished  by  cascading L  stages o f 
in te rp o la tio n  and  filtering , as show n in Fig. 10.20. N o te  th a t the  filter in each  o f  
th e  in te rp o la to rs  e lim inates th e  im ages in tro d u c ed  by th e  upsam pling  p rocess in 
th e  co rre sp o n d in g  in te rp o la to r.

In  a sim ilar m an n er, decim ation  by a  fac to r D,  w here  D  m ay be fac to red  in to  
a  p ro d u c t o f positive in teg ers  as

D  = \ \ D . (10.6.2)

F, = i =  1 ,2 ........ J

can be im p lem en ted  as a cascade o f J  stages o f filtering and  decim ation  as illus­
tra te d  in Fig. 10.21. T hus the sam pling  ra te  a t th e  o u tp u t o f th e  ith  stage is

Fj-i  
D,

w here th e  in p u t ra te  fo r th e  se q uence  {*(«)] is F0 = Fx .
T o  en su re  th a t no  aliasing occurs in the  overall dec im atio n  p rocess, we can 

design  each  filter stage to  avoid aliasing  w ithin th e  freq u en cy  band  o f  in te rest. T o

(10.6.3)

*(n)
F,

Stage 1 Stage 2 h h Fi  Stage L

Figure 10.20 Multistage implementation of interpolation by a factor /,

Stage 1 Stage 2 Fx
D\Dt

Staged

Figure 10.21 Multistage implementation of decimation by a factor D.
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e lab o ra te , let us define th e  d es ired  p assband  and  the  tran sitio n  b a n d  in the  overall 
d ec im ato r as

P assband: 0 <  F <
(10.6.4)

T ran sitio n  band : Fpc 2; F < Fsc

w here  Fx  <  FX/ 2 D.  T h en , aliasing in th e  b and  0 <  F  < Fx  is av o id ed  by selecting  
th e  frequency  b an d s o f each  filter stage  as follows:

P assband : 0 <  F  <  F ^

T ran s itio n  band: Fpc < F < Fj -  Fx  ^ ^

F ,
S topband : Fj -  Fx  < F < ~ -

F o r  exam ple, in the first filter stage we have F\ =  Fx/ D \ .  and  the  filter is 
designed to  have th e  follow ing frequency  bands:

P assband: 0 < F < F ^

T ran sitio n  band: F ^  < F < Fy -  Fsz (10 6 6)
fT

S topband : F\ -  Fx  <  F < - y

A fte r  decim ation  by D\,  th e re  is aliasing from  th e  signal c o m p o n en ts  th a t fall in 
th e  filter transition  band , b u t the  aliasing  occurs at freq u en c ies above Fsc. T hus 
th e re  is no  aliasing in the frequency  b and  0 < F  < Fx . By design ing  the  filters in 
the  su b seq u en t stages to  satisfy the  specifications given in (10.6.5). w e ensu re  that 
no  aliasing occurs in th e  p rim ary  frequency  band  0 <  F < Fsc.

Example 10.6.1

Consider an audio-band signal with a nominal bandwidth of 4 kHz that has been 
sampled at a rate of 8 kHz. Suppose that we wish to isolate the frequency components 
below 80 Hz with a filter that has a passband 0 < F  < 75 and a transition band 
15 < F  < 80. Hence F ^  =  75 Hz and FK = 80. The signal in the band 0 < F  < 80 
may be decimated by the factor D =  F J 2 F X =  50. We also specify that the filter 
have a passband ripple 8, =  10“2 and a stopband ripple of <52 =  10-4.

The length of the linear phase FIR  filter required to satisfy these specifications 
can be estimated from one of the well known formulas given in the literature. Re­
call that a particularly simple formula for approximating the length M , attributed to 
Kaiser, is

^ = - ' 0 lo ^ - 1 3  +  1 (1 M 7 )
14.6 A /

where A/  is the normalized (by the sampling rate) width of the transition region [i.e., 
A f  =  (Fx — Fpc)/Fs]. A more accurate formula proposed by Herrm ann et al. (1973) 
is

^ l M  + 1 (10.6.8)
A /
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where D^iSi ,  ^2) and /(5 i, 52) are defined as

A »(Si.fc) =  [0.005309(logini i ) 2 +  G.07114(log]0Si)

-0.4761] log1052

-[0.00266(logi0 5i)2 +  0.5941 log10Si +  0.4278] (10.6.9)

f ( S  1, i 2) =  11.012 +  O.51244[log105, -  log10«2] (10.6.10)

Now a single FIR filter followed by a decimator would require (using the Kaiser 
formula) a filter of (approximate) length

1 3 + ^ ^ 214.6(5/8000)

As an alternative, let us consider a two-stage decimation process with D\ =  25 and 
Di =  2. In the first stage we have the specifications F\ =  320 Hz and

Passband: 0 <  F  < 75 
Transition band: 15 < F < 240

J 6 1  
A^ “  8000

fin =  y  2̂1 =  £2

Note that we have reduced the passband ripple <5[ by a factor of 2, so that the total 
passband ripple in the cascade of the two filters does not exceed Si. On the other 
hand, the stopband ripple is maintained at S2 in both stages. Now the Kaiser formula 
yields an estimate of A/, as

Ml =  ~ 101ogn > ^ 2 1 -1 3  +  J % 167 
14.6A/

For the second stage, we have F2 =  F\fL — 160 and the specifications

Passband: 0 < F  < 75 
Transition band: 75 < F  < 80

A f  = 320

<5i2 ~  y  &n = h  

Hence the estimate of the length M2 of the second filter is

M2 ~  220

Therefore, the total length of the two FIR filters is approximately M\ + M2 =  387. 
This represents a reduction in the filter length by a factor of more than 13.

The reader is encouraged to repeat the computation above with D\ =  10 and 
£>2 =  5.

It is apparent from the com putations in E xam ple 10.6.1 that the reduction  
in  the filter length results from increasing the factor A f ,  which appears in the 
denom inator in (10.6.7) and (10.6.8). By decim ating in m ultiple stages, we are
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able to  increase  th e  w idth  o f  th e  tran sitio n  reg ion  th rough  a red u c tio n  in the 
sam pling  rate .

In  the  case o f a m u ltistage  in te rp o la to r , the  sam pling  ra te  a t th e  o u tp u t of 
the  / th  stage is

/■/_! =  ItFi i =  J , J - l .........1

and  th e  o u tp u t ra te  is Fo =  I  F j  w hen  th e  in p u t sam pling  ra te  is Fj.  T h e  c o rre ­
sponding  frequency  band  specifications are

Passband : 0 < F  <  Fp 

T ran sitio n  band: Fp <  F  <  F; — Fsc 

T he follow ing exam ple illu stra tes th e  ad v an tag es o f  m u ltistage  in te rp o la tio n . 

Example 10.6.2

Let us reverse the filtering problem described in Example 10.6.1 by beginning with a 
signal having a passband 0 < F  < 75 and a transition band of 75 < F  < 80. We wish 
to interpolate by a factor of 50. By selecting I\ = 2 and l2 =  25. we have basically a 
transposed form of the decimation problem considered in Example 10.6.1. Thus we 
can simply transpose the two-stage decimator to achieve the two-stage interpolator 
with /, =2 ,  i2 =  25. Mi «  220. and M2 % 167.

10.7 SAMPLING-RATE CONVERSION OF BANDPASS SIGNALS

A  bandpass signal is a signal with frequency  co n ten t co n cen tra ted  in a narrow  
band o f frequencies above zero  frequency . T he cen te r  freq u en cy  Fc o f th e  signal 
is generally  m uch larger th an  th e  ban d w id th  B (i.e., Fc »  B).  B a ndpass signals 
arise frequen tly  in p rac tice , m ost n o tab ly  in com m unications, w h ere  in fo rm ation  
b earing  signals such as speech  and  v ideo  a re  tra n s la te d  in freq u e n cy  an d  th en  
tran sm itted  over such chan n e ls  as w ire lines, m icrow ave rad io , and  sa tellites.

In  this section  we co n sid er the  decim ation  an d  in te rp o la tio n  o f bandpass 
signals. W e begin by  no ting  th a t any  b an dpass signal has an  eq u iv a len t low pass 
rep re sen ta tio n , o b ta in ed  by a sim ple frequency  tran sla tio n  o f th e  b an dpass signal. 
F o r exam ple, th e  b an dpass signal w ith  sp ectrum  X ( F )  show n in Fig. 10.22a can 
be tran s la ted  to  low pass by m eans o f a frequency  tran sla tio n  o f Fc, w here  Fc 
is an  ap p ro p ria te  cho ice o f frequency  (usually , the  cen te r  freq u e n cy ) w ith in  the 
b andw id th  occup ied  by  th e  b an d p ass signal. T hus w e o b ta in  th e  eq u iv a len t low pass 
signal as illu stra ted  in Fig. 10.22b.

F rom  Section  9.1 w e recall th a t an  analog  b an d p ass  signal can  be  rep re sen ted
as

x ( t ) =  ,4(/) cos[27rFcr +  £?(/)]

=  A(t )  cosf?(r) c o s2 jrF cr — -4 (/) s in 0 ( /)s in 2 7 rF c/

=  uc(t) cos 2 n F ct — us (t) s i n 2 n F ct 

=  R& [xi( t )eJ7* Fcl]

(10.7.1)



|W)|

Sec. 10.7 Sampling-Rate Conversion of Bandpass Signals 811

Bandpass signal

(a)

Equivalent lowpass signal 

<b)

Figure 10.22 Bandpass signal and its equivalent lowpass representation.

w here, by defin ition ,
uc( t ) =  y 4 (r)co s# (0  (10.7.2)

us (t) ~  j4 (O sin0 (O  (10.7.3)

x t (t) =  uc(t) +  j u s (t) (10.7.4)

A(t )  is called  th e  ampl i tude  o r envelope  o f the  signal, O(t') is the  phase , an d  u c(t) 
and  us( t ) a re  called  th e  quadrature component s  o f th e  signal.

Physically , th e  tran s la tio n  o f x{t )  to  low pass involves m ultip ly ing  (m ixing) 
x (r) by th e  q u a d ra tu re  carrie rs  cos 2tz Fct and  s in 2 ^ F c; an d  th en  low pass filtering 
th e  tw o p ro d u c ts  to  e lim in a te  th e  frequency  co m p o n en ts  g e n e ra ted  a ro u n d  th e  
f requency  2FC (th e  d o u b le  frequency  term s). T hus all th e  in fo rm ation  co n ten t 
co n ta in ed  in th e  ban d p ass signal is p reserv ed  in  th e  low pass signal, and  hence th e  
la t te r  is eq u iv a len t to  th e  fo rm er. T his fact is obv ious from  th e  spectra l re p re se n ­
ta tio n  o f th e  b an d p ass  signal, w hich can  be w ritten  as

X ( F )  =  \ [ X , { F  -  Fc) +  X ; { - F  -  Fc)] (10.7.5)

w h ere  X i ( f )  is th e  F o u rie r  tran sfo rm  o f th e  eq u iv a len t low pass signal xi{t)  and  
X { F )  is th e  F o u rie r  tra n sfo rm  o f ;c(f).



8 1 2 Multirate Digital Signal Processing Chap. 10

It w as show n in Section  9.1 th a t a b an dpass signal o f b an d w id th  B  can be 
u n iquely  re p re se n te d  by sam ples tak en  at a ra te  o f 2 B  sam ples p e r  second , p ro ­
v ided  th a t th e  u p p e r  b an d  (h ighest) frequency  is a  m ultip le  o f  the  signal b a n d ­
w id th  B.  O n  th e  o th e r  h an d , if th e  u p p e r b a n d  frequency  is n o t a m u ltip le  of 
B,  th e  sam pling  ra te  m ust b e  increased  by a sm all am o u n t to  avo id  aliasing. In 
any case, th e  sam pling  ra te  fo r th e  b andpass signal is b o u n d e d  from  ab ove and  
below  as

2 B < Fs < 4 B (10.7.6)

T h e  rep re sen ta tio n  o f d isc re te-tim e bandpass signals is basically  th e  sam e as 
th a t fo r analog  signals given by (10.7.1) w ith  the su b stitu tio n  o f  t =  n T ,  w here  T 
is th e  sam pling  in terval.

10.7.1 Decimation and Interpolation by Frequency 
Conversion

T he m ath em atica l equ ivalence  b e tw een  the  b an d p ass signal x ( t )  and  its equ ivalen t 
low pass rep re sen ta tio n  xi( t )  p ro v id es one m eth o d  fo r a lte rin g  th e  sam pling  rate  
o f the  signal. Specifically, we can tak e  th e  b an d p ass signal w hich  has been  sam ­
pled  a t ra te  Fx , convert it to  low pass th ro u g h  th e  frequency  conversion  process 
illu stra ted  in Fig. 10.23, and  p erfo rm  th e  sam pling -ra te  co n version  on  th e  low pass 
signal using th e  m e th o d s d escribed  previously . T h e  low pass filters fo r  ob ta in ing  
the  tw o q u a d ra tu re  com p o n en ts  can be designed  to  have lin e a r  phase  w ithin the

Figure 10.23 Conversion of a bandpass signal to lowpass.
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ban d w id th  o f th e  signal and  to  ap p ro x im ate  th e  ideal freq u en cy  response  ch a rac ­
teristic

*<•>-(£ <m7-7) 
w here  coB is th e  b an d w id th  o f th e  d isc re te-tim e b an d p ass  signal (a>B < n ) .

I f  decim ation  is to  be p erfo rm ed  by an  in teg er fac to r  D,  th e  an tia liasing  
filter p reced in g  th e  d ec im ato r can be com bined  w ith th e  low pass filter used  fo r  
freq u en cy  conversion  in to  a single filter th a t ap p ro x im ates th e  ideal frequency  
response

H D(a>) = h  M  <a>p/D  (10.7.8)
0, o therw ise

w h ere  coD is any d es ired  frequency  in the  range 0 <  coD <  n .  F o r exam ple, we m ay 
se lec t <d d =  m b / 2  if we a re  in te rested  only in th e  freq u e n cy  range 0 <  co < coB/ 2 D  
o f th e  o rig inal signal.

If  in te rp o la tio n  is to  be p erfo rm ed  by an  in teg er fac to r I  o n  th e  frequency- 
tran s la ted  signal, th e  filter used to  re jec t th e  im ages in th e  spectrum  should  be 
d esigned  to  ap p ro x im ate  the low pass filter charac te ris tic

" ' < - > - { £  (10-7-9>
W e n o te  th a t in th e  case o f in te rp o la tio n , th e  low pass filte r norm ally  used  to  re jec t 
the  d o u b le -freq u en cy  co m ponen ts is re d u n d a n t and  m ay  b e  om itted . Its  function  
is essen tia lly  se rved  by th e  im age re jec tion  filter H[(co).

Finally , we ind ica te  th a t sam pling -ra te  conversion  by any  ra tio n a l fac to r //£> 
can be  accom plished  o n  th e  b an d p ass signal as illu stra ted  in Fig. 10.24. A gain , 
th e  low pass filter fo r re jec ting  th e  doub le-freq u en cy  co m p o n en ts  g en e ra ted  in th e  
frequency-conversion  p rocess can be om itted . Its  function  is sim ply se rved  by th e  
im age-re jec tion /an tia lias ing  filter follow ing the  in te rp o la to r , w hich is designed  to  
ap p ro x im a te  th e  ideal frequency  response  characteristic :

=  (10.7.10)
[ 0, o therw ise

O nce th e  sam pling  ra te  o f th e  q u a d ra tu re  signal co m p o n en ts  has b een  a lte red  
by e ith e r  dec im atio n  o r  in te rp o la tio n  o r b o th , a  b an d p ass  signal can  b e  reg en e r­
a te d  by am p litu d e  m odu la ting  th e  q u a d ra tu re  carrie rs  cos<wcn an d  sin cocn by th e  
co rre sp o n d in g  signal com p o n en ts  an d  th en  ad d in g  th e  tw o  signals. T h e  cen te r

Figure 10.24 Sampling rate conversion of a bandpass signal.
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frequency  is any  d es irab le  frequency  in th e  range

min(u>B/2D,(oB/ 2 l  ) < coc < n  (10.7.11)

10.7.2 Modulation-Free Method for Decimation and 
Interpolation

By restric ting  th e  frequency  ran g e  fo r  th e  signal w hose freq u en cy  is to  be a ltered , 
it is possible to  avoid  th e  ca rr ie r  m o d u la tio n  p rocess and  to  achieve frequency  
tran sla tio n  directly . In  th is case we exp lo it th e  frequency  tran sla tio n  p ro p e rty  
in h e ren t in th e  p rocess o f decim ation  and in te rp o la tio n .

T o  be specific, let us co n sid er the  decim atio n  o f the  sam pled  bandpass signal 
w hose spectrum  is show n in Fig. 10.25. N o te  th a t th e  signal sp ectrum  is confined 
to  the frequency  range

mir (m +  l ) 7 r  , „  _----- <  co <  :---------—  (10.7.12)
D ~  ~  D

w here m is a positive in teg er. A  b andpass filter w ould  no rm ally  be  used to  elim ­
inate  signal frequency  co m p o n en ts  ou tsid e  the  d es ired  freq u en cy  range. T hen  
d irect decim ation  o f th e  b an d p ass  signal by the  fac to r D  resu lts  in the  spectrum  
show n in Fig. 10.26a, fo r m odd , an d  Fig. 10.26b fo r m even. In th e  case w here 
m is odd . th e re  is an inversion  o f the  spectrum  of th e  signal. T h is  inversion  can 
be undone by m ultip ly ing  each  sam ple o f the  d ec im ated  signal by ( -1 ) " ,  n =  0.
1, —  N ote th a t v io la tion  o f the  b andw id th  co n s tra in t given by (10.7.12) resu lts in 
signat aliasing,

M o du la tion -free  in te rp o la tio n  o f a b an dpass signal by an  in teg e r fac to r I  can 
be accom plished in a sim ilar m an n e r. T h e  p rocess o f upsam pling  by inse rting  zeros 
betw een  sam ples o f x(n)  p ro d u ces I  im ages in th e  band  0 <  w < it . T he desired  
im age can be se lec ted  by b an d p ass filtering. N o te  th a t the p rocess o f in te rp o la ­
tion  also  prov ides us with th e  o p p o rtu n ity  to  ach ieve frequency  tran sla tio n  o f  the 
spectrum .

Finally, m o d u la tio n -free  sam pling  ra te  conversion  for a  b an d p ass signal by 
a ra tio n a l fac to r I / D  can b e  accom plished  by  cascading a d ec im a to r w ith an  in­
te rp o la to r  in a m an n er th a t d ep en d s on  th e  choice o f th e  p a ra m e te rs  D  and  I. 
A  ban d p ass filter p reced in g  th e  sam pling  co n v e rte r  is usually  req u ired  to  isolate 
th e  signal frequency  band  o f  in te rest. N o te  th a t th is ap p ro ach  p rov ides us w ith a 
m odu la tion -free  m e th o d  for ach ieving  frequency  tran sla tio n  o f a  signal by selecting 
D =  1.

(m + i)n  mTi 0 mn {m + 1 )n
D D D D

Figure 10.25 Spectrum of a bandpass signal.
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m odd

(«>

m even
(b>

Figure 10.26 Spectrum of decimated bandpass signal.

10.8 SAMPLING-RATE CONVERSION BY AN ARBITRARY FACTOR

In the previous sections o f this chapter, w e have shown how  to perform sampling 
rate conversion exactly by a rational number I / D .  In som e applications, it is either  
inefficient or, som etim es im possible to  use such an exact rate conversion schem e. 
W e first consider the follow ing two cases.

Case 1. W e need to perform rate conversion by the rational number I / D ,  
w here /  is a large integer (e.g., l / D  =  1023/511). A lthough w e can achieve 
exact rate conversion by this num ber, w e would need a polyphase filter with 1023 
subfilters. Such an exact im plem entation is obviously inefficient in m em ory usage 
because we need to  store a large num ber o f filter coefficients.

Case 2. In som e applications, the exact conversion rate is not known when  
w e design the rate converter, or the rate is continuously changing during the con­
version process. For exam ple, w e m ay encounter the situation where the input and 
output sam ples are controlled by tw o independent clocks. E ven though it is still 
possible to  define a nom inal conversion rate that is a rational number, the actual
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ra te  w ould  be slightly  d ifferen t, dep en d in g  on th e  freq u en cy  d ifference  betw een  
th e  tw o clocks. O bviously , it is no t possible to  design an  ex ac t ra te  co n v erte r in 
th is case.

T o  im p lem en t sam pling  ra te  conversion  fo r  app lica tio n s sim ilar to  these  
cases, we re so rt to  n o nexact ra te  conversion  schem es. U nav o id ab ly , a nonexact 
schem e will in tro d u c e  som e d isto rtio n  in the co n v e rted  o u tp u t signal. (It should 
be no ted  th a t d is to rtio n  exists even  in an  exact ra tio n a l ra te  c o n v e rte r  because 
the  p o lyphase  filter is n ev e r ideal.) Such a co n v e rte r  will b e  ad e q u a te , as long 
as th e  to ta l d is to rtio n  does n o t exceed th e  specification re q u ire d  in th e  ap p li­
cation .

D ep en d in g  on the  app lica tion  req u irem en ts an d  im p lem en ta tio n  constra in ts , 
we can use firs t-o rder, seco n d -o rd er, o r  h ig h er-o rd er ap p ro x im atio n s . W e shall d e ­
scribe firs t-o rder an d  se co n d -o rd er ap p ro x im atio n  m eth o d s an d  p ro v id e  an analysis 
o f the  resu lting  tim ing erro rs.

10.8.1 First-Order Approximation

L et us d en o te  th e  a rb itra ry  conversion  ra te  by r  an d  suppose th a t  the  inp u t to the 
ra te  co n v e rte r  is th e  sequence  (jr(n)}. W e need  to  g en e ra te  a seq u en ce  o f  o u tp u t 
sam ples se p ara te d  in tim e by Tx f r ,  w here  Tx is the  sam ple  in te rv a l for {x(n)i. By 
constructing  a po lyphase  filter w ith a large n u m b er o f subfilters as ju s t described , 
we can app ro x im ate  such a sequence  w ith  a nonun ifo rm ly  sp aced  sequence . W ith ­
ou t loss o f g enera lity , we can  express 1 j r  as

w here k and  I  a re  positive in tegers and  0  is a n u m b e r  in th e  ran g e

0 <  & <  y

C onsequen tly , 1 j r  is b o u n d ed  from  above and  below  as

k 1 jfc +  1
_  <  _  <  -------------

I  r  I
I  co rre sp o n d s to  the  in te rp o la tio n  fac to r, w hich will b e  d e te rm in e d  to  satisfy the 
specification on the  am o u n t o f  to le rab le  d isto rtio n  in tro d u c ed  by  ra te  conversion . 
/  is also  equal to  the  n u m b e r o f  po lyphase  filters.

F o r  exam ple, suppose  th a t r  =  2.2 and  th a t  w e have  d e te rm in e d , as we 
will d em o n s tra te , th a t 1 =  6 p o lyphase  filters a re  re q u ire d  to  m e e t th e  d isto rtion  
specification. T h en

k ^ 2  1 3 k + 1 

/  6 r  6 I  
so th a t k  =  2. T h e  tim e spacing betw een  sam ples o f  th e  in te rp o la te d  seq u en ce  is 
Tx / I .  H ow ever, th e  d es ired  conversion  ra te  r  =  2.2 fo r  /  =  6 co rre sp o n d s to  a 
decim ation  fac to r o f  2.727, w hich  falls b e tw een  k  =  2  and  k  =  3. In  th e  firs t-o rder 
ap p ro x im atio n , w e ach ieve th e  des ired  decim ation  ra te  by  se lec tin g  th e  ou tpu t
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Figure 10.27 Sample rate conversion by use of first-order approximation.

sam ple from  th e  po lyphase  filter closest in tim e to  th e  d es ired  sam pling  tim e. T his 
is illu stra ted  in Fig. 10.27 fo r 1 =  6.

In  g en era l, to  p erfo rm  ra te  conversion  by a fac to r r, w e em ploy a polyphase 
filter to  p e rfo rm  in te rp o la tio n  and  th e re fo re  to  increase  th e  freq u en cy  o f the  o rig ­
inal se q u en ce  o f a fac to r  o f I.  T h e  tim e spacing  b e tw een  th e  sam ples o f th e  
in te rp o la te d  seq u en ce  is equal to  Tx/ J . If  th e  ideal sam pling  tim e of th e  m th  sam ­
p le , y(m) ,  o f  th e  desired  o u tp u t sequence  is b e tw een  th e  sam pling  tim es o f tw o 
sam ples o f  th e  in te rp o la te d  sequence, we se lect the  sam ple  clo ser to  y ( m ) as its 
ap p ro x im atio n .

L e t us assum e th a t th e  m th se lec ted  sam ple  is g en e ra te d  by  th e  (im)th  subfilter 
u sing  th e  in p u t sam ples x(n) ,  x (n  — 1 ) , . . . ,  x ( n  — K  +  1) in th e  d elay  line. T h e  
n o rm aliz ed  sam pling  tim e  e rro r  (i.e., th e  tim e d ifference  b e tw een  th e  se lec ted  
sam pling  tim e and  th e  d es ired  sam pling  tim e n o rm aliz ed  by  Tx) is d en o ted  by  tm. 
T h e  sign o f tm is positive if th e  d es ired  sam pling  tim e lead s th e  se lec ted  sam pling 
tim e, an d  n egative  o therw ise . It is easy  to  show  th a t \tm | <  0 .5 / / .  T he  norm alized  
tim e advance  from  th e  m th  o u tp u t y (m)  to  th e  (m +  l ) s t  o u tp u t y ( m  +  1) is equal 
to  ( 1 / r ) +  tm.

T o  c o m p u te  th e  n e x t o u tp u t, w e first d e te rm in e  a  n u m b e r  closest to  im/ J  +  
+  km/ I  th a t is o f th e  form  /m_] +  im+ i / I ,  w here  b o th  /m+1 an d  im+1 a re  

in teg e rs  an d  im+i < I.  T h en , the  (m +  l ) s t  o u tp u t y(m  +  1) is co m p u ted  using th e  
(jm+i) th  sub filte r a f te r  sh ifting  the  signal in th e  delay  line by  lm+i in p u t sam ples. 
T h e  no rm alized  tim ing e r ro r  fo r th e  (m +  l ) th  sam ple  is tm +1 =  ( im/ I  +  l / r  + t m) ~  
(lm+] +  im+i / I ) .  I t  is saved  fo r th e  co m p u ta tio n  o f th e  n ex t o u tp u t sam ple.
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B y increasing  the  n u m b er o f subfilters used , w e can a rb itra r ily  increase  the  
conversion  accuracy. H ow ever, w e also  req u ire  m o re  m em ory  to  s to re  the  large 
n u m b er of filter coefficients. H en ce  it is d es irab le  to  use as few  subfilters as possible 
while keep ing  th e  d isto rtio n  in th e  co n v erted  signal below  th e  specification . T he 
d isto rtio n  in tro d u ced  d ue  to  th e  sam pling-tim e ap p ro x im atio n  is m ost convenien tly  
ev a lu a ted  in the  freq u en cy  dom ain .

Suppose th a t the  in p u t d a ta  se q uence  {x(n)\  h as a flat sp e c tru m  from  - t o x 
to  cox , w here  u>x <  w ith  a m ag n itu d e  A. Its to ta l pow er can b e  co m p u ted  using 
P a rsev a l’s theo rem , nam ely ,

Ssi r
5 2?r ; _ tUj

\X{(o)\2d ( o =  (10.8.1)

F ro m  this discussion given, we know  th a t fo r each o u tp u t v(m), the tim e d ifference 
betw een  the  d es ired  filter and  the  filter actually  used  is tm, w h e re  | r j  <  0 .5 / / .  
H ence  the  frequency  response  o f  these  filters can  be w ritten  as eJa>T and  
respectively . W hen  /  is la rge , wtm is sm all. By ignoring  h ig h -o rd e r  erro rs, we can 
w rite th e  d ifference betw een  th e  freq u en cy  respo n ses as

e jur _  eja>U-l„) _  1 _  e - j w,»)
( 10.8 .2 )

=  e i0J1 (1 — cos cot,,, + j  sin colm) % j e JU'T cot,,,

By using the  bo u n d  |irn\ < 0 .5 / / ,  we o b ta in  an u p p e r  bo u n d  fo r  th e  to ta l e rro r  
po w er as

Pe =  - L  f ' \ X( c o) e ^T ~  X(co)eJU,lT~ ^ \ 2d w ^  [  ' \X(<o)jeJ^a>tm\2dco
J —ojx 2-7T J —(u,

- ^ L a2{t) “2dw = ̂  ( 1 0 '8 '3 )

This b o u n d  show s th a t the  e r ro r  p o w er is inversely  p ro p o rtio n a l to  the  sq u a re  o f the 
n u m b er o f subfilters I.  T h e re fo re , th e  e r ro r  m agn itude  is inverse ly  p ro p o rtio n a l 
to I.  H ence  we call the  ap p ro x im a tio n  o f  th e  ra te  conversion  m e th o d  described  
ab ove a  firs t-o rder ap p ro x im atio n . By using  (10.8.3) and  (10.8.1), th e  ra tio  o f the 
s igna l-to -d isto rtion  d u e  to  a  sam pling-tim e e r ro r  fo r th e  firs t-o rd er ap p rox im ation , 
d en o ted  as S D rR l ,  is low er b o u n d e d  as

P M l 2
S D ,R 1 =  > — ~  (10.8.4)

p e ( 4

It can be seen from  (10.8.4) th a t th e  s ig na l-to -d isto rtion  ra tio  is p ro p o rtio n a l 
to  the  squ a re  o f  th e  n u m b er o f  subfilters.

Example 10.8.1

Suppose that the input signal has a flat spectrum between -0 .8 jt and 0.8tt. Determine 
the number of subfilters to achieve a signal-to-distortion ratio of 50 dB.
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Solution To achieve an SDrR > 105, we set S D iR l =  12/2/wJ equal to 105. Thus 
we find that

f w
1 «s w ,,/  ~ ~  ~  230 subfilters

10.8.2 Second-Order Approximation (Linear Interpolation)

T h e  d isad v an tag e  o f  th e  firs t-o rder ap p ro x im atio n  m e th o d  is th e  large n u m b er o f 
sub filte rs n ee d e d  to  ach ieve a  specified d isto rtio n  req u irem en t. In  th e  follow ing 
d iscussion , w e describe  a  m e th o d  th a t  u ses lin ear in te rp o la tio n  to  ach ieve the  sam e 
p erfo rm an ce  w ith a  red u ced  n u m b er o f  subfilters.

T h e  im p lem en ta tio n  o f  th e  lin ea r  in te rp o la tio n  m e th o d  is very  sim ilar to  the  
firs t-o rd er ap p ro x im atio n  d iscussed  above. In stead  o f using  th e  sam ple from  th e  
in te rp o la tin g  filter closest to  th e  d es ired  conversion  o u tp u t as th e  app ro x im atio n , 
w e co m p u te  tw o ad jacen t sam ples w ith  th e  d es ired  sam pling  tim e falling betw een  
th e ir  sam pling  tim es, as is illu stra ted  in Fig. 10.28. T he no rm alized  tim e  spacing

y(«+1M  i

a m=Ilm

Figure 10.28 Sample rale conversion by use o f linear interpolation.
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betw een  these  tw o sam ples is 1 j l .  A ssum ing  th a t the sam pling  tim e o f  th e  first 
sam ple lags th e  d es ired  sam pling  tim e by jm, th e  sam pling  tim e o f th e  second  sam ­
p le  is th en  lead ing  the  d es ired  sam pling  tim e by ( 1 / / )  — tm. If  we d e n o te  these 
tw o  sam ples by vi (m)  an d  y i (m)  and  use lin ear in te rp o la tio n , we can co m p u te  the 
app ro x im atio n  to  th e  d es ired  o u tp u t as

w here  a m =  l t m. N o te  th a t 0 < a„, < 1 .
T he im p lem en ta tio n  o f lin ear in te rp o la tio n  is sim ilar to  th a t fo r the first- 

o rd e r  app rox im ation . N orm ally , b o th  y i(m ) and  yz im)  a re  c o m p u ted  using th e  /th  
and (/ +  l) th  subfilters, respec tive ly , w ith  th e  sam e se t o f in p u t da ta  sam ples in 
th e  delay  line. T h e  only excep tio n  is in the  b o u n d ary  case, w h ere  / =  /  -  1. In 
th is case we use th e  ( /  — l ) th  sub filte r to  com pu te  >'i(/w), b u t th e  second sam ple 
yi (m)  is co m p u ted  using  th e  ze ro th  subfilter a f te r  new  inpu t d a ta  a re  sh ifted  into 
th e  delay  line.

T o  analyze th e  e r ro r  in tro d u c ed  by th e  se co n d -o rd er ap p ro x im atio n , we first 
w rite the  frequency  respo n ses o f th e  desired  filter and  the tw o  subfilters used  to 
com p u te  vi(m) and  V2(w ), as e-/£Wr, ancj €ja>u-t„+'\/i)^ respectively . B ecause
lin ear in te rp o la tio n  is a iin ear o p e ra tio n , we can also use lin e a r  in te rp o la tio n  to 
com pu te  the frequency  response  o f the  filter th a t gen era tes  y(w?) as

By ignoring  h ig h -o rd e r  e rro rs , we can w rite the  d ifference b e tw een  th e  desired  
frequency  responses and  th e  o ne  given by (10.8.6) as

U sing  (1 -  a m)am <  we o b ta in  an  u p p e r  b o u n d  fo r th e  to ta l e r ro r  p o w er as

v(m) =  (1 - a m)vi(m ) + a n,y2(m) (10.8.5)

=  e Jtur[(l — a m)e~JW'"' + ameJ“'i~!’"+l /n]

-  ejmT0  -  a„,)(cos coin, -  ; s in o tfm)

-h e ^ Ta „ [ c o s a j ( l / /  -  tm) +  j  s in c o (l/7  - r ,„ ) ]

( 10.8 .6 )

ei m  -  (1 - a m)eJtu<t“ ," ) -

-  \  -  ( i  cim) c o s u)tm — am costL>(l// -  tm)] 

+  j [ ( l  -  a m) sin (Dtm -  a m s in a > ( l/ /  -  rm)]}
(10.8.7)

1
Pe =  = -  /  \X(u>)[ejwT -  (1 -  -  a me ^ - ' ^ n ]\2dco

(10.8.8)



This result indicates that the error magnitude is inversely proportional to I 2. H ence  
w e call the approximation using linear interpolation a second-order  approximat ion.  
U sing (10.8.8) and (10.8.1), the ratio o f  signal-to-distortion due to a sampling time 
error for the second-order approximation, denoted by SD ,R 2, is bounded from  
below  as

P  80 / 4
S D jR 2  =  >  —  (10.8.9)

Pe arx

Therefore, the signal-to-distortion ratio is proportional to the fourth pow er o f the  
number o f subfilters.

Example 10.8.2

Determine the number of subfilters required to meet the specifications given in Ex­
ample 10.8.1 when linear interpolation is employed.

Solution To achieve SD,R > 105, we set SDiR2 =  80I A/w* equal to 10s. Thus we 
obtain
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From this exam ple we see that the required num ber o f  subfilters for the  
second-order approxim ation is reduced by a factor o f about 15 com pared to the  
first-order approxim ation. H ow ever, we now need  to com pute two interpolated  
sam ples in this case, instead o f one for the first-order approximation. H ence we 
have doubled the com putational com plexity.

Linear interpolation is the sim plest case o f the class o f  approximation m eth­
ods based on Lagrange polynom ials. It is also possible to use higher-order La­
grange polynom ial approximations (interpolation) to  further reduce the number 
o f subfilters required to  m eet specifications. H ow ever, the second-order approx­
im ation seem s sufficient for most practical applications. T he interested reader is 
referred to the paper by Ramstad (1984) for higlier-order Lagrange interpolation  
m ethods.

10.9 APPLICATIONS OF MULTIRATE SIGNAL PROCESSING

There are num erous practical applications o f multirate signal processing. In this 
section we describe a few  o f  these applications.

10.9.1 Design of Phase Shifters

Suppose that w e wish to design a network that delays the signal x(n)  by a fraction  
o f  a sam ple. L et us assum e that the delay is a rational fraction o f a sampling
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x(n)
71

Lowpass Delay by 1
Ft I f  I filler IF, k samples j

Figure 10.29 Method for generating a delay in a discrete-time signal.

in te rv a l Tx [i.e.. d =  (k / I ) T x, w here  k and  /  a re  relatively  p rim e  positive in tegers]. 
In  th e  frequency  dom ain , the  delay  co rre sp o n d s to  a  linear p h ase  shift o f th e  form

kio
@(a>) =  (10.9.1)

T h e  design o f an  all-pass linear-p h ase  filter is relatively  difficult. H ow ever, 
we can use the m eth o d s o f sam p le -ra te  conversion  to  achieve a  delay  o f (k / l ) T x, 
exactly , w ithou t in troduc ing  any significant d is to rtio n  in th e  signal. T o  be specific, 
let us consider the system  show n in Fig. 10.29. T h e  sam pling  ra te  is increased  by a 
fac to r /  using a s ta n d a rd  in te rp o la to r . T h e  low pass filter e lim in a tes  th e  im ages in 
the  spectrum  o f  the  in te rp o la te d  signal, an d  its o u tp u t is d e lay ed  by k sam ples a t 
th e  sam pling ra te  I F x . T h e  delayed  signal is d ec im ated  by a fac to r  D =  I.  T hus 
we have ach ieved the  desired  delay  o f  (k / l ) T x .

A n efficient im p lem en ta tio n  o f th e  in te rp o la to r  is th e  p o lyphase  filter illus­
tra te d  in Fig. 10.30. T he delay  o f k sam ples is ach ieved  by p lacing the  initial 
position  o f the co m m u ta to r a t th e  o u tp u t o f  the  Jtth subfilter. S ince decim ation  by

Figure 10.30 Polyphase filter structure for implementing the syslem shown in 
Fig. 10.29.
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D  =  I  m eans th a t we tak e  o ne  o u t o f every  /  sam ples from  the  p o lyphase  filter, the 
c o m m u ta to r  position  can  be fixed to  th e  o u tp u t o f th e  fcth subfilter. T hus a de lay  
in k / I  can be ach ieved  by using only  th e  k th  subfilter o f th e  po lyphase filter. W e 
n o te  th a t th e  po lyphase  filter in tro d u c es an  add itio n a l d e lay  o f  (Af — l ) /2  sam ples, 
w here M  is th e  leng th  o f  its im pulse response .

F inally , w e m en tio n  th a t if th e  d es ired  delay  is a  n o n ra tio n a l fac to r  o f the  
sam ple in terval Tx , e ith e r  the  firs t-o rd er o r  se co n d -o rd e r app ro x im atio n  m e th o d  
d escrib ed  in S ection  10.8 can  b e  u sed  to  o b ta in  th e  delay.

10.9.2 Interfacing of Digital Systems with Different 
Sampling Rates

In  p rac tice  we freq u en tly  en co u n te r  the  p ro b lem  of in terfacing  tw o digital system s 
th a t a re  con tro lled  by  in d ep en d en tly  o p e ra tin g  clocks. A n  analog  solu tion  to  
th is p rob lem  is to  co n v ert the  signal from  the first system  to  analog  form  and 
th en  resam p le  it a t the  in p u t to  th e  second  system  using  th e  clock in th is system . 
H ow ever, a sim p ler ap p ro ach  is o ne  w here  the  in terfac ing  is done by a digital 
m e th o d  using the basic sam p le -ra te  conversion  m eth o d s describ ed  in this ch ap te r.

T o  be specific, le t us co n sid er in terfac ing  the tw o system s w ith in d ep en d en t 
clocks as show n in Fig. 10.31. T h e  o u tp u t o f system  A  a t ra te  Fx is fed to  an 
in te rp o la to r  w hich increases th e  sam pling  ra te  by  I .  T he  o u tp u t o f th e  in te rp o la to r  
is fed a t the  ra te  I  Fx to  a d igital sa m ple -and-ho ld  w hich serves as the  in terface  to  
system  B a t th e  high sam pling  ra te  1FX. S ignals from  the  d igital sam ple-and-ho ld  
a re  re a d  o u t in to  system  B at th e  clock ra te  D F y of system  B. T h u s th e  o u tp u t 
ra te  from  th e  sam ple -and-ho ld  is n o t synch ron ized  w ith  th e  inpu t rate .

In  th e  special case w h ere  D  =  I  and  th e  tw o clock ra te s  a re  com p arab le  
b u t n o t iden tical, som e sam ples a t th e  o u tp u t o f  th e  sam ple -an d -h o ld  m ay be 
re p e a te d  o r  d ro p p e d  a t tim es. T h e  am o u n t o f  signal d is to rtio n  resu lting  from  th is 
m e th o d  can be k ep t sm all if th e  in te rp o la to r/d e c im a to r  fac to r  is large. By using 
lin ear in te rp o la tio n  in p lace  o f th e  d ig ital sam ple-and-ho ld , as we d escribed  in 
S ection  10.8, w e can fu rth e r  red u ce  th e  d isto rtio n  and  th u s  red u ce  th e  size o f th e  
in te rp o la to r  facto r.

Figure 1031 Interfacing of two digital systems with different sampling rates.
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10.9.3 Implementation of Narrowband Lowpass Filters

In Section  10.6 we d em o n s tra ted  th a t a m ultistage  im p lem en ta tio n  o f sam pling- 
ra te  conversion  o ften  p rov ides fo r a m o re  efficient realization , especially  w hen  the  
filter specifications a re  very  tight (e.g., a  n a rro w  passb an d  an d  a n a rro w  transition  
ban d ). U n d er sim ilar conditions, a low pass, linear-phase  F IR  filte r m ay be m ore  
efficiently  im p lem en ted  in a m u ltistage  d e c im a to r-in te rp o la to r  configuration . T o  
be m o re  specific, we can em ploy  a m ultistage im p lem en ta tio n  o f a dec im ato r o f 
size D,  follow ed by a m ultistage  im p lem en ta tio n  o f an  in te rp o la to r  o f size / ,  w here
I  =  D.

W e d em o n s tra te  th e  p ro ced u re  by  m eans o f an  exam ple  fo r th e  design  of 
a low pass filter w hich has th e  sam e specifications as the filter th a t is given in 
E xam ple  10.6.1.

Example 10.9.1

Design a linear-phase FIR filter that satisfies the following specifications:

Sampling frequency: 8000 Hz
Passband: 0 < F < 75
Transition band: 75 < F < 80
Stopband 80 < F < 4000
Passband ripple: 5] =  10-2
Stopband ripple: &2 =  10~4

Solution If this filter were designed as a single-rate linear-phase FIR  filter, the length 
of the filter required to meet the specifications is (from Kaiser’s formula)

M  5152

Now, suppose that we employ a multirate implementation of the lowpass filter 
based on a decimation and interpolation factor of D =  / =  100. A single-stage 
implementation of the decimator-interpolator requires an FIR filter of length

^ ^ - ■ O l o g  W ;/ 2 ) - 1 3 + l a 5 4 a )
14.6 A /

However, there is a significant savings in computational complexity by implementing 
the decimator and interpolator filters using their corresponding polyphase filters. If 
we employ linear-phase (symmetric) decimation and interpolation filters, the use of 
polyphase filters reduces the multiplication rate by a factor of 100.

A significantly more efficient implementation is obtained by using two stages 
of decimation followed by two stages of interpolation. For example, suppose that we 
select D\ =  50, D2 =  2, h  =  2, and I2 =  50. Then the required filter lengths are 

-lO logC JA /4) - 1 3 _____

W l..........  1 4 .6 V ---------+

-101oglo( W 4 ) - 1 3  . , _
----------u Z T f ----------+  1 ^ 233

Thus we obtain a reduction in the overall filter length of 2(5480)/2(177+233) ~  13.36- 
In addition, we obtain further reduction in the multiplication rate by using polyphase
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filters. For the first stage of decimation, the reduction in multiplication rate is 50, while 
for the second stage the reduction in multiplication rate is 100. Further reductions 
can be obtained by increasing the number of stages of decimation and interpolation.

10.9.4 Implementation of Digital Filter Banks

F ilte r  b anks are  generally  ca tegorized  as tw o types, analysis f i l ter banks  and  s y n ­
thesis f i l ter banks .  A n  analysis filter b an k  consists o f a se t o f filters, w ith system  
functions {#;(&)}, a rra n g ed  in a p ara lle l b an k  as illu s tra ted  in Fig. 10.32a. T h e  
f requency  response  ch aracteristics o f th is filter b ank  sp lits th e  signal in to  a c o rre ­
spond ing  n u m b e r  o f subbands. O n  th e  o th e r han d , a syn thesis filter b an k  consists 
o f a se t o f filters w ith  system  functions {G*(')}, a rra n g ed  as show n in Fig. 10.32b, 
w ith co rre sp o n d in g  inp u ts  {v*(/i)}- T he o u tp u ts  o f the  filters are  sum m ed  to  form  
the  syn thesized  signal {*(/;))■

F ilte r  b an k s  are  o ften  used  fo r perfo rm ing  sp ectrum  analysis and  signal syn­
thesis. W hen a filter b an k  is em ployed  in th e  co m p u ta tio n  o f the d isc re te  F o u rie r

Analysis fitter bank

(a)

Synthesis filter bank

(b)

Figure 10.32 A digital filter bank.
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tran sfo rm  (D F T ) o f  a sequence  {*(«)}, th e  filter b an k  is called  a  D F T  filter bank.
A n  analysis filter bank  consisting  o f N  filters {Hk(z),  Jt =  0 , 1 , ___ N  — 1} is called a
un ifo rm  D F T  filter b ank  if Hk(z), it =  1, 2 , . . . ,  N  — 1, a re  deriv ed  from  a p ro to ty p e  
filter Hq(z ), w here

H en ce  th e  frequency  response  characteristics o f th e  filters { //* ( ') , Jt =  0, 1 , ,  
/ /  — l} a re  sim ply o b ta in ed  by  un ifo rm ly  shifting  th e  frequency  resp o n se  o f th e  p ro ­
to ty p e  filter by  m ultip les of 2n / N . In  th e  tim e  d o m ain  th e  filters a re  characterized  
by th e ir  im pulse responses, w hich can  be  exp ressed  as

w here  {/iq(«)} is th e  im pulse resp o n se  o f  th e  p ro to ty p e  filter.
T h e  un ifo rm  D F T  analysis filter b a n k  can be rea lized  as show n  in Fig. 10.33a, 

w h ere  th e  frequency  com p o n en ts  in th e  se quence  {jr(n)} a re  tra n s la te d  in frequency  
to  low pass by m ultip ly ing  x(n)  w ith  th e  com plex  expon en tia ls  e x p (—j l n n k j N ) ,  k =
1___   N  -  1, and  the  resu lting  p ro d u c t signals a re  passed  th ro u g h  a  low pass filter
w ith im pulse response  {ho(n)). Since th e  o u tp u t o f th e  low pass filter is relatively  
n arrow  in bandw id th , the signal can be dec im ated  by a fac to r D < N.  T h e  resulting  
d ec im ated  o u tp u t signal can b e  exp ressed  as

w here  {X*(m)} a re  sam ples o f th e  D F T  at freq u en c ies a>k =  2 n k / N .
T h e  co rrespond ing  synthesis filte r fo r each  e lem en t in th e  filter b ank  can 

be v iew ed  as show n in Fig. 10.33b, w h ere  th e  in p u t signal seq u en ces {l*(m ), k =  
0, 1 , . . . ,  N  — 1} a re  u p sam pled  by a  fac to r o f I =  D,  f ilte red  to  rem ove the 
im ages, and  tran sla ted  in frequency  by m u ltip lica tio n  by th e  com plex  exponen tia ls 
{ e x p i j l n n k / N ) ,  k  =  0, 1, . . N  — 1). T h e  resu lting  freq u e n cy -tran sla ted  signals 
from  th e  N  filters are  th en  sum m ed. T h u s w e o b ta in  th e  sequence

(10.9.2)

hk(n) =  h0(n)ej2nnk/N k =  0 , l ____ N - l (10.9.3)

X k(m) — ho(mD — n)x(/i)e',-jlxnk/N k =  0, 1, . . . , N  -  1
(10.9.4)n

m  = 0 ,  1 , . . .

=  ^  ej2”"klN Y ,  y^ m ^8o(n -  m l )
i —n _

=  ! > ( *  -  m l)  1  £  Y d m ) e ^ nklN
wn 1* I__n

Jlnnk/N (10.9.5)

m

w h ere  th e  fac to r 1 / N  is a  n o rm aliza tion  fac to r, {y„(m)} re p re se n t sam ples o f the 
inverse  D F T  sequence  co rre sp o n d in g  to  {}*(m)}, {go(«)} is th e  im pulse response 
o f th e  in te rp o la tio n  filter, and  I ~  D.



Sec. 10.9 Applications of Muttirate Signal Processing 627

e-jainn

Analysis

(a)

e)<w

Synthesis w* =  ——
N

(b)

Figure 1033 A  uniform DFT filter bank.

T he re la tio n sh ip  betw een  th e  o u tp u t (X*(n)} o f th e  analysis filter b an k  and  
the  inp u t {y*(m)} to  the  synthesis filter b an k  d ep ends o n  th e  app lica tion . U su ­
ally, {y*(rn)| is a m odified  version  o f {X*(m)) ,  w here  th e  specific m odifica tion  is 
d e te rm in e d  by th e  app lication .

A n  a lte rn a tiv e  rea liza tion  o f th e  analysis and  syn thesis filter b an k s  is illus­
tra te d  in Fig. 10.34. T h e  filters a re  rea lized  as b an d p ass filters w ith  im pulse r e ­
sponses

hk(n) =  h0(n)eJ7* nk/N k =  0 , 1 , . . . ,  N  -  1 (10.9.6)
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Analysis

(a)

Synthesis

(b)

Figure 10.34 Alternative realization of a uniform DFT filter bank.

The output o f  each bandpass filter is decim ated by a factor D  and m ultiplied by 
e x p i —j l n m k / N )  to produce the D F T  sequence {X*(m)}. T he m odulation by the 
com plex exponential allow s us to shift the spectrum  o f the signal from =  2 n k / N  
to oo =  0. H ence this realization is equivalent to  the realization given in Fig. 10.33. 
The filter bank output can be written as

X k(m)  = £ jc (n )* o (m D  -  n)e j2nk(mD~n)/N "-jlnmkD/N (10.9.7)

T he corresponding filter bank synthesizer can be realized as shown in 
Fig. 10.34b, w here the input sequences are first m ultiplied by the exponential 
factors [ ex p ( j 2n  k m D /  N)] ,  upsam pled by the factor I  =  D,  and the resulting se-
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q u en ces a re  filtered  by th e  b an dpass in te rp o la tio n  filters w ith im pulse responses

gk(n)  =  g 0( n) e j2j!nk/N (10.9.8)

w here  {£o(«)) is the im pulse response  o f the p ro to ty p e  filter. T h e  o u tp u ts  o f these  
filters are  th e n  sum m ed  to  yield

1 N-1

■’< " ) = j j i .
k =  0

(10.9.9)

w here  I — D.
In the  im p lem en ta tio n  of d igital filters banks, co m p u ta tio n a l efficiency can  be 

ach ieved  by use o f po lyphase  filters fo r decim ation  and  in te rp o la tio n . O f  p articu la r 
in te re st is th e  case w h ere  th e  decim ation  fac to r  D  is se lec ted  to  be equal to  the  
n u m b er N  o f frequency  bands. W hen D = N,  w e say th a t the  filter b an k  is critically 
sampled.

F o r th e  analysis filter bank , let us define a se t o f N  =  D  po lyphase  filters 
w ith im pulse responses

pt (n)  =  ho(nN — k) k  =  0. 1.........jV — 1 (10.9.10)

and  th e  co rre sp o n d in g  se t o f decim ated  inpu t sequences

x k(n) = x ( n N  +  k) * =  0 .1 .........N - 1  (10.9.11)

N o te  th a t th is defin ition  o f {/;*(«)) im plies th a t th e  co m m u ta to r  for th e  d ec im ato r 
ro ta te s  clockw ise.

T h e  s tru c tu re  o f th e  analysis filter bank  based  on  th e  use o f po lyphase filters 
can be o b ta in ed  by substitu tin g  (10.9.10) and  (10,9.11) in to  (10.9.7) and  rea rrang ing  
th e  su m m atio n  in to  th e  fo rm

- j Z n n k / N k -  0 ,1 ____ D  -  1 (10.9.12)

w h ere  N  =  D.  N o te  th a t th e  in n e r sum m ation  rep re sen ts  th e  convo lu tion  o f 
i p n(l)} w ith {*„(/)). T h e  o u te r  sum m ation  rep re sen ts  th e  W -point D F T  o f  the  
filter ou tp u ts . T h e  filter s tru c tu re  co rre spond ing  to  th is co m p u ta tio n  is illustrated  
in Fig. 10.35. E ach  sw eep  o f th e  co m m u ta to r resu lts in N  o u tpu ts, d en o ted  as
(r „ ( m), n =  0, 1.........A ' - l )  from  th e  N  polyphase filters. T h e  / V -po in t D F T  o f
th is se q uence  yields th e  spectra l sam ples (Jft(m )]. F o r la rge  values o f N ,  the  F F T  
algo rithm  p ro v id es an  efficient m eans fo r com pu ting  th e  D F T .

N ow  suppose  th a t th e  spectral sam ples { ^ (m )}  a re  m odified  in som e m an n er, 
p resc rib ed  by th e  app lica tion , to  p ro d u ce  |y t.(m)}. A  filter b an k  synthesis filter 
based  on  a po lyphase  filter s tru c tu re  can be rea lized  in a  sim ilar m an n er. F irst, 
we define th e  im pulse response  o f th e  N  {D =  I  — N)  p o lyphase  filters fo r the 
in te rp o la tio n  filter as

qk(n) =  go(nN +  k) k =  0 ,1 ........N - 1  (10.9.13)
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Figure 1035 Digital filter bank structure for the computation of (10.9.12).

and  the  co rrespond ing  set o f o u tp u t signals as

vt («) =  v(n N  +  k)  * =  0 ,1 .........A ' - l (10.9.14)

N ote th a t th is defin ition  o f {qt(n)} im plies th a t the  c o m m u ta to r  fo r th e  in te rp o la to r  
ro ta te s  counterclockw ise .

By substitu ting  (10.9.13) in to  (10.9.5), we can express th e  o u tp u t v/(n) o f the 
/th  po lyphase  filter as

V i ( n )  =  ^ < ? / ( «  -  m )

j N - \

- ] T n ( m ) e
j2Kkl/H i = 0 , 1 . . . . ,  N - 1  (10.9.15)

T h e  term  in b rack e ts  is the /V-point inverse  D F T  o f {% ("*)}, w hich  we d en o te  as 
{y; (m)}. H ence

Vi (tt) =  ^  qt(n — m)yi{m)  I — 0 , 1 , . . . ,  N  — 1 (10.9.16)

T h e  synthesis s tru c tu re  co rre sp o n d in g  to  (10.9.16) is show n in  Fig. 10.36. It is 
in te restin g  to  n o te  th a t by defin ing  th e  p o lyphase  in te rp o la tio n  filte r as in (10.9.13), 
the stru c tu re  in Fig. 10.36 is th e  tran sp o se  o f  th e  p o lyphase  analysis filter show n 
in Fig. 10.35.

In  o u r tre a tm e n t o f d ig ita l filter b an k s w e co n s id ered  th e  im p o rta n t case o f 
critically  sam pled D F T  filter banks, w here  D  ~  N .  O th e r  cho ices o f D  an d  N  
can  be em ployed  in  prac tice , b u t  the  im p lem en ta tio n  o f th e  filters becom es m ore  
com plex. O f  p a rticu la r  im p o rtan ce  is th e  oversam p led  D F T  filte r ban k , w here 
N  = K  D, D  d en o te s  th e  decim atio n  fac to r  an d  K  is an  in teg er th a t specifies the
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Figure 10,36 Digital filter bank structure for the computation of (10.9.16).

o versam pling  factor. In this case it can be show n that  th e  po lyphase filter b an k  
s tru c tu res for the analysis and synthesis filters can be im p lem en ted  by use o f N  
subfilters and  /V-point D FT s and inverse D FT s.

10.9.5 Subband Coding of Speech Signals

A  variety  o f tech n iq u es have b een  deve lo p ed  to  efficiently  rep re sen t speech signals 
in digital form  fo r e ith e r  transm ission  o r  sto rage . Since m ost o f th e  speech energy  
is co n ta in ed  in the low er frequencies, we w ould like to  en co d e  the  low er-frequency  
b an d  w ith m ore  b its th an  the h igh -frequency  ban d . S u b band  coding is a m eth o d , 
w here th e  speech  signal is subd iv ided  in to  severa l frequency  bands an d  each  b an d  
is digitally  en co d ed  separa te ly .

A n  exam ple o f a frequency  subdivision  is show n in Fig. 10.37a. L e t us a s­
sum e th a t th e  speech signal is sam pled  a t a  ra te  Fs sam ples p e r  second . T h e  
first frequency  subdivision splits the  signal sp ec tru m  in to  tw o equal-w id th  seg ­
m en ts , a  low pass signal (0 <  F <  Fxj 4) and  a  h ighpass signal (Fs/4  < F  < Fs/ 2). 
T h e  second  frequency  subdivision splits th e  low pass signal from  th e  first stage 
in to  tw o equal bands, a low pass signal (0 <  F  < Fs/ 8) and  a h ighpass signal 
(Fs/& <  F  < F J 4). F inally , th e  th ird  frequency  subdivision  splits th e  low pass 
signal from  the second  stage in to  tw o equal b andw id th  signals. T h u s th e  sig­
n a l is subd iv ided  in to  fo u r freq u en cy  bands, covering  th re e  octaves, as show n in 
Fig. 10.37b.

D ecim atio n  by a fac to r o f 2 is p e rfo rm ed  a fte r  frequency  subdivision. By 
a llocating  a d iffe ren t n u m b er o f b its p e r  sam ple  to  the  signal in th e  fo u r subbands, 
w e can  ach ieve a red u c tio n  in th e  b it ra te  o f th e  d ig italized  speech signal.
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(a)

j 1 2 3 4 [

0  JT JT 7T JT

8 4 2 

(b)

Figure 10.37 Block diagram of a subband speech coder.

F ilte r  design is particu larly  im p o rta n t in ach iev ing  good p erfo rm an ce  in su b ­
b an d  coding. A liasing  resu lting  from  decim atio n  o f  th e  su b b an d  signals m ust be 
negligible. It is c lear th a t w e can n o t use brickw all filter charac te ris tics  as show n in 
Fig. 10.38a, since such filters are  physically  u n realizab le . A  p a rticu la rly  practical 
so lu tion  to  th e  aliasing  p rob lem  is to  use quadrature mirror  f i l ters (Q M F ), which 
have  th e  frequency  response  charac te ris tics  show n in Fig. 10.38b. T h ese  filters are 
d escribed  in th e  follow ing section .

T he synthesis m e th o d  for th e  su b b an d  en co d ed  speech signal is basically  th e  
reverse o f the  en cod ing  process. T h e  signals in ad jacen t low pass an d  h ighpass 
frequency  bands a re  in te rp o la te d , filte red , and  com b in ed  as show n in Fig. 10.39. 
A  p a ir  o f  Q M F  is used  in th e  signal syn thesis fo r  each  octave o f  the  signal.

S ubband  cod ing  is also  an  effective m e th o d  to  achieve d a ta  com pression  in 
im age signal processing . B y com bin ing  su b b a n d  cod ing  w ith v ec to r q u an tiza tio n  
fo r each  subband  signal, S afran ek  e t al. (1988) have o b ta in ed  co d ed  im ages with 
app rox im ate ly  ^ b it p e r  pixel, co m p ared  w ith 8 b its p e r  p ixel fo r  the  uncoded  
im age.

In general, su b b a n d  cod ing  o f  signals is an  effective m e th o d  fo r achieving 
bandw id th  com pression  in a  d ig ita l re p re se n ta tio n  o f  th e  signal, w hen  th e  signal 
energy is co n cen tra ted  in a p a rticu la r  reg ion  o f  th e  frequency  band . M ultira te  
signal p rocessing  n o tio n s p ro v id e  efficient im p lem en ta tio n s o f  th e  su b b an d  en ­
coder.
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(a)

QMF
(b)

Figure 10.38 Filter characteristics for subband coding.

10.9.6 Quadrature Mirror Filters

T h e  basic  b u ild ing  b lock  in app lications o f q u a d ra tu re  m irro r  filters (Q M F ) is 
th e  tw o-channel Q M F  b a n k  show n in Fig. 10.40. T his is a  m u ltira te  digital filter 
s tru c tu re  th a t  em ploys tw o decim ato rs in th e  “signal analysis” sec tio n  and  tw o 
in te rp o la to rs  in th e  “signal syn thesis” section . T h e  low pass an d  h ighpass filters in 
th e  analysis sec tion  have  im pulse responses ho(n)  and  h\ (n) ,  respectively . S im ilarly, 
th e  low pass a n d  h ighpass filters con ta in ed  in th e  syn thesis sec tion  hav e  im pulse 
respo n ses go(n) and  g i(n ), respectively.
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Figure 10J9 Synthesis o f subband-encoded signals.

Analysis
section

Synthesis
section

Figure 10.40 Two-channel QMF bank.

T h e  F o u rie r transfo rm s o f the  signals a t th e  o u tp u ts  o f th e  tw o  decim ators

X a0(co) =  -

X aX(co) =  -

(10.9.17)

If Xsq(m) and Xlt(<u) represent the two inputs to the synthesis section, the output

Outpa



is sim ply

X(co) =  Xfo(2(o)Go(co) +  X s\(2(o)G\(co) (10.9.18)

N ow , suppose  tha t we connect th e  analysis filter to  th e  co rre sp o n d in g  synthesis 
filter, so th a t X ao{(o) =  and  X a\(oo) =  -X*i(ew). T h en , by substitu ting  from
(10.9.17) in to  (10.9.18), w e ob ta in

X(co) =  ^ \ H q{(o) Gq((o) +  H\(a))G\{(d) ]X {w)
(10.9.19)

+ \[H0(u> — 7t)Go(<o) + Hi(co — 7t)G\(u))]X(o} — tt)
T he first te rm  in (10.9.19) is th e  desired  signal o u tp u t from  th e  Q M F  bank. 

T h e  second te rm  rep re sen ts  th e  effect o f aliasing, w hich we w ould  like to  elim inate. 
H en ce  we requ ire  th a t

H0((o -  n)Gu(a>) + Hi(co -  7t)Gx(co) =  0 (10.9.20)

T his cond ition  can be sim ply satisfied by selecting  Go(co) an d  G i M  as

G q(cd) =  Hiico -  tt) G x(a>) =  - H a( o > - n )  (10.9.21)

T hus th e  second term  in (10.9.19) vanishes.
T o  e lab o ra te , let us assum e th a t Hu(co) is a low pass filter and  H x(io) is a 

m irro r-im age h ighpass filter. T hen  we can express Hti(u>) and  H\(u>) as

H0(a>) =  H(to)
(10.9.22)

H\ (w) =  H ( oj — tt)

w h ere  H(w)  is the frequency  response  o f a low pass filter. In  th e  tim e dom ain , the 
co rre sp o n d in g  re la tio n s are

hnin) =  h(n)
(10.9.23)

h\ (n)  =  ( - 1  )nh(n)

A s a co n sequence , Hn(a>) and  H x(u>) have m irro r-im ag e  sym m etry  ab o u t the fre ­
quency  a) — tt/2, as show n in Fig. 10.38b. T o  b e  consisten t w ith the co n stra in t in 
(10.9.21), we se lect th e  low pass filter G0(to) as

G0(co) =  2H(co)  (10.9.24)

and  the  h ighpass filter G x(a>) as

G x (co) =  - 2 H(co -  n )  (10.9.25)

In  the  tim e dom ain , th ese  re la tions becom e 

go(n) =  2h(n)
(10.9.26)

g\(n)  =  —2(—1 )nh{n)

T h e  scale fac to r o f 2 in g0(n) an d  g x(n) co rre sp o n d s to  th e  in te rp o la tio n  fac to r 
u sed  to  no rm alize  th e  overall frequency  resp o n se  o f th e  Q M F . W ith  th is choice o f
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the filter characteristics , the  co m p o n en t d ue  to  aliasing  vanishes. T h u s the  aliasing 
resu lting  from  decim ation  in the analysis section  o f the Q M F  b an k  is perfec tly  
canceled  by the  im age signal sp ec tru m  th a t arises due to  in te rp o la tio n . A s a 
result, th e  tw o-channel Q M F  b eh aves as a linear, tim e-in v arian t system .

If we sub stitu te  fo r Ho(a>), H-\(co), Go(co), and  Gi(a>) in to  th e  first te rm  of
(10.9.19), we ob ta in

X(co) =  [ H 2(co) -  H 2(u) -  tt) ]X( co) (10.9.27)

Ideally , the  tw o-channel Q M F  b ank  shou ld  have unity  gain,

\ H2{oj) — H 2(co — n) \  =  1 fo r all co (10.9.28)

w here H(co) is the  frequency  response  o f a low pass filter. F u rth e rm o re , it is also 
d es irab le  fo r th e  Q M F  to  have linear phase.

N ow , let us consider th e  use o f a lin ea r  phase  filter H(co).  H en ce  H(co) m ay 
be expressed  in th e  form

H(w)  =  Hr (co)e~Jai<N- h/2 (10.9.29)
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(10.9.30)

(10.9.31)

w here N  is the filter length . T hen

H 2(co) =  H 2( w ) e - j,”'N- h  

=  \ H ( w ) \ 2e~J‘°(N- ])

and

H 2(a>-  tt)  =  H ? ( o > - j r ) e - jia,- ,niN- ' )

=  ( - l ) N~ l \H(co -  jz)\2e - JwiN- l)

T h erefo re , th e  overall tra n sfe r  function  o f the tw o-channel Q M F  which em ploys 
linear-phase  F IR  filters is

=  [\H(a>)\2 - ( - l f - ] \ H(co-7T) \ 2]e - JU,'N- ]) (10.9.32)
X(co)

N ote  th a t the overall filter has a delay  o f  N  — 1 sam ples and  a m ag n itu d e  ch arac­
teristic

A(co) =  \H(co)\2 -  { - \ ) N- ' \ H { c o - n ) \ 2 (10.9.33)

W e also  no te  th a t w hen N  is odd , A ( n f l )  =  0, because  \H{7ijT)\  =  |/ / (3 j t /2 ) |.  
T h is is an  u n desirab le  p ro p e rty  fo r a Q M F  design. O n  th e  o th e r  hand , w hen  N  is 
even,

A((D) =  \H{co)\2 +  \ H { c o - n ) \ 2 (10.9.34)

w hich avo ids th e  p ro b lem  o f a ze ro  at a) =  n f l .  F o r N  even , th e  id ea l tw o-channel 
Q M F  shou ld  satisfy th e  cond ition

A(<d) =  \H(w)\2 -I-1H(C0 -  n ) I2 =  1 for all to (10.9.35)
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w hich follow s from  (10.9.33). U nfo rtu n a te ly , th e  only filter frequency  response  
function  th a t satisfies (10.9.35) is th e  trivial function  \H(u>)\2 =  cos2 aw.  C o n se­
q uen tly , any  non triv ia l linear-phase  F IR  filter H(a>) in tro d u ces som e am plitude  
d isto rtion .

T he am o u n t o f am p litu d e  d isto rtion  in tro d u ced  by a n o n triv ia l linear ph ase  
F IR  filter in th e  Q M F  can  be m inim ized by op tim izing th e  F IR  filter coefficients. 
A  particu la rly  effective m e th o d  is to  select th e  filter coeffic ients o f H(<o) such th a t 
A ((d) is m ad e  as flat as possib le w hile sim ultaneously  m inim izing (o r  constrain ing) 
th e  s to p b a n d  energy  o f H(u>). T his ap p roach  leads to  th e  m in im ization  o f th e  
in teg ra l sq u a red  e rro r

w here  w; is a  w eigh ting  fac to r  in th e  range 0 < w  <  1. In  perfo rm in g  the  o p ti­
m ization , th e  filter im pulse response  is co n stra ined  to  be sym m etric  ( lin ear phase). 
T h is op tim iza tio n  is easily  d one num erically  on  a d igital co m p u ter. T h is ap p roach  
has been  used  by Jo h n s to n  (1980), and  Ja in  and  C ro ch ie re  (1984) to  design tw o- 
channel Q M Fs. T ab les o f op tim um  filter coefficients have been  tab u la ted  by Jo h n ­
ston  (1980).

A s an a lte rn a tiv e  to  linear-phase  F IR  filters, we can design an I IR  filter tha t 
satisfies th e  all-pass co n s tra in t given by (10.9.28). F o r th is p u rp o se , e llip tic  filters 
p rov ide  especially  efficient designs. Since the  Q M F  w ould  in tro d u ce  som e phase 
d isto rtio n , th e  signal a t the  ou tpu t o f the Q M F  can be p assed  th ro u g h  an  all-pass 
ph ase  eq u a lize r designed  to  m inim ize phase d isto rtion .

In ad d itio n  to  th ese  tw o m eth o d s for Q M F  design, o n e  can also  design the  
tw o-channel Q M F s to  e lim inate  com pletely  b o th  am p litu d e  and  phase  d isto rtion  
as w ell as cance ling  aliasing  d isto rtion . Sm ith and  B arnw ell (1984) have  show n 
th a t such perfect  reconstruct ion Q M F  can be designed  by relax ing  th e  linear-phase  
cond ition  o f th e  F IR  low pass filter H{(o). T o  ach ieve p erfec t reco n stru c tio n , we 
begin  by design ing  a linear-phase  F IR  halfband  filter o f leng th  2 N  — 1.

A  h a lf-b an d  filter is defined as a  zero -phase  F IR  filter w hose im pulse response 
{b(n}} satisfies th e  condition

H en ce  all th e  ev en -n u m b ered  sam ples are  ze ro  excep t a t n =  0. T he zero -phase  
re q u ire m e n t im plies th a t b(n)  =  b(—n).  T he frequency  resp o n se  o f such a  filter is

K

w here K  is odd . F u rth e rm o re , B(co) satisfies th e  cond itio n  B(w)  + B(7i ~ co) is equal 
to  a co n stan t fo r  all frequencies. T h e  typical freq u en cy  resp o n se  charac te ris tic  o f a 
ha lf-b an d  filter is show n in Fig. 10.41. W e no te  th a t th e  filter response  is sym m etric  
w ith  resp ec t to  n j 2, th e  b a n d  edges frequencies cup and  a)s a re  sym m etric  ab o u t

(10.9.36)

b(2n)  =
constan t,
0,

n =  0 
n 7^0

(10.9.37)

(10.9.38)
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w =  n / 2 ,  an d  th e  p e a k  p a ssb a n d  and s to p b a n d  e r ro rs  a re  e q u a l. W e  a lso  n o te  th a t 
th e  f i lte r  can  b e  m a d e  cau sa l b y  in tro d u c in g  a d e la y  o f  K  sa m p le s .

N o w , su p p o se  th a t  w e d esig n  an F I R  h a lf-b a n d  f ilte r  o f  le n g th  2jV — 1, w h ere  
N  is  e v e n , w ith  fre q u e n c y  re s p o n s e  a s  sh o w n  in F ig . 1 0 .4 2 (a ) .  F ro m  B(a>) w e 
co n s tru c t  a n o th e r  h a lf-b a n d  f ilte r  w ith  fre q u e n c y  re s p o n s e

B+(w) =  B(co) +  (1 0 .9 .3 9 )

as sh o w n  in F ig . 1 0 .4 2 (b ) . N o te  th a t  B+(a>) is n o n n e g a tiv e  an d  h e n c e  it h a s  th e 
s p e c tra l fa c to r iz a tio n

fl+ (z )  =  H { z ) H { z - \ - (N~ h  (1 0 .9 .4 0 )

o r , e q u iv a le n tly ,

B+(a>) =  \H(co)\2e~ja>(N~1) (1 0 .9 .4 1 )

w h ere  H  (to) is  th e  fre q u e n c y  re s p o n s e  o f  an  F I R  f ilte r  o f  le n g th  N  w ith  re a l 
c o e ff ic ie n ts . D u e  to  th e  sy m m e try  o f  B+(co) w ith  r e s p e c t  to  co =  n / 2 ,  w e a ls o  h av e

B+(z) +  ( - 1 )  " - ' B + i - z )  =  c t z - ^ - V  (1 0 .9 .4 2 )

o r , e q u iv a le n tly ,

B+{a>) -I- ( - D ^ f l + O w  -  n) =  a e (1 0 .9 .4 3 )

w h e re  a  is  a c o n sta n t . T h u s , b y  s u b st itu tin g  (1 0 .9 .4 0 )  in to  ( 1 0 .9 .4 2 ) ,  w e o b ta in

H ( z ) H ( z ~ l ) +  H ( - z ) H ( ~ z ~ l ) =  a  (1 0 .9 .4 4 )

S in c e  H ( z )  sa tis fies  (1 0 .9 .4 4 )  a n d  s in c e  a lia s in g  is e lim in a te d  w h en  w e h a v e  G o (z) =  
H \ ( —z)  an d  G i(z )  =  — H q (—z ),  it  fo llo w s  th a t  th e s e  c o n d itio n s  a re  sa tis fied  b y
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Figure 10.42 Frequency response characteristics of half-band filters B(a>) and 
B+(<u>). (From Vaidyanathan (1987))
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c h o o s in g  H \( z ) ,  G o ( z ) ,  an d  G \ ( z )  as 

H o (z)  =  H {  z)

H \{ z )  =  - z - iN - h H 0( - Z ~ ')
(1 0 .9 .4 5 )

G 0{z) =  z - (N- u H q {z - 1)

G ,( z )  =  z ^ - ^ H ^ r 1 ) =  - H o ( - z )

T h u s  a lia s in g  d is to r tio n  is e lim in a te d  an d  s in ce  X { a > ) /X { a ) )  is a  c o n s ta n t , th e  Q M F  
p e rfo rm s  p e r fe c t  re c o n s tr u c tio n  so  th a t  x ( n )  =  a x ( n  — N  +  1 ). H o w e v e r , w e n o te  
th a t H ( z )  is n o t  a  l in e a r -p h a se  f ilte r .

T h e  F I R  filte rs  H o (z), H ] ( z ), G o (z ) , an d  G i (z )  in  th e  tw o -c h a n n e l Q M F  b a n k  
a re  e ff ic ie n tly  re a liz e d  as p o ly p h a se  filte rs . S in c e  I  =  D  =  2 ,  tw o  p o ly p h a se  filte rs  
a re  im p le m e n te d  fo r  e a c h  d e c im a to r  an d  tw o  fo r  e a c h  in te r p o la to r . H o w e v e r , if  
w e e m p lo y  l in e a r -p h a se  F I R  filte rs , th e  s y m m e try  p r o p e rtie s  o f  th e  a n a ly sis  filte rs  
an d  sy n th e s is  f ilte rs  a llo w  u s to  s im p lify  th e  s tru c tu re  an d  re d u c e  th e  n u m b e r  o f 
p o ly p h a se  filte rs  in  th e  an a ly sts  s e c tio n  to  tw o  filte rs  an d  to  a n o th e r  tw o  f ilte rs  in 
th e  sy n th e sis  s e c tio n .

T o  d e m o n s tra te  th is c o n s tru c tio n , le t  us a ssu m e th a t  th e  filte rs  a re  lin e a r - 
p h a s e  F I R  filte rs  o f  len g th  N  ( N  e v e n ) , w h ich  h a v e  im p u lse  re s p o n s e s  g iv en  by
(1 0 .9 .2 3 ) . T h e n  th e  o u tp u ts  o f  th e  a n a ly sis  f ilte r  p a ir , a f te r  d e c im a tio n  b y  a  fa c to r  
o f  2 , c a n  b e  e x p re s s e d  as

X a k (m ) =  Y ^  ( —l ) knh (n )x (2 m  -  n )  *  =  0 ,1
f l =  — OC

1 OO

=  £  £  ( - 1  )k<l2J+l)h { 2 l  +  l) x ( 2 m  - 2 1 -  i)
i '= 0  l=—oc 

N -1  N —\

=  J2  h ( 2 i) x ( 2 m  - H )  +  ( - 1 ) *  Y i ̂ ( 2 !  +  l) x ( 2 m  - 2 1 - 1 )  (1 0 .9 .4 6 )  
1=0  1=0

N ow  le t  us d e fin e  th e  im p u lse  re s p o n s e  o f  tw o  p o ly p h a s e  filte rs  o f  le n g th  N ( 2  as 

P i i m )  =  h {2m  +  i)  i =  0 , 1  (1 0 .9 .4 7 )

T h e n  (1 0 .9 .4 6 )  ca n  b e  ex p re s s e d  as

N / 2 - 1

X ak{m) =  Y 2  P o (m )x (2 (m  -  /))
1=0

(1 0 .9 .4 8 )
AT/2-1

+  ( —1 )*  P \{ m ) x ( 2 m  — 2 1  — 1) Jt =  0 ,1  
1=0

T h is  e x p re s s io n  co rr e s p o n d s  to  th e  p o ly p h a s e  f i lte r  s tru c tu re  fo r  th e  an a ly sis  
s e c t io n  sh ow n  in  F ig . 1 0 .4 3 . N o te  th a t  th e  c o m m u ta to r  ro ta te s  c o u n te rc lo c k w is e
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F igure  10.43 Polyphase filter structure for the Q M F  bank.

an d  th a t th e  f i lte r  w ith  im p u lse  re s p o n s e  (p o (ro)} p r o c e s s e s  th e  e v e n -n u m b e re d  
sa m p le s  o f  th e  in p u t s e q u e n c e  an d  th e  f ilte r  w ith  im p u lse  re s p o n s e  {/?i(m )} p r o ­
c e s se s  th e  o d d -n u m b e re d  sa m p les  o f  th e  in p u t sig n a l.

In  a s im ila r  m a n n e r , b y  u sin g  (1 0 .9 .2 6 ) , w e can  o b ta in  th e  s tru c tu re  fo r  th e  
p o ly p h a se  sy n th e s is  s e c tio n , w h ich  is a lso  sh ow n  in F ig . 1 0 .4 3 . T h is  d e r iv a tio n  is 
left as an e x e r c is e  fo r  th e  re a d e r  (P r o b le m  1 0 .1 6 ) , N o te  th a t  th e  c o m m u ta to r  a lso  
ro ta te s  c o u n te rc lo c k w is e .

F in a lly , w e o b s e r v e  th a t th e  p o ly p h a se  f ilte r  s tru c tu re  sh ow n  in F ig . 1 0 ,4 3  is 
a p p ro x im a te ly  fo u r tim e s  m o r e  e ff ic ie n t th a n  th e  d ir e c t -fo rm  F I R  f ilte r  re a liz a tio n .

10.9.7 Transmultiplexers

A n o th e r  a p p lica t io n  o f  m u ltira te  s ig n a l p ro c e s s in g  is in  th e  d esig n  an d  im p le m e n ­
ta tio n  o f  d ig ita l tra n s m u lt ip le x e rs  w h ich  a re  d e v ic e s  fo r  c o n v e rtin g  b e tw e e n  t im e - 
d iv is io n -m u ltip le x e d  ( T D M )  s ig n a ls  and  fre q u e n c y -d iv is io n -m u ltip le x e d  (F D M )  
s ig n als .

In  a tr a n s m u lt ip le x e r  fo r  T D M - to -F D M  c o n v e rs io n , th e  in p u t sig n a l {jr(/?)} 
is a tim e -d iv is io n  m u ltip le x e d  sig n a l co n sis tin g  o f  L  s ig n a ls , w h ich  a re  s e p a r a te d  
b y  a  c o m m u ta to r  sw itch . E a c h  o f  th e s e  L  s ig n a ls  a re  th e n  m o d u la te d  o n  d iffe re n t 
c a r r ie r  f re q u e n c ie s  to  o b ta in  an F D M  sig n al fo r  tra n s m is s io n . In  a  tr a n s m u lt ip le x e r  
fo r  F D M - t o - T D M  c o n v e rs io n , th e  c o m p o s ite  s ig n a l is s e p a r a te d  by  filte r in g  in to  
th e  L  s ig n a l c o m p o n e n ts  w h ich  a re  th e n  tim e-d iv is io n  m u ltip le x e d .

In  te le p h o n y , s in g le -s id e b a n d  tra n sm iss io n  is u sed  w ith  ch a n n e ls  sp a ce d  a t 
a  n o m in a l 4 -k H z  b a n d w id th . T w e lv e  c h a n n e ls  a re  u su a lly  s ta c k e d  in  fre q u e n c y  
to  fo rm  a b a s ic  g ro u p  c h a n n e l, w ith  a b an d w id th  o f  4 8  k H z . L a r g e r  b an d w id th  
F D M  s ig n a ls  a r e  fo rm e d  b y  fre q u e n c y  tr a n s la tio n  o f  m u ltip le  g ro u p s in to  a d ja c e n t  
fre q u e n c y  b a n d s. W e  sh a ll c o n fin e  o u r d iscu ssio n  to  d ig ita l t ra n s m u lt ip le x e rs  fo r  
1 2 -c h a n n e l F D M  an d  T D M  sig n a ls .

L e t  us firs t c o n s id e r  F D M - to - T D M  c o n v e rs io n . T h e  a n a lo g  F D M  sig n a l is 
p a sse d  th ro u g h  an A /D  c o n v e r te r  as  sh ow n  in F ig . 1 0 .4 4 a . T h e  d ig ita l s ig n a l is th e n
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TDM

(a)

(b)

Figure 10.44 Block diagram of FDM-to-TDM transmultiplexer.

d e m o d u la te d  to  b a s e b a n d  b y  m e a n s  o f  s in g le -s id e b a n d  d e m o d u la to rs . T h e  o u tp u t 
o f  e a c h  d e m o d u la to r  is d e c im a te d  an d  fed  to  c o m m u ta to r  o f  th e  T D M  sy stem .

T o  b e  s p e c ific , le t  us a ssu m e th a t  th e  1 2 -c h a n n e l F D M  s ig n a l is sa m p led  a t 
th e  N y q u is t r a te  o f  96  k H z  an d  p a ssed  th ro u g h  a f i lte r -b a n k  d e m o d u la to r . T h e  
b a s ic  b u ild in g  b lo c k  in  th e  F D M  d e m o d u la to r  co n s is ts  o f  a f re q u e n c y  c o n v e r te r , a  
lo w p ass  filte r , an d  a  d e c im a to r , as  i llu s tra te d  in F ig . 1 0 .4 4 b . F r e q u e n c y  c o n v e rs io n  
can  b e  e ff ic ie n tly  im p le m e n te d  by th e  D F T  f ilte r  b a n k  d e s c r ib e d  p rev io u sly . T h e  
lo w p ass  f ilte r  an d  d e c im a to r  a re  e ff ic ie n tly  im p le m e n te d  b y  u se  o f  th e  p o ly p h a se  
filte r  s tru c tu re . T h u s  th e  b a s ic  s tru c tu re  fo r  th e  F D M - t o - T D M  c o n v e r te r  h a s  th e 
fo r m  o f  a  D F T  f ilte r  b a n k  a n a ly z e r . S in c e  th e  s ig n a l in  e a c h  c h a n n e l  o ccu p ie s  a 
4 -k H z  b a n d w id th , its  N y q u ist ra te  is 8  k H z , an d  h e n c e  th e  p o ly p h a s e  f i lte r  o u t­
p u t ca n  b e  d e c im a te d  b y  a fa c to r  o f  12 . C o n s e q u e n tly , th e  T D M  c o m m u ta to r  is 
o p e r a tin g  a t  a  r a te  o f  12  x  8  k H z  o r  9 6  k H z .

In  T D M - to -F D M  c o n v e rs io n , th e  1 2 -c h a n n e l T D M  s ig n a l is  d e m u ltip le x e d  
in to  th e  12  in d iv id u a l s ig n a ls , w h e re  e a c h  s ig n a l h a s  a  ra te  o f  8  k H z . T h e  sig n al
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Figure 10.45 Block diagram of TDM-to-FDM transmultiplexer.

in ea c h  ch a n n e l is in te rp o la te d  b y  a fa c to r  o f  12  a n d  -fre q u e n cy  co n v e rte d  by  a 
s in g le -s id e b a n d  m o d u la to r , as sh ow n  in F ig . 1 0 .4 5 . T h e  s ig n a l o u tp u ts  fro m  th e  12 
s in g le -s id e b a n d  m o d u la to rs  a re  su m m e d  and fed  to  th e  D / A  c o n v e r te r . T h u s  w e 
o b ta in  th e  a n a lo g  F D M  sig n al fo r  tra n sm iss io n . A s in th e  c a s e  o f  F D M -to -T D M  
c o n v e rs io n , th e  in te r p o la to r  and th e  m o d u la to r  f ilte r  a r e  c o m b in e d  an d  e ff ic ie n tly  
im p le m e n te d  by  u se o f  a  p o ly p h a se  filte r . T h e  fre q u e n c y  tr a n s la tio n  can  b e  a c ­
co m p lish e d  by  th e  D F T . C o n s e q u e n tly , th e  T D M - t o -F D M  c o n v e r te r  e n c o m p a s s e s  
th e  b a s ic  p r in c ip le s  in tro d u c e d  p rev io u sly  in o u r  d iscu ssio n  o f  D F T  f ilte r  b a n k  
sy n th e sis .

10.9.8 Oversampling A/D and D/A Conversion

O u r  tr e a tm e n t  o f  o v e rsa m p lin g  A /D  an d  D /A c o n v e r te rs  in C h a p te r  9  p ro v id e s  
a n o th e r  e x a m p le  o f  m u ltira te  s ig n al p ro ce ss in g . R e c a l l  th a t  an  o v e rsa m p lin g  A/D 
c o n v e r te r  is im p le m e n te d  by  a c a s c a d e  o f  an  a n a lo g  s ig m a -d e lta  m o d u la to r  ( S D M )  
fo llo w ed  by  a d ig ita l a n tia lia s in g  d e c im a tio n  f ilte r  an d  a  d ig ita l h ig h p a ss  f i lte r  as 
sh o w n  in F ig . 10 .4 6 . T h e  a n a lo g  S D M  p ro d u ce s  a 1 -b it p e r  sa m p le  o u tp u t a t a  v ery  
h ig h  s a m p lin g  ra te . T h is  1 -b it  p e r  sa m p le  o u tp u t is p a ssed  th ro u g h  a d ig ita l low p ass 
f ilte r , w h ich  p ro v id e s  a h ig h -p re c is io n  (m u ltip le -b it)  o u tp u t th a t  is d e c im a te d  to  
a  lo w e r s a m p lin g  ra te . T h is  o u tp u t is th e n  p assed  to  a d ig ita l h ig h p a ss  f i lte r  th a t  
se rv e s  to  a t te n u a te  th e  q u a n tiz a tio n  n o ise  a t th e  lo w e r fre q u e n c ie s .

T h e  re v e rse  o p e r a tio n s  ta k e  p la c e  in an  o v e rs a m p lin g  D /A  c o n v e r te r , as 
sh o w n  in  F ig . 1 0 .4 7 . A s  illu s tra te d  in  th is  fig u re , th e  d ig ita l s ig n a l is p a sse d  th ro u g h  
a  h ig h p ass  f i lte r  w h o se  o u tp u t is fed  to  a d ig ita l in te r p o la to r  (u p s a m p le r  an d  a n t i­
im a g in g  f ilte r ) . T h is  h ig h -s a m p lin g -ra te  s ig n al is th e  in p u t to  th e  d ig ita l S D M  th a t 
p ro v id e s  a h ig h -s a m p lin g -ra te  1 -b it  p e r  sa m p le  o u tp u t. T h e  1 -b it  p e r  sa m p le  o u tp u t

FigDre 10.46 Diagram of oversampling A/D converter
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precision digital signal per sam ple

Figure 10.47 Diagram of oversampling D/A converter

is th e n  c o n v e rte d  to  an  a n a lo g  s ig n a l b y  lo w p a ss  filte r in g  an d  fu r th e r  s m o o th in g  
w ith  a n a lo g  filters .

F ig u re  1 0 .4 8  il lu s tr a te s  th e  b lo c k  d ia g ra m  o f  a  c o m m e r c ia l (A n a lo g  D e v ic e s  
A D S P - 2 8  m sp 0 2 ) c o d e c  (e n c o d e r  an d  d e c o d e r )  fo r  v o ic e -b a n d  s ig n a ls  b a s e d  o n  
s ig m a -d e lta  A /D  a n d  D /A c o n v e r te rs  a n d  a n a lo g  fro n t-e n d  c irc u its  n e e d e d  as an 
in te r fa c e  to  th e  a n a lo g  v o ic e -b a n d  sig n a ls . T h e  n o m in a l sa m p lin g  r a te  ( a f te r  d e c ­
im a tio n )  is 8  k H z  a n d  th e  sa m p lin g  ra te  o f  th e  S D M  is 1 M H z . T h e  c o d e c  h as  a 
6 5 -d B  S N R  an d  h a rm o n ic  d is to r tio n  p e r fo r m a n c e .

10.10 SUMMARY AND REFERENCES

T h e  n e e d  fo r  sam p lin g  ra te  c o n v e rs io n  a r is e s  fre q u e n tly  in  d ig ita l s ig n al p ro ce ss in g  
a p p lica tio n s . In  th is  c h a p te r  w e first t r e a te d  s a m p lin g  r a te  re d u c tio n  (d e c im a tio n )  
an d  sa m p lin g  ra te  in c re a s e  ( in te r p o la t io n )  b y  in te g e r  fa c to rs  a n d  th en  d e m o n ­
s tra te d  h ow  th e  tw o  p ro c e s s e s  ca n  b e  co m b in e d  to  o b ta in  sa m p lin g  ra te  c o n v e rs io n  
b y  an y  ra t io n a l fa c to r . L a te r ,  in S e c t io n  1 0 .8 , w e d e s c r ib e d  a  m e th o d  to  a ch ie v e  
sam p lin g  ra te  c o n v e rs io n  b y  an  a rb itra ry  fa c to r .

In  g e n e ra l, th e  im p le m e n ta tio n  o f  s a m p lin g  r a te  c o n v e rs io n  re q u ir e s  th e  u se  
o f  a  l in e a r  tim e -v a r ia n t filte r . W e  d e s c r ib e d  m e th o d s  fo r  im p le m e n tin g  su ch  filte rs , 
in c lu d in g  th e  c la ss  o f  p o ly p h a se  f ilte r  s tru c tu re s , w h ich  a re  e s p e c ia lly  s im p le  to  
im p le m e n t. W e  a ls o  d e s cr ib e d  th e  u se  o f  m u ltis ta g e  im p le m e n ta tio n s  o f  m u ltir a te  
c o n v e rs io n  as a m e a n s  o f  s im p lify in g  th e  c o m p le x ity  o f  th e  f i lte r  re q u ire d  to  m e e t 
th e  s p e c ifica tio n s .

In  th e  s p e c ia l c a s e  w h e re  th e  sig n a l to  b e  re s a m p le d  is a  b a n d p a s s  s ig n a l, w e 
d e s c r ib e d  tw o  m e th o d s  fo r  p e rfo rm in g  th e  s a m p lin g  r a te  c o n v e rs io n , o n e  o f  w h ich  
in v o lv es  fre q u e n c y  c o n v e rs io n , w h ile  th e  s e c o n d  is a  d ir e c t  co n v e rs io n  m e th o d  th a t 
d o e s  n o t  em p lo y  m o d u la tio n .

F in a lly , w e d e s c r ib e d  a n u m b e r  o f  a p p lic a t io n s  th a t  e m p lo y  m u ltir a te  s ig n al 
p ro ce ss in g , in c lu d in g  th e  im p le m e n ta tio n  o f  n a rro w b a n d  filte rs , p h a s e  s h ifte rs , fil­
te r  b a n k s , su b b a n d  s p e e c h  c o d e rs , an d  tr a n s m u lt ip le x e r s . T h e s e  a r e  ju s t  a  few  o f  
th e  m a n y  a p p lic a t io n s  e n c o u n te re d  in  p r a c t ic e  w h e re  m u ltir a te  s ig n a l p ro ce s s in g  
is u sed .

T h e  first c o m p re h e n s iv e  t r e a tm e n t  o f  m u ltir a te  s ig n a l p ro c e s s in g  w as g iv en  
in  th e  b o o k  b y  C r o c h ie r e  a n d  R a b in e r  ( 1 9 8 3 ) .  In  th e  te c h n ic a l l i te r a tu r e , w e c ite  
th e  p a p e rs  b y  S c h a fe r  an d  R a b in e r  (1 9 7 3 ) ,  a n d  C r o c h ie r e  a n d  R a b in e r  (1 9 7 5 ,1 9 7 6 ,  
1 9 8 1 , 1 9 8 3 ) . T h e  u se  o f  in te r p o la tio n  m e th o d s  to  a c h ie v e  sa m p lin g  ra te  co n v e rs io n
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Figure 10.48 Diagram of Analog Devices ADSP-28 codec
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b y  a n  a rb itra r y  f a c to r  is  t r e a te d  in  a  p a p e r  b y  R a m s ta d  ( 1 9 8 4 ) .  A  th o ro u g h  tu to r ia l 
tr e a tm e n t  o f  m u ltir a te  d ig ita l f ilte rs  a n d  f ilte r  b a n k s , in c lu d in g  q u a d ra tu re  m irro r  
filte rs , is  g iv e n  by  V e t te r l i  ( 1 9 8 7 ) ,  an d  b y  V a id y a n a th a n  (1 9 9 0 , 1 9 9 3 ) ,  w h e re  m an y  
r e fe r e n c e s  o n  v a r io u s  a p p lica tio n s  a r e  c ite d . A  c o m p re h e n s iv e  su rv e y  o f  d ig ita l 
tra n s m u lt ip le x in g  m e th o d s  is fo u n d  in  th e  p a p e r  b y  S c h e u e r m a n n  a n d  G o c k le r  
( 1 9 8 1 ) .  S u b b a n d  co d in g  o f  s p e e c h  h as  b e e n  c o n s id e r e d  in  m a n y  p u b lic a tio n s . T h e  
p io n e e r in g  w o rk  o n  th is  to p ic  w as d o n e  b y  C r o c h ie r e  ( 1 9 7 7 ,1 9 8 1 )  an d  b y  G a r la n d  
an d  E s te b a n  ( 1 9 8 0 ) .  S u b b a n d  co d in g  h a s  a ls o  b e e n  a p p lie d  to  co d in g  o f  im a g es . 
W e  m e n tio n  th e  p a p e rs  b y  V e t te r l i  ( 1 9 8 4 ) ,  W o o d s  an d  O ’N e il  ( 1 9 8 6 ) ,  S m ith  an d  
E d d in s  (1 9 8 8 ) ,  a n d  S a fra n e k  e t  a l. (1 9 8 8 )  as  ju s t  a  fe w  e x a m p le s . In  c lo s in g , w e 
w ish  t o  e m p h a s iz e  th a t  m u ltira te  s ig n a l p ro c e s s in g  c o n tin u e s  to  b e  a  v e ry  a c tiv e  
re s e a r c h  a re a .

P R O B L E M S

10.1 An analog signal xa(t) is bandlimited to the range 900 < F < 1100 Hz. It is used as 
an input to the system shown in Fig. P10.1. In this system, H(&) is an ideal lowpass 
filter with cutoff frequency Fc = 125Hz.

jr = 2500 = 1  = 250
Tx Ty

Fignre P10.1

(a) Determine and sketch the spectra for the signals x(n),  w(n), v(n),  and y(n).
(b) Show that it is possible to obtain y(n) by sampling x*(t) with period T = 4 

milliseconds.
10.2 Consider the signal x(n) =  a*u(rt), \a\ < 1.

(a) Determine the spectrum X(w).
(b) The signal x(n)  is applied to a decimator that reduces the rate by a factor of 2. 

Determine the output spectrum.
(c )  Show that the spectrum in part (b) is simply the Fourier transform of x(2n).

10-3 The sequence x(n)  is obtained by sampling an analog signal with period T. From
this signal a new signal is derived having the sampling period T/2 by use of a linear 
interpolation method described by the equation

x{nj2), n even
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(a) Show that this linear interpolation scheme can be realized by basic digital signal 
processing elements.

(b) Determine the spectrum of y(n) when the spectrum of x(n)  is

f 1, 0 < M  < 0.2*
W 10, otherwise

(c) Determine the spectrum of y(.n) when the spectrum of x(n) is

* ( , ) = ! ' '  0.7* < M  <0.9*
10, otherwise

10.4 Consider a signal x(n)  with Fourier transform

X (co) =  0 for w,„ < |£o| < n 
fm <  I/I <  \

(a) Show that the signal x(n) can be recovered from its samples x(mD)  if the sampling 
frequency ws =  2tt/D — 2uim( f s =  1 /D > 2f m).

(b) Show that x(n)  can be reconstructed using the formula
OC

x(n)  =  x(kD)hr(n — kD)

w here
sin(2^/rn)

hr(n) =  — ---------
2n n fm

COm <  (t)c <  Cl) J — co„

(c) Show that the bandlimited interpolation in part (b) can be thought as a two-step 
process: First, increasing the sampling rate by a factor of D by inserting (£> — 1) 
zero samples between successive samples of the decimated signal xa(rt) =  x(nD)  
and second, filtering the resulting signal using an ideal lowpass filter with cutoff 
frequency cuc.

10.5 In this problem we illustrate the concepts of sampling and decimation for discrete- 
time signals. To this end consider a signal x ( n )  with Fourier transform X (w) as in 
Fig. P10.5.

X(o>)

l L m
- 2 - 1 0 1 2  ...

Figure P10.5

(a) Sampling x(n) with a sampling period D = 2 results to the signal 

, , [ x(n), n =  0 , ± 2 , ± 4 , . . .
'■W - lo ,  n =  ±1, ±3, ± 5 . . . .

Compute and sketch the signal x,(n) and its Fourier transform Xs(w). Can we 
reconstruct jc(n) from xt (n)? How?



(b) D ecim ating x(n) by a factor o f D  =  2 produces the signal

x<i(n) =  x(2n) all n

Show that X d{a)) =  X x(a>/2). P lo t the signal x j( n ) and its transform  X d(cj). D o 
we lose any inform ation when we decim ate the sam pled signal xr (n)?

10.6* Design a decim ator that downsam ples an input signal x(n) by a factor D  =  5. U se 
the R em ez algorithm  to determ ine the coefficients of the F IR  filter that has 0.1-dB  
ripple in the passband (0  <  w < 7t/5) and is down by at least 30  dB  in the stopband. 
A lso  determ ine the corresponding polyphase filter structure for im plem enting the 
decim ator.

10 .7* D esign an interpolator that increases the input sam pling rate by a factor o f / =  2. U se 
the R em ez algorithm  to determ ine the coefficients o f the F IR  filter that has a 0.1-dB 
ripple in the passband (0 <  w <  n /2 )  and is down by at least 30  dB  in the stopband. 
A iso , determ ine the corresponding polyphase filter structure for im plem enting the 
interpolator.

10 .8* D esign a sam ple-rate converter that reduces the sam pling rate by a factor \ . U se the 
R em ez algorithm  to determ ine the coefficients o f the F I R  filter that has a 
0 .1-dB  ripple in the passband and is down by at least 30 dB in th e stopband. Specify 
the sets o f tim e-variant coefficients g (n ,m ) and the corresponding coefficients in the 
polyphase filter realization o f the sam ple-rate converter.

10.9 Consider the two different ways o f cascading a decim ator with an in terpolator shown 
in Fig. PI 0.9.
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x(n) >' i(«)

(a)

17 ---------------- « - y2(n)

(b) Figure P10.9

(a) I f  D  =  I ,  show that th e outputs o f  the two configurations are different. H ence, 
in general, the two systems are not identical.

(b) Show that th e two systems are identical if and only if  D  and I  a re  relatively prime.

10.10 Prove the equivalence o f  the two decim ator and interpolator configurations shown 
in Fig. P10.10. T hese equivalent relations are called the “noble identities” (see 
V aidyanathan, 1990).

10.11 Consider an arbitrary digital filter with transfer function

OO

H ( z ) =  h (n )z~n
n*-00

x(n) I D

(a) Perform  a tw o-com ponent polyphase decom position o f H (z )  by grouping the 
even-num bered sam ples Ao(n) =  h(2n)  and the odd-num bered samples h \(n) =
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(a)

x (n )

(b)

Figure P1G.10

h(2n  +  1). Thus show that H (z )  can be expressed as 

H ( i ) = H o ( z 2) +  r 1H ,(zJ )

and determ ine N 0(z) and N ,(~).
(b) G en eralize the result in part (a ) by showing that H (z )  can be decom posed into 

an £>-component polyphase filter structure with transfer function

D eterm in e //*(;).
(c) F o r  the I IR  filter with transfer function

H {z )  =
1 — a z ~ l

determ ine Ho(z) and H \ (z) for the tw o-com ponent decom position.

10.12 Design a tw o-stage decim ator for the following specifications

Passband:
Transition  band: 
Input sam pling rate: 
Ripple:

D  =  100 
0  <  F  <  50 
50  <  F  <  55 
10,000 Hz 
8i =  1 0 " ',5 2 =  1 0 "3

10,13  D esign a linear phase F IR  filter th at satisfies the follow ing specifications based on a 
single-stage and a two-stage m ultirate structure.

Sam pling rate: 
Passband: 
T ransition  band: 
Ripple:

10,000 Hz 
0 <  F  < 6 0  
60 <  F  <  65 
5, = 1 0 - 1,S 2 =  1 0 -3

10.14 Prove that the half-band filter that satisfies (10 .9 .43) is always odd and the even 
coefficients are zero.



850 Multirate Digital Signal Processing Chap. 10

10.15 D esign one-stage and two-stage interpolators to m eet the follow ing specification:

10.16 B y  using (10 .9 .26) derive the equations corresponding to the structure for the poly­
phase synthesis section shown in Fig. 10.43.

10.17 Show that the transpose o f an L-stage in terpolator for increasing th e sampling rate by 
an integer factor I  is equivalent to an L-stage decim ator that decreases the sampling 
rate by a factor D  =  I .

10.18 Sketch  the polyphase filter structure for achieving a tim e advance o f (k / l ) T , in a 
sequence x(n).

10.19 Prove the following expressions for an interpolator o f order /.
(a) T he impulse response h{n) can be expressed as

10.20* Zoom -frequertcy analysis Consider the system in Fig. P I0 .20a .
(a) Sketch the spectrum  o f the signal _v(n) =  y*(/i) +  j y i ( n )  if th e input signal jc(n) 

has the spectrum  shown in Fig. P I 0.20b.
(b) Suppose that we are interested in the analysis of the frequen cies in the band 

fo 5  /  £  fo +  A /, where /o  =  jt/6 and A/  =  tt/3. D eterm in e the cutoff of 
a lowpass filter and the decim ation factor D  required to retain  the inform ation 
contained in this band o f frequencies.

(c) Assum e that

Input sampling rate: 
Passband:
T ransition  band: 
R ipple:

/ = 20  
10.000 Hz 
0 < F  <  90 
90 <  F  < 100 
a, =  lO "2. ^  =  lO "3

where

n =  0. ± I . ± 2 1 , . . .  
otherw ise

(b) H (z)  may be expressed as

« ( ; )  =

i - i

where p  =  40  and /* =  k/ p,  Jt =  0 , 1 , ,  p  — 1. Com pute and plot the 1024-point 
D F T  o f  x(n).
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(a)

X(a>)

(b)

Figure P10.19

(d) R ep eat part (b) for the signal x(n) given in part (c )  by using an appropriately 
designed lowpass linear phase F IR  filter to  determ ine the decim ated signal *(«> =  
• * * { " )  +  j  s i  ( n ) .

(e ) C om pute the 1024-point D F T  of s(n ) and investigate to  see if you have obtained 
the expected results.



11
Linear Prediction and 
Optimum Linear Filters

T h e  d esig n  o f  f ilte rs  to  p e rfo r m  sig n al e s tim a tio n  is a  p ro b le m  th a t  fre q u e n tly  
a ris e s  in  th e  d esign  o f  c o m m u n ic a tio n  s y ste m s, c o n tr o l  sy stem s, in g eo p h y s ics , and  
in  m a n y  o th e r  a p p lic a t io n s  an d  d isc ip lin e s. In  th is  c h a p te r  w e t r e a t  th e  p ro b le m  
o f  o p tim u m  filte r  d e sig n  fro m  a s ta tis t ic a l v ie w p o in t. T h e  filte rs  a re  c o n stra in e d  
to  b e  lin e a r  an d  th e  o p tim iz a tio n  c r ite r io n  is b a s e d  o n  th e  m in im iz a t io n  o f  th e 
m e a n -s q u a re  e r ro r . A s  a c o n s e q u e n c e , o n ly  th e  s e c o n d -o rd e r  s ta tis t ic s  (a u to c o r ­
re la tio n  an d  c r o s s c o rre la t io n  fu n c t io n s )  o f  a s ta tio n a r y  p ro c e s s  a re  re q u ire d  in  th e  
d e te r m in a tio n  o f  th e  o p tim u m  filters .

In c lu d e d  in th is  t r e a tm e n t  is th e  d e sig n  o f  o p tim u m  filte rs  fo r  l in e a r  p r e d ic ­
tio n . L in e a r  p r e d ic t io n  is  a  p a r ticu la r ly  im p o r ta n t to p ic  in  d ig ita l s ig n a l p ro ce ss in g , 
w ith  a p p lic a t io n s  in a  v a r ie ty  o f  a re a s , su ch  as s p e e c h  s ig n a l p r o c e s s in g , im a g e  p r o ­
ce ssin g , an d  n o is e  su p p ress io n  in  c o m m u n ic a tio n  sy stem s. A s  w e  sh a ll o b s e rv e , 
d e te rm in a tio n  o f  th e  o p tim u m  lin e a r  f i lte r  fo r  p re d ic t io n  re q u ir e s  th e  s o lu tio n  o f  
a  s e t  o f  l in e a r  e q u a tio n s  th a t  h a v e  s o m e  s p e c ia l sy m m e try . T o  so lv e  th e s e  l in e a r  
e q u a tio n s , w e d e s c r ib e  tw o  a lg o r ith m s, th e  L e v in s o n -D u r b in  a lg o r ith m  an d  th e 
S c h u r  a lg o r ith m , w h ich  p ro v id e  th e  s o lu tio n  to  th e  e q u a tio n s  th ro u g h  c o m p u ta ­
tio n a lly  e ff ic ie n t p r o c e d u r e s  th a t  e x p lo it  th e  s y m m e try  p r o p e r tie s .

T h e  la s t s e c tio n  o f  th e  c h a p te r  tr e a ts  an  im p o rta n t c la ss  o f  o p tim u m  filters  
ca lle d  W ie n e r  filte rs . W ie n e r  filte rs  a re  w id e ly  u sed  in  m an y  a p p lic a t io n s  in v olv in g  
th e  e s tim a tio n  o f  s ig n a ls  co rr u p te d  w ith  a d d itiv e  n o is e .

11.1 INNOVATIONS REPRESENTATION OF A STATIONARY RANDOM 
PROCESS

In  th is  s e c tio n  w e d e m o n s tra te  th a t  a  w id e -se n se  s ta tio n a r y  ra n d o m  p ro c e s s  ca n  b e  
re p re s e n te d  as th e  o u tp u t o f  a  ca u sa l an d  c a u sa lly  in v e rt ib le  l in e a r  sy ste m  e x c ite d  
b y  a  w h ite  n o ise  p ro ce s s . T h e  co n d itio n  th a t  th e  sy s te m  is c a u sa lly  in v e rt ib le  a lso  
a llo w s us to  re p re s e n t  th e  w id e -s e n s e  s ta tio n a r y  ra n d o m  p ro c e s s  b y  th e  o u tp u t o f  
th e  in v e rse  sy ste m , w h ich  is  a  w h ite  n o is e  p ro c e s s .

852
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L e t  us c o n s id e r  a  w id e -s e n s e  s ta tio n a ry  p ro c e s s  { jc ( « ) }  w ith  a u to c o rr e la t io n  
s e q u e n c e  {yxx(m)} an d  p o w e r  s p e c tra l  d e n sity  r „ ( / ) ,  \ f  \ <  ±. W e  a ssu m e th a t 

!%.<■(/) is re a l  an d  c o n tin u o u s  fo r  a ll |/| <  j .  T h e  z -tr a n s fo rm  o f  th e  a u to c o r r e la ­
t io n  s e q u e n c e  {y xx(m )} is

^ ( 2) =  y (1 1 .1 .1 )

fro m  w h ich  w e o b ta in  th e  p o w e r  s p e c tra l d e n sity  b y  e v a lu a tin g  1 % ,^ )  o n  th e  u n it 
c ir c le  [i.e . b y  s u b st itu tin g  z =  e x p (y 2 jr / ) ] .

N ow , le t  us a ssu m e th a t  lo g  IV , (z) is a n a ly tic  (p o s s e s s e s  d e riv a tiv e s  o f  all 
o rd e rs )  in an  a n n u la r  re g io n  in th e  z -p la n e  th a t  in c lu d e s  th e  u n it c ir c le  ( i .e .,  n  <  
\z\ <  r 2 w h e re  n  <  1 a n d  r 2 >  1 ). T h e n , l o g r ^ z )  c a n  b e  e x p a n d e d  in  a L a u re n t 
s e r ie s  o f  th e  fo rm

lo g  r„ (z ) =  y  v(m )z~ (11.1.2)

w h ere  th e  (u (m )} a re  th e  c o e ff ic ie n ts  in th e  s e r ie s  e x p a n s io n . W e  ca n  v iew  {u (m )} 
as  th e  s e q u e n c e  w ith  z -tra n s fo rm  V (z )  =  l o g T „ ( z ) .  E q u iv a le n tly , w e c a n  e v a lu a te  
log  T J r (z ) o n  th e  u n it c ir c le ,

l o g r „ ( / ) =  J 2  v ( m ) e -J23lfm (1 1 .1 .3 )

so  th a t  th e  { r (m ) }  a r e  th e  F o u r ie r  c o e ff ic ie n ts  in th e  F o u r ie r  s e r ie s  e x p a n s io n  o f  
th e  p e r io d ic  fu n c t io n  l o g r ^ ( / ) .  H e n c e

v(m) =  j  [ \ ° g T xx{ f ) ] e j l ”f md f  m =  0 , d b l------ (1 1 .1 .4 )

W e  o b s e r v e  th a t v {m ) =  s in ce  Tx l ( f )  is a  re a l an d  e v e n  fu n ctio n  o f  / .
F ro m  (1 1 .1 .2 )  it fo llo w s  th a t

r ^ f z )  =  e x p
_m=—oc

— ^ 2 u t - , \

w h e r e , by  d e fin it io n , a 2 =  ex p [i? (0 )]  an d

H ( z )  =  e x p T .  v(m )z~

(1 1 .1 .5 )

(11.1.6)

I f  (1 1 .1 .5 )  is e v a lu a te d  o n  th e  u n it c ir c le , w e h a v e  th e  e q u iv a le n t r e p re s e n ta tio n  o f  
th e  p o w e r  s p e c tra l d e n sity  as

We note that
r „ ( / )  =  <r2\ H ( f ) \ 2

lo g  Txx{ f )  =  l o g a i+  lo g  H ( f )  +  lo g  / /* ( / )
OC

=  y  v ( m ) e - j2* fm

(11.1.7)
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F ro m  th e  d e fin it io n  o f  H ( z )  g iv en  by  ( 1 1 .1 .6 ) ,  it is  c le a r  th a t  th e  ca u sa l p art o f  
th e  F o u r ie r  s e r ie s  in  ( 1 1 .1 .3 )  is  a s s o c ia te d  w ith  H ( z )  an d  th e  a n tic a u sa l p a rt is 
a s s o c ia te d  w ith  H ( z ~ l ). T h e  F o u r ie r  s e r ie s  c o e ff ic ie n ts  {v (m )}  a re  th e  ce p stra l 
co e ffic ie n ts  an d  th e  s e q u e n c e  { u (m )} is c a lle d  th e  ce p s tru m  o f  th e  s e q u e n c e  {yxx(m )}, 
as d e fin ed  in S e c t io n  4 .2 .7 .

T h e  f i lte r  w ith  sy stem  fu n c t io n  H ( z )  g iv e n  b y  (1 1 .1 .6 )  is a n a ly tic  in  th e  re g io n  
|z| >  r \  <  1. H e n c e , in  th is  re g io n , it h a s  a  T a y lo r  s e r ie s  e x p a n s io n  as a cau sa l 
s y ste m  o f  th e  fo rm

OC

H ( z )  =  J 2 h in ) z ~ n ( 1 U '8)
m=0

T h e  o u tp u t o f  th is  f ilte r  in re s p o n s e  to  a w h ite  n o is e  in p u t s e q u e n c e  w (n )  w ith  
p o w e r s p e c tra l d e n sity  a 2 is  a  s ta tio n a r y  ra n d o m  p ro c e s s  { * ( « ) }  w ith  p o w e r s p e c ­
tra l d e n sity  r xx( f )  =  o 2 \ H ( f ) \ 2 . C o n v e rs e ly , th e  s ta tio n a r y  ra n d o m  p ro c e s s  |a-(/j)} 
w ith p o w e r s p e c tra l d e n sity  T xx( f )  ca n  b e  tr a n s fo rm e d  in to  a w h ite  n o ise  p ro ce ss  
b y  p assin g  ( jc (t i) } th ro u g h  a lin e a r  f ilte r  w ith  sy ste m  fu n c t io n  1 / H ( z ) .  W e  ca ll 
th is  f i lte r  a  n o ise  w h ite n in g  filte r .  Its  o u tp u t, d e n o te d  as (w (n )}  is c a lle d  th e  in n o ­
v a tio n s  p ro c e s s  a s s o c ia te d  w ith  th e  s ta tio n a ry  ra n d o m  p ro c e s s  { * ( « ) } .  T h e s e  tw o 
r e la tio n s h ip s  a re  il lu s tr a te d  in  F ig . 11 .1 .

T h e  re p r e s e n ta t io n  o f  th e  s ta tio n a r y  s to c h a s t ic  p ro c e s s  {.v fn )} as th e  o u tp u t 
o f  an  I I R  filte r  w ith  sy stem  fu n c tio n  H ( z )  g iv en  b y  (1 1 .1 .8 )  an d  e x c ite d  by  a w h ite 
n o ise  s e q u e n c e  (u ^ n )} is ca lle d  th e  W o ld  re p re se n ta tio n .

11.1.1 Rational Power Spectra

L e t  us now  r e s tr ic t  o u r  a t te n t io n  to  th e  c a s e  w h e re  th e  p o w e r  s p e c tra l  d e n sity  o f  
th e  s ta tio n a ry  ra n d o m  p ro c e s s  { * ( « ) )  is  a ra t io n a l fu n c t io n , e x p re s s e d  as

r ^ ( z )  =  g u,7 7\ J 7  n  r \ < \ z \ < r 2 (1 1 .1 .9 )
A { z ) A ( z ~ i )

w h ere  th e  p o ly n o m ia ls  B ( z )  a n d  A ( z )  h a v e  ro o ts  th a t  fa ll in s id e  th e  u n it c irc le  in 
th e  s -p la n e . T h e n  th e  l in e a r  f i lte r  H ( z ) fo r  g e n e ra tin g  th e  ra n d o m  p ro c e s s  U ( « ) }

Linear x(n ) =
w(rr) causal

W hile noise filter
H{z)

Y, h(i)w(n -  Jc) 
k = 0

(a)

L inear
-r(n) causal w(n)

filter W hite noise
VH(z)

(b)

Figure 11.1 Filters for generating
(a) the random process Jt(n) from white 
noise and (b) the inverse filter.
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fro m  th e  w h ite  n o is e  s e q u e n c e  {iu (n )} is a lso  ra t io n a l an d  is e x p re s s e d  as

w h e re  {bk } an d  [ak } a re  th e  f i lte r  c o e ff ic ie n ts  th a t  d e te r m in e  th e  lo c a t io n  o f  th e  
z e r o s  an d  p o le s  o f  H ( z ) ,  re s p e c tiv e ly . T h u s  H { z )  is  c a u sa l, s ta b le , an d  m in im u m  
p h a se . I t s  re c ip r o c a l 1 / H { z )  is  a lso  a  ca u sa l, s ta b le , an d  m in im u m -p h a s e  l in e a r  
sy stem . T h e r e fo r e ,  th e  ra n d o m  p ro c e s s  {;c (n )} u n iq u e ly  re p re s e n ts  th e  s ta tis tica l 
p r o p e r tie s  o f  th e  in n o v a tio n s  p ro c e s s  {uj(/ i)}, an d  v ice  v e rsa .

F o r  th e  lin e a r  sy s te m  w ith  th e  ra t io n a l s y ste m  fu n c t io n  H (z ) g iv en  by  (1 1 .1 .1 0 ) , 
ih e  o u tp u t x (n )  is  r e la te d  to  th e  in p u t u>(n) by  th e  d if fe re n c e  e q u a tio n

W e  w ill d is tin g u ish  a m o n g  th re e  sp e c ific  ca se s.

Autoregressive (AR) process. b0 =  1. bk =  0 ,  k >  0 . In  th is  ca s e , th e  
lin e a r  f ilte r  H ( z )  =  1 / A ( z )  is an  a ll-p o le  filte r  a n d  th e  d if fe re n c e  e q u a tio n  fo r  th e  
in p u t-o u tp u t  re la tio n s h ip  is

k= 1
In  tu rn , th e  n o is e -w h ite n in g  f ilte r  fo r  g e n e ra tin g  th e  in n o v a tio n s  p r o c e s s  is a n  
a ll-z e r o  filte r .

Moving average (MA) process. a k =  0 , k >  1. In  th is  c a s e , th e  l in e a r  f ilte r  
H { z )  =  B { z )  is  an  a ll-z e ro  f ilte r  an d  th e  d if fe re n c e  e q u a tio n  fo r  th e  in p u t-o u tp u t 
re la tio n s h ip  is

T h e  n o is e -w h ite n in g  f i lte r  fo r  th e  M A  p ro c e s s  is an  a ll-p o le  f ilte r .

Autoregressive, moving average (ARMA) process. In  th is  c a s e , th e  l in ­
e a r  f ilte r  H ( z )  =  B { z ) / A { z )  h as b o th  fin ite  p o le s  an d  z e r o s  in  th e  z -p la n e  an d  th e  
c o rr e s p o n d in g  d if fe re n c e  e q u a tio n  is g iv e n  by  (1 1 .1 .1 1 ) .  T h e  in v e rs e  sy stem  fo r  
g e n e ra tin g  th e  in n o v a tio n  p ro c e s s  fro m  x (n )  is  a ls o  a  p o le - z e r o  sy ste m  o f  th e  fo rm

1 / H ( z )  =  A ( z ) /B { z ) .

11.1.2 Relationships Between the Filter Parameters and 
the Autocorrelation Sequence

W h e n  th e  p o w e r  s p e c tra l  d e n sity  o f  th e  s ta tio n a r y  ra n d o m  p ro c e s s  is a  r a t io ­
n a l fu n c t io n , th e r e  is a  b a s ic  re la tio n s h ip  b e tw e e n  th e  a u to c o r r e la t io n  s e q u e n c e

(11.1.10)

(1 1 .1 .1 1 )

p
(11.1.12)

(1 1 .1 .1 3 )
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{XjcjcC"t)} an d  th e  p a r a m e te rs  {a * }  an d  {£>*} o f  th e  l in e a r  f ilte r  H ( z )  th a t g e n e ra te s  
th e  p ro c e s s  b y  filte r in g  th e  w h ite  n o is e  s e q u e n c e  w (n ).  T h is  re la tio n s h ip  ca n  b e  o b ­
ta in e d  by  m u ltip ly in g  th e  d if fe re n c e  e q u a tio n  in (1 1 .1 .1 1 )  by  x * (n  — m ) a n d  talcing 
th e  e x p e c te d  v a lu e  o f  b o th  sid e s  o f  th e  re su ltin g  e q u a tio n . T h u s  w e h av e

p
E [x { n ) x * { n  — m )] =  — ^ f l t £ [ . x ( n  — k )x * (n  — m )]

(1 1 .1 .1 4 )

■+ ^T^f>i£[u>(n — k )x * (n  — m )]

H e n ce
p <?

Yxx(m ) =  ~ f t  +  Y 2 btYwx^w ~ f t  ( H .1 .1 5 )
1=1 i= 0

w h ere  y w.r (m) is th e  c r o s s -c o rre la t io n  s e q u e n c e  b e tw e e n  u;(/j) a n d  x (/i) .
T h e  c ro s s c o rre la tio n  y wx(m ) is re la te d  to  th e  f i lte r  im p u lse  re s p o n s e . T h a t  is,

ywxOn) =  £ [A * (f i)w («  +  m )]

=  E ^  h (k )w * (n  — k )w (n  -i- m ) (1 1 .1 .1 6 )

=  a l h ( - m )

w h ere , in  th e  la s t s te p , w e h a v e  used  th e  fa c t  th a t th e  s e q u e n c e  w (n) is w h ite . 
H e n c e

I < 0

B y  c o m b in in g  (1 1 .1 .1 7 )  w ith  (1 1 .1 .1 5 ) ,  w e o b ta in  th e  d e s ired  re la tio n s h ip

p
~  Y 2 ,  a tYxx{m  -  k ), m >  q

(1 1 .1 .1 8 )Yxxim) =
k=\

P

~  ° kYx* (m  ~  k  ̂ +  h tt ' lbk+m, 0  < m  < q
k=l k=0

- Yxx m <  0

T h is  re p re s e n ts  a n o n lin e a r  re la tio n s h ip  b e tw e e n  yJX (m ) an d  th e  p a r a m e te rs  {a * } , 

{**}•
T h e  re la tio n s h ip  in  (1 1 .1 .1 8 )  a p p lie s , in  g e n e ra l, to  th e  A R M A  p ro c e s s . F o r  

a n  A R  p ro ce s s , (1 1 .1 .1 8 )  s im p lifies  to

p

~ 2 2 a k Y ™ ( m ~ k ) ,  m >  0

Yxx(m) =
k=i

p

- 2 2 a k Yx*(m ~  W +  a l ’ m =  0  
k=i

y A ( ~ m ) ' m < o

(11.1.19)
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~Yxx(0) y , , ( - 1) Yxx(~2) • Yxx(-P) - 1 -
y « (l) K™(0) YxA ~  l) ■ Yxx(~P +  l) a\ = 0

-Yxx(p) YxA p  - 1) Y x x ip -  2) - ■ YxAO) -ap _ _ 0 _

T h u s  w e h a v e  a  l in e a r  re la tio n s h ip  b e tw e e n  yxx (m ) an d  th e  { a t } p a r a m e te rs . T h e s e  
e q u a tio n s , c a lle d  th e  Y u le -W a lk e r  e q u a tio n s , ca n  b e  e x p re s s e d  in  th e  m a tr ix  
fo rm

(11.1.20)

T h is  c o r r e la t io n  m a tr ix  is T o e p litz , an d  h e n c e  it  ca n  b e  e ff ic ie n tly  in v e rte d  by  u se  
o f  th e  a lg o r ith m s  d e s c r ib e d  in  S e c t io n  11 .3 .

F in a lly , by  s e tt in g  a k — 0 ,  1 <  k <  p , an d  h (k ) — bk, 0  <  k <  q , in  (1 1 .1 .1 8 ) ,  
w e o b ta in  th e  re la tio n s h ip  fo r  th e  a u to c o rr e la t io n  s e q u e n c e  in  th e  c a s e  o f  a  M A  
p ro c e s s , n a m e ly ,

<?

cru , 2 2 bkbk+m' ° - m - ?
Y x A m ) =  n *=<> (1 1 -1 .2 1 )

0 , m >  q
y*x (—m ), m <  0

11.2 FORWARD AND BACKWARD LINEAR PREDICTION

L in e a r  p r e d ic t io n  is an im p o r ta n t to p ic  in  d ig ita l s ig n a l p ro c e s s in g  w ith  m an y  p r a c ­
tic a l  a p p lic a t io n s . In  th is  s e c tio n  w e c o n s id e r  th e  p r o b le m  o f  lin e a r ly  p re d ic tin g  
th e  v a lu e  o f  a  s ta tio n a ry  ra n d o m  p r o c e s s  e ith e r  fo rw ard  in  tim e  o r  b a c k w a rd  in  
tim e . T h is  fo rm u la tio n  le a d s  to  la t t ic e  f i lte r  s tru c tu re s  an d  to  s o m e  in te re s tin g  
c o n n e c t io n s  to  p a r a m e tr ic  s ig n al m o d e ls .

11.2.1 Forward Linear Prediction

L e t  u s  b e g in  w ith  th e  p r o b le m  o f  p re d ic t in g  a  fu tu re  v a lu e  o f  a s ta tio n a r y  ra n d o m  
p ro ce s s  fro m  o b s e r v a t io n  o f  p a s t v a lu e s  o f  th e  p ro c e s s . In  p a r tic u la r , w e c o n s id e r  
th e  o n e -ste p  f o r w a r d  l in e a r  p r e d ic to r ,  w h ich  fo rm s  th e  p re d ic t io n  o f  th e  v a lu e  x (n )  
b y  a  w e ig h te d  lin e a r  c o m b in a tio n  o f  th e  p a s t v a lu e s  x (n  — 1 ) , x (n  - 2 ) , . . . ,  x (n  — p ).  
H e n c e  th e  lin e a r ly  p r e d ic te d  v a lu e  o f  x ( n ) is

p
x ( n )  =  — ^ a p( i )  x (n  — k ) (1 1 .2 .1 )

*= l

w h e re  th e  { — a p {k)}  r e p re s e n t  th e  w e ig h ts  in  th e  lin e a r  c o m b in a tio n . T h e s e  w eig h ts  
a r e  c a lle d  th e  p r e d ic t io n  c o e ffic ie n ts  o f  th e  o n e -s te p  fo rw a rd  l in e a r  p r e d ic to r  o f  
o r d e r  p .  T h e  n e g a tiv e  sig n  in  th e  d e fin it io n  o f  x ( n )  is fo r  m a th e m a tic a l co n v e n ie n c e  
a n d  c o n fo rm s  w ith  c u rre n t p r a c tic e  in  th e  te c h n ic a l lite r a tu r e .
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F ig u re  1 L 2  F o rw a rd  lin e a r  p red ic tio n

T h e  d if fe re n c e  b e tw e e n  th e  v a lu e  x ( n )  a n d  th e  p r e d ic te d  v a lu e  x ( n )  is  c a lle d  
th e  f o r w a r d  p r e d ic t io n  e r r o r , d e n o te d  a s  f p (n):

f p (n) =  x (n )  -  x ( n ) 

p

=  x (n )  +  ^  a p (k )x (n  -  k)
(11.2.2)

W e  v iew  l in e a r  p re d ic tio n  as e q u iv a le n t to  l in e a r  f ilte r in g  w h e re  th e  p re d ic to r  
is e m b e d d e d  in th e  lin e a r  f i lte r , as sh o w n  in F ig . 1 1 .2 . T h is  is c a lle d  a  p r e d ic t io n -  
e rro r  f ilt e r  w ith  in p u t s e q u e n c e  {jc(ai)} an d  o u tp u t s e q u e n c e  { f r (n )}.  A n  e q u iv a le n t 
re a liz a tio n  fo r  th e  p r e d ic t io n -e r ro r  filte r  is sh o w n  in F ig . 1 1 .3 . T h is  re a liz a tio n  is 
a d ire c t-fo rm  F I R  f ilte r  w ith  sy stem  fu n ctio n

p

A p (z) =
i-=0

(1 1 .2 .3 )

w h e re , by d e fin it io n , a^ (0 ) =  1.
A s  sh ow n  in  S e c tio n  7 .2 .4 , th e  d ir e c t -fo rm  F I R  f ilte r  is e q u iv a le n t to  an a ll- 

z e ro  la tt ic e  f ilte r . T h e  la t t ic e  f ilte r  is g e n e ra lly  d e s c r ib e d  b y  th e  fo llo w in g  s e t  o f

“ p( P)

1----/,(")

Figure 11-3 Prediction-error filter
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o r d e r -r e c u r s iv e  e q u a tio n :

fo (n )  =  go(n) -  x {n )

fm (n )  =  / m -i(n ) +  K mg m~ i( n  -  1) m =  l , 2 , . . . , p  (1 1 .2 .4 )

g m(n) =  Ar*/m_ i ( n )  +  g m- i ( n  -  1) m =  1 . 2 ...........p

w h e re  { £ m) a r e  th e  re f le c tio n  c o e ff ic ie n ts  an d  gm (n) is  th e  b a c k w a rd  p re d ic tio n  
e r r o r  d e fin ed  in  th e  fo llo w in g  s e c tio n . N o te  th a t  fo r  c o m p le x -v a lu e d  d a ta , th e  
c o n ju g a te  o f  K m is  u sed  in th e  e q u a tio n  fo r  g m(n). F ig u re  1 1 .4  i llu s tra te s  a 
/7-stage la t t ic e  f i lte r  in  b lo c k  d ia g ra m  fo rm  a lo n g  w ith  a  ty p ica l s ta g e  sh ow in g  
th e  c o m p u ta tio n s  g iv en  b y  (1 1 .2 .4 ) .

A s  a c o n s e q u e n c e  o f  th e  e q u iv a le n c e  b e tw e e n  th e  d ir e c t -fo rm  p re d ic t io n - 
e r r o r  F I R  f i lte r  an d  th e  F I R  la t t ic e  filte r , th e  o u tp u t o f  th e  />-stage la t t ic e  filte r  is 
e x p re s s e d  as

f p (n) -  Y a p(f: x̂ (n ~  f t  a p(0) =  l

S in c e  (1 1 .2 .5 )  is  a  co n v o lu tio n  su m , th e  z -tra n s fo rm  r e la t io n s h ip  is

F r (z) =  A p ( z ) X ( z )

o r, e q u iv a le n tly .

A (z) =  W  =  ^
'  X ( z )  F 0(z)

T h e  m e a n -s q u a re  v a lu e  o f  th e  fo rw ard  lin e a r  p re d ic t io n  e r r o r  f p{n) is

£ fp =  E [ \ f p ( n ) \2]

p
=  > 'jj(0 ) +  2 R e a * ( l) a p(k ) y xx(l -  k )

(1 1 .2 .5 )

( 11.2 .6)

(1 1 .2 .7 )

(11.2.8)

Figure 1L4 p-stage lattice filter
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<?/ is a  q u a d ra tic  fu n c t io n  o f  th e  p r e d ic to r  c o e ff ic ie n ts  an d  its  m in im iz a tio n  lead s 
to  th e  se t o f  lin e a r  e q u a tio n s

p

yx A d  =  - Y , a r {k )y * * v  ~ k) l  =  l ' 2 ..........p  ( n -2 -9 )
*= i

T h e s e  a re  ca lle d  th e  n o r m a l e q u a tio n s  fo r  th e  c o e ff ic ie n ts  o f  th e  l in e a r  p re d ic to r . 
T h e  m in im u m  m e a n -s q u a re  p re d ic t io n  e r ro r  is s im p ly

m in [£ / ] s  E {  =  y „ ( 0 )  +  Y , a p { k ) YxA - k ) (1 1 .2 .1 0 )
*=i

In  th e  fo llo w in g  s e c tio n  w e e x te n d  th e  d e v e lo p m e n t a b o v e  to  th e  p ro b le m  o f  
p re d ic tin g  th e  v a lu e  o f  a  tim e  s e r ie s  in th e  o p p o s ite  d ir e c t io n , n a m e ly , b a ck w a rd  
in tim e .

11.2.2 Backward Linear Prediction

L e t  us assu m e th a t  w e h a v e  th e  d a ta  s e q u e n c e  x ( n ) ,  x ( n  - 1 ) .......... x(rt — p  + 1) fro m  a
s ta tio n a ry  ran d o m  p ro c e s s  an d  w e w ish to  p r e d ic t  th e  v a lu e  x (n  — p )  o f  th e  p ro ce ss . 
In  th is  ca s e  w e e m p lo y  a  o n e -ste p  b a c k w a rd  l in e a r  p re d ic t o r  o f  o rd e r  p. H e n c e

p -i
x (n  — p ) =  — Y 2  bp (k )x {n  — k)  ( 11.2 .11)

k=0

T h e  d if fe re n c e  b e tw e e n  th e  v a lu e  x (n  — p )  an d  th e  e s tim a te  x ( n  -  p )  is ca lle d  th e 
b a c k w a r d  p re d ic t io n  e r r o r , d e n o te d  a s  g p( n ):

P- \

g p (n) =  x ( n  -  p ) +  2 2 bp (k)x (n ~  f t

i=° (11.2 .12)
p

=  ' Y l bP ^ x n̂ ~ f t  bp (p ) =  1
t=o

T h e  b a c k w a rd  lin e a r  p r e d ic to r  ca n  b e  re a liz e d  e ith e r  b y  a d ire c t -fo rm  F I R  
f i lte r  s tru c tu re  s im ila r  to  th e  s tru c tu re  sh o w n  in  F ig . 1 1 .2  o r  a s  a la tt ic e  s tru c tu re . 
T h e  la t t ic e  s tru c tu re  sh ow n  in  F ig . 1 1 .4  p ro v id e s  th e  b a c k w a rd  lin e a r  p r e d ic to r  as 
w ell as th e  fo rw ard  lin e a r  p re d ic to r .

T h e  w eig h tin g  c o e ff ic ie n ts  in th e  b a c k w a rd  lin e a r  p r e d ic to r  a re  th e  co m p le x  
co n ju g a te s  o f  th e  c o e ff ic ie n ts  fo r  th e  fo rw a rd  l in e a r  p r e d ic to r , b u t th ey  o c c u r  in 
re v e rse  o rd e r . T h u s  w e h av e

bp(k) — a * ( p  — k ) k =  0 , l , . . . , p  (1 1 .2 .1 3 )

In  th e  z -d o m a in , th e  co n v o lu tio n  su m  in  (1 1 .2 .1 2 )  b e c o m e s

G p(z) =  Bp (z)X(z)  (11.2.14)

or, equivalently,
Gp (z) G p(z)
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w h e re  B p {z)  re p re s e n ts  th e  sy ste m  fu n c t io n  o f  th e  F I R  filte r  w ith  c o e ff ic ie n ts
bP (k).

S in c e  bp (k) =  a * ( p  — k ), G r (z) is  r e la te d  to  A r (z)

p

B p (z) =

=  X > > - * ) * " *
t=o (1 1 .2 .1 6 )

=  z - ' £ fl; ( * ) z *  
t=0

=  Z-pA*p(z- ')

T h e  re la tio n s h ip  in (1 1 .2 .1 6 )  im p lies  th a t  th e  z e ro s  o f  th e  F I R  f ilte r  w ith  sy stem  
fu n c t io n  B p(z)  a re  s im p ly  th e  (c o n ju g a te )  re c ip r o c a ls  o f  th e  z e ro s  o f  A ,,(z ). H e n c e  
B p (z) is c a lle d  th e  r e c ip r o c a l o r  re v e rse  p o ly n o m ia l  o f  A p (z).

N o w  th a t w e h a v e  e s ta b lis h e d  th e s e  in te r e s tin g  re la tio n s h ip s  b e tw e e n  th e  
fo rw a rd  an d  b a c k w a rd  o n e -s te p  p r e d ic to r s , le t  us re tu rn  to  th e  re cu rs iv e  la t t ic e  
e q u a tio n s  in ( 1 1 .2 .4 )  a n d  tr a n s fo rm  th e m  to  th e  z -d o m a in . T h u s  w e h av e

F 0(z) =  G q (z ) =  X ( z )

F m(z) =  F m- i ( z )  +  /rm; - ' G ffl_ , W  m =  1 , 2 , . . . ,  p  (1 1 .2 .1 7 )

G m(z) =  K " F m- i { z )  +  z _1 G m_ i ( ; )  m =  1, 2 , . . . ,  p  

I f  w e d iv id e e a c h  e q u a tio n  b y  X ( z ) ,  w e o b ta in  th e  d e s ire d  re su lts  in  th e  fo rm  

4 0 (z) =  5 o (z )  =  1

A m{z) =  A m^ ( z )  +  K mz ~ l B m^ { z )  m =  1 , 2 .......... p  (1 1 .2 .1 8 )

B m(z) =  K*mA m^ ( z )  +  z ' 1 B m- i ( z )  in =  1 , 2 .......... p

T h u s  a la t t ic e  f ilte r  is d e s c r ib e d  in th e  z -d o m a in  b y  th e  m a tr ix  e q u a tio n

’ A m( z ) ' '1  K mZ
_ B m(z)  _

A m- i ( z )
B m -l( z )

(1 1 .2 .1 9 )

T h e  re la t io n s  in  (1 1 .2 .1 7 )  fo r  A m(z)  an d  B m(z) a llo w  us to  o b ta in  th e  d ir e c t -fo rm  
F I R  f ilte r  c o e ff ic ie n ts  (a m(A)] fro m  th e  r e f le c tio n  c o e ff ic ie n ts  (K m), a n d  v ice  v ersa . 
T h e s e  re la tio n s h ip s  w e re  g iv en  in  S e c t io n  7 .2 .4  b y  (7 .2 .5 1 )  th ro u g h  (7 .2 .5 3 ) .

T h e  la t t ic e  s tru c tu re  w ith  p a r a m e te rs  Ki ,  K 2........ K p c o rre s p o n d s  to  a  c la ss
o f  p  d ir e c t -fo rm  F I R  f ilte rs  w ith  sy stem  fu n c t io n s  A i ( z ), A i ( z ) ,  ■ . . ,  A p (z). I t  is 
in te r e s tin g  to  n o te  th a t  a  c h a r a c te r iz a tio n  o f  th is  c la ss  o f  p  F I R  filte rs  in  d ire c t fo rm  
r e q u ir e s  p ( p  +  l ) / 2  f i lte r  c o e ff ic ie n ts . In  c o n tra s t , th e  la t t ic e - fo r m  c h a r a c te r iz a tio n  
r e q u ir e s  o n ly  th e  p  r e f le c t io n  c o e ff ic ie n ts  T h e  re a s o n  th e  la t t ic e  p ro v id e s  a 
m o r e  c o m p a c t  re p re s e n ta t io n  fo r  th e  c la s s  o f  p  F I R  filte rs  is  b e c a u s e  a p p e n d in g
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sta g es  to  th e  la t t ic e  d o es  n o t a lte r  th e  p a r a m e te rs  o f  th e  p re v io u s  s ta g es . O n  th e 
o th e r  h a n d , a p p e n d in g  th e  /?th s ta g e  to  a la t t ic e  w ith  (p  — 1 ) s ta g e s  is e q u iv a le n t 
to  in c re a s in g  th e  len g th  o f  an  F I R  filte r  by  o n e  c o e ff ic ie n t . T h e  re su ltin g  F I R  f ilte r 
w ith  sy stem  fu n c t io n  A p (z) h as  c o e ff ic ie n ts  to ta lly  d if fe re n t fro m  th e  c o e ff ic ie n ts  
o f  th e  lo w e r-o rd e r  F I R  f ilte r  w ith  sy stem  fu n c tio n

T h e  fo rm u la  fo r  d e te rm in in g  th e  f i lte r  c o e ff ic ie n ts  {ap (k ) \ re c u rs iv e ly  is easily  
d e riv ed  fro m  p o ly n o m ia l re la tio n s h ip s  (1 1 .2 .1 8 ) . W e  h av e

A m(z)  =  - f  K mz ~ ] B m- 1( ' )

m m -\ « - i  (1 1 .2 .2 0 )
y ' a m(k )z  k -  Y ' a m_ i ( i ) c  * +  K m -  1 -  k )z  a+1)
*=0 A=0 i=0

B y  e q u a tin g  th e  c o e ff ic ie n ts  o f  e q u a l p o w ers  o f  an d  re c a llin g  th a t  a m(0 )  =  1
fo r  m =  1, 2 , ___ p , w e o b ta in  th e  d e s ire d  re cu rs iv e  e q u a tio n  fo r  th e  F I R  filter
c o e ff ic ie n ts  in  th e  fo rm

Am(0 ) =  1 

a m(m) =  K m

a„,(k) =  a m~ \{ k )  +  K ma*n_ } (m -  k)  (1 1 .2 .2 1 )

=  a m~ \( k )  +  a m (m )a* (m -  k) 1 <  k <  m -  1

m =  1 . 2 , . . . .  p

T h e  co n v e rs io n  fo rm u la  fro m  th e  d ir e c t-fo rm  F I R  f ilte r  c o e f f ic ie n ts  (a^(/:)} to  
th e  la t t ic e  re fle c tio n  c o e ff ic ie n ts  |Af, } is a ls o  v ery  s im p le . F o r  th e  />-s ta g e  la tt ic e  w e 
im m e d ia te ly  o b ta in  th e  re fle c tio n  c o e ff ic ie n t K p =  a n (p ). T o  o b ta in  K p~ i ,  
w e n ee d  th e  p o ly n o m ia ls  A m(z)  fo r  m =  p  — 1 . ___ 1. F ro m  ( 1 1 .2 .1 9 )  w e o b ta in

. . x A m(z) — K mB m(z) . . .  ,
Am-i(z )  = ------ ------— ~ 2 ------  m =  p ........1 (11.2.22)

1 I & m I

w h ich  is ju s t  a s te p -d o w n  re c u rs io n . T h u s  w e c o m p u te  a ll lo w e r-d e g re e  p o ly n o m ia ls  
A m(z) b e g in n in g  w ith  A p- i ( z )  an d  o b ta in  th e .d e s ire d  la t t ic e  re f le c t io n  c o e ff ic ie n ts  
fro m  th e  r e la tio n  K m =  a m(m ). W e  o b s e rv e  th a t  th e  p r o c e d u r e  w o rk s  a s  lon g  
as |ATmi ^  1 fo r  m =  1, 2 , . . . , p  -  1. F ro m  th is  s te p -d o w n  re c u rs io n  fo r  th e  
p o ly n o m ia ls , it is re la tiv e ly  e a s y  to  o b ta in  a fo rm u la  fo r  re c u rs iv e ly  an d  d ire ctly  
co m p u tin g  K m, m  =  p  — 1 , . . . ,  1.  F o r  m — p  -  1 , . . . ,  1 , w e h a v e

K m =  a m(m )

/r Qm(k) — K mbm(k)  i t

=  l - l  i U 2 2 3 )  

_  a m(k) - a m{m)a*m(m -  k)

1 -  \am(m )\2

w h ich  is  ju s t  th e  re c u rs io n  in  th e  S c h u r -C o h n  s ta b ility  te s t  f o r  th e  p o ly n o m ia l 

A m(z).
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A s  ju s t  in d ica te d , th e  re cu rs iv e  e q u a tio n  in  (1 1 .2 .2 3 )  b r e a k s  d o w n  if  a n y  o f  
th e  la t t ic e  p a r a m e te rs  \ K m \ =  1. I f  th is  o ccu rs , it is in d ic a tiv e  th a t  th e  p o ly n o m ia l 
Am_ i( z )  h a s  a r o o t  lo c a te d  o n  th e  u n it c ir c le . S u c h  a  r o o t  c a n  b e  fa c to r e d  o u t fro m  
A m_ i( z )  an d  th e  ite ra tiv e  p ro ce s s  in  (1 1 .2 .2 3 )  c a r r ie d  o u t fo r  th e  re d u c e d -o rd e r  
sy stem .

F in a lly , le t  us c o n s id e r  th e  m in im iz a tio n  o f  th e  m e a n -s q u a re  e r r o r  in  a b a c k ­
w a rd  lin e a r  p r e d ic to r . T h e  b a c k w a rd  p re d ic t io n  e r r o r  is

p-1

g p (n) — x (n  -  p )  - f  2 2 bP (k )x (n  -  k)

( 1 1 .2 .2 4 )

=  j (h  -  p)  +  ^  a* (£)*(/1 ~  p  + k)  
k=i

an d  its  m e a n -s q u a re  v a lu e  is

£ bp =  £ [ M « ) 1 2] (1 1 .2 .2 5 )

T h e  m in im iz a tio n  o f  £ bp w ith  re s p e c t  to  th e  p re d ic t io n  c o e ff ic ie n ts  y ie ld s  th e  sa m e 
s e t  o f  l in e a r  e q u a tio n s  a s  in  (1 1 .2 .9 ) .  H e n c e  th e  m in im u m  m e a n -s q u a re  e r r o r  is

m in  [ £ { ]  =  E j  =  E ;  (1 1 .2 .2 6 )

w h ich  is g iv en  by  ( 1 1 .2 ,1 0 ) .

11.2.3 The Optimum Reflection Coefficients for the 
Lattice Forward and Backward Predictors

In  S e c t io n s  11 .2 .1  an d  1 1 .2 .2  w e d e riv e d  th e  s e t  o f  l in e a r  e q u a tio n s  w h ich  p ro v id e  
th e  p r e d ic to r  c o e ff ic ie n ts  th a t  m in im iz e  th e  m e a n -s q u a re  v a lu e  o f  th e  p re d ic t io n  
e r ro r . In  th is  s e c t io n  w e  c o n s id e r  th e  p r o b le m  o f  o p tim iz in g  th e  re fle c tio n  c o e ff i ­
c ie n ts  in th e  la t t ic e  p r e d ic to r  an d  e x p re s s in g  th e  r e f le c tio n  c o e ff ic ie n ts  in  te rm s o f  
th e  fo rw a rd  a n d  b a c k w a rd  p re d ic t io n  e r ro rs .

T h e  fo rw a rd  p r e d ic t io n  e r r o r  in  th e  la t t ic e  f i lte r  is e x p re s s e d  as

f m(n) =  f m^ ( n )  +  K mgm- X(n -  1 ) (1 1 .2 .2 7 )

T h e  m in im iz a t io n  o f  E[|/m(n)|2] w ith  r e s p e c t  to  th e  r e f le c t io n  c o e ff ic ie n t  K m y ie ld s  
th e  re su lt

- £ [ / m- i ( n ) g ; _ ! ( n - l ) ]
m “  rTi '( TTm (1 1 ./ .Zo;

£ [| g „ _ i(n  -  1)|2]

o r , e q u iv a le n tly ,

— E [ f m- \( n ) g *  A n  — 1)1 
K m --  - . , gm~ 1 ----------  (1 1 .2 .2 9 )

i - .

w h e re  E fm_ x =  E bm_ x =  E [ \ g m^ ( n  -  1)|2] =  E[|/m_ i(n )| 2].
W e  o b s e r v e  th a t  th e  o p tim u m  c h o ic e  o f  th e  re f le c t io n  c o e ff ic ie n ts  in th e  

la t t ic e  p r e d ic to r  is th e  n e g a tiv e  o f  th e  (n o r m a liz e d ) c r o s s c o rre la t io n  c o e ff ic ie n ts
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b e tw e e n  th e  fo rw a rd  an d  b a c k w a rd  e r r o r s  in  th e  la t t ic e .*  S in c e  it is  a p p a re n t fro m
(1 1 .2 .2 8 )  th a t  | AT,„ | <  1. it fo llo w s  th a t  th e  m in im u m  m e a n -s q u a re  v a lu e  o f  th e  
p re d ic tio n  e r ro r , w h ich  ca n  b e  e x p re s s e d  re cu rs iv e ly  as

E {  =  { 1 -  | ( 11. 2. 30)  

is a  m o n o to n ic a lly  d e cre a s in g  s e q u e n c e .

11.2.4 Relationship of an AR Process to Linear 
Prediction

T h e  p a r a m e te rs  o f  an  A R (/ ?) p ro c e s s  a re  in tim a te ly  re la te d  to  a  p r e d ic to r  o f  o rd e r  
p  fo r  th e  s a m e  p ro ce s s . T o  s e e  th e  re la tio n s h ip , w e re c a ll  th a t  in an  A R ( p )  
p r o c e s s , th e  a u to c o rr e la t io n  s e q u e n c e  { y ^ {m ) }  is re la te d  to  th e  p a r a m e te rs  {a*} 
b y  th e  Y u le - W a lk e r  e q u a tio n s  g iv en  in  (1 1 .1 .1 9 )  o r  ( 1 1 .1 .2 0 ) .  T h e  co rre s p o n d in g  
e q u a tio n s  fo r  th e  p r e d ic to r  o f  o rd e r  p  a re  g iv en  b y  (1 1 .2 .9 )  a n d  (1 1 .2 .1 0 ) .

A  d ire c t c o m p a ris o n  o f  th e s e  tw o  s e ts  o f  re la t io n s  re v e a ls  th a t  th e r e  is a  o n e - 
to -o n e  c o rr e s p o n d e n c e  b e tw e e n  th e  p a r a m e te rs  {a * }  o f  th e  A R ( p )  p ro ce s s  an d  th e  
p r e d ic to r  c o e ff ic ie n ts  {ap (k)} o f  th e  p th -o r d e r  p r e d ic to r . In  fa c t , i f  th e  u n d erly ­
in g  p ro c e s s  lx ( n ) }  is A R ( p ) ,  th e  p r e d ic t io n  c o e ff ic ie n ts  o f  th e  p th -o r d e r  p re d ic to r  
a re  id e n tica l to  {ak}. F u r th e rm o re , th e  m in im u m  M S E  in th e  / ?th -order p re d ic to r  

£ /  is id e n tica l to  crj,, th e  v a r ia n c e  o f  th e  w h ite  n o is e  p r o c e s s . In  th is  c a s e , th e  
p r e d ic t io n -e r ro r  f ilte r  is a  n o is e -w h ite n in g  f ilte r  w h ich  p r o d u c e s  th e  in n o v a tio n s  
s e q u e n c e  (u ;{n )).

11.3 SOLUTION OF THE NORMAL EQUATIONS

In  th e  p re ce d in g  s e c tio n  w e o b s e rv e d  th a t  th e  m in im iz a t io n  o f  th e  m e a n -s q u a re  
v a lu e  o f  th e  fo rw a rd  p re d ic t io n  e r r o r  re su lte d  in  a s e t  o f  l in e a r  e q u a tio n s  fo r  th e  
c o e ff ic ie n ts  o f  th e  p r e d ic to r  g iv en  by  (1 1 .2 .9 ) .  T h e s e  e q u a tio n s , ca lle d  th e  n o rm a l 
e q u a tio n s , m ay  b e  e x p re sse d  in th e  c o m p a c t  fo rm

p

Y 2 , a p ^ y ^ 1 =  0  1 =  1 , 2 .......... p  ( n . 3 . 1 )  

* =0 0 , ( 0 )  =  1

T h e  re s u ltin g  m in im u m  M S E  ( M M S E )  is  g iv e n  b y  (1 1 .2 .1 0 ) .  I f  w e a u g m e n t
(1 1 .2 .1 0 )  to  th e  n o rm a l e q u a tio n s  g iv en  b y  ( 1 1 .3 .1 )  w e o b ta in  th e  s e t  o f  a u g m en te d  
n o r m a l e q u a tio n s, w h ich  m ay  b e  ex p re s s e d  as

; : ° 2 .......... P  ( 1 U . 2 ,

W e  a ls o  n o te d  th a t  i f  th e  ra n d o m  p ro c e s s  is an  A R ( p )  p ro c e s s , th e  M M S E  E p  =  a 2 .

‘The normalized crosscorrelation coefficients between the forward and backward error in the 
lattice (i.e., are often called the partial correlation (PARCOR) coefficients.
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In  th is  s e c tio n  w e d e s c r ib e  tw o  co m p u ta tio n a lly  e f f ic ie n t a lg o r ith m s  fo r  s o lv ­
in g  th e  n o rm a l e q u a tio n s . O n e  a lg o r ith m , o rig in a lly  d u e to  L e v in s o n  (1 9 4 7 )  an d  
m o d ified  b y  D u r b in  ( 1 9 5 9 ) ,  is  ca lle d  th e  L e v in s o n -D u r b in  a lg o r ith m . T h is  a lg o ­
r ith m  is s u ita b le  fo r  s e r ia l  p ro c e s s in g  a n d  h a s  a c o m p u ta tio n  co m p le x ity  o f  0 ( p 2 ). 
T h e  se c o n d  a lg o r ith m , d u e  to  S c h iir  ( 1 9 1 7 ) ,  a ls o  c o m p u te s  th e  r e f le c tio n  c o e ff i ­
c ie n ts  in 0 ( p 2) o p e r a tio n s  b u t w ith  p a ra lle l p r o c e s s o rs , th e  c o m p u ta tio n s  ca n  b e  
p e r fo r m e d  in  O ( p )  t im e . B o th  a lg o r ith m s  e x p lo it  th e  T o e p litz  s y m m e try  p ro p e rty  
in h e re n t in  th e  a u to c o rr e la t io n  m a trix .

W e  b e g in  b y  d e s c r ib in g  th e  L e v in s o n -D u r b in  a lg o r ith m .

11.3.1 The Levinson-Durbin Algorithm

T h e  L e v in s o n -D u rb in  a lg o r ith m  is a  c o m p u ta tio n a lly  e ff ic ie n t a lg o r ith m  fo r  so lv in g  
th e  n o rm a l e q u a tio n s  in  (1 1 .3 .1 )  fo r  th e  p re d ic t io n  c o e ff ic ie n ts . T h is  a lg o r ith m  
e x p lo its  th e  s p e c ia l sy m m e try  in th e  a u to c o rr e la t io n  m a trix

> x , ( 0 )

y , , ( D

k; , (  i )

Yxx(O)

. Y x x i p -  1) Y x x ( p ~  2 )

y * A p  ~  1)

Y*x i P ~  2 ) 

y ^ O )

(1 1 .3 .3 )

N o te  th a t  rp(i,j) =  — j ) ,  so  th a t  th e  a u to c o r r e la t io n  m a tr ix  is a T o e p lit z  
m a trix . S in c e  rp(i,j) = T*(j, i ) ,  th e  m a tr ix  is a ls o  H e rm itia n .

T h e  k e y  to  th e  L e v in s o n -D u r b in  m e th o d  o f  s o lu tio n , th a t  e x p lo its  th e  
T o e p litz  p ro p e rty  o f  th e  m a tr ix , is  to  p r o c e e d  re cu rs iv e ly , b e g in n in g  w ith  a p r e ­
d ic to r  o f  o rd e r  m =  1 (o n e  c o e ff ic ie n t)  and  th e n  to  in c re a s e  th e  o rd e r  re cu rs iv e ly , 
u sin g  th e  lo w e r -o rd e r  s o lu tio n s  to  o b ta in  th e  s o lu tio n  to  th e  n e x t-h ig h e r  o rd e r . 
T h u s  th e  s o lu tio n  to  th e  f irs t-o rd e r  p r e d ic to r  o b ta in e d  b y  so lv in g  (1 1 .3 .1 )  is

o i ( l )  =  -
Yxx( 1)

y*.t (0 )  ■

an d  th e  re s u ltin g  M M S E  is

e {  =  yj«(0)+ f l i ( l ) y „ ( - l )  

=  y^(0)[l -  jfli (1)I2]

( 1 1 .3 .4 )

(1 1 .3 .5 )

R e c a l l  th a t  a j ( l )  =  K \ ,  th e  first re f le c tio n  c o e ff ic ie n t  in  th e  la t t ic e  f ilte r .
T h e  n e x t s te p  is to  so lv e  fo r  th e  c o e ff ic ie n ts  {o2( I ) ,  ^ 2 (2 )}  o f  th e  s e c o n d -o rd e r  

p r e d ic to r  an d  e x p re s s  th e  s o lu tio n  in te rm s  o f  f l i ( l ) .  T h e  tw o  e q u a tio n s  o b ta in e d  
fro m  (1 1 .3 .1 )  a re

a 2 ( l ) y xx( 0 ) +  a 2 (2)y* x ( l )  — ~ Y x x (  1) 

02( l ) y ^ ( l )  +  a 2 ( 2 ) y xx(0) =  - y xx( 2 )
(11.3.6)
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B y  u sin g  th e  s o lu tio n  in (1 1 .3 .4 )  to  e lim in a te  yJ r ( l ) ,  w e o b ta in  th e  so lu tio n

y xx(2) +  a i ( 1 ) ^ ( 1 )
a 2 (2)  =  -

X r * (0 ) [ l  -  | fll(l) i2] 

Yjcjc( 2 )  - f  a \ { l ) y xx( l ) (1 1 .3 .7 )

^ 2 ( 1 )  =  f l i d )  + a 2(2)aUl)

T h u s  w e h a v e  o b ta in e d  th e  c o e ff ic ie n ts  o f  th e  s e c o n d -o rd e r  p r e d ic to r . A g a in , w e 
n o te  th a t  ct2(2) =  K 2 , th e  se c o n d  r e f le c tio n  c o e ff ic ie n t  in th e  la t t ic e  f ilte r .

P r o c e e d in g  in  th is  m a n n e r , w e ca n  e x p re s s  th e  c o e ff ic ie n ts  o f  th e  m th -o rd e r  
p r e d ic to r  in  te rm s  o f  th e  c o e ff ic ie n ts  o f  th e  (m — l ) s t -o r d e r  p r e d ic to r . T h u s  w e can  
w rite  th e  c o e ff ic ie n t  v e c to r  am as th e  sum  o f  tw o  v e c to r s , n a m e ly .

(1 1 .3 .8 )

w h ere  a,„_i is th e  p r e d ic to r  c o e ff ic ie n t v e c to r  o f  th e  (m ~  l ) s t - o r d e r  p re d ic to r  and  
th e  v e c to r  dm_ j an d  th e  s c a la r  K m a re  to  b e  d e te rm in e d . L e t  us a ls o  p a r tit io n  th e 
m x m a u to c o rr e la t io n  m a tr ix  T r*  as

~ a m( 1) * 
a m(2)

— 1 " d m_ , "

a m =

_f l m( m) - .  0  .

+

_ K m _

r m =
r#n-l 7m-1

y ^ ( 0 )
(1 1 .3 .9 )

w h ere  =  [y xx(m -  1) yxx(m -  2) ■ • ■ yxx( 1 )] =  ( 7 * _ ] ) r , th e  a s te r is k  ( * )  d e ­
n o te s  th e  c o m p le x  c o n ju g a te , an d  y rm d e n o te s  th e  tra n s p o s e  o f  y m. T h e  su p e rscr ip t 
b o n  7m_ , d e n o te s  th e  v e c to r  7 ^ ,  =  [ y „ ( l )  yxx(2 )  ■ ■ ■ yxx (m -  1 ) ]  w ith  e le ­
m e n ts  ta k e n  in  re v e r s e  o rd e r .

T h e  so lu tio n  to  th e  e q u a tio n  r mam =  —y m c a n  b e  e x p re s s e d  as

1 f am- i

. 1 _0
+

um—
k , ’] ) — [£*>]  <im o >

T h is  is th e  k e y  s te p  in  th e  L e v in s o n -D u r b in  a lg o r ith m . F ro m  (1 1 .3 .1 0 )  w e o b ta in  
tw o e q u a tio n s , n a m e ly ,

+  K my b*_x -  - y m_ x (1 1 .3 .1 1 )

7 m - i a m -1 + 7 t '_ i d m - i  +  K myxx{ 0 )  =  - y xx(m )  (1 1 .3 .1 2 )

S in c e  r m_ i a m_ i =  - y m_ : , (1 1 .3 .1 1 )  y ie ld s  th e  so lu tio n

dm_! =  - K m T - \ xy b; _ ,  (1 1 .3 .1 3 )

B u t  7 **_ j is ju s t  7m_ ! w ith  e le m e n ts  ta k e n  in  re v e r s e  o rd e r  an d  c o n ju g a te d . T h e r e -
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flm—i - 2 ) (1 1 .3 .1 4 )

fo r e , th e  s o lu tio n  in (1 1 .3 .1 3 )  is sim p ly

'< C _ ] ( " J  -  1 ) ‘

d m_ , =  K m a * * . !  =  K m

T h e  s c a la r  e q u a tio n  (1 1 .3 .1 2 )  ca n  n o w  b e  u sed  to  so lv e  fo r  K m. I f  w e  e lim in a te  
dm_ i in (1 1 .3 .1 2 )  b y  u sin g  (1 1 .3 .1 4 ) , w e o b ta in

Km [Yxx(Q) +  +  'Ym^iam -l =  ~ Y x x ( ™ )

H e n c e

T h e r e fo r e ,  by  su b stitu tin g  th e  so lu tio n s  in  (1 1 .3 .1 4 )  an d  (1 1 .3 .1 5 )  in to  (1 1 .3 .8 ) , 
w e o b ta in  th e  d e s ire d  re c u rs io n  fo r  th e  p r e d ic to r  c o e ff ic ie n ts  in th e  L e v in s o n -  
D u r b in  a lg o r ith m  as

, ,  ^  Yxx(m) +  a m_ , y xx(m ) +
a m(m ) =  K m = --------------------- j -------T-.—  = --------------------- ---------------  (1 1 .3 .1 6 )

K,,<0) E l

a „ ( k )  =  a m- i ( k )  +  K ma*m_ x (m -  k)

=  a m_ i( k )  + a m{ m ) a ^ ( m  ~  k ) k - \ 2 , . . . , m  1 ^1 1 3
tn =  i , z , . . . ,  p

T h e  r e a d e r  sh o u ld  n o te  th a t  th e  re c u rs iv e  re la tio n  in  (1 1 .3 .1 7 )  is id e n tic a l to  th e  
re c u rs iv e  r e la t io n  in (1 1 .2 .2 1 )  fo r  th e  p r e d ic to r  c o e ff ic ie n ts , o b ta in e d  fro m  th e  
p o ly n o m ia ls  A m(z ) an d  B m(z). F u r th e rm o re , K m is  th e  r e f le c t io n  c o e ff ic ie n t  in  th e  
m th  s ta g e  o f  th e  la t t ic e  p re d ic to r . T h is  d e v e lo p m e n t c le a r ly  illu s tr a te s  th a t  th e  
L e v in s o n -D u r b in  a lg o r ith m  p ro d u c e s  th e  re f le c tio n  c o e ff ic ie n ts  fo r  th e  o p tim u m  
la t t ic e  p r e d ic t io n  f ilte r  as  w e ll as th e  c o e ff ic ie n ts  o f  th e  o p tim u m  d ir e c t -fo rm  F I R  
p re d ic to r .

F in a lly , le t us d e te r m in e  th e  e x p re s s io n  fo r  th e  M M S E . F o r  th e  m th -o rd e r  
p r e d ic to r , w e  h a v e

m

E fm =  yjrjr(O) +  2 2 a >»(k )Y x x ( -lc )

~  yxx(O) +  ^ [ o m^ i ( / c ) + f lm ( m ) f l* _ 1( r n - * ) ] y „ ( - / c )  ( 1 1 .3 .1 8 )
i= l

=  E fm_ l [ \ - \ a m(m )\2\  =  E ftn̂ \ - \ K m\2) m =  1 , 2 , . . . ,

w h e re  E ^  =  y „ ( 0 ) .  S in c e  th e  re fle c tio n  c o e ff ic ie n ts  sa tis fy  th e  p r o p e rty  th a t  |ATm| <
1 , th e  M M S E  fo r  th e  s e q u e n c e  o f  p r e d ic to r s  s a tis f ie s  th e  co n d itio n

E {  > E { > E f2 > - - - >  E fp (11.3.19)
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T h is  co n c lu d e s  th e  d e r iv a tio n  o f  th e  L e v in s o n -D u r b in  a lg o r ith m  fo r  so lv in g  
th e  lin e a r  e q u a tio n s  T ma m =  —y m, fo r  m  = 0 ,  1 p .  W e  o b s e r v e  th a t  th e  lin e a r  
e q u a tio n s  h av e  th e  sp e c ia l p ro p e rty  th a t th e  v e c to r  on  th e  r ig h t-h a n d  s id e  a lso  
a p p e a rs  as a v e c to r  in rm. In  th e  m o r e  g e n e ra l c a s e , w h e re  th e  v e c to r  o n  th e 
rig h t-h a n d  sid e is so m e  o th e r  v e c to r , say  c m, th e  s e t  o f  l in e a r  e q u a tio n s  can  b e  
so lv e d  re cu rs iv e ly  by  in tro d u c in g  a se c o n d  re c u rs iv e  e q u a tio n  to  so lv e  th e  m o re  
g e n e ra l l in e a r  e q u a tio n s  rmbm = cm. T h e  re su lt is  a  g e n e r a liz e d  L e v in s o n - D u r b in  
a lg o r ith m  (s e e  P r o b le m  1 1 .1 2 ) .

T h e  L e v in s o n -D u r b in  re c u rs io n  g iv en  b y  (1 1 .3 .1 7 )  re q u ir e s  0 ( m ) m u ltip lic a ­
t io n s  a n d  a d d itio n s  (o p e r a t io n s )  to  g o  fro m  s ta g e  m  to  s ta g e  m +  1. T h e r e fo r e ,  fo r
p  s ta g e s  it ta k e s  o n  th e  o rd e r  o f  1 + 2  +  3-1-------- (-p { p  + 1)/ 2, o r  0 ( p 2 ), o p e r a tio n s  to
s o lv e  fo r  th e  p re d ic t io n  f ilte r  c o e ff ic ie n ts , o r  th e  re f le c tio n  c o e ff ic ie n ts , c o m p a re d  
w ith  O (p ^ )  o p e r a tio n s  if  w e did  n o t e x p lo it  th e  T o e p litz  p r o p e rty  o f  th e  c o rr e la tio n  
m a tr ix .

I f  th e  L e v in s o n -D u r b in  a lg o r ith m  is im p le m e n te d  o n  a s e r ia l  c o m p u te r  o r  
s ig n al p ro c e s s o r , th e  re q u ire d  co m p u ta tio n  tim e  is  o n  th e  o r d e r  o f  0 ( p 2 ) tim e 
u n its . O n  th e  o th e r  h an d , i f  th e  p ro ce s s in g  is p e r fo r m e d  o n  a p a ra lle l p ro ce ss in g  
m a c h in e  u tiliz in g  as m a n y  p ro c e s s o rs  as  n e c e s s a ry  to  e x p lo it  th e  fu ll p a ra lle lism  
in  th e  a lg o r ith m , th e  m u ltip lic a tio n s  a s  w ell as  th e  a d d itio n s  re q u ir e d  to  co m p u te
(1 1 .3 .1 7 )  can  b e  c a r r ie d  o u t s im u lta n e o u s ly . T h e r e f o r e ,  th is  c o m p u ta tio n  can  b e  
p e rfo r m e d  in  O ( p )  tim e u n its . H o w e v e r , th e  c o m p u ta tio n  in (1 1 .3 .1 6 )  fo r  th e  r e ­
f le c tio n  co e ff ic ie n ts  ta k e s  ad d itio n a l tim e . C e r ta in ly , th e  in n e r  p ro d u cts  in v olv in g  
th e  v e c to r s  a m_ i an d  c a n  b e  co m p u te d  s im u lta n e o u s ly  b y  e m p lo y in g  p a ra lle l 
p ro ce s s o rs . H o w e v e r , th e  a d d itio n  o f  th e s e  p ro d u cts  c a n n o t  b e  d o n e  s im u lta n e ­
o u sly , b u t in s te a d , re q u ire  0 ( \ o g p )  tim e  u n its . H e n c e , th e  c o m p u ta tio n s  in  th e 
L e v in s o n -D u r b in  a lg o r ith m , w h en  p e r fo r m e d  b y  p  p a ra lle l p r o c e s s o rs , ca n  b e  a c ­
c o m p lish e d  in  0 ( p \ o g p )  t im e .

In  th e  fo llo w in g  s e c tio n  w e d e s c r ib e  a n o th e r  a lg o r ith m , d u e  to  S c h iir  (1 9 1 7 ) , 
th a t av o id s  th e  c o m p u ta tio n  o f  in n e r  p ro d u c ts , a n d  th e r e fo r e  is m o r e  s u ita b le  fo r  
p a ra lle l c o m p u ta tio n  o f  th e  re f le c tio n  c o e ff ic ie n ts .

11.3.2 The Schur Algorithm

T h e  S c h u r  a lg o r ith m  is in tim a te ly  re la te d  to  a re cu rs iv e  te s t  fo r  d e te rm in in g  th e 
p o s it iv e  d e fin ite n e s s  o f  a  c o rr e la t io n  m a tr ix . T o  b e  s p e c ific , le t  us c o n s id e r  th e 
a u to c o rr e la tio n  m a tr ix  T^+i a s s o c ia te d  w ith  th e  a u g m e n te d  n o r m a l e q u a tio n s  given  
b y  (1 1 .3 .2 ) .  F ro m  th e  e le m e n ts  o f  th is  m a tr ix  w e fo rm  th e  fu n c t io n

y«(l)z_I +Y*A2)z- 2 + --- + yxAp)z-p
^ ( 0 )  +  r „ ( l ) z - V - + y „ ( P n-<> ( 1 U '20 )

an d  th e  s e q u e n c e  o f  fu n c t io n s  R m(z) d e fin ed  re c u rs iv e ly  as

D i \ Rm- 1 ( z )  “  R m - l ( o o )  ,  n /1 1  o - i n
R m(z) -  ------ — rr m =  1 , 2 , . . .  (1 1 .3 .2 1 )

z *[1  -  / ?*_! ( o o ) ( z ) J
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S c h i ir ’s th e o re m  s ta te s  th a t  a  n e c e s s a ry  an d  s u ffic ie n t co n d itio n  fo r  th e  c o r ­
re la t io n  m a tr ix  to  b e  p o sit iv e  d e fin ite  is th a t  |/?m(oo)| <  1 fo r  m =  1, 2 , . . . ,  p .

L e t  u s d e m o n s tra te  th a t  th e  co n d itio n  fo r  p o sit iv e  d e fin ite n e s s  o f  th e  a u to c o r ­
r e la t io n  m a tr ix  I ^ + i  is e q u iv a le n t to  th e  c o n d itio n  th a t  th e  re f le c tio n  c o e ff ic ie n ts  
in  th e  e q u iv a le n t la t t ic e  f i lte r  s a tis fy  th e  co n d itio n  |K m \ <  1, m  =  1, 2 , . . . ,  p .

F irs t , w e n o te  th a t  R o(oo) =  0 . T h e n , fro m  (1 1 .3 .2 1 )  w e h av e

Yxx(l) +  X xx(2)z_1 +  • • • +  Yxx(p)z~p+l ^
R \  (2) — ---------^ ----------------------------------- (1 1 .3 .2 2 )

Kr*(0) + y„(l)z-1 + • • • + Yxx(p)z~p
H e n c e  r t i(o o )  =  yxx( l ) / y Xx(0 ). W e  o b s e r v e  th a t  R \( o o )  =  —K \ .

S e c o n d , w e c o m p u te  R j( z )  a c c o rd in g  to  (1 1 .3 .2 1 )  an d  e v a lu a te  th e  re su lt a t 
z =  00. T h u s  w e o b ta in

, Yxx(2) +  K ^ x x d )

x«(0)(l -  l^ii2)
A g a in , w e o b s e r v e  th a t  # 2(00) =  —K j .  B y  co n tin u in g  th is  p ro c e d u re , w e find th a t  
R m(oo) =  —K m, fo r  m  =  1, 2 , . . . ,  p .  H e n c e  th e  co n d itio n  |J?m(oo)| <  1 fo r  m =  1, 
2 , . . . ,  p ,  is id e n tica l to  th e  co n d itio n  | | <  1 fo r  m  =  1, 2 , . . . ,  p , an d  en su res  th e  
p o s it iv e  d e fin ite n e s s  o f  th e  a u to c o r r e la t io n  m a tr ix  r p+i.

S in c e  th e  re fle c tio n  c o e ff ic ie n ts  ca n  b e  o b ta in e d  fro m  th e  s e q u e n c e  o f  fu n c ­
t io n s  R m(2) , m =  1, 2 , . . . ,  p ,  w e h a v e  a n o th e r  m e th o d  fo r  so lv in g  th e  n o rm a l 
e q u a tio n s . W e  ca ll th is  m e th o d  th e  S c h u r  a lg o rith m .

Schur algorithm. L e t  us firs t re w rite  R m(z) as 

P
*«<z) = 7 frr  m= ° ’l ' — ’P (1 1 .3 .2 3 )

Q m (z)

w h e re

P o(z) =  Y x x O ) Z ~ X +  Yx x ( 2 ) z ~ 2 H--------- h Y x x (p )z ~ p

Q a (z) =  Y xxi0 )  +  Y x x ( l) z ~ l + -------h Y x x (p )z ~ p

S in c e  ^0 =  0  an d  K m — —R m(oo) fo r  m  =  1 , 2 , . . . , p ,  th e  re cu rs iv e  e q u a tio n  
(1 1 .3 .2 1 )  im p lies  th e  fo llo w in g  re c u rs iv e  e q u a tio n s  fo r  th e  p o ly n o m ia ls  P m(z) an d  

Qm(z):

(1 1 .3 .2 4 )

r p m_ i( z )  1
[ Q m ( z ) j  Z_1 J [_ Qm —\ (z ) J

T h u s  w e h a v e

P l( z )  =  Po(z) =  X tx ( l ) z _1 -I- Y x x (2 )z ~ 2 +  • ■ ■ +  Y x x (p )z ~ p 

f i i ( z )  =  z -1  Q o (z ) =  Yxx(0 )z- 1 +  y „ ( l ) z - 2 +  •-• +  y xx( p ) z ~ p- 1

and

„  P i( z )  
K \  =  —

Q i i z )

Yxx (1)
Vxx(0)

(1 1 .3 .2 6 )

(11.3.27)
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( 1 1 .3 .2 8 )

N e x t th e  re fle c tio n  c o e ff ic ie n t  K i  is  o b ta in e d  b y  d e te rm in in g  P 2(z)  an d  Q 2U )  fro m  
(1 1 .3 .2 5 ) , d iv id in g  P 2 (z)  b y  Q i( z )  an d  ev a lu a tin g  th e  re s u lt a t z  =  oo . T h u s  w e find  
th a t

P i( z )  =  P \( z )  +  K xQ x{z)

=  [Yxx( 2 )  +  K i y xx( l ) \ z ~ 2 +  • • ■

+  [YxA p ) +  * 1  Y x x ip  -  1 ) ] z ~ p 

Q i( z )  =  +

=  [x rJf(0 ) +  Js:1v « ( i ) ] z - 2 +  - - -  

+  [Y x x ip  -  2 ) +  K * y xx(p  -  1 ) } z ~ p 

w h e re  th e te rm s  in v o lv in g  z ~ p~ l  h av e  b e e n  d ro p p e d . T h u s  w e o b s e rv e  th a t th e  
re cu rs iv e  e q u a tio n  in  (1 1 .3 .2 5 )  is  e q u iv a le n t to  ( 1 1 .3 .2 1 ) .

B a s e d  o n  th e s e  re la tio n s h ip s , th e  S c h u r  a lg o r ith m  is d e s c r ib e d  by  th e  fo llo w ­
ing re cu rs iv e  p ro c e d u re .

In it ia liz a t io n .  F o r m  th e  2 x ( p  +  1) g e n e r a to r  m a tr ix

0  Kv-r(l) Yxx( 2 ) ■■■ ^ ( Z 7) ]
y ^ ( 0 )  y ^ O )  y xx (2 ) y xx{ p ) \

w h ere  th e  e le m e n ts  o f  th e  first ro w  a re  th e  c o e ff ic ie n ts  o f  P q( z ) an d  th e  
e le m e n ts  o f  th e  s e c o n d  ro w  a re  th e  c o e ff ic ie n ts  o f  £?o(z).

Step 1.  S h ift  th e  se c o n d  row  o f  th e  g e n e r a to r  m a tr ix  to  th e  rig h t by o n e  
p la c e  an d  d isca rd  th e  la s t e le m e n t o f  th is  ro w . A  z e ro  is p la c e d  in  th e  v a ca n t 
p o sit io n . T h u s  w e o b ta in  a  n ew  g e n e ra to r  m a tr ix ,

0  Yxx( 1) YxxO ) YxA 2 )  y xA p )
.0  yxx(0 ) yxx( 1) yxx{ 1) yxx(p  -  1 )

T h e  (n e g a tiv e )  r a t io  o f  th e  e le m e n ts  in th e  se c o n d  co lu m n  y ie ld  th e  re f le c tio n  
c o e ff ic ie n t K \  =  - y xA l ) / y xx {0).

Step 2. M u ltip ly  th e  g e n e r a to r  m a tr ix  by  th e  2  x  2  m a tr ix

1 K i

Gn =

G , = (1 1 .3 .3 0 )

V i  =

V!G1 =

T h u s  w e o b ta in  

0  0

1
(1 1 .3 .3 1 )

y „ < 2 )  +  K xYxx{ \ )

0  y „ ( 0 )  +  ^ * y „ ( l )

G :  =

Y x x ip )  +  K \ y xx{p  -  1) 

Y x x ip  -  1 ) +  K * y xx(p )_

(1 1 .3 .3 2 )

Step  3. S h ift  th e  se c o n d  ro w  o f  V i G i  b y  o n e  p la c e  to  th e  r ig h t an d  th u s  fo rm  
th e  n ew  g e n e r a to r  m a tr ix

0  0  yxx(2) +  K i y xx( l )  yxx(p )  +  K \ y X I (p  -  1)

L 0  0  y xA 0 )  +  K ; y xx( \ )  Yxx( p - 2 )  +  K \ y xx( p - l )

(1 1 .3 .3 3 )
T h e  n e g a tiv e  r a t io  o f  th e  e le m e n ts  in th e  th ird  co lu m n  o f  G 2 y ie ld s  K 2.
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S te p s  2  an d  3  a re  re p e a te d  u n til w e h av e  so lv e d  fo r  a ll p  r e f le c tio n  co e ff ic ie n ts . 
In  g e n e ra l, th e  2 x 2  m a tr ix  in s te p  2  is

1 K „  
K *  1

(1 1 .3 .3 4 )

an d  m u ltip lic a tio n  o f  V m by  G m y ie ld s  V mG m. In  s te p  3  w e sh ift  th e  s e c o n d  row  
o f  V mG m o n e  p la c e  to  th e  rig h t an d  o b ta in  th e  n ew  g e n e r a to r  m a tr ix  G m+i.

W e  o b s e r v e  th a t  th e  sh iftin g  o p e r a tio n  o f  th e  s e c o n d  ro w  in e a c h  ite ra tio n  
is e q u iv a le n t to  m u ltip lic a tio n  by  th e  d e la y  o p e r a to r  z ~ x in  th e  se c o n d  re cu rs iv e  
e q u a tio n  in (1 1 .3 .2 5 ) .  W e  a ls o  n o te  th a t  th e  d iv is io n  o f  th e  p o ly n o m ia l P m(z)  b y  
th e  p o ly n o m ia l Q m(z) an d  th e  e v a lu a tio n  o f  th e  q u o tie n t a t  z  =  oo is e q u iv a le n t 
to  d iv id in g  th e  e le m e n ts  in  th e  (m +  l ) s t  co lu m n  o f  G m. T h e  co m p u ta tio n  o f  
th e  p  re f le c tio n  c o e ff ic ie n ts  ca n  b e  a c c o m p lis h e d  b y  u se o f  p a ra lle l p ro c e s s o rs  in 
0 { p )  t im e  u n its . B e lo w  w e d e s c r ib e  a p ip e lin e d  a rc h ite c tu re  fo r  p e rfo r m in g  th e s e  
c o m p u ta tio n s .

A n o th e r  w ay o f  d e m o n s tra t in g  th e  re la tio n s h ip  o f  th e  S c h u r  a lg o r ith m  to  th e  
L e v in s o n -D u r b in  a lg o r ith m  an d  th e  c o rr e s p o n d in g  la t t ic e  p r e d ic to r  is to  d e te rm in e  
th e  o u tp u t o f  th e  la tt ic e  f i lte r  o b ta in e d  w h en  th e  in p u t s e q u e n c e  is th e  c o rr e la tio n  
s e q u e n c e  {y.r.v(m ), m =  0 . 1 , . . . ) ,  T h u s , th e  first in p u t to  th e  la t t ic e  f i lte r  is yx_v(0 ) , 
th e  s e c o n d  in p u t is y „ ( l ) ,  and  so  on  [ i.e ., / « (« ) =  yxx(n )]. A f te r  th e  d e lay  in 
th e  first s ta g e , w e h av e go(n -  1) =  yxx(n ~  \ ) .  H e n c e , fo r  n =  1, th e  ra t io  
./ii(l)/go(0) =  K r,(l)/ y jt.v (0K  w h ich  is th e  n e g a tiv e  o f  th e  r e f le c tio n  c o e ff ic ie n t K \ .  
A lte rn a t iv e ly , w e ca n  e x p re s s  th is re la tio n s h ip  as

/o(D +  ^igo(O) =  X n ( l)  +  ^iyjjc(O ) =  0

F u r th e r m o r e , # o(0) =  yxx(0 ) =  . A t  tim e  n =  2 , th e  in p u t to  th e  s e c o n d  sta g e  
is, a c c o rd in g  to  (1 1 .2 .4 ) ,

/ ,(2 )  =  M 2 )  +  K ^ g o G )  =  yxx( 2 ) +  K  lY x x ( l )

an d  a f te r  th e  u n it o f  d e la y  in th e  s e c o n d  sta g e , w e h av e

g , ( l )  ^  K * M l ) + g o ( 0 )  =  K l y xx ( 1 )  +  y „ ( 0 )

N ow  th e  r a t io  f \ { 2 ) / g \ ( \ )  is

/ i ( 2 )  yxx(2) +  K lY x x ( l )  yxx(2)  +  K \ y xx{ \)
=  - k 2

s i ( l )  yxx(0) +  ^ K „ ( l )  e {

H e n c e

/i (2 ) +  K i g \ ( \ )  =  0  

51 (1 ) =  E {

B y  c o n tin u in g  in  th is  m a n n e r , w e can  sh o w  th a t a t  th e  in p u t to  th e  m th  la t t ic e  s tag e , 

th e  ra t io  f m- \ ( m ) / g m- i ( m  -  1) =  - K m an d  g m- i ( m  ~  1) =  E }m_ v  C o n s e q u e n tly , 
th e  la t t ic e  f i lte r  c o e ff ic ie n ts  o b ta in e d  fro m  th e  L e v in s o n  a lg o r ith m  a r e  id e n tica l 
to  th e  c o e ff ic ie n ts  o b ta in e d  in  th e  S c h u r  a lg o r ith m . F u r th e r m o r e , th e  la t t ic e  filte r
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s tru c tu re  p ro v id e s  a m e th o d  fo r  co m p u tin g  th e  re f le c t io n  c o e ff ic ie n ts  in th e  la tt ic e  
p re d ic to r .

A pipelined architecture for implementing the Schur algorithm. K u n g  
an d  H u  (1 9 8 3 )  d e v e lo p e d  a p ip e lin e d  la tt ic e - ty p e  p r o c e s s o r  fo r  im p le m e n tin g  th e  
S c h u r  a lg o r ith m . T h e  p r o c e s s o r  c o n s is ts  o f  a  c a s c a d e  o f  p  la t t ic e - ty p e  s ta g e s , w h ere  
e a c h  s ta g e  c o n s is ts  o f  tw o  p ro ce s s in g  e le m e n ts  ( P E s ) ,  w h ich  w e d e s ig n a te  as u p p er
P E s  d e n o te d  as A \ , A z . . . . ,  A p , an d  lo w e r  P E s  d e n o te d  as S j ,  B 2 ..........B p, as  sh ow n
in F ig . 11 .5 . T h e  P E  d e s ig n a te d  as A \  is a ss ig n e d  th e  ta s k  o f  p e r fo r m in g  d iv ision s. 
T h e  re m a in in g  P E s  p e rfo rm  o n e  m u ltip lic a tio n  an d  o n e  a d d itio n  p e r  i te ra tio n  (o n e  
c lo c k  c y c le ) .

In itia lly , th e  u p p er P E s  a re  lo a d e d  w ith  th e  e le m e n ts  o f  th e  first row  o f  th e  
g e n e r a to r  m a tr ix  G o. as i llu s tra te d  in F ig . 1 1 .5 . T h e  lo w e r P E s  a re  lo a d e d  w ith  th e  
e le m e n ts  o f  th e  s e c o n d  ro w  o f  th e  g e n e r a to r  m a tr ix  G o- T h e  c o m p u ta t io n a l p ro ce ss  
b e g in s  w ith th e  d iv isio n  P E ,  A \, w h ich  c o m p u te s  th e  first re f le c t io n  c o e ff ic ie n t as 
K \  =  — yJ J :( l ) / K t j( 0 ) .  T h e  v a lu e  o f  K \  is se n t s im u lta n e o u s ly  to  a ll th e  P E s  in th e 
u p p er b r a n c h  a n d  lo w e r b ra n ch .

T h e  se c o n d  s te p  in th e  co m p u ta tio n  is to  u p d a te  th e  c o n te n ts  o f  a ll p ro ce ss in g  
e le m e n ts  s im u lta n e o u s ly . T h e  c o n te n ts  o f  th e  u p p e r  an d  lo w e r  P E s  a re  u p d ated  
as fo llo w s;

P E  A m: A m <— A m +  K i B m m = 2 , 3 ..........p
P E  B m: B m *— B m +  K \  A m m =  1 , 2 , . . . .  p

T h e  th ird  s te p  in v o lv es  th e  s h iftin g  o f  th e  c o n te n ts  o f  th e  u p p er P E s  o n e  
p la ce  to  th e  le ft . T h u s  w e h av e

P E  A m\ A „ - i  + - A m m = 2 , 3 .......... p

A t th is  p o in t , P E  A \  c o n ta in s  yxx(2) +  K \ y xx( \ )  w h ile  P E  B \  c o n ta in s  y „ ( 0 )  +  
K * y xx( \) .  H e n c e  th e  p r o c e s s o r  A \  is re a d y  to  b e g in  th e  se c o n d  c y c le  by  co m p u tin g

Figure 11.5 Pipelined parallel processor for computing the reflection coefficients
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th e  s e c o n d  re fle c tio n  c o e ff ic ie n t  K 2 =  - A \ / B \ .  T h e  th r e e  c o m p u ta tio n a l s tep s  
b e g in n in g  w ith  th e  d iv is io n  A \ / B \  a re  re p e a te d  un til all p  re f le c tio n  c o e ff ic ie n ts  

a r e  c o m p u te d . N o te  th a t  P E  B \  p ro v id e s  th e  m in im u m  m e a n -s q u a re  e r r o r  e L  fo r  
e a c h  i te ra tio n .

I f  t<j d e n o te s  th e  tim e  fo r  P E  A \  to  p e rfo r m  a (c o m p le x )  d iv is io n  an d  rma 
is  th e  tim e  re q u ir e d  to  p e rfo rm  a (c o m p le x )  m u ltip lic a tio n  an d  an a d d itio n , th e  
tim e  re q u ire d  to  c o m p u te  a ll p  re f le c tio n  c o e ff ic ie n ts  is  p (z^  +  zma) fo r  th e  S ch u r 
a lg o r ith m .

11.4 PROPERTIES OF THE LINEAR PREDICTION-ERROR FILTERS

L in e a r  p re d ic t io n  filte rs  p o sse ss  s e v e ra l im p o rta n t p r o p e r tie s , w h ich  w e now  d e ­
s c r ib e . W e  b e g in  by  d e m o n s tra t in g  th a t  th e  fo rw a rd  p r e d ic t io n -e r ro r  f i lte r  is m in ­
im u m  p h a se .

Minimum-phase property of the forward prediction-error filter. W e
h a v e  a lre a d y  d e m o n s tra te d  th a t th e  re fle c tio n  c o e ff ic ie n ts  { AT,} a re  c o rr e la tio n  c o ­
e ff ic ie n ts , a n d  co n se q u e n tly , |A", | <  1 fo r  all i .  T h is  c o n d itio n  an d  th e  re la tio n  

=  (1 — \ K „ , c a n  b e  used  to  sh o w  th a t th e  z e r o s  o f  th e  p r e d ic t io n -e r ro r  
f i lte r  a re  e ith e r  all in sid e  th e  u n it c ir c le  o r  th e y  a re  all o n  th e  u n it c irc le .

F ir s t ,  w e sh ow  th a t i f  e J, >  0 , th e  z e r o s  |z,| <  1 fo r  e v e ry  i .  T h e  p r o o f  is by 
in d u c tio n . C le a r ly , fo r  p  =  1 th e  sy ste m  fu n c t io n  fo r  th e  p r e d ic t io n -e r r o r  f ilte r  is

A A z )  =  1 +  K i z -1  (1 1 .4 .1 )

H e n c e  z \ =  —K \  an d  e {  =  (1 -  |K \ \ 2) E l  >  0 . N ow , su p p o se  th a t  th e  h y p o th e s is  is 
tru e  fo r  p -  1. T h e n , i f  n  is a  ro o t  o f  A p{z ) ,  w e h a v e  fro m  (1 1 .2 .1 6 )  a n d  (1 1 .2 .1 8 ) ,

A p(Zi) =  Ap- \ ( z i )  +  K pz ~ l Bp

(1 1 .4 .2 )

H e n c e

1 z - pA ; _ x( i / z , )  

K p  A p ^  i (Zi )
s  Q U i )  (1 1 .4 .3 )

W e  n o te  th a t th e  fu n c tio n  Q(z)  is a ll pass. In  g e n e ra l, an  a ll-p a ss  fu n c t io n  o f  th e  
fo rm

p ( z ) = n ^  u * i < i  a i . 4 . 4 )
z +  z*

s a tis f ie s  th e  p r o p e rty  th a t  l^ te ) )  >  1 fo r  [zl <  1, [/’ (z )! =  1 fo r  |z| =  1, an d  
|/*(z)| <  1 f o r  |z| >  1. S in c e  Q ( z )  =  - P { z ) f z ,  it  fo llo w s  th a t  |z,| <  1 i f  |f?(z)| >  1. 
C le a r ly , th is  is th e  c a s e  s in c e  j2 (z ,)  =  1/ATP a n d  e {, >  0 .
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O n  th e  o th e r  h an d , su p p o se  th a t  >  0  an d  =  0 . In  th is  c a s e  \ K p \ - = \  
an d  \Q(Zi)\ =  1. S in c e  th e  M M S E  is z e r o , th e  ra n d o m  p ro c e s s  jr (n )  is c a lle d  p r e ­
d ic t a b le  o r  d e te rm in ist ic .  S p e c ifica lly , a  p u re ly  s in u so id a l ra n d o m  p r o c e s s  o f  th e  
fo rm

M
x ( n )  =  2 2  a ke jinoi*+et) (1 1 .4 .5 )

k=l

w h e re  th e  p h a s e s  {8k] a r e  s ta tis tica lly  in d e p e n d e n t an d  u n ifo rm ly  d is tr ib u te d  o v e r  
(0 , 2 n ) ,  h as th e  a u to c o rr e la t io n

M

YxA m )  =  2 2 a h Jmwi (H -4 .6 )
*= i

an d  th e  p o w e r d e n sity  sp e c tru m

M

r xAf)  =  -  /*> h  = ?  (114-7)
* = 1  Z 7 r

T h is  p r o ce ss  is p r e d ic ta b le  w ith  a p r e d ic to r  o f  o r d e r  p  >  M .
T o  d e m o n s tra te  th e  v a lid ity  o f  th e  s ta te m e n t, c o n s id e r  p a ssin g  th is  p ro ce ss  

th ro u g h  a p re d ic t io n  e r r o r  f i lte r  o f  o rd e r  p >  M .  T h e  M S E  a t  th e  o u tp u t o f  th is  
f ilte r  is

M/2
£ /  =  / r xA f ) \ A p ( f ) \ 2d f  

J - \ n

\A p{ f ) \ 2d f  (1 1 .4 .8 )
r 1/2 [ ”

=  / £ « * « ( / - / * )
j - i / 2

=  £ « * 2 i v / * ) i 2 
k=i

B y  ch o o s in g  M  o f  th e  p  z e r o s  o f  th e  p r e d ic t io n -e r ro r  f i lte r  to  c o in c id e  w ith  th e  

fre q u e n c ie s  {/ *} , th e  M S E  £ /  c a n  b e  fo r c e d  to  z e ro . T h e  re m a in in g  p  — M  z ero s  
ca n  b e  s e le c te d  a rb itra r ily  to  b e  a n y w h e re  in s id e  th e  u n it c ir c le .

F in a lly , th e  r e a d e r  ca n  p ro v e  th a t  i f  a  ra n d o m  p ro c e s s  c o n s is ts  o f  a  m ix tu re  
o f  a c o n tin u o u s  p o w e r  s p e c tra l  d e n sity  an d  a d is c r e te  s p e c tru m , th e  p re d ic t io n -  
e r r o r  f ilte r  m u st h a v e  a ll its  r o o ts  in s id e  th e  u n it c ir c le .

Maximum-phase property of the backward prediction-error filter. T h e
sy stem  fu n c t io n  fo r  th e  b a c k w a rd  p r e d ic t io n  e r r o r  f i lte r  o f  o r d e r  p  is

B p (z) =  z - pA ; ( z ~ 1) (1 1 .4 .9 )

C o n s e q u e n tly , th e  r o o ts  o f  B p (z ) a re  th e  re c ip r o c a ls  o f  th e  r o o ts  o f  th e  fo rw ard  
p r e d ic t io n -e r ro r  f i lte r  w ith  sy stem  fu n c t io n  A p(z ). H e n c e  i f  A p (z)  is m in im u m  
p h a se , th e n  B p (z) is m a x im u m  p h a s e . H o w e v e r , i f  th e  p r o c e s s  x  (« )  is p r e d ic ta b le , 
a ll th e  ro o ts  o f  B p (z ) l ie  o n  th e  u n it c ir c le .



Whitening property. S u p p o se  th a t  th e  ra n d o m  p r o c e s s  x(rt) is  a n  A R (p )  
s ta tio n a r y  ra n d o m  p ro c e s s  th a t  is  g e n e ra te d  b y  p a ss in g  w h ite  n o ise  w ith  v a r ia n c e  
a £  th ro u g h  an  a ll-p o le  f i lte r  w ith  sy ste m  fu n c t io n

H(Z)  = ---------y ----------- ( 1 1 .4 .1 0 )

k= 1

T h e n  th e  p r e d ic t io n -e r r o r  f i lte r  o f  o rd e r  p  h a s  th e  sy ste m  fu n c t io n

p

A p (z) — 1 +  2 2 a p ( f t z ~ k ( 1 1 .4 .1 1 )
*= i

w h e re  th e  p r e d ic to r  c o e ff ic ie n ts  a p (k) =  a T h e  re s p o n s e  o f  th e  p r e d ic t io n -e r ro r  
f i lte r  is  a  w h ite  n o is e  s e q u e n c e  { to (n )} . In  th is  c a s e  th e  p r e d ic t io n -e r ro r  f i lte r  
w h ite n s  th e  in p u t ra n d o m  p ro ce s s  x ( n )  an d  is c a lle d  a  w h ite n in g  filte r , as  in d ica te d  
in  S e c t io n  1 1 .2 .

M o r e  g e n e ra lly , e v e n  if  th e  in p u t p ro c e s s  x (n )  is  n o t  an  A R  p r o c e s s , th e  
p r e d ic t io n -e r r o r  f i lte r  a tte m p ts  to  re m o v e  th e  c o r r e la t io n  a m o n g  th e  s ig n a l sa m p les  
o f  th e  in p u t p ro c e s s . A s  th e  o r d e r  o f  th e  p r e d ic to r  is  in c re a s e d , th e  p r e d ic to r  
o u tp u t x ( n )  b e c o m e s  a c lo s e r  a p p ro x im a tio n  to  x (n )  an d  h e n ce  th e  d iffe re n c e  
f ( n )  =  x ( n )  — x ( n )  a p p r o a c h e s  a  w h ite  n o ise  s e q u e n c e .

Orthogonality of the backward prediction errors. T h e  b a c k w a rd  p r e ­
d ic t io n  e r r o r s  {# „ (£ ) )  fro m  d iffe re n t s ta g es  in th e  F I R  la t t ic e  f i lte r  a re  o r th o g o n a l. 
T h a t  is,

E [ g m(n )g i (n)] =  h (1 1 .4 .1 2 )
, t «i’ t — m

T h is  p r o p e r ty  is e a s ily  p ro v e d  by  su b stitu tin g  fo r  gm(n) a n d  g j( n )  in to  (1 1 .4 .1 2 )  
an d  c a rry in g  o u t th e  e x p e c ta t io n . T h u s

m I

E [g m (n)g/*(n)] =  £ i > m ( * )  £  £ > ,* ( ;)£ [ * («  -  k )x * (n  -  j ) ]
i - 0  J=0

(1 1 .4 .1 3 )
/ m

-  b * a ) ] C bm ^ Yxx a  ~  f t  
j =0

B u t  th e  n o r m a l e q u a tio n s  fo r  th e  b a c k w a rd  l in e a r  p r e d ic to r  re q u ir e  th a t

£ > m ( * ) X « U  -  * )  =  f %  Jj  Z  „  2 ..........m ~  1 (1 1 .4 .1 4 )
k=0 [ m' J

T h e r e fo r e ,
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? !( * ) }  =  { J "E [ g m( n ) g ; ( n ) } = \ ! ; » - E” ' (1 1 .4 .1 5 )
0  <  I <  m  — 1



Additional properties. T h e r e  a r e  a n u m b e r  o f  o th e r  in te r e s t in g  p ro p e rtie s  
re g a rd in g  th e  fo rw a rd  an d  b a c k w a rd  p re d ic t io n  e r ro rs  in  th e  F I R  la tt ic e  f ilte r . 
T h e s e  a re  g iv e n  h e r e  fo r  re a l-v a lu e d  d a ta . T h e ir  p r o o f  is le f t  a s  an  e x e rc is e  fo r  
th e  re a d e r .

(a )  E [ f m(n )x (n  -  /')] = 0 ,  1 <  i  <  m

( b )  E [ g m{n )x (n  -  /)] =  0 , 0  <  i  <  m -  1

( c )  £ [ / m(n ) x (n )]  =  £ [ g m(n )jr (n  -  m )] =  E m

(d )  E [ f i( n ) f j ( n ) ]  = EtnajO 'i j )
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I >  J 
i  <  j

( e )  E [ f , ( n ) f j { n  -  f ) ]  =  0 , fo r  j ^  ^

( f )  E[gi (n)g j (n -  0 ]  =  0 , for { J ^  J :  J. +  ^  ! *  J.

(g )  E [ M n  +  i ) f j ( n  +  j ) } = ^  ) =  j

(h) E[gi(n + i )gj(n +  ; ) ]  =  £ max {iJ)

f f l  £ [ / < < « > » < » > ] - { £ ' * '•  i J ~ 0 ' * " “ 1

( j )  E [ f i( n ) g i { n  -  1 )]  =  - K i + \ E i

(k )  £ [g ,( r t  -  l ) j t ( n ) ]  =  E [ f j { n  +  1 )jc(u  -  1 )]  =  - * ,+ ] £ ,■

( I )  £ [ / , ( B > a < » - D J -  j \ +l£( ,

11.5 AR LATTICE AND ARMA LATTICE-LADDER FILTERS

In  S e c t io n  1 1 .2  w e  sh o w e d  th e  re la tio n s h ip  o f  th e  a ll-z e ro  F I R  la t t ic e  to  lin e a r  
p re d ic t io n . T h e  lin e a r  p r e d ic to r  w ith  tr a n s fe r  fu n c t io n ,

p
A P(z) =  1 +  ' ^ a p(k)z~k (1 1 .5 .1 )

* = l

w h en  e x c ite d  b y  an  in p u t ra n d o m  p ro c e s s  { jc (n )} ,  p ro d u c e s  a n  o u tp u t th a t  ap­
p r o a c h e s  a  w h ite  n o ise  s e q u e n c e  a s  p  ->• oo. O n  th e  o th e r  h a n d , i f  th e  in put 
p ro c e s s  is a n  A R ( p ) ,  th e  o u tp u t o f  A p{z) is  w h ite . S in c e  A p{z) g e n e r a te s  a  M A (p )  
p ro c e s s  w h en  e x c ite d  w ith  a w h ite  n o is e  s e q u e n c e , th e  a ll-z e r o  la t t ic e  is s o m e tim es  
ca lle d  a  M A  la t t ic e .

In  th e  fo llo w in g  s e c t io n , w e  d e v e lo p  th e  la t t ic e  s tru c tu re  fo r  th e  in v e rs e  filter  
1 / A p (z), c a lle d  th e  A R  la t t ic e , an d  th e  la t t ic e - la d d e r  s tru c tu re  f o r  an  A R M A  
p r o c e s s .
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11.5.1 AR Lattice Structure

L e t  us c o n s id e r  a n  a ll-p o le  sy stem  w ith  sy stem  fu n c tio n

H ( z )  = --------- j l -------------  (1 1 .5 .2 )

i = l

T h e  d if fe re n c e  e q u a tio n  fo r  th is  I I R  sy stem  is

p

y(n) =  -  ^ P « p ( £ ) y ( n  -  k )  +  x ( n )  (1 1 .5 .3 )
k= l

N ow  su p p o se  th a t  w e in te r c h a n g e  th e  ro le s  o f  th e  in p u t a n d  o u tp u t [ i.e ., in te r ­
c h a n g e  x (n )  w ith  y (n )  in  (1 1 .5 .3 ) ]  o b ta in in g  th e  d if fe re n c e  e q u a tio n

p

*(n) = - ~ ft +
k= 1

o r, e q u iv a le n tly ,
p

v (« )  =  *(/?) +  2 2 , a p ( f t x (n ~  f t  (1 1 .5 .4 )
*=i

W e  o b s e r v e  th a t  ( 1 1 .5 .4 )  is a d if fe re n c e  e q u a tio n  fo r  an F I R  sy stem  w ith  
sy stem  fu n c t io n  A p(z ). T h u s  an  a ll-p o le  I I R  sy stem  ca n  b e  co n v e r te d  to  an a ll­
z e r o  sy stem  b y  in te rc h a n g in g  th e  ro le s  o f  th e  in p u t an d  o u tp u t.

B a s e d  o n  th is  o b s e r v a t io n , w e ca n  o b ta in  th e  s tru c tu re  o f  an  A R {p )  la ttice  
fro m  a M A ( p )  la t t ic e  by  in te r c h a n g in g  th e  in p u t w ith  th e  o u tp u t. S in c e  th e  M A (p )  
la t t ic e  h a s  v (n ) =  f P (n) as its  o u tp u t a n d  x (n )  =  /o(n) is th e  in p u t, w e le t

x { n )  =  f p{n)
(1 1 .5 .5 )

y (n )  =  fo (n )

T h e s e  d e fin it io n s  d ic ta te  th a t  th e  q u a n t it ie s  { f m{n)}  b e  c o m p u te d  in d e scen d in g  o r ­
d e r. T h is  c o m p u ta tio n  ca n  b e  a c c o m p lis h e d  b y  re a rra n g in g  th e  re cu rs iv e  e q u a tio n  
fo r  { / * ( « ) }  in  (1 1 .2 .4 )  a n d  so lv in g  fo r  /m_ j( n )  in  te rm s  o f  f m{n ). T h u s  w e o b ta in

f m~ \( n )  -  f m{n)  -  K mg m- } (n -  1 ) m =  p , p  -  1 .......... 1

T h e  e q u a tio n  fo r  gm(n) re m a in s  u n ch a n g e d . T h e  re s u lt o f  th e s e  ch a n g e s  is th e  se t 
o f  e q u a tio n s

* ( n )  =  f p (n)  

f m- i ( n )  =  f m(n)  -  K mg m- i ( n  -  1)
(1 1 .5 .6 )

gm(n)  =  +  

y(n) =  M n )  =  gain)

T h e  c o rr e s p o n d in g  s tru c tu re  fo r  th e  A R ( p )  la t t ic e  is sh o w n  in  F ig . 1 1 .6 . N o te  th a t 
th e  a ll-p o le  la t t ic e  s tru c tu re  h as an  a ll-z e r o  p a th  w ith  in p u t g o (« ) an d  o u tp u t g p(n ),
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Figure 11.6 Lattice structure for an all-pole system

w h ich  is id e n tic a l to  th e  a ll-z e r o  p a th  in  th e  M a ( p )  la t t ic e  s tru c tu re . T h is  is  n o t 
su rp ris in g , s in ce  th e  e q u a tio n  fo r  g m (n ) is  id e n tic a l in  th e  tw o  la t t ic e  s tru c tu re s .

W e  a lso  o b s e r v e  th a t  th e  A R ( p )  an d  M A (/ ?) la t t ic e  s tru c tu re s  a re  c h a r a c ­
te r iz e d  by  th e  s a m e  p a r a m e te rs , n a m e ly , th e  re fle c tio n  c o e ff ic ie n ts  {/if,). C o n s e ­
q u e n tly , th e  e q u a tio n s  g iv en  in  (1 1 .2 .2 1 )  an d  (1 1 .2 .2 3 )  fo r  c o n v e r t in g  b e tw e e n  th e  
sy stem  p a r a m e te rs  {o^O t)} in  th e  d ir e c t -fo rm  re a liz a tio n s  o f  th e  a ll-z e r o  sy stem  
A p(z) and  th e  la t t ic e  p a r a m e te rs  { £ ; ]  o f  th e  M A ( p )  la t t ic e  s tru c tu re , ap p ly  as w ell 
to  th e  a ll-p o le  s tru c tu re s .

11.5.2 ARMA Processes and Lattice-Ladder Filters

T h e  a ll-p o le  la t t ic e  p ro v id e s  th e  b a s ic  bu ild in g  b lo c k  fo r  la t t ic e - ty p e  s tru c tu re s  
th a t  im p le m e n t I I R  sy ste m s th a t c o n ta in  b o th  p o le s  an d  z e r o s . T o  co n stru c t  th e  
a p p ro p r ia te  s tru c tu re , le t  us c o n s id e r  an  I I R  sy stem  w ith  sy ste m  fu n c t io n

£ c 9 ( * ) z _ *

H ( z )  =  — — ------------------- =  (1 1 .5 .7 )
,  v -  , * A p {z)

*=i

W ith o u t loss o f  g e n e ra lity , w e a ssu m e th a t  p  >  q.
T h is  sy ste m  is d e s c r ib e d  b y  th e  d if fe re n c e  e q u a tio n s

v (n )  =  - ' ^ T a p (k )v (n  -  k) +  x (n )
k= 1

<7
(1 1 .5 .8 )

y (n )  =  J 2 c ^ ( f t v (n

o b ta in e d  by  v iew in g  th e  sy ste m  a s  a  c a s c a d e  o f  an  a ll-p o le  s y s te m  fo llo w e d  b y  an  
a ll-z e ro  sy stem . F r o m  ( 1 1 .5 .8 )  w e o b s e r v e  th a t  th e  o u tp u t y (n )  is s im p ly  a lin e a r  
c o m b in a tio n  o f  d e la y e d  o u tp u ts  fro m  th e  a ll-p o le  sy stem .

S in c e  z e ro s  re s u lt  fro m  fo rm in g  a  l in e a r  c o m b in a tio n  o f  p re v io u s  o u tp u ts , w e 
ca n  ca r ry  o v e r  th is  o b s e r v a t io n  to  c o n s tru c t  a  p o le -z e r o  s y s te m  u sin g  th e  a ll-p o le
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la t t ic e  s tru c tu re  as th e  b a s ic  b u ild in g  b lo c k . W e  h a v e  c le a r ly  o b s e r v e d  th a t gm(n) 
in th e  a ll-p o le  la t t ic e  can  b e  e x p re s s e d  a s  a l in e a r  c o m b in a tio n  o f  p r e s e n t an d  p ast 
o u tp u ts . In  fa c t , th e  sy stem

is an  a ll-z e ro  sy stem . T h e r e fo r e ,  an y  lin e a r  c o m b in a tio n  o f  {£ m(n )}  is a ls o  an  
a ll-z e ro  f ilte r .

L e t  us b e g in  w ith  an  a ll-p o le  la t t ic e  f ilte r  w ith  c o e ff ic ie n ts  K m, 1 <  m <  p ,  
an d  ad d  a la d d e r  p a r t by ta k in g  as th e  o u tp u t, a w e ig h te d  l in e a r  c o m b in a tio n  o f  
{£ m (n )}. T h e  re s u lt  is  a  p o le -z e r o  f i lte r  th a t  h a s  th e  la t t ic e -la d d e r  s tru c tu re  sh o w n  
in F ig . 1 1 .7 . I t s  o u tp u t is

w h e re  {/ y  a r e  th e  p a r a m e te rs  th a t  d e te r m in e  th e  z e ro s  o f  th e  sy stem . T h e  sy stem  
fu n c tio n  c o rr e s p o n d in g  to  (1 1 .5 .1 0 )  is

(1 1 .5 .9 )

v (n ) =  2 2 p k g k ( n ) (1 1 .5 .1 0 )

(1 1 .5 .1 1 )

Inpul
x(n) f p - M ) fp -iW  f iW /o(")

«/>(«)
Stage

P 8P-  ■(«)_
Stage 
P ~  1 gP- 2<” ) £ |(” )

Stage
£o(n)

'p

Output

(a) P o le-zero  system

.-I

fm - 1<")

(b) m1*1 stage of lattice 

Figure 11.7 Lattice-ladder structure for pole-zero system



880 Linear Prediction and Optimum Linear Filters Chap. 11

S in c e  X ( z )  =  F p (z) an d  F q(z ) =  G o (z ), ( 1 1 .5 .1 1 ) ,  c a n  b e  e x p re s s e d  as

-2 - G t i z )  F o (z)
P*

k= 0 G0(z) Fp{z)

a p (z) *=o

(1 1 .5 .1 2 )

T h e r e fo r e ,
<?

C 9 (z) =  £ f t £ * ( z )  (1 1 .5 .1 3 )
t=o

T h is  is  th e  d e sired  re la tio n s h ip  th a t  can  b e  u sed  to  d e te r m in e  th e  w e ig h tin g  c o e f ­
f ic ie n ts  {fik} as p rev io u sly  sh ow n  in S e c t io n  7 .3 .5 .

G iv e n  th e  p o ly n o m ia ls  C q (z ) an d  A p (z), w h e re  p  >  q , th e  re fle c tio n  c o e f ­
f ic ie n ts  { £ , }  a re  d e te rm in e d  first fro m  th e  c o e ff ic ie n ts  {^ (/ t ) } .  B y  m e a n s  o f  th e  
s tep -d o w n  re cu rs iv e  re la tio n  g iv en  b y  (1 1 .2 .2 2 ) ,  w e a ls o  o b ta in  th e  p o ly n o m ia ls  
B k (z ) , k  =  1 , 2 , . . . ,  p . T h e n  th e  la d d er p a r a m e te rs  ca n  b e  o b ta in e d  fro m  (1 1 .5 .1 3 ) , 
w h ich  can  b e  ex p re s s e d  as

m - 1

C ,„ (z )  =  ^  P k B k iz )  +  fimB m(z)
t o  (1 1 .5 .1 4 )

=  C m- i ( z )  +  fimB m(z)

o r , eq u iv a le n tly ,

C m- i ( z )  =  C m(z) -  P mB m{z) m =  p , p  -  1 , . . . ,  1 (1 1 .5 .1 5 )

B y  ru n n in g  th is  re c u rs iv e  r e la tio n  b a c k w a rd , w e c a n  g e n e ra te  a ll th e  lo w e r-d e g re e
p o ly n o m ia ls , C m( z ), m =  p  — 1 .......... 1. S in c e  bm(m ) =  1, th e  p a r a m e te rs  f5m a re
d e te rm in e d  fro m  (1 1 .5 .1 5 )  b y  s e tt in g

p m = c m(m ) m =  p , p - 1 ------, 1 , 0

W h e n  e x c ite d  b y  a  w h ite  n o ise  s e q u e n c e , th is  la t t ic e - la d d e r  f i l te r  s tru ctu re  
g e n e ra te s  an  A R M A ( p ,^ )  p ro c e s s  th a t  h as  a p o w e r  d e n sity  s p e c tru m

\ C q ( f ) \

I V / ) l

an d  an  a u to c o rr e la tio n  fu n c t io n  th a t  sa tis fie s  ( 1 1 .1 .1 8 ) ,  w h e re  a 2 in  th e  v a ria n ce  
o f  th e  in p u t w h ite  n o ise  s e q u e n c e .

11.6 WIENER FILTERS FOR FILTERING AND PREDICTION

In  m a n y  p ra c tic a l a p p lic a t io n s  w e a re  g iv en  an  in p u t sig n a l { * ( « ) } ,  c o n s is tin g  o f  
th e  su m  o f  a  d e s ire d  sig n a l {.s(/i)} an d  an  u n d e s ire d  n o is e  o r  in te r fe r e n c e  {u>(n)}, 
an d  w e a re  a sk e d  to  d esig n  a  f itte r  th a t  s u p p re sse s  th e  u n d e s ire d  in te r fe r e n c e
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d ( n )

-----------t { + )-------<•(”)

Figure l l j t  Model for linear estimation 

problem

c o m p o n e n t. In  su ch  a c a s e , th e  o b je c t iv e  is to  d e sig n  a sy stem  th a t  f ilte rs  o u t 
th e  a d d itiv e  in te r fe r e n c e  w h ile  p re se rv in g  th e  c h a r a c te r is t ic s  o f  th e  d e s ire d  sig n a l

{*(« )}•
In  th is  s e c t io n  w e tr e a t  th e  p r o b le m  o f  s ig n a l e s tim a tio n  in th e  p re s e n c e  o f  

an  a d d itiv e  n o ise  d is tu rb a n ce . T h e  e s tim a to r  is c o n stra in e d  to  b e  a  l in e a r  f i lte r  
w ith  im p u lse  re s p o n s e  {/ i(n)}, d e s ig n e d  so  th a t  its  o u tp u t a p p ro x im a te s  so m e  s p e c ­
ified  d e sired  s ig n al s e q u e n c e  \d ( n ) } .  F ig u re  1 1 .8  il lu s tr a te s  th e  lin e a r  e s tim a tio n  
p r o b le m .

T h e  in p u t s e q u e n c e  to  th e  f i lte r  is x ( n )  =  s ( n )  +  w (n ), a n d  its  o u tp u t s e q u e n c e  
is v (n ).  T h e  d iffe re n c e  b e tw e e n  th e  d e s ire d  s ig n a l an d  th e  f i lte r  o u tp u t is th e  e r ro r  
s e q u e n c e  e(n )  =  d (n ) — y (n ) .

W e  d istin g u ish  th re e  sp e c ia l ca se s :

1 . I f  d {n )  =  s (n ) , th e  lin e a r  e s tim a tio n  p r o b le m  is re fe r r e d  to  as, filte r in g .

2 .  I f  d (n )  =  s{n  +  D ), w h e re  D  >  0 , th e  l in e a r  e s tim a tio n  p ro b le m  is re fe r re d  to  
as s ig n a l p re d ic t io n .  N o te  th a t  th is  p r o b le m  is d if fe re n t  th a n  th e  p re d ic tio n  
c o n s id e r e d  e a r l ie r  in  th is  c h a p te r , w h e re  d {n )  =  x i n  +  D ) , D  > 0 .

3 . I f  d {n )  — s (n  — D ) ,  w h ere  D  >  0 , th e  lin e a r  e s tim a tio n  p ro b le m  is re fe r re d  
to  a s  s ig n a l sm o o th in g .

O u r  tr e a tm e n t  w ill c o n c e n tr a te  o n  filte r in g  an d  p re d ic t io n .
T h e  c r ite r io n  s e le c te d  fo r  o p tim iz in g  th e - f i l t e r  im p u lse  re s p o n s e  {/t(n)} is 

th e  m in im iz a t io n  o f  th e  m e a n -s q u a re  e r ro r . T h is  c r ite r io n  h as th e  a d v a n ta g e s  o f  
s im p lic ity  an d  m a th e m a tic a l tra c ta b ility .

T h e  b a s ic  a ssu m p tio n s  a re  th a t  th e  s e q u e n c e s  { $ (« ) } ,  { a nd {£/(n)} a re  
z e r o  m e a n  an d  w id e -se n se  s ta tio n a ry . T h e  lin e a r  f i lte r  w ill b e  assu m e d  to  b e  e ith e r  
F I R  o r  I I R .  I f  it  is I I R ,  w e a ssu m e th a t  th e  in p u t d a ta  ( jc (n )} a re  a v a ila b le  o v e r  
th e  in fin ite  p ast. W e  b e g in  w ith  th e  d esig n  o f  th e  o p tim u m  F I R  filte r . T h e  o p ti­
m u m  lin e a r  f i lte r , in th e  s e n s e  o f  m in im u m  m e a n -s q u a re  e r r o r  ( M M S E ) ,  is ca lle d  
a  W ie n e r  filte r .

11.6.1 FIR Wiener Filter

S u p p o s e  th a t  th e  f ilte r  is  c o n stra in e d  to  b e  o f  le n g th  M  w ith  c o e ff ic ie n ts  {A*, 0  <  
k  <  M - l ) .  H e n c e  its  o u tp u t y ( n ) d e p e n d s  o n  th e  f in ite  d a ta  re c o rd  x ( n ) ,



x (n  — 1 ) , ,  x (n  — M  +  1 ) ,

Af -1

y (n )  =  h (k )x (n  -  k)  (1 1 .6 .1 )
t=o

T h e  m e a n -s q u a re  v a lu e  o f  th e  e r r o r  b e tw e e n  th e  d e s ire d  o u tp u t d ( n )  an d  y in )  is 

Z M =  E \e { n ) \2

^  (1 1 .6 .2 )  
=  E  d ( n ) -  h ( k ) x ( n  — k) 

k=o

S in c e  th is  is a  q u a d ra tic  fu n c t io n  o f  th e  f i lte r  c o e ff ic ie n ts , th e  m in im iz a t io n  o f  £ u  
y ie ld s  th e  s e t  o f  lin e a r  e q u a tio n s

M -l

5 > ( * W / - £ )  =  ^ , ( / )  / =  0 , 1 ..........M - l  (1 1 .6 .3 )
*=o

w h ere  yxx(k) is th e  a u to c o r r e la t io n  o f  th e  in p u t s e q u e n c e  { * ( « ) }  an d  ydx(k) =  
E [d (n )x * (n  — fc)] is th e  c r o s s c o r r e la t io n  b e tw e e n  th e  d e s ired  s e q u e n c e  [d (n )}  and  
th e  in p u t s e q u e n c e  {x {n ), 0 <  n <  M  — 1 ). T h e  s e t  o f  l in e a r  e q u a tio n s  th a t  sp ec ify  
th e  o p tim u m  filte r  is ca lle d  th e  W ie n e r -H o p f  e q u a tio n . T h e s e  e q u a tio n s  a re  a lso  
ca lle d  th e  n o rm a l e q u a tio n s , e n c o u n te re d  e a r l ie r  in th e  c h a p te r  in  th e  c o n te x t  o f  
lin e a r  o n e -s te p  p re d ic t io n .

In  g e n e ra l, th e  e q u a tio n s  in (1 1 .6 .3 )  ca n  b e  ex p re s s e d  in m a tr ix  fo rm  as

r wh „  =  y d (1 1 .6 .4 )

w h e re  r «  is a n  M  x  M  (H e r m it ia n )  T o e p litz  m a tr ix  w ith  e le m e n ts  T/* =  Y * A l ~ k )  
an d  y d is th e  M  x  1 c r o s s c o rre la t io n  v e c to r  w ith  e le m e n ts  Yd x(0 , i  =  0 , 1 , . . . ,  M - \ .  
T h e  s o lu tio n  fo r  th e  o p tim u m  filte r  c o e ff ic ie n ts  is

hopt =  Y M y d  (1 1 .6 .5 )

and th e  re su ltin g  m in im u m  M S E  a c h ie v e d  by  th e  W ie n e r  f i lte r  is

M - l

M M S E M =  m in  £ M =  a 2d -  ^opt( * ) ? £ ( £ )  (1 1 .6 .6 )
h“ £ 5

o r , e q u iv a le n tly ,

M M S E M =  a 2 - y J T ^ y d (1 1 .6 .7 )

w h e re  a j  =  E \ d ( n ) \ 2 .
L e t  us c o n s id e r  s o m e  s p e c ia l c a s e s  o f  (1 1 .6 .3 ) .  I f  w e a r e  d e a lin g  w ith  filterin g , 

th e  d (n ) =  s (n ) .  F u r th e r m o r e , i f  s ( n )  an d  w (n )  a r e  u n c o rr e la te d  ra n d o m  se q u e n ce s , 
as is u su ally  th e  c a s e  in  p r a c t ic e , th e n

Yxx(k) =  yss(k) +  Yww(k)
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(11.6.8)
Ydx(k) =  Yss(k)



an d  th e  n o r m a l e q u a tio n s  in  (1 1 .6 .3 )  b e c o m e

M - l

Y , W ) M - V  +  Y w w V - k ) ]  =  yss( l)  1 =  0 , 1 ..........M - l  (1 1 .6 .9 )
i= 0

I f  w e a re  d e a lin g  w ith  p re d ic t io n , th en  d (n ) =  s(n  +  D ) w h ere  D  >  0 . A s ­
su m in g  th a t  s ( n )  an d  w (n )  a re  u n c o rr e la te d  ra n d o m  s e q u e n c e s , w e h av e

Y d ,(k ) =  yss(l +  D )  (1 1 .6 .1 0 )

H e n c e  th e  e q u a tio n s  fo r  th e  W ie n e r  p re d ic t io n  f ilte r  b e c o m e

M-l
£ * ( * ) [ y « ( / - * )  +  yv.tt. ( / - * ) ]  =  y«</ +  z>) / =  0 , 1 . . . . ,  w -  l  (1 1 .6 .1 1 )
i=0

In  all th e s e  c a s e s , th e  c o rr e la t io n  m a trix  to  b e  in v e rte d  is T o e p litz . H e n c e  th e  
(g e n e ra liz e d )  L e v in s o n -D u r b in  a lg o r ith m  m ay  b e  u sed  to  so lv e  fo r  th e  o p tim u m  
filte r  c o e ff ic ie n ts .

Example 11.6.1

Lei us consider a signal x(n) =  j(n) +  w(n), where s(n) is an AR(1) process that 
satisfies the difference equation

s(n) =  0.6.v(n — 1) +  u(n)

where lu(n)l is a white noise sequence with variance <tl2 =  0.64, and (u>(n)) is a white 
noise sequence with variance en =  1. We will design a Wiener filter of length M = 2 
to estimate (j(h)}.

Solution Since (j(n)) is obtained by exciting a single-pole filter by white noise, the 
power spectra! density of is

r „ ( / )  =  < r ; \H { f ) \2 

0.64
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|1 — 0.6e~-i*nf \ 2' 

0.64
1.36 — 1.2cos2jt/ 

The corresponding autocorrelation sequence (y„(m)} is 

Y,Am) = (0.6)|m|

The equations for the filter coefficients are 

2h(0) +  0.6A(1) =  1 

0 .6 A (0 )+ 2 A (1 ) =  0 .6  

Solution of these equations yields the result

h(0) = 0.451 h(l) = 0.165
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The corresponding minimum MSE is

MMSE2 =  1 -  A(0)y„(0) -  /i(l)>v,(l)

=  1 -  0.451 -  (0.165X0.6)

= 0.45

This error can be reduced further by increasing the length of the Wiener filter (see 
Problem 11.27).

11.6.2 Orthogonality Principle in Linear Mean-Square 
Estimation

T h e  n o rm a l e q u a tio n s  fo r  th e  o p tim u m  filte r  c o e ff ic ie n ts  g iv e n  b y  (1 1 .6 .3 )  can  b e  
o b ta in e d  d ire ctly  by  a p p ly in g  th e  o r th o g o n a lity  p r in c ip le  in  l in e a r  m e a n -s q u a re  
e s tim a tio n . S im p ly  s ta te d , th e  m e a n -s q u a re  e r r o r  £ m  in  ( 1 1 .6 .2 )  is a  m in im u m  if  
th e  f i lte r  c o e ff ic ie n ts  {/ ;(£)) a re  s e le c te d  su ch  th a t  th e  e r r o r  is o r th o g o n a l to  e a c h  
o f  th e  d a ta  p o in ts  in th e  e s tim a te ,

E \e (n ) x * ( n  — /)] =  0  / =  0 , 1 ..........M  — 1

w h e re
M - l

e(n) =  d (n )  — £  h ( k ) x ( n  — k)
i =o

C o n v e rs e ly , i f  th e  f i lte r  c o e ff ic ie n ts  sa tis fy  (1 1 .6 .1 2 ) ,  th e  re s u lt in g  M S E  is a  m in i­
m u m .

W h e n  v iew ed  g e o m e tr ic a lly , th e  o u tp u t o f  th e  filte r , w h ich  is th e  e s tim a te

M - l

d (n ) — h (k )x (n  — k )  (1 1 .6 .1 4 )
*=o

is a  v e c to r  in th e  su b sp a ce  sp a n n ed  b y  th e  d a ta  { * (& ) , 0  <  k <  M  — 1}. T h e  e r ro r  
e(n )  is a  v e c to r  fro m  d (n )  to  <?(n) [ i.e ., d (n )  =  e ( n ) +  d (n )],  as  sh o w n  in F ig . 11 .9 . 
T h e  o rth o g o n a lity  p r in c ip le  s ta te s  th a t  th e  le n g th  £ M =  E M / i) !2 is a  m in im u m  
w h en  e (n )  is p e rp e n d ic u la r  to  th e  d a ta  s u b sp a ce  [ i .e ., e(rt) is  o r th o g o n a l to  e a c h  
d a ta  p o in t  x (k ) ,  0  <  k <  M  — 1],

W e  n o te  th a t  th e  so lu tio n  o b ta in e d  fro m  th e  n o rm a l e q u a tio n s  in  (1 1 .6 .3 )  
is  u n iq u e  i f  th e  d a ta  { * ( « ) }  in  th e  e s t im a te  d (n )  a r e  l in e a r ly  in d e p e n d e n t. In  th is 
c a s e , th e  c o rr e la t io n  m a tr ix  is n o n s in g u la r . O n  th e  o th e r  h a n d , i f  th e  d a ta  a re  
l in e a r ly  d e p e n d e n t, th e  ra n k  o f  T M is less  th a n  M  a n d  th e r e fo r e  th e  s o lu tio n  is n o t 
u n iq u e . In  th is  c a s e , th e  e s t im a te  d ( n )  ca n  b e  e x p re s s e d  as a  l in e a r  c o m b in a tio n  
o f  a  re d u ce d  s e t  o f  lin e a r ly  in d e p e n d e n t d a ta  p o in ts  e q u a l to  th e  ra n k  o f  T w .

S in c e  th e  M S E  is m in im iz e d  b y  s e le c tin g  th e  f i lte r  c o e ff ic ie n ts  to  sa tis fy  th e  
o r th o g o n a lity  p r in c ip le , th e  re s id u a l m in im u m  M S E  is s im p ly

MMSE*f =  E[e(n)d*(«)] (11.6.15)

which yields the result given in (11.6.6).

(11.6.12)

(1 1 .6 .1 3 )
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Figure 11.9 Geometric interpretation 
of linear M SE problem

11.6.3 IIR Wiener Filter

In  th e  p r e c e d in g  s e c tio n  w e c o n stra in e d  th e  f ilte r  to  b e  F I R  and  o b ta in e d  a s e t  o f  
M  l in e a r  e q u a tio n s  fo r  th e  o p tim u m  filte r  c o e ff ic ie n ts . In  th is  s e c tio n  w e a llo w  th e  
f ilte r  to  b e  in fin ite  in d u ra tio n  ( I I R )  an d  th e  d a ta  s e q u e n c e  to  b e  in fin ite  as  w ell. 
H e n c e  th e  f i lte r  o u tp u t is

y (» )  =  £ / 2 ( £ ) * ( n  -  k) (11.6 .16)

T h e  f ilte r  c o e ff ic ie n ts  a re  s e le c te d  to  m in im iz e  th e  m e a n -s q u a re  e r ro r  b e tw e e n  th e  

d e s ire d  o u tp u t d (n )  an d  v (n ) . th a t is ,

£ x  =  E \e { n ) \2

„  2

=  E
(1 1 .6 .1 7 )

A p p lic a tio n  o f  th e  o r th o g o n a lity  p r in c ip le  le a d s  to  th e  W ie n e r -H o p f  e q u a ­

tion.

(1 1 .6 .1 8 )

T h e  re s id u a l M M S E  is s im p ly  o b ta in e d  b y  a p p lic a t io n  o f  th e  co n d itio n  g iven  b y
(1 1 .6 .1 5 ) .  T h u s  w e o b ta in

M M S E s c  =  m in  ^  =  a j  -  £ f c opt ( *  ) > £ ( £ ) (1 1 .6 .1 9 )

T h e  W ie n e r - H o p f  e q u a tio n  g iv en  b y  (1 1 .6 .1 8 )  c a n n o t  b e  so lv e d  d ire c tly  w ith  
z -tra n s fo rm  te c h n iq u e s , b e c a u s e  th e  e q u a tio n  h o ld s  o n ly  fo r  1 >  0 . W e  sh a ll so lv e



fo r  th e  o p tim u m  I I R  W ie n e r  f i lte r  b a s e d  o n  th e  in n o v a tio n s  re p re s e n ta t io n  o f  th e  
s ta tio n a ry  ra n d o m  p ro ce s s  { * ( « ) } .

R e c a l l  th a t  a  s ta tio n a r y  ra n d o m  p ro c e s s  U (n ) )  w ith  a u to c o r r e la t io n  yxx(k) 
an d  p o w e r s p e c tra l d e n sity  r „ ( / )  c a n  b e  re p re s e n te d  by  a n  e q u iv a le n t in n o v a ­
tio n s  p ro ce s s , (» (n )} b y  p a ssin g  { * ( « ) }  th ro u g h  a  n o is e -w h ite n in g  f i lte r  w ith  sy stem  
fu n ct io n  1 / G ( z ) ,  w h e re  G ( z )  is  th e  m in im u m -p h a s e  p a r t  o b ta in e d  fro m  th e  s p e c tra l 
fa c to r iz a tio n  o f  r xJt(z ):

r „ ( z )  =  <T,2 G ( z ) G ( z - 1) (1 1 .6 .2 0 )

H e n c e  G i z )  is  a n a ly tic  in th e  re g io n  jz| >  n ,  w h e re  n  <  \ .
N o w , th e  o p tim u m  W ie n e r  f i l te r  ca n  b e  v iew e d  a s  th e  c a s c a d e  o f  th e  w h ite n ­

in g  filte r  1/ G (z ) w ith  a  se c o n d  f ilte r , say  Q ( z ) ,  w h o se  o u tp u t v (« )  is id e n tica l to  
th e  o u tp u t o f  th e  o p tim u m  W ie n e r  filte r . S in c e

OC

j ( n )  =  <?(*)/(« -  k)  (1 1 ,6 .2 1 )
*=o

an d  e(rt) =  d { n ) — > (n ), a p p lica t io n  o f  th e  o r th o g o n a lity  p r in c ip le  y ie ld s  th e  n ew  
W ie n e r -H o p f  e q u a tio n  as

OC

22<}(k'>y"V -k )  = ydi(D / >  0 (11.6.22)

B u t  s in c e  { i (n ) )  is  w h ite , it fo llo w s  th a t  y„(/ — k )  =  0  u n le ss  / =  k. T h u s  w e o b ta in  
th e  so lu tio n  as

Yd, (I) Ydi(0 

Ya(0)

T h e  z -tra n s fo rm  o f  t h e  s e q u e n c e  l g ( i ) }  is
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q d )  =  Z Z L L L  =  / >  0  ( 1 1 .6 .2 3 )

Q iz )  =  Y l q ( k ) z ~ k 
k—0

(1 1 .6 .2 4 )

=  \  Y l r d i ( l c ) z ~ k
a < t = o

I f  w e d e n o te  th e  z -tra n s fo rm  o f  th e  tw o -s id ed  c r o s s c o rre la tio n  s e q u e n c e  Y d iik )  by  

r\ ,,(z):
OC

r di( z ) =  Y i  W *( * ) * “ * (1 1 .6 .2 5 )
*= -00

an d  d e fin e  [r\/,-(z)]+ as

[ I\ ,,(z ) ]+ =  2 2  Y * W z ~ k (1 1 .6 .2 6 )
*=o

Q iz )  =  ~ [ r d iiz ) ) +  (1 1 .6 .2 7 )
o f

then
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T o  d e te r m in e  [r</;(z)]+ , w e b e g in  w ith  th e  o u tp u t o f  th e  n o is e -w h ite n in g  f i lte r , 
w h ich  ca n  b e  e x p re s s e d  as

OC

i{ n )  =  ^  v (£ );c (n  — k) (1 1 .6 .2 8 )
*=o

w h e re  (u (Jt), k  >  0 } is th e  im p u lse  re s p o n s e  o f  th e  n o is e -w h ite n in g  filte r ,

T h e n

Ydi{k) =  E [ r f ( n ) i * ( n - * ) ]

OC

=  2 2  v ( m ) E [ d {n ) x * ( n  — m — Jt)]

(1 1 .6 .2 9 )

(1 1 .6 .3 0 )

=  22 v (m ')ydAk + m )
m=0

T h e  z -tra n s fo rm  o f  th e  c r o s s c o rre la tio n  Y d iik )  is

oc oc

r j i ( z )  =  2 2  ' Y 2 v ^ Y d x { k  +  m )
k=—oo m=0

=  £ u ( m )  2 2  Y d x ( k + m ) z ~  
m= 0 *=-oc

oc oc

=  £ u ( m ) z m 2 2  Y * * (k )z~ k

=  V i z - ' W i A z )  =
r dx(z)

G i z - 1 )
T h e r e fo r e ,

Q iz )  =  A
r ^ ( z )  I

F in a lly , th e  o p tim u m  I I R  W ie n e r  f i lte r  h a s  th e  sy stem  fu n c t io n

Q iz )
H op\ iz )  =

G i z )

(1 1 .6 .3 1 )

(1 1 .6 .3 2 )

(1 1 .6 .3 3 )

In  su m m a ry , th e  s o lu tio n  fo r  th e  o p tim u m  I I R  W ie n e r  f i lte r  re q u ir e s  th a t  
w e p e r fo r m  a s p e c tra l fa c to r iz a tio n  o f  (z ) to  o b ta in  G i z ) ,  th e  m in im u m -p h a se  
c o m p o n e n t , a n d  th e n  w e so lv e  fo r  th e  ca u sa l p a r t  o f  T dxi z ) / G i z ~ 1 ). T h e  fo llo w in g  
e x a m p le  illu s tr a te s  th e  p ro c e d u re .
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Example 11.6.2

L e t us determ ine the optim um I I R  W ien er filter for the signal given in Exam ple 11.6.1. 

Solution F o r this signal we have

1.8(1 -  k - ' X l  -  h )
r ^ ) - r „ w  +  i  =  - _ ^ . T. ( 1 - (|̂ .

where a f  = 1.8 and

1 -  |z-1 
c a )  =  r r o f e ^

T h e z-transform  o f the crosscorrelation ydx (m ) is

0 .64
r dJ(z) =  r „ ( z )

H ence r r̂ a)! = r__
Lg(z-‘)J+ L a - 1  

■[

(1 - 0 .6 z " > ) ( l  - 0 . 6 z )  

0 .64

z X l - 0 . 6 ; - 1)

0.8 0 .2 6 6 ; 
+

1 - 0.6z~' i  _  i z j  

0.8
1 -  0 .6 z - ]

T h e optim um I I R  filter has the system function

1 / l - 0 . 6 r ' \  /  0. 8 \ 
H-'w = r8(TTTFrj(rro^j

and an impulse response

*o p t(n ) =  5 ( j ) "  n  >  0

W e  co n c lu d e  th is  s e c t io n  by  e x p re s s in g  th e  m in im u m  M S E  g iv e n  b y  (1 1 .6 .1 9 )  
in  te rm s  o f  th e  fre q u e n c y -d o m a in  c h a r a c te r is t ic s  o f  th e  filte r . F ir s t ,  w e n o te  th a t 
a j  =  E\d{n) \2 is s im p ly  th e  v a lu e  o f  th e  a u to c o r r e la t io n  s e q u e n c e  \ydd(k)} e v a lu ­
a te d  a t  it =  0. S in c e

Vdd(k) =  ^ y ^ r ^ ( z ) z * “ ^ z  (1 1 .6 .3 4 )

it  fo llo w s  th a t

a]  =  ydd( 0 )  =  (1 1 .6 .3 5 )

w h e re  th e  c o n to u r  in te g ra l is e v a lu a te d  a lo n g  a  c lo s e d  p a th  e n c irc l in g  th e  o rig in  
in  th e  re g io n  o f  c o n v e rg e n c e  o f



T h e  s e c o n d  te rm  in  (1 1 .6 .1 9 )  is a lso  e a s ily  tr a n s fo rm e d  to  th e  fre q u e n c y  
d o m a in  by a p p lic a t io n  o f  P a r s e v a l’s th e o re m . S in c e  h opl(k ) =  0  fo r  k <  0 , w e h a v e

£  ftop ,( * ) } £ ( * )  =  ^ S f i o p d z W . A z - ^ d z  (1 1 .6 .3 6 )
cc J *

w h e re  C  is a  c lo sed  c o n to u r  e n c irc lin g  th e  o rig in  th a t  l ie s  w ith in  th e  co m m o n  

re g io n  o f  co n v e rg e n c e  o f  / / optU) an d  r dx(z~l).
B y  c o m b in in g  (1 1 .6 .3 5 )  w ith  (1 1 .6 .3 6 ) ,  w e o b ta in  th e  d e s ire d  e x p re s s io n  fo r  

th e  M M S E c c  in  th e  fo rm

M M S E ^  =  ~ < ^ [ r dd(z) -  H opd z W dA z - l ) ] z - l d z  (1 1 .6 .3 7 )

Exam ple 1 1 .6 3

For the optimum Wiener filter derived in Example 11.6.2, the minimum MSE is
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m m s e m = i fi  r  o 3 5 s s  i
2 x iJ f  - J ) ( l - 0 . f e ) J

There is a single pole inside the unit circle at z =  j . By evaluating the residue at the 
pole, we obtain

MMSE^ -  0.444

We observe that this MMSE is only slightly smaller than that for the optimum two-tap 
Wiener filter in Example ] 1.6.1.

11.6.4 Noncausal Wiener Filter

In  th e  p r e c e d in g  s e c tio n  w e  co n s tra in e d  th e  o p tim u m  W ie n e r  f ilte r  to  b e  ca u sa l 
[ i .e ., h opt(n) =  0  fo r  n <  0 ] . In  th is  s e c t io n  w e d ro p  th is  c o n d itio n  an d  a llo w  th e  
f ilte r  to  in c lu d e  b o th  th e  in fin ite  p ast an d  th e  in fin ite  fu tu re  o f  th e  s e q u e n c e  { * ( « ) }  
in  fo rm in g  th e  o u tp u t y (n ) ,  th a t  is,

OO

y( n)  =  2 2  h (k )x (n ’— k)  ( 1 1 .6 .3 8 )
oc

T h e  re su ltin g  f ilte r  is p h y sica lly  u n re a liz a b le . I t  c a n  a ls o  b e  v iew ed  a s  a s m o o th in g  
f ilt e r  in  w h ich  th e  in fin ite  fu tu re  s ig n a l v a lu e s  a r e  u sed  to  s m o o th  th e  e s tim a te  
d (n )  =  y ( n ) o f  th e  d e s ire d  sig n a l d {n ) .

A p p lic a tio n  o f  th e  o r th o g o n a lity  p r in c ip le  y ie ld s  th e  W ie n e r - H o p f  e q u a tio n  
fo r  th e  n o n ca u s a l f i lte r  in  th e  fo rm

OO
2 2  - k )  =  ydx( l) -  oo  <  I  <  00 (1 1 .6 .3 9 )

k=—oc

an d  th e  re s u ltin g  M M S E nf as
OO

M M S E nc =  -  2 2  h  ( * )  r lc  ̂  d  1 -6 -4 ° )
Jt=-00



S in c e  (1 1 .6 .3 9 )  h o ld s  fo r  —oo < I < —oo, th is  e q u a tio n  c a n  b e  tra n s fo rm e d  
d ire c tly  to  y ie ld  th e  o p tim u m  n o n c a u s a l W ie n e r  f i lte r  as

^ ( z )  =  p ^ ~  (1 1 .6 .4 1 )
I jrjrv£)

T h e  M M S E „ ( c a n  a lso  b e  sim p ly  e x p re s s e d  in  th e  z -d o m ain  as

M M S E nf =  J - ^ [ r dd(z) -  H nc( z ) r dA t - l ) ] z - l d z  (1 1 .6 .4 2 )

In  th e  fo llo w in g  e x a m p le  w e c o m p a re  th e  fo rm  o f  th e  o p tim a l n o n ca u s a l filte r  
w ith  th e  o p tim a l ca u sa l f i lte r  o b ta in e d  in  th e  p re v io u s  s e c tio n .

Example 11.6.4

The optimum noncausal Wiener filter for the signal characteristics given in Exam­
ple 11.6.1 is given by (11.6.41), where

0.64
r^a> “  F-"( “  (1 - 0 .6 ; - ’)(l -0.6c)

and
r „ (s )  =  r„ (;)  +  l

2(1 -  0 .3 --1 -  0.3;)
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(1 -  0 . 6 - - ' )(1 -  0.6c)
Then.

0.3555

H ", U  ~  ( l - i c - ' K l - i c )

This filter is clearly noncausal.
The minimum MSE achieved by this filter is determined from evaluating 

(11.6.42). The integrand is

The only pole inside the unit circle is c =  | .  Hence the residue is 

0.35551 0.3555
=  0.40

Hence the minimum achievable MSE obtained with the optimum noncausal Wiener 
filter is

MMSEnr =  0.40

Note that this is lower than the MMSE for the causal filler, as expected.

11.7 SUMMARY AND REFERENCES

T h e  m a jo r  fo c a l p o in t  in  th is  c h a p te r  is  th e  d e sig n  o f  o p tim u m  lin e a r  sy stem s fo r 
l in e a r  p re d ic t io n  a n d  f ilte r in g . T h e  c r i te r io n  fo r  o p tim a lity  is th e  m in im iz a tio n  
o f  th e  m e a n -s q u a re  e r r o r  b e tw e e n  a  sp e c if ie d  d e s ire d  f ilte r  o u tp u t a n d  th e  a c tu a l 
f i lte r  o u tp u t.
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In  th e  d e v e lo p m e n t o f  l in e a r  p r e d ic t io n , w e d e m o n s tra te d  th a t  th e  e q u a tio n s  
fo r  th e  fo rw a rd  an d  b a ck w a rd  p re d ic t io n  e r ro rs  s p e c ifie d  a la tt ic e  f i lte r  w h o se  
p a r a m e te rs , th e  re fle c tio n  co e ff ic ie n ts  [ K m), w e re  sim p ly  re la te d  to  th e  f ilte r  c o e f ­
fic ie n ts  (a m(A:)} o f  th e  d ire c t fo rm  F I R  lin e a r  p r e d ic to r  a n d  th e  a s s o c ia te d  p re d ic t io n  
e r r o r  filte r . T h e  o p tim u m  filte r  c o e ff ic ie n ts  { K m) an d  (a m(£ ) }  a re  e a s ily  o b ta in e d  
fro m  th e  s o lu tio n  o f  th e  n o rm al e q u a tio n s .

W e  d e s c r ib e d  tw o  c o m p u ta tio n a lly  e ff ic ie n t a lg o r ith m s  fo r  so lv in g  th e  n o rm a l 
e q u a tio n s , th e  L e v in s o n -D u r b in  a lg o r ith m  an d  th e  S c h u r  a lg o r ith m . B o th  a lg o ­
rith m s  a re  s u ita b le  fo r  so lv in g  a T o e p litz  sy ste m  o f  l in e a r  e q u a tio n s  an d  h a v e  a 
c o m p u ta tio n a l c o m p le x ity  o f  0 ( p 2 ) w h en  e x e c u te d  o n  a  s in g le  p r o c e s s o r . H o w ­
e v e r , w ith  fu ll p a ra lle l p ro ce ss in g , th e  S ch u r a lg o r ith m  so lv e s  th e  n o rm a l e q u a tio n s  
in O ( p )  t im e , w h e re a s  th e  L e v in s o n -D u r b in  a lg o r ith m  re q u ir e s  O ( p l o g p )  t im e .

In  a d d itio n  to  th e  a ll-z e ro  la tt ic e  filte r  re su ltin g  fro m  lin e a r  p r e d ic t io n , w e 
a ls o  d e riv ed  th e  A R  la t t ic e  (a ll-p o le )  filte r  s tru c tu re  an d  th e  A R M A  la tt ic e - la d d e r  
(p o le -z e r o )  f ilte r  s tru c tu re . F in a lly , w e d e s c r ib e d  th e  d e sig n  o f  th e  c la ss  o f  o p t i­
m u m  lin e a r  filte rs , c a lle d  W ie n e r  f ilte rs .

L in e a r  e s tim a tio n  th e o ry  h a s  h ad  a lo n g  an d  r ic h  h is to ry  o f  d e v e lo p m e n t 
o v e r  th e  p a st fo u r  d e c a d e s . K a ila th  (1 9 7 4 )  p r e s e n ts  a h is to r ic a l a c c o u n t o f  th e  first 
th re e  d e c a d e s . T h e  p io n e e r in g  w o rk  o f  W ie n e r  (1 9 4 9 )  o n  o p tim u m  lin e a r  filte r in g  
fo r  s ta tis t ic a lly  s ta tio n a r y  sig n als  is e s p e c ia lly  s ig n ifica n t. T h e  g e n e ra liz a tio n  o f  
th e  W ie n e r  f i lte r  th e o ry  to  d y n a m ica l sy stem s w ith  ra n d o m  in p u ts w as d e v e lo p e d  
by  K a lm a n  (1 9 6 0 )  an d  K a lm a n  an d  B u cy  (1 9 6 1 ) . K a lm a n  filte rs  a re  tr e a te d  in 
th e  b o o k s  by  M e d itc h  (1 9 6 9 ) ,  B r o w n  (1 9 8 3 ) ,  a n d  C h u i an d  C h e n  (1 9 8 7 ) . T h e  
m o n o g ra p h  by  K a ila th  (1 9 8 1 )  tre a ts  b o th  W ie n e r  an d  K a lm a n  f ilte rs .

T h e r e  a re  n u m e ro u s  r e fe r e n c e s  o n  lin e a r  p re d ic t io n  an d  la tt ic e  f ilte rs . T u ­
to r ia l  t r e a tm e n ts  o n  th e s e  s u b je c ts  h a v e  b e e n  p u b lish e d  in  th e  jo u r n a l  p a p e rs  by  
M a k h o u l (1 9 7 5 , 1 9 7 8 )  an d  F r ie d la n d e r  (1 9 8 2 a , b ) .  T h e  b o o k s  by  H a y k in  (1 9 9 1 ) ,  
M a r k e l  an d  G ra y  1 9 7 6 ) , an d  T r e t te r  (1 9 7 6 )  p ro v id e  c o m p re h e n s iv e  tr e a tm e n ts  o f  
th e s e  s u b je c ts . A p p lic a tio n s  o f  l in e a r  p re d ic t io n  to  s p e c tra l an a ly sis  a re  fo u n d  in 
th e  b o o k s  b y  K a y  ( 1 9 8 8 )  and  M a r p le  (1 9 8 7 ) , to  g e o p h y s ics  in th e  b o o k  R o b in s o n  
an d  T r e i te l  ( 1 9 8 0 ) ,  an d  to  ad a p tiv e  filte r in g  in  th e  b o o k  b y  H a y k in  (1 9 9 1 ) .

T h e  L e v in s o n -D u r b in  a lg o r ith m  fo r  so lv in g  th e  n o r m a l e q u a tio n s  re cu rs iv e ly  
w as g iv en  b y  L e v in s o n  (1 9 4 7 )  an d  la te r  m o d ified  b y  D u r b in  (1 9 5 9 ) .  V a r ia t io n s  
o f  th is  c la s s ic a l a lg o r ith m , ca lle d  s p lit  L e  in so n  a lg o r it h m s , h av e  b e e n  d e v e lo p e d  
by  D e ls a r te  an d  G e n in  (1 9 8 6 )  an d  by  K r is h n a  (1 9 8 8 ) .  T h e s e  a lg o r ith m s  e x p lo it  
a d d itio n a l s y m m e tr ie s  in  th e  T o e p litz  c o rr e la tio n  m a tr ix  an d  sav e  a b o u t a fa c to r  
o f  2  in  th e  n u m b e r  o f  m u ltip lic a tio n s .

T h e  S c h u r  a lg o r ith m  w as o rig in a lly  d e s c r ib e d  by  S c h u r  ( 1 9 1 7 )  in  a p a p e r  
p u b lish e d  in  G e rm a n . A n  E n g lis h  tra n s la tio n  o f  th is  p a p e r  a p p e a rs  in th e  b o o k  
e d ite d  by  G o h b e r g  (1 9 8 6 ) .  T h e  S c h u r  a lg o r ith m  is in tim a te ly  re la te d  to  th e  p o ly ­
n o m ia ls  w h ich  c a n  b e  in te r p re te d  as o r th o g o n a l p o ly n o m ia ls . A  tr e a tm e n t  
o f  o r th o g o n a l p o ly n o m ia ls  is  g iv en  in  th e  b o o k s  b y  S z e g o  (1 9 6 7 ) ,  G re n a n d e r  an d  
S z e g o  (1 9 5 8 ) ,  a n d  G e ro n im u s  (1 9 5 8 ) . T h e  th e s is  o f  V ie ir a  (1 9 7 7 )  a n d  th e  p a p e rs  
b y  K a ila th  e t  a l. ( 1 9 7 8 ) ,  D e ls a r te  e t  a l. ( 1 9 7 8 ) ,  an d  Y o u la  an d  K a z a n jia n  (1 9 7 8 )
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p ro v id e  a d d itio n a l re s u lts  o n  o r th o g o n a l p o ly n o m ia ls . K a ila th  (1 9 8 5 , 1 9 8 6 )  p r o ­
v id es  tu to r ia l  t r e a tm e n ts  o f  th e  S c h u r  a lg o r ith m  a n d  its  r e la tio n s h ip  to  o r th o g o n a l 
p o ly n o m ia ls  an d  th e  L e v in s o n -D u r b in  a lg o r ith m . T h e  p ip e lin e d  p a r a lle l  p r o c e s s ­
in g  s tru c tu re  fo r  c o m p u tin g  th e  re fle c tio n  c o e ff ic ie n ts  b a s e d  o n  th e  S c h u r  a lg o r ith m  
an d  th e  re la te d  p r o b le m  o f  so lv in g  T o e p litz  sy ste m s o f  l in e a r  e q u a tio n s  is d e s cr ib e d  
in  th e  p a p e r  b y  K u n g  an d  H u  ( 1 9 8 3 ) .  F in a lly , w e sh o u ld  m e n tio n  th a t  s o m e  a d ­
d it io n a l c o m p u ta tio n a l e f f ic ie n c y  ca n  b e  a ch ie v e d  in  th e  S c h u r  a lg o r ith m , by  fu r­
th e r  e x p lo it in g  sy m m e try  p r o p e r tie s  o f  T o e p litz  m a tr ic e s , as  d e s c r ib e d  b y  K r is h n a  
(1 9 8 8 ) . T h is  le a d s  to  th e  s o -c a lle d  s p lit-S c h iir  a lg o r ith m , w h ich  is a n a lo g o u s  to  th e  
s p lit-L e v in s o n  a lg o r ith m .

P R O B L E M S

11.1 T he power density spectrum  o f an A R  process [x(n )) is given as

r j r M  =  g- -  
|A{oj)|2

25

|1 -  e~>w +  ie - J '2" ! 2

w here al, is the variance o f th e input sequence.
(a) D eterm ine the d ifference equation for generating the A R  process when the ex ­

citation is w hite noise.
(b) D eterm ine the system function for the w hitening filter.

1 L 2  A n A R M A  process has an autocorrelation  [yIX (m)} whose z-transform  is given as

(a) D eterm ine the filter H ( z )  for generating (x(n)) from  a white n oise input sequence. 
Is H (z )  unique? Explain .

(b) D eterm ine a stable linear w hitening filter for the sequence {*(«))■

1 L 3  C onsider the A R M A  process generated by the d ifference equation

x(n)  =  1.6x(n — 1) — 0 .6 3 * («  -  2) +  +  0.9w (n -  1)

(a) D eterm ine the system function o f th e w hitening filter and its poles and zeros.
(b) D eterm ine the pow er density spectrum  o f {jc(n)}.

11.4 D eterm ine the lattice coefficients corresponding to the F IR  filter with system  function

H(z)  =  Ai(z)  =  1 +  j j z '1 +  f z~2 +  jz~3

1 L 5  D eterm ine the reflection coefficients { K m} o f  the lattice filter corresponding to the 
F IR  filter described by the system  function
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11.6  (a) D eterm in e the zeros and sketch the zero pattern for the F IR  lattice filter with 
reflection  coefficients

(b ) R e p ea t part (a ) but with Ky =  —1.
(c ) Y o u  should have found that th e zeros lie on the unit circle. Can this result be 

generalized? H ow ?

11.7  D eterm in e the impulse response o f the F IR  filter that is described by the lattice 
coefficients K \  =  0.6, K 2 =  0.3, K 3 =  0 .5 , and K A =  0.9.

11.8  In Section  11.2.4 we indicated that the noise-w hitening filter A p{z) for a  causal A R (p )  
process is a forward linear prediction-error filter o f order p. Show that the backward 
linear prediction-error filter o f order p is the noise-w hitening filter o f th e correspond­
ing anticausal A R (p) process.

11 .9  U se the orthogonality principie to  determ ine the norm al equations and the resulting 
minimum M S E  for a forward predictor o f  order p  that predicts m sam ples {m >  1) 
into the future (m -step forward predictor). Sketch  th e prediction error filter.

11.10  R ep ea t Problem  11.9 for an m -step backward predictor.

11.11 D eterm in e a L evin son -D u rbin  recursive algorithm  for solving for the coefficients o f 
a backw ard prediction-error filter. U se th e result to  show that coefficients o f the 
forward and backward predictors can be expressed recursively as

11.12  T h e L ev in son -D u rb in  algorithm  described in Section  11.3.1 solved the linear equa­
tions

where the right-hand side o f  this equation has elem ents o f the autocorrelation se­
quence th at are also elem ents o f the m atrix T . L e t us consider the m ore general 
problem  o f solving the linear equations

w here cm is an arbitrary vector. (T h e vector bm is not related to the coefficients o f 
the backward predictor.) Show that the solution to  r mb„ =  c„ can be obtained from 
a generalized L e v in s o n -D u rb in  algorithm  which is given recursively as

bm(k) =  -  bm{m )a' ^(m -  k) ’ ' "  "
m =  1 ,2 ........p

where M l )  =  c ( l)/ y j,(0 )  =  c(1)/£q and a„(k) is given by (11,3.17). Thus a second 
recursion is required to  solve the equation I^ b * , =  c * .

1 L 1 3  U se the generalized Levin son -D u rb in  algorithm  to solve the norm al equations recur­
sively for the m-step forward and backward predictors.

K i =  \  K 2 =  - \  * 3  =  1

r „ a m =  - y m

r mbm
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11.14 Show that the transformation

in the Schur algorithm  satisfies the special property 

V „ ,JV „  =  (1 -  \ K J 2) i

where

Thus V m is called a 7-ro ta tio n  m atrix. Its ro le is to ro tate or hyperbolate the row o f 
G m to lie along the first coordinate direction  (K ailath , 1985).

11.15 Prove the additional properties (a ) through (1) o f the prediction- erro r filters given in 
Section  11.4.

11.16 Extend  the additional properties (a ) through (1) o f the prediction error filters given 
in Section  11.4 to com plex-valued signals.

11.17 D eterm ine the reflection coefficient K 3 in term s o f the autocorrelations {yTr (m )} from 
the Schur algorithm  and com pare your result with the expression for K 3 obtained 
from  the L evin son -D u rbin  algorithm .

11.18 Consider a infinite-length (p  =  oo) one-step  forward predictor for a stationary random 
process (x(n)) with a pow er density spectrum  o f Show th at the m ean-square 
error o f the prediction-error filter can be expressed as

11.19  D eterm ine the output o f an infinite-length (p  =  oo) m -step forw ard predictor and 
the resulting m ean-square erro r when th e input signal is a first-order autoregressive 
process o f the form

1 L 2 0  A n  A R (3 )  process {x(n)} is characterized by the autocorrelation sequence yJX(0) =  1,

(a ) U se the Schtir algorithm  to determ ine the three reflection coefficients K u K 2, and

(b) Sketch the lattice filter for synthesizing {x (n)} from  a white noise excitation.

1 L 2 1  T h e purpose o f this problem  is to  show that the polynom ials (A „(z)}, which are  the 
system functions o f the forward prediction-error filters o f order m, m =  0 , 1 , . . . ,  p, 
can be interpreted as orthogonal on th e unit circle. Tow ard this end, suppose that 
r jx ( f  ) is the pow er spectral density o f a zero-m ean random  process (* {n )}  and let 
Mm(z)}, m =  0, 1 . . . . ,  p ), be the system functions o f the corresponding prediction- 
error filters. Show  that the polynom ials {Am (z)} satisfy the orthogonality  property

x(n)  =  ax(n  — 1) +  w(n)

1 L 2 2  D eterm ine the system function o f the all-pole filter described by th e lattice coefficients 
J fi =  0.6, K 2 =  0 .3 , K } =  0 .5 , and K A =  0.9.
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11.23 Determine the parameters and sketch the lattice-ladder filter structure for the system 
with system function

11.24 Consider a signal j c ( « )  =  s(n) +  u;(n), where s(n) is an A R (1 ) process that satisfies 
the difference equation

where {u(n)) is a white noise sequence with variance er2 =  0.49 and {w(n)) is a 
white noise sequence with variance er2 =  1. The processes {t>{n)) and {u)(n)J are 
uncorrelated.
(a) Determine the autocorrelation sequences {y„(m)) and {yXJ(m)].
(b ) Design a Wiener filter of length M =  2 to estimate |j{n)}.
(c) Determine the MMSE for M =  2.

11.25 Determine the optimum causal IIR Wiener filter for the signal given in Problem 11.24 
and the corresponding MMSE^.

11.26 Determine ihe system function for the noncausal IIR Wiener filter for the signal given 
in Problem 11.24 and the corresponding MMSEnr.

11.27 Determine the optimum FIR Wiener filter of length M — 3 for the signal in Ex­
ample 11.6.1 and the corresponding MMSEj. Compare MMSEj with MMSEi and 
comment on the difference.

11.28 An AR(2) process is defined by the difference equation

where {u>(n)} is a white noise process with variance <t2, Use the Yule-Walker equa­
tions to solve for the values of the autocorrelation y„(0), ^ x(l). and yxx(2).

11.29 An observed random process (*(«)) consists of the sum of an AR{j>) process of the 
form

and a white noise process {u>{n)} with variance tr2. The random process {u(«)} is also 
white with variance er2. The sequences {u(n)} and fio(n)} are uncorrelated.

Show that the observed process =  j(«) +  u>(«)} is ARMA(p, p)  and de­
termine the coefficients of the numerator polynomial (MA component) in the corre­
sponding system function.

H{Z) 1 + 0 .1 ; - i - 0 .7 2 ; - 2

s(n )  =  Q.8s(n — 1) +  v(n)

=  x(n — 1) — 0.6jr(n — 2) +  u>(ri)

p
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Power Spectrum Estimation

In  th is  c h a p te r  w e a re  co n c e r n e d  w ith  th e  e s tim a tio n  o f  th e  s p e c tr a l  ch a r a c te r is t ic s  
o f  s ig n a ls  c h a r a c te r iz e d  as ra n d o m  p ro c e s s e s . M a n y  o f  th e  p h e n o m e n a  th a t  o ccu r 
in  n a tu re  a re  b e s t c h a r a c te r iz e d  s ta tis tica lly  in te rm s  o f  a v e r a g e s . F o r  ex a m p le , 
m e te o ro lo g ic a l p h e n o m e n a  su ch  as th e  flu c tu a tio n s  in a ir  te m p e r a tu r e  a n d  p ressu re  
a re  b e s t  c h a r a c te r iz e d  s ta tis tica lly  as ra n d o m  p ro c e s s e s . T h e r m a l n o ise  v o lta g e s  
g e n e ra te d  in re s is to rs  an d  e le c tr o n ic  d e v ic e s  a re  a d d itio n a l e x a m p le s  o f  p h y sica l 
s ig n a ls  th a t  a re  w ell m o d e le d  a s  ra n d o m  p ro ce s s e s .

D u e  to  th e  ra n d o m  flu c tu a tio n s  in  su ch  s ig n a ls , w e m u st a d o p t a s ta tis t i­
c a l v iew p o in t, w h ich  d e a ls  w ith  th e  a v e ra g e  c h a r a c te r is t ic s  o f  ra n d o m  sig n a ls . In  
p a r ticu la r , th e  a u to c o rr e la tio n  fu n c t io n  o f  a ra n d o m  p r o ce ss  is th e  a p p ro p r ia te  
s ta tis t ic a l a v e ra g e  th a t  w e w ill u se fo r  c h a r a c te r iz in g  ra n d o m  s ig n a ls  in th e  tim e  
d o m a in , an d  th e  F o u r ie r  tra n s fo rm  o f  th e  a u to c o rr e la t io n  fu n c t io n , w h ich  y ie ld s  
th e  p o w e r d e n sity  s p e c tru m , p ro v id e s  th e  tr a n s fo rm a tio n  fro m  th e  tim e  d o m a in  to  
th e  fre q u e n c y  d o m a in .

P o w e r  sp e c tru m  e s tim a tio n  m e th o d s  h av e a re la tiv e ly  lo n g  h is to ry . F o r  a 
h is to r ic a l p e rs p e c tiv e , th e  re a d e r  is r e fe r re d  to  th e  p a p e r  by  R o b in s o n  (1 9 8 2 )  and  
th e  b o o k  b y  M a r p le  (1 9 8 7 ) .  O u r  t r e a tm e n t  o f  th is  s u b je c t  c o v e rs  th e  c la s s ic a l p o w er 
s p e c tru m  e s tim a tio n  m e th o d s  b a s e d  o n  th e  p e r io d o g ra m , o r ig in a lly  in tro d u c e d  by 
S c h u s te r  (1 8 9 8 ) ,  an d  b y  Y u le  (1 9 2 7 ) ,  w h o  o r ig in a te d  th e  m o d e m  m o d e l-b a s e d  o r  
p a r a m e tr ic  m e th o d s . T h e s e  m e th o d s  w e re  su b se q u e n tly  d e v e lo p e d  an d  a p p lie d  b y  
W a lk e r  (1 9 3 1 ) , B a r t le t t  (1 9 4 8 ) ,  P a r z e n  (1 9 5 7 ) ,  B la c k m a n  an d  T u k e y  (1 9 5 8 ) ,  B u rg  
(1 9 6 7 ) ,  an d  o th e rs . W e  a lso  d e s c r ib e  th e  m e th o d  o f  C a p o n  (1 9 6 9 )  an d  m e th o d s  
b a s e d  o n  e ig e n a n a ly s is  o f  th e  d a ta  c o r r e la t io n  m a tr ix .

12.1 ESTIMATION OF SPECTRA FROM FINITE-DURATION 
OBSERVATIONS OF SIGNALS

T h e  b a s ic  p ro b le m  th a t  w e c o n s id e r  in  th is  c h a p te r  is  th e  e s t im a tio n  o f  th e  p o w er 
d e n sity  sp e c tru m  o f  a  s ig n a l fro m  th e  o b s e r v a t io n  o f  th e  s ig n a l o v e r  a  fin ite  tim e 
in te rv a l. A s  w e  w ill s e e , th e  f in ite  r e c o rd  len g th  o f  th e  d a ta  s e q u e n c e  is a  m a jo r

896
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lim ita tio n  o n  th e  q u a lity  o f  th e  p o w e r  s p e c tru m  e s t im a te . W h e n  d e a lin g  w ith  
s ig n a ls  th a t  a r e  s ta tis t ic a lly  s ta tio n a ry , th e  lo n g e r  th e  d a ta  re c o rd , th e  b e t te r  th e  
e s t im a te  th a t  ca n  b e  e x tra c te d  fro m  th e  d a ta . O n  th e  o th e r  h an d , i f  th e  s ig n a l 
s ta tis t ic s  a r e  n o n s ta tio n a ry , w e c a n n o t  s e le c t  an  a r b itra r ily  lo n g  d a ta  re c o rd  to  
e s tim a te  th e  s p e c tru m . In  su ch  a c a s e , th e  le n g th  o f  th e  d a ta  re c o rd  th a t  w e 
s e le c t  is d e te r m in e d  b y  th e  ra p id ity  o f  th e  t im e  v a r ia tio n s  in  th e  s ig n a l s ta tis tic s . 
U lt im a te ly , o u r  g o a l is to  s e le c t  a s  s h o r t a d a ta  re c o rd  a s  p o ss ib le  th a t  s till a llo w s 
us to  re s o lv e  th e  s p e c tra l c h a r a c te r is t ic s  o f  d if fe re n t  s ig n a l c o m p o n e n ts  in  th e  d a ta  
re c o rd  th a t  h a v e  c lo s e ly  s p a ce d  sp e c tra .

O n e  o f  th e  p r o b le m s  th a t  w e e n c o u n te r  w ith  c la s s ic a l p o w e r  s p e c tru m  e s t im a ­
tio n  m e th o d s  b a s e d  o n  a  f in ite -le n g th  d a ta  re c o rd  is th e  d is to r tio n  o f  th e  s p e c tru m  
th a t  w e a re  a tte m p tin g  to  e s tim a te . T h is  p r o b le m  o c c u r s  in  b o th  th e  c o m p u ta tio n  
o f  th e  s p e c tru m  fo r  a  d e te r m in is tic  s ig n a l a n d  th e  e s t im a tio n  o f  th e  p o w e r s p e c ­
tr u m  o f  a ra n d o m  sig n a l. S in c e  it is e a s ie r  to  o b s e r v e  th e  e f fe c t  o f  th e  fin ite  len g th  
o f  th e  d a ta  r e c o rd  o n  a d e te r m in is tic  s ig n a l, w e t r e a t  th is  c a s e  firs t. T h e r e a f te r ,  w e 
c o n s id e r  o n ly  ra n d o m  s ig n a ls  an d  th e  e s tim a tio n  o f  th e ir  p o w e r sp e c tra .

12.1.1 Computation of the Energy Density Spectrum

L e t  us c o n s id e r  th e  co m p u ta tio n  o f  th e  s p e c tru m  o f  a  d e te r m in is tic  s ig n a l fro m  
a  f in ite  s e q u e n c e  o f  d a ta . T h e  s e q u e n c e  jc (n ) is  u su a lly  th e  re su lt o f  sam p lin g  a 
c o n tin u o u s -tim e  s ig n a l x a (t) a t so m e  u n ifo rm  sa m p lin g  r a te  F s . O u r  o b je c t iv e  is 
to  o b ta in  an  e s tim a te  o f  th e  tru e  sp e c tru m  fro m  a  f in ite -d u ra tio n  s e q u e n c e  x (n ) .  

R e c a l l  th a t  i f  x ( t )  is  a  fin ite -e n e rg y  s ig n a l, th a t  is,

/ CC

\xa (t) \2dt <  oo

-00

th e n  its  F o u r ie r  tr a n s fo rm  ex is ts  a n d  is g iv en  a s

X a ( F )  =  f  Xo( t ) e - j2 * F ,dt
J -OO

F ro m  P a r s e v a l’s th e o re m  w e h av e

/oo roc
\xa ( t ) \2dt =  / \ X a ( F ) l 2d F  (1 2 .1 .1 )

•00 J —oc

T h e  q u a n tity  |Xa (F )| 2 re p re s e n ts  th e  d is tr ib u tio n  o f  s ig n a l en e rg y  as a  fu n c ­
t io n  o f  fre q u e n c y , a n d  h e n c e  it is  c a lle d  th e  e n e rg y  d e n sity  s p e c tru m  o f  th e  s ig n a l, 
th a t  is,

SXA F )  =  \ X e ( F ) \ 2 (1 2 .1 .2 )

as d e s c r ib e d  in C h a p te r  4 . T h u s  th e  to ta l e n e rg y  in  th e  s ig n a l is  s im p ly  th e  in te g ra l 
o f  SXX{ F )  o v e r  a ll F  [ i .e ., th e  to ta l  a re a  u n d er SJtJt( F ) ] .

I t  is  a ls o  in te re s tin g  to  n o te  th a t  S XX( F )  c a n  b e  v ie w e d  a s  th e  F o u r ie r  t r a n s ­
fo r m  o f  a n o th e r  fu n c t io n , R IX {t ) ,  c a lle d  th e  a u to c o rr e la t io n  fu n c t io n  o f  th e



fin ite -e n e rg y  s ig n al x a (t), d e fin ed  as

RxA*)= f  x * {t)x a { t + x ) d t  (1 2 .1 .3 )
J — OC

In d e e d , it ea s ily  fo llo w s th a t

R x x ( r ) e - J2jrFrd x  =  SXA F ) =  l * „ ( F ) | 2 (1 2 .1 .4 )
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/J  —C
so  th a t  R x x (?)  an d  SXX( F )  a re  a  F o u r ie r  tr a n s fo rm  p a ir.

N o w  su p p o se  th a t  w e c o m p u te  th e  e n e rg y  d e n sity  sp e c tru m  o f  th e  s ig n a l x a (t) 
fro m  its  sa m p les  ta k e n  a t th e  r a te  F s s a m p le s  p e r  se c o n d . T o  e n s u re  th a t th e r e  is 
n o  s p e c tra l  a lia s in g  re su ltin g  fro m  th e  sa m p lin g  p ro c e s s , th e  s ig n a l is a ssu m e d  to  
b e  p re filte re d , so  th a t , fo r  p r a c tic a l  p u rp o se s , its  b an d w id th  is lim ite d  to  B  h ertz . 
T h e n  th e  sam p lin g  fre q u e n c y  F s is s e le c te d  su ch  th a t  F s > 2 B .

T h e  sam p led  v e rs io n  o f  x a (t) is a  s e q u e n c e  * { « ) ,  - o c  <  n <  o c , w h ich  h as  a 
F o u r ie r  tra n sfo rm  (v o lta g e  sp e c tru m )

OC

X { a i ) =  2 2  x (n )e ~ J<°"
ns-cc

o r, eq u iv a le n tly ,

X ( f )  =  2 2  X ( n ) e - j2xfn  (1 2 .1 .5 )
A! =  — CC

R e c a l l  th a t X { f )  ca n  b e  ex p re s s e d  in te rm s  o f  th e  v o lta g e  s p e c tru m  o f  th e  a n a lo g  
s ig n al jco ( 0  as

*  ( £ )  =  £  X “ ( F  ~  k F ^  ( l 2 1 '6)

w h e re  /  =  F / F s is  th e  n o rm a liz e d  fre q u e n c y  v a r ia b le .
In  th e  a b s e n c e  o f  a lia s in g , w ith in  th e  fu n d a m e n ta l ran g e  l^ l  <  F J 2 , w e h av e

X a ( F ) ,  |Fj <  F J 2  (1 2 .1 .7 )

H e n c e  th e  v o lta g e  sp ec tru m  o f  th e  s a m p le d  s ig n a l is id e n tica l to  th e  v o lta g e  s p e c ­
tru m  o f  th e  a n a lo g  sig n a l. A s  a c o n s e q u e n c e , th e  e n e rg y  d e n s ity  sp e c tru m  o f  th e  
sa m p le d  s ig n al is

2

=  F } \ X a ( F ) \ 2 (1 2 .1 .8 )

W e  can  p r o c e e d  fu r th e r  b y  n o tin g  th a t  th e  a u to c o rr e la t io n  o f  th e  s a m p led  
s ig n a l, w h ich  is d e fin ed  as

OO

rxx ( k ) =  2 2  * » * ( «  +  * )  (1 2 -1 .9 )
#* = — 00

h as th e  F o u r ie r  tra n s fo rm  (W ie n e r - K h in tc h in e  th e o r e m )

S „ ( / ) =  j t  r*Ak )e~j2*kf (12.1.10)
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H en ce  th e  energy  d ensity  sp e c tru m  c an  b e  o b ta in e d  by th e  F o u rie r  tran sfo rm  of 
th e  au to co rre la tio n  o f  th e  seq u en ce  {Jt(n)}.

T he re la tio n s  ab o v e  lead  us to  d istinguish  b e tw een  tw o distinct m eth o d s fo r 
com pu ting  th e  energy  d ensity  sp ectrum  o f  a signal x„(t) fro m  its sam ples Jt(n). O n e  
is th e  direct method,  w hich involves com pu ting  th e  F o u rie r  tran sfo rm  o f  {*(«)], and  
th e n

T h e  second ap p ro ach  is ca lled  the  indirect method becau se  it req u ires  tw o steps. 
F irst, th e  a u to c o rre la tio n  rxx(k) is com p u ted  from  x(rt) a n d  th e n  the  F o u rie r  tra n s­
fo rm  of th e  au to co rre la tio n  is co m p u ted  as in (12.1.10) to  o b ta in  the  energy  density  
spectrum .

In p rac tice , how ever, only th e  fin ite-du ra tion  se quence  x (n ), 0 <  n < N - 1 ,  is 
availab le  fo r co m pu ting  th e  sp ec tru m  o f th e  signal. In  effect, lim iting  th e  d u ra tio n  
o f  th e  sequence  x(n)  to N  po in ts  is equ iv a len t to  m ultip ly ing  x(n)  by  a rec tan g u la r 
w indow . T h u s  we have

F ro m  o u r  d iscussion  o f  F IR  filter design based  on  the  use  o f  w indow s to  lim it the  
d u ra tio n  o f th e  im pulse resp o n se , we recall th a t m u ltip lica tion  o f tw o sequences is 
eq u iv a len t to  convo lu tion  o f th e ir  vo ltage spectra . C o nsequen tly , the  frequency- 
d o m ain  re la tio n  co rre sp o n d in g  to  (12.1.12) is

R ecall fro m  o u r d iscussion in Section  8.2.1 th a t con v o lu tio n  o f th e  w indow  
function  W ( f )  w ith  X ( f )  sm o o th s th e  sp ec tru m  X ( f ) ,  p ro v id ed  th a t th e  spectrum  
W ( f )  is re la tive ly  n a rro w  co m p ared  to  X ( / ) .  B u t th is cond itio n  im plies th a t 
th e  w indow  w in ) be sufficiently long (i.e., N  m ust b e  sufficiently  large) such th a t 
W ( f )  is n a rro w  co m p ared  to  X ( / ) .  E ven  if W ( f )  is n a rro w  co m p ared  to  X ( f ) ,  
th e  convo lu tion  o f  X ( f )  w ith  th e  s ide lobes o f  W ( f )  resu lts  in side lobe  energy  in 
X ( f ) ,  in freq u en cy  b an d s  w h ere  th e  tru e  signal sp e c tru m  X ( / )  = 0. T h is  side lobe  
energy  is called  leakage.  T h e  follow ing exam ple  illu stra tes  th e  leakage p rob lem . 

Example 12.1.1

A  signal with (voltage) spectrum

is convolved with the rectangular window of length N  =  61. Determine the spectrum

SxA f )  =  l * ( / ) l 2

OO 2 (12.1.11)
2 2  X(n)e~j2*fn

0 < n < N  — 1 
o therw ise

(12.1.12)

X i f )  =  * ( / )  * W{ f )
(12.1.13)

- 1/2

l / l< 0 .1
otherwise

o f  X ( f )  g iven  b y (12 .1 .13).
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Figure 1Z1 Spectrum obtained by convolving an M =  61 rectangular window 
with the ideal lowpass spectrum  in Exam ple 12.1.1.

Solution The spectral characteristic W ( f )  for the length N =  61 rectangular window 
is illustrated in Fig. 8.2(b). Note that the width of the main lobe of the window 
function is Aw =  4^/61 or A/  =  2/61, which is narrow compared to X( f ) .

The convolution of X ( f )  with W ( f )  is illustrated in Fig. 12.1. We note that 
energy has leaked into the frequency band 0.1 < | / |  < 0.5. where X ( f )  = 0. A part 
of this is due to the width of the main lobe in VV(/), which causes a broadening or 
smearing of X ( f )  outside the range \ f \  < 0.1. However, the sidelobe energy in X ( f )  
is due to the presence of the sidelobes of W (/), which are convolved with X( f ) .  
The smearing of X ( f )  for | / |  > 0.1 and the sidelobes in the range 0.1 < | / |  < 0.5 
constitute the leakage.

Ju s t as in th e  case o f F IR  filter design , w e can reduce  sid e lo b e  leakage by 
selecting w indow s th a t have low sidelobes. T h is im plies th a t th e  w indow s have a 
sm ooth  tim e-dom ain  cu to ff in stead  o f th e  a b ru p t cu to ff in th e  re c ta n g u la r  w indow . 
A lth o u g h  such w indow  functions red u ce  side lobe  leakage, they  re su lt in an  increase 
in sm ooth ing  o r b ro ad en in g  o f th e  sp ec tra l charac te ris tic  X ( f ) .  F o r  exam ple, the 
use o f a  B lackm an w indow  of leng th  N  =  61 in E xam p le  12.1.1 resu lts  in the 
spectra l charac te ris tic  X ( / )  show n in F ig. 12.2. T h e  side lobe  leak ag e  has certa in ly  
b een  redu ced , b u t th e  spectra l w idth  has b e e n  increased  by ab o u t 50% .

T h e  b ro ad en in g  of th e  sp e c tru m  b e in g  e s tim ated  d u e  to  w indow ing  is p a rticu ­
larly  a p ro b lem  w hen  we wish to  reso lve signals w ith closely spaced  frequency  com ­
p o n en ts . F o r exam ple , th e  signal w ith  spectral ch aracteristic  X ( / )  =  { f ) + X i { f  ), 
as show n in Fig. 12.3, can n o t b e  reso lved  as tw o se p a ra te  signals un less th e  w idth 
o f th e  w indow  function  is significantly  n a rro w e r  th an  th e  freq u en cy  se p ara tio n  A f .  
T hus we observe th a t using sm o o th  tim e-d o m ain  w indow s red u ces leakage a t the 
expense o f  a d ec rease  in frequency  reso lu tion .
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Figure 12.2 Spectrum obtained by convolving an M =  61 Blackman window with 
the ideal lowpass spectrum in Example 12.1.1.

I t  is c lea r fro m  th is discussion th a t th e  en ergy  density  sp e c tru m  of the  w in­
dow ed sequence  {*(«)} is an ap p rox im ation  o f th e  d e s ire d  sp ec tru m  o f th e  sequence 
{jc(n)J. T h e  sp ec tra l density  ob ta in ed  from  {Jc(«)} is

2

S i s i f )  =  W ) \ 2 = j 2 n f n (12.1.14)

T h e  sp ec tru m  given by (12.1.14) can be co m p u ted  num erically  a t a set of N  
f req u en cy  p o in ts  by m eans o f th e  D F T . T hus

Then

X(k )  =  2 2 , x ( n ) e - J2nkn/N
ji=Q

|X(fc)|2 =  Si-Af)\j-k/N =  Sri

(12.1.15)

(12.1.16)
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and hence

—j 2 n k n / N (12.1.17)

which is a d isto rted  version  o f th e  tru e  sp e c tru m  Sxx( k / N) .

12.1.2 Estimation of the Autocorrelation and Power 
Spectrum of Random Signals: The Periodogram

T he fin ite-energy signals con sid ered  in th e  p reced in g  sec tion  possess a F o u rie r 
transfo rm  and  a re  characterized  in th e  sp ec tra l d om ain  by th e ir  energy  density  
spectrum . O n  th e  o th e r  han d , the  im p o rta n t class o f signals ch arac te rized  as s ta ­
tionary  ran d o m  processes do  n o t have  finite en erg y  and  h ence  do  no t possess a 
F o u rie r transform . Such signals have  finite average  pow er and  hence  a re  ch arac­
terized  by a  p o w e r  density spectrum.  If  x ( t )  is a  s ta tio n ary  ran d o m  process, its 
au to co rre la tio n  function  is

yxx(r) =  E[x*( t )x( t  +  t )] (12.1.18)

w here £[■] d en o tes  the  sta tistical average . T h en , via the  W ien e r-K h in tc h in e  th e ­
o rem , the  pow er density  sp ectrum  o f th e  sta tio n a ry  ran d o m  p rocess is th e  F o u rie r  
transfo rm  o f th e  a u to co rre la tio n  function , th a t is,

/ OC
yxA T ) e ~ j2* FTdt  (12.1.19)

-oc

In  p rac tice , we deal w ith  a  single rea liza tio n  o f th e  ran d o m  process from  
w hich we estim ate  th e  po w er sp ec tru m  o f  th e  p rocess. W e d o  n o t know  th e  tru e  
au to co rre la tio n  function  yxx( t )  an d  as a conseq u en ce , we can n o t com pu te  th e  
F o u rie r  transfo rm  in (12.1.19) to  o b ta in  rjx(F). O n  th e  o th e r  hand , from  a single 
rea liza tion  o f th e  ran d o m  process we can  c o m p u te  th e  tim e-av erag e  au to co rre la ­
tio n  function

R x A r )  =  r ^ r  f  ° x*{ t )x( t  +  x)dt  (12.1.20)
J-T0

w here 27o is th e  o bse rvation  in terval. I f  th e  s ta tio n a ry  ra n d o m  process is ergodic 
in th e  first and  second m o m en ts (m ean  and  au to c o rre la tio n  fu n c tio n ), th en

Xut(r) =  lim  Rxxi r )
To -*oo

7b (12.1.21) 
jc*(r)jc (r +  r )dt

To

T his re la tio n  justifies th e  use  o f  th e  tim e-av erag e  au to c o rre la tio n  Rxx( r)  as 
an  estim ate  o f th e  sta tistical a u to c o rre la tio n  fu n c tio n  yxx(r ) .  F u rth e rm o re , the 
F o u rie r  tran sfo rm  o f Rxx(r )  p ro v id es an  e s tim a te  PXX(F)  o f  th e  po w er density

=  lim —  I
To-+oc 27b /_
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sp ectrum , th a t is,
•7b

Pxx(F) =  [  ° Rxx{T)e- j:brFrd r  
J-Tq

i  f T° r r *  .
=  t t  /  /  x  ^ x ^  + T^d t-^o  J-Tq U - T q

1 I f T°
=  r -  /  x ( t ) e - * ” F'dt  

-iio \J-To

7b
rTo r  r7b 1

e - p x F x  dT (12.1.22)

T h e  ac tual p o w er density  sp ectrum  is the  expected  value  o f  PXX(F)  in the  lim it as 
7b -► oo,

r„(F ) =  lim  £ [ /> „ (£ ) ]
Til- • oo

[a i / :;=  lim £  j —J— I /  x( t ) e  j27rF’dt
To-̂ oc

(12.1.23)

F ro m  (12.1.20) and  (12.1.22) we again n o te  th e  tw o  possib le ap p ro ach es  to  
com p u tin g  PXX(F),  th e  d irec t m e th o d  as given by (12.1.22) o r  th e  ind irec t m eth o d , 
in which we ob ta in  ^ ( r )  first and  th en  co m p u te  th e  F o u rie r  transfo rm .

W e shall co n sid er th e  estim atio n  o f th e  pow er d ensity  sp ectrum  from  sam ples 
o f a single rea liza tion  o f  th e  ran d o m  process. In  p a rticu la r, we assum e th a t xa( t ) 
is sam pled  a t a ra te  Fs >  2 B,  w here  B  is the  h ighest frequency  co n ta in ed  in th e  
p o w er density  sp ectrum  of th e  ran d o m  process. T hu s we ob ta in  a  fin ite-du ra tion  
se q u en ce  x ( n ), 0 <  n < N  — 1, by sam pling  x a(t).  F ro m  these  sam ples w e can 
co m p u te  th e  tim e-average  au to co rre la tio n  sequence

j  A '- m - l

r'  (m)  =  ---------- Y  x * ( n ) x { n + m ) m =  0 ,1 , — 1
N  — m  “n=Q

(12.1.24)
x N- 1

=  T,-----r 7  J l x ‘ ( n ) x ( n + m ) m =  - 1 ,  - 2 , . . . ,  1 -  NAA A/ — lm I

an d  th en  com pu te  th e  F o u rie r  transfo rm

A '- l

P^ ( f ) =  E  r'xx{ m ) e - M *  (12.1.25)
m=—N+l

T h e  no rm aliza tio n  fac to r  N  — |m | in (12.1.24) resu lts in an  e s tim ate  w ith m ean
value

 ̂ N-m- l
E [r 'xA m )] = r;— r~, 2 2  E[x*(n)x{n + m)]

N  ~  M  t o  (12.1.26)

=  Yxx(m)

w h ere  yxx(m) is th e  tru e  (statistical) au to co rre la tio n  se q u en ce  o f x(n) .  H en ce  
rxx(m)  is an  u n b iased  e s tim ate  o f  th e  a u to co rre la tio n  function  yxx(m).  T h e  variance



o f th e  estim ate  rxx(m)  is ap p rox im ate ly  

N  ^
v a r[r i j ( m)] ^  _  |m |]2 22 [\Yx*(n)\2 +  y*An - m ) y xx(n +  m)]  (12.1.27)

w hich is a resu lt given by Jen k in s and  W atts  (1968). C learly ,

lim v a r[r ' (m)] =  0 (12.1.28)
N — oc

p rov ided  th a t
3C

2 2  \Yxx(n)\2 < oo
n—-oc

Since E[r'xx{m)\  =  yxx(m)  and  th e  variance  o f th e  estim ate  conv erg es to  ze ro  as 
N  oc, th e  estim ate  r'xx(m)  is said to  be consistent.

F o r large values o f th e  lag p a ra m e te r  m,  th e  e s tim ate  r'xx(m)  g iven by (12.1.24) 
has a large variance, especially  as m ap p ro ach es N.  T h is is d u e  to  the  fact th a t 
few er d a ta  po in ts e n te r  in to  the  estim ate  fo r large lags. A s an a lte rn a tiv e  to
(12.1.24) we can use th e  es tim ate  

I w -» -i
rxx{m) =  — Y  jt*(n)jt(ii +  m) 0 <  m <  JV — 1 

N  t=o
(12.1.29)

|  N-1
^ r (m )  =  — y  x*(n)x (n + m)  m =  —1. —2 ........ 1 — N

N n=\m\

w hich has a bias o f \m\yxx( m ) / N , since its m ean  value is
|  A ' - m - l

E[rIX(m)] -  — 2 2  E[x*(n)x(n + m)]

n=0 (12.1.30)
W - M  , , |m | \

=  _ _ yjrjr(m) =  ^  _  _  j  yxAm)

H ow ever, th is estim ate  has a  sm aller variance, given ap p rox im ate ly  as 

1 1X1
var[rJJt(m)] »  — 2 2  [Xr.r(n)|2 +  Yx x (n  -  m ) y xx(n +  m)] (12.1.31)

n—~oo

W e observe th a t rxx(m)  is asymptot ical ly unbiased , th a t is,

lim  E[rxx{m)] =  yxx(m)  (12.1.32)H-+x
and  its variance converges to  ze ro  as N  -*■ oo. T h e re fo re , the  e s tim a te  rxx(m)  is 
also a consistent  est imate  o f yxx(m).

W e shall use th e  estim ate  rxx( m ) given by (12.1.29) in o u r tre a tm e n t o f pow er 
sp ectrum  es tim ation . T h e  co rre sp o n d in g  e s tim ate  o f  th e  pow er den sity  sp ec tru m  is

N - 1
/ » « ( / ) =  2 2  r* A m ) e - M m (12.1.33)

m = - ( N - 1)

904 Power Spectrum Estimation Chap. 12
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I f  w e su b s titu te  fo r rxx(m)  from  (I2 .I .2 9 ) in to  (12.1.33), th e  e s tim ate  Pxx( f )  can 
also  b e  exp ressed  as

2

Pxx ( / )  -  N - j l n f n (12.1.34)

w here  X  ( / )  is th e  F o u rie r  transfo rm  o f th e  sam ple se q uence  x{n) .  T h is w ell know n 
fo rm  o f  th e  p o w er density  sp ectrum  es tim ate  is called  th e  periodogram.  I t  was orig ­
inally  in tro d u c ed  by S chuste r (1898) to  d e tec t an d  m easu re  “h id d en  p eriod ic itie s” 
in da ta .

F rom  (12.1.33), th e  average  value o f th e  p e rio d o g ram  es tim ate  PxA f )  is

2 2  rx A m ) e  ,2jrfn 
m = - ( N - 1)

=  J 2  E[rxA m ) ] e - * " ' ”
m=—(/V—1)

E [ p xx( f ) ]  =  22  f 1 “  “ J r )  Y x i m ) e
m = - ( N - 1) ^  '

—J2nfm (12.1.35)

T h e  in te rp re ta tio n  th a t we give to  (12.1.35) is th a t th e  m ean  o f  th e  estim ated  
spectrum  is th e  F o u rie r  tran sfo rm  o f the  w indow ed au to c o rre la tio n  function

Yxx(m) Y x x ( m ) (12.1.36)

w h ere  the  w indow  function  is th e  (trian g u la r) B a rtle tt  w indow . H en ce  the  m ean  
o f th e  e s tim a ted  sp ectrum  is

E[PxA f ) }  =  J 2  Y‘A m ) e - i2nfm
0

r xx( a ) W B( f  - a ) d a

m=—oc

1/2
(12.1.37)

/ if* 

•1/2

w here  W B( f ) is th e  spectra l characteristic  o f th e  B a rtle tt w indow . T h e  re la tion  
(12.1.37) illu stra tes  th a t th e  m ean  of th e  es tim ated  sp ectrum  is th e  convolu tion  o f 
th e  tru e  p o w er density  sp ec tru m  T „ ( / )  w ith  th e  F o u rie r  tran sfo rm  WB( f )  o f  the  
B a rtle tt w indow . C onsequen tly , the  m ean  o f th e  e s tim ated  sp e c tru m  is a  sm oo th ed  
v ersion  o f th e  tru e  sp e c tru m  and  suffers from  th e  sam e sp e c tra l leakage prob lem s 
w hich a re  d u e  to  th e  finite n u m b er o f d a ta  poin ts.

W e o b se rv e  th a t  th e  estim ated  spectrum  is asym pto tically  u n b iased , th a t is,

lim  E
N-t-cc

N - 1

2 2  r x x ( m ) e ' j 2 n f m =  £  Yxx{m)e-J2* fm =  TxA f )

H ow ev er, in  gen era l, th e  variance  o f  th e  e s tim ate  Pxx( f )  d o es  n o t decay  to  zero  
as N  -► oo. F o r  exam ple , w hen  th e  d a ta  sequence  is a  G au ssian  ran d o m  process,
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the variance is easily shown to be (see Problem 12.4)

(12.1.38)

w hich, in th e  lim it as N  —>■ oo, becom es

lim  v a r [ P „ ( / ) ]  =  ^ l x ( f )
N - +  oo

(12.1.39)

H en ce  we conclude th a t th e  per iodogram is no t  a consistent  est imate o f  the true 
p o w e r  density spect rum  (i.e., it does n o t converge  to  th e  tru e  p o w er density  spec­
trum ).

In  sum m ary, the  es tim ated  a u to co rre la tio n  rxx(m)  is a con sisten t estim ate  o f 
th e  tru e  au to co rre la tio n  function  yxx(m).  H ow ever, its F o u rie r  tran sfo rm  Pxx( f ) ,  
th e  p erio d o g ram , is no t a consisten t e s tim ate  o f th e  tru e  po w er density  spectrum . 
W e observed  th a t Pxx( f )  is an asym pto tically  u n b iased  estim ate  o f Vxx{ f ) ,  bu t fo r 
a fin ite-du ra tion  sequence, th e  m ean  value o f Pxx{ f )  con ta ins a  bias, w hich from
(12.1.37) is ev iden t as a d isto rtion  o f the  tru e  po w er density  spectrum . T hu s the 
e s tim a ted  sp ectrum  suffers from  the  sm o o th in g  effec ts and  th e  leakage em b o d ied  
in th e  B a rtle tt w indow . T he sm oo th ing  and  leakage u ltim ately  lim it o u r ab ility  to  
reso lve closely spaced spectra .

T h e  p rob lem s o f leakage and  freq u en cy  reso lu tio n  th a t we have ju st d e ­
scribed  as well as th e  p rob lem  th a t th e  p e rio d o g ram  is n o t a co n sisten t estim ate  
o f th e  po w er spectrum , p rov ide th e  m otivation  fo r th e  po w er spectrum  es tim a­
tion  m eth o d s d escribed  in S ections 12.2, 12.3, and  12.4. T h e  m e th o d s described  
in S ection  12.2 are  classical n o n p a ra m e tric  m eth o d s, w hich m ak e  n o  assum ptions 
a b o u t th e  d a ta  sequence. T h e  em phasis o f  th e  classical m eth o d s is on ob ta in ing  a 
consisten t estim ate  o f th e  p o w er sp ectrum  th ro u g h  som e averag ing  o r sm oo th ing  
o p e ra tio n s  p erfo rm ed  directly  on  th e  p e rio d o g ram  o r  o n  th e  au to co rre la tio n . A s 
we will see, th e  effect o f  these  o p e ra tio n s  is to  red u ce  th e  frequency  reso lu tion  
fu rth er, w hile the  variance  o f th e  es tim ate  is d ecreased .

T h e  spectrum  estim ation  m e th o d s describ ed  in Section  12.3 are  based  on  
som e m odel o f how  the  d a ta  w ere g en e ra ted . In  gen era l, th e  m od el-b ased  m ethods 
th a t have been  deve lo p ed  over th e  p ast tw o decad es p rov ide  significantly  h igher 
reso lu tio n  th an  d o  th e  classical m ethods.

A d d itio n a l m eth o d s a re  d escribed  in S ections 12.4 an d  12.5. O n e  of these 
m eth o d s, d ue  to  C apon  (1969), is b ased  on  m inim izing th e  variance  in th e  spec­
tra l estim ate . T h e  m eth o d s d escribed  in Section  12.5 a re  b ased  on an  e igen­
v a lue/e igenvec to r d ecom position  o f th e  d a ta  c o rre la tio n  m atrix .

12.1.3 The Use of the DFT in Power Spectrum Estimation

A s given by (12.1.14) and  (12.1.34), th e  e s tim a ted  energy  d ensity  sp ec tru m  £ , , ( / )  
a n d  th e  perio d o g ram  Pxx( f ), respec tively , can  b e  co m p u ted  by  use o f th e  D FT , 
w hich in tu rn  is efficiently co m p u ted  by a  F F T  a lgo rithm . I f  we have  N  d a ta  poin ts,
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w e com p u te  as a m in im um  th e  A ppoint D FT . F o r  exam ple, th e  co m p u ta tio n  yields 
sam ples o f th e  p e rio d o g ram

at th e  freq u en c ies /* =  k / N .
In p rac tice , how ever, such a  sparse  sam pling  of the  sp ectrum  does no t p rov ide 

a very  good  re p re se n ta tio n  o r a  good  p ic tu re  o f th e  co n tin u o u s sp ectrum  estim ate 
* > „ ( /) . T h is is easily rem ed ied  by  evaluating  Pxx( f )  a t add itional frequencies. 
E q u iva len tly , we can  effectively  increase  th e  leng th  o f th e  sequence  by  m eans o f 
ze ro  p ad d in g  an d  th en  ev a lu a te  Pxx{ f ) a t a m o re  dense se t o f frequencies. Thus 
if w e increase th e  d a ta  sequence  leng th  to  L  po in ts  by m eans o f ze ro  pad d in g  and  
ev a lu a te  th e  L -po in t D F T , we have

W e em phasize  th a t ze ro  pad d in g  and  evaluating  th e  D F T  at L  >  N  po in ts 
d o es n o t im prove the  frequency  re so lu tio n  in the  spectra l estim ate . It sim ply 
p rov ides us w ith a  m eth o d  for in te rp o la tin g  the values o f th e  m easu red  spectrum  
a t m o re  frequencies. T h e  frequency  reso lu tion  in the  sp ec tra l estim ate  PXI{.f) is 
d e te rm in ed  by th e  length N  o f  th e  d a ta  record .

Example 12.1.2

A sequence of N =  16 samples is obtained by sampling an analog signal consisting of 
two frequency components. The resulting discrete-time sequence is

x(n) = sin2jr(0.135)w +  cos2;r(0.135 +  Af ) n  n = 0 ,1 , . . . ,  15

where A/  is the frequency separation. Evaluate the power spectrum P ( f )  =
(1/7V )|X (/)|2 at the frequencies f k =  k/L,  k =  0, 1 ,__ L — 1, for L =  8, 16, 32,
and 128 for values of A/  =  0.06 and A/  =  0.01.

Solution By zero padding, we increase the data sequence to obtain the power spec­
trum estimate PXI(k/L).  The results for A/  =  0.06 are plotted in Fig. 12.4. Note that 
zero padding does not change the resolution, but it does have the effect of interpo­
lating the spectrum Pxl( f ) .  In this case the frequency separation A/  is sufficiently 
large so that the two frequency components are resolvable.

The spectral estimates for A/  =  0.01 are shown in Fig. 12.5. In this case the 
two spectral components are not resolvable. Again, the effect of zero padding is to 
provide more interpolation, thus giving us a better picture of the estimated spectrum. 
It does not improve the frequency resolution.

W hen  only a few  p o in ts  o f th e  p erio d o g ram  are  n e ed ed , th e  G o ertze l algo­
rithm  d escrib ed  in C h a p te r  6 m ay p ro v id e  a  m o re  efficient co m p u ta tio n . Since th e  
G o ertze l a lgo rith m  has b een  in te rp re te d  as a  lin ear filtering  ap p ro ach  to  co m p u t­
ing th e  D F T , it is c lear th a t th e  p erio d o g ram  es tim a te  can  b e  o b ta in ed  by passing

* =  0 , 1 , . . . ,  J V - 1 (12.1.40)

(12.1.41)
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Figure 12.4 Spectra of two sinusoids with frequency separation A f — 0.06.

the signal th ro u g h  a b an k  o f p ara lle l tu n e d  filters an d  squ a rin g  th e ir  o u tp u ts  (see 
P ro b lem  12.5).

12.2 NONPARAMETRIC METHODS FOR POWER SPECTRUM 
ESTIMATION

T h e  p o w er spectrum  estim atio n  m eth o d s d escribed  in th is sec tio n  a re  the  classical 
m e th o d s  d eveloped  by B a rtle tt  (1948), B lackm an  and  T ukey  (1958), and  W elch 
(1967). T hese  m e th o d s m ake no  assum ption  ab o u t how  th e  d a ta  w ere genera ted  
and  h ence  a re  called  nonparametric.
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Figure 1X5 Spectra of two sinusoids with frequency separation A/  =  0.01.

Since th e  estim ates a re  based  en tire ly  on a fin ite reco rd  o f da ta , th e  frequency  
reso lu tio n  o f th ese  m eth o d s is, at best, equal to  th e  spec tra l w id th  o f th e  rec tan g u la r 
w indow  o f leng th  N,  w hich is app rox im ate ly  1 ( N  a t the  - 3 -d B  points. W e shall be 
m o re  p recise  in specify ing  th e  frequency  reso lu tio n  o f th e  specific m eth o d s. A ll the  
e s tim atio n  tech n iq u es d escribed  in th is section d ecrease  th e  frequency  reso lu tion  
in o rd e r  to  red u ce  the  variance in th e  spectra l estim ate .

F irst, we d escribe  th e  estim ates and derive  th e  m ean  an d  variance  o f each. A  
com parison  o f  the  th re e  m eth o d s is given in Section  12.2.4. A lth o u g h  th e  spectral 
estim ates a re  expressed  as a function  o f th e  con tin u o u s frequency  variab le  / ,  in 
p rac tice , the  estim ates a re  com p u ted  a t d iscrete  freq u en c ies via th e  F F T  algorithm . 
T h e  F F T -based  co m p u ta tio n a l req u irem en ts a re  co nsidered  in Section  12.2.5.



12.2.1 The Bartlett Method: Averaging Periodograms

B a r tle t t’s m ethod  fo r reducing  the  variance in th e  p erio d o g ram  involves th ree  
steps. F irst, the  N -poin t sequence  is subd iv ided  in to  K  n o n o v erlap p in g  segm ents, 
w here  each  segm en t has leng th  M,  T h is  resu lts in th e  K  d a ta  segm en ts

x,(n)  =  x(n + i M )  i =  0, I,  . . . .  K  — 1 (12.2.1)

n =  0 ,1 .........M - l

F o r each  segm ent, we co m pu te  the p erio d o g ram

M-l
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p i 'v  =  _L
"  M

E * . '<  n ) e - J2nfn\ i = 0 , l , . . . , J f - l  (12.2.2)

F inally , we average th e  perio d o g ram s fo r the  K  segm en ts to  o b ta in  the  B a rtle tt 
p ow er spectrum  estim ate  [B artle tt (1948)]

1 * -1
pxBA f ^  =  T  Z y « ( / )  (12-2-3>

K  ,=v>

T h e  statistical p ro p erties  of this e s tim ate  a re  easily  o b ta in ed . F irst, th e  m ean 
value is

(1 2 2 4 )

=  £ [ * £ ( / ) ]

F rom  (12.1.35) and  (12.1.37) we have the ex p ec ted  value  fo r the single p eriodogram  
as

Af-1

= E f1 - y ^ e~s2nfm

M  J _ ]/2 \  s i n ; r ( /  -  a)  J

(12.2.5)

-i r-
w here

is the  frequency  characteristics o f th e  B a rtle tt w indow

w B(n) =

1 /  s in j r /M  V  .  _ .
B ( f )  =  t ;  — :— (12. 2. 6)  

M  V s ni f f /  /

m,
] ------ — , |m| < M — 1M  ’ 1 1  ~  "  (12.2.7)
0, o therw ise

F ro m  (12.2.5) we observe th a t the  tru e  sp ec tru m  is now  convo lved  w ith  th e  
freq u en cy  ch aracteristic  W a i f )  o f th e  B a rtle tt  w indow . T h e  e ffec t o f  reducing  the  
leng th  o f th e  d a ta  from  N  p o in ts  to  M  =  N / K  resu lts  in a  w indow  w hose spectra l
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w idth  has b een  increased  by a  fac to r  o f K.  C onseq u en tly , th e  frequency  re so lu tio n  
has b een  red u ced  by a fac to r  K.

In  re tu rn  fo r th is red u c tio n  in reso lu tion , w e hav e  red u ced  th e  variance. T h e  
v ariance  o f th e  B a rtle tt e s tim ate  is

v ar [ / £ ( / ) ]  =
K2 I =U

=  ^ v a r  [ /> « ( / ) ]

If  we m ak e  use o f (12.1.38) in (12.2.8), we ob ta in

var [ /> * ( / ) ]  =  j T l x { f ) 1 + /  sin I n f M ' V  

\ M s i n 2 ; r /  J

(12.2.8)

(12.2.9)

T h e refo re , th e  variance o f th e  B a rtle tt  p o w er sp ec tru m  es tim ate  has b een  reduced  
by th e  fac to r K.

12.2.2 The Welch Method: Averaging Modified 
Periodograms

W elch  (1967) m ade tw o basic m odifications to  the  B a rtle tt m eth o d . F irs t, he a l­
low ed the  d a ta  segm ents to  overlap . T h u s th e  d a ta  segm en ts can  be re p re se n te d  as

Xj ( n)  =  x(n +  i D)  n =  0 ,1 , . . . ,  M  — 1 (12.2.10)

i =  0 .1 .........L - l

w here  i D  is the  s ta rting  po in t for th e  /th  sequence . O b serv e  th a t if D =  M,  
th e  segm ents d o  n o t overlap  and  th e  n u m b er L o f d a ta  segm en ts is iden tica l to  
th e  n u m b er K  in th e  B a rtle tt m eth o d . H ow ever, if D  =  M /2 , th e re  is 50%  
o v erlap  b e tw een  successive d a ta  segm en ts an d  L =  2 K  segm en ts a re  ob ta in ed . 
A ltern a tiv e ly , we can form  K  d a ta  segm ents each  o f len g th  2M.

T h e  se cond  m odifica tion  m ad e  by  W elch to  th e  B a rtle tt  m eth o d  is to  w indow  
th e  d a ta  segm en ts p rio r  to  com pu ting  the  perio d o g ram . T h e  resu lt is a  “m od ified” 
perio d o g ram

* * £ ( /)  =
1

~MU n=0
(12.2.11)

w h ere  U  is a n o rm aliza tion  fac to r fo r  the  p o w er in  th e  w indow  function  and  is 
se lec ted  as

M-l1
u /( n ) (12.2.12)

T h e  W elch p o w er sp ec tru m  estim ate  is th e  average  o f these  m odified  p eriodogram s, 
th a t is,

1 L~x
^ ( / )  =  (12.2.13)
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^  . =o 

=  * « ( / ) ]

B u t th e  expected  value o f th e  m odified  p e rio d o g ram  is

i  M - l  M - \

£ [ ^ ( / ) ]  =  T777 E  E  « '( " ) w ( * ) £ k ( " K ( « ) ] < “A T/l* ' " )

The mean value of the Welch estimate is

«=0 m=0 

M - l  Af-1

Since
r i a

Vjcx(n) = j rxx(a)el27!anda
J - 1/2

substitu tion  for y ^ n )  from  (12.2.16) in to  (12.2.15) yields 

• 1/2

- 1/2
*«?</>] = m j l r “ w

M - 1 M - l

E E
n=0 m =0

■ 1 /2f
=  /  r „ ( a ) W ( / - a ) r f a

•'-1/2

(12.2.14)

(12.2.15)

(12.2.16)

d a

(12.2.17)

w here , by defin ition ,

3# 17
E  u>(n)e - j Z n f n

n=0

T he no rm aliza tion  fac to r U  en su res th a t

,1/2
/  W ( /W /  =  1

J  —1/2

T he variance o f th e  W elch es tim ate  is

v a r l O / ) ]  =  T r  E E £ ^ ~  ( f ) P g ( f ) ]  ~  { E [ P ? A f ) ] ) 2

(12.2.18)

(12.2.19)

(12.2.20)

In th e  case o f no  o v erlap  be tw een  successive d a ta  segm ents (L  =  K ) ,  W elch  has 
show n th a t

v a r |P * ( / ) J  =  i v a r [ P “ ' ( / ) l
, (12.2.21)

* zr“(/)
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In  the  case o f 50%  o verlap  betw een  successive d a ta  segm ents (L  =  2 AT), 
th e  variance  o f  th e  W elch pow er spectrum  es tim ate  w ith th e  B a rtle tt ( triangu lar) 
w indow , also  d erived  in th e  p a p e r by W elch, is

v a r [ / > £ ( / ) ] * ^ r * T( / )  (12.2.22)

A lth o u g h  we consid ered  only th e  tr ian g u la r w indow  in th e  co m p u ta tio n  o f 
th e  variance, o th e r  w indow  functions m ay be used. In  genera l, they  will yield 
a  d iffe ren t variance. In  add ition , o n e  m ay vary th e  d a ta  segm en t overlapp ing  
by  e ith e r  m o re  o r  less th an  th e  50%  considered  in th is sec tion  in an  a ttem p t to  
im prove th e  re lev an t ch aracteristics o f  th e  estim ate.

12.2.3 The Blackman and Tukey Method: Smoothing the 
Periodogram

B lackm an an d  T ukey  (1958) p ro p o sed  and analyzed  th e  m eth o d  in w hich th e  
sam ple a u to co rre la tio n  sequence  is w indow ed first and  th e n  F o u rie r  tran sfo rm ed  
to  yield th e  e s tim ate  o f th e  pow er spectrum . T h e  ra tio n a le  fo r w indow ing the  
estim ated  a u to co rre la tio n  sequence  rxx(m)  is th a t, fo r large lags, th e  es tim ates 
are  less re liab le  because a sm aller n u m b er (N — m) o f d a ta  po in ts  e n te r  in to  the  
estim ate. F o r values o f m  app roach ing  N,  th e  variance o f these  estim ates is very 
high, and  hence  these  e s tim ates shou ld  be given a  sm a ller w eight in th e  fo rm atio n  
o f th e  estim ated  pow er spectrum . T hus the B lac k m a n -T u k ey  es tim ate  is

A f - 1

E  r , A m ) w { m ) e - J2*fm (12.2.23)
m=—(M — 1)

w here  the  w indow  function  w(n)  has length 2M  — 1 an d  is ze ro  fo r \m\ > M.  
W ith  th is defin ition  fo r  w(n) ,  th e  lim its on  the  sum  in (12.2.23) can  be ex ten d ed  to  
( —oo, oo). H en ce  the  frequency-dom ain  equ ivalen t exp ression  fo r (12.2.23) is th e  
convo lu tion  in tegral

y l / 2

* * / / ( / ) = /  P * A < x ) W { f - a ) d a  (12.2.24)J-1/2
w h ere  Pxx( f ) is th e  perio d o g ram . It is c lear from  (12.2.24) th a t th e  effect o f w in­
dow ing  th e  a u to c o rre la tio n  is to  sm o o th  th e  p erio d o g ram  es tim ate , th u s  decreasing  
th e  variance in th e  e s tim a te  a t th e  expense o f reducing  th e  reso lu tion .

T h e  w indow  se q u en ce  w(n)  shou ld  be sym m etric  (ev en ) ab o u t m =  0 to  
en su re  th a t th e  estim ate  o f  th e  po w er spectrum  is rea l. F u rth e rm o re , it is desirab le  
to  se lect th e  w indow  spectrum  to  be nonnegative, th a t is,

W ( f )  > 0  | / |  <  1 /2 (12.2.25)

T h is  cond itio n  en su res th a t PXJ  ( f )  >  0 fo r | / |  <  1/2, w hich is a des irab le  p ro p e rty  
fo r  any  p o w er spectrum  es tim ate . W e should  ind ica te , how ever, th a t som e o f th e  
w indow  functions we have in tro d u ced  d o  n o t satisfy th is cond itio n . F o r  exam ple,



in sp ite  of th e ir low sidelobe levels, th e  H am m in g  an d  H an n  (o r  H an n in g ) w indow s 
do  n o t satisfy th e  p ro p e rty  in (12.2.25) and , consequen tly , m ay  resu lt in negative 
sp ec tru m  estim ates in som e p a rts  o f th e  frequency  range.

T h e  expected  value o f  th e  B la c k m a n -T u k e y  pow er sp e c tru m  es tim ate  is 

,1/2
£ [ * * / / ( / ) ] = /  E[PxA a ) ] W ( f - a ) d a  (12.2.26)

J - 1/2

w here  from  (12.1.37) we have

,1/2
£ [ /> „ ( « ) ] =  /  r xA 0 ) W B( a - 0 ) d e  (12.2.27)

J -1/2

and  WB{ f )  is the  F o u rie r tran sfo rm  o f  th e  B a rtle tt  w indow . S ubstitu tion  of
(12.2.27) into (12.2.26) yields th e  d o u b le  co nvo lu tion  in tegral

r 1/2 ,1/2
E[P?rT ( / ) ] = /  /  r „ ( e ) W JJ( a - 0 ) W ( / - a ) r f a r f e  (12.2.28)

•/—1/2 J —\[2

E qu iva len tly , by w ork ing  in th e  tim e d om ain , th e  e x p ec ted  value o f th e  
B lac k m a n -T u k ey  pow er spectrum  estim ate  is

M- 1
= 22 E [r *Am) ]w (m) e- J27lfm
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m (iW — ll 

Af-1
(12.2.29)

=  22 y , A m ) w B( m ) w ( m ) e - j 2nfm
m=—(M-l)

w here the  B a rtle tt w indow  is

wB(m) —

0, o therw ise

C learly , we shou ld  select the  w indow  leng th  fo r  w(n)  such th a t  M  << N,  th a t 
is, w(n)  shou ld  be n arro w e r th an  w B(m)  to  p ro v id e  ad d itio n a l sm oo th ing  o f  the 
p eriodogram . U n d e r  th is condition , (12.2.28) becom es

,  1/2
E l P f / i f ) } *  VxA 0 ) W { f - d ) d d  (12.2.31)

J - 1/2

since ,1/2 ,1/2
/  WB(a - d ) W { f  - a ) d a  =  /  WB( a ) W ( f  -  9 -  a)doc

J - 1/2 J - 1/2 (12.2.32)

^  w ( f - e )

T h e  variance o f  the B lac k m a n -T u k ey  po w er sp ec tru m  es tim ate  is

v a r [ /> / / ( / ) ]  =  £ { [ P / / ( / ) 2]} -  { £ [ /> / / ( / ) ] } 2 (12.2.33)
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w h ere  th e  m e a n  can  b e  ap p ro x im ated  as in (12.2.31). T h e  second  m om en t in
(11.2.33) is

r l / 2  f l / 2

E{[PxBxT( f ) ] 2) =  /  /  E[Pxx(a)Pxx( . e ) ]W( f  - 6 ) d a d e  (12.2.34)
J - 1/2 J-\f2

O n  th e  assum ption  th a t th e  ran d o m  process is G aussian  (see P ro b lem  12.5), we 
find th a t

E[PxA a ) P xA&)] =  r „ (a )r „ (0) 1 +
sin7r(0 +  a ) N

_Nsin7r(8 +  a)_

S ubstitu tion  o f (12.2.35) in to  (12.2.34) yields 

E { [ P ? / ( f ) ] 2} =

sin7r(0 — a ) N  

N  s i n n ( 6  — a)  _

(12.2.35)

-1/2 -.2 
r xA 0 ) W ( f - e ) d e

- 1/2

,1 [2 ,1/2

+  /  /  r xA<*)rxA e ) W ( f - a ) W ( f - d )
J - 1/2 J -l/2

s in jr(#  -l-oON

N  s in jr(0  +  a)_
sinn(&  — a ) N  
N  sin7r(8 — or)

d a  d$  (12.2.36)

T h e  first te rm  in (12.2.36) is sim ply th e  square  o f  the  m ean  o f P f J ( / ) ,  w hich 
is to  be su b trac ted  o u t accord ing  to  (12.2.33). T h is leaves the se cond  te rm  in
(12.2.36), w hich  co n s titu tes  th e  variance. F o r  th e  case in w hich N  »  Af, th e  
functions s in n ( 9 + a ) N / N  s i n ^ ( 0 + a )  and  s ‘m n ( 8 —a ) N / N  sin jr (0 — a )  a re  relatively  
narro w  com p ared  to  W ( f ) in th e  vicinity o f 0 =  — a  and  9 =  a ,  respectively . 
T h e re fo re ,

- a ) N  

~ a j
de

(12.2.37)
r  -  n  { + r

y _ i/2 [L N s m n ( 8  +  a;)J [ _ ^ sin7r(0 —

% r xA - a ) W ( f + c c )  +  r xA<x)W(f  -  a)
N

W ith  th is ap p ro x im atio n , th e  variance  o f  PXJ i f )  becom es 

1 Cxn
a r [ / » " ( / ) ]  »  -  /  r „ ( a ) W ( / - a ) [ r „ ( - a ) W ( /  +  a )  +  r „ ( o ) W ( / - o ( ) ] r f a"  J-1/2

(12.2.38)

- 1/2 

i  r lfl
J i L  rẐ w^ f ~ a)da

- 1/2

w h ere  in th e  last s te p  w e m ad e  th e  app rox im ation  

•  1/2

r z, ( a ) r „ ( - c r ) V ( /  -  a ) W ( f  +  a ) d a  »  0
■1/2

(12.2.39)
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W e shall m ak e  o ne  add itio n a l ap p ro x im atio n  in (12.2.38). W hen  W ( f )  is 
narrow  com p ared  to  the  tru e  po w er spectrum  r „ ( / ) ,  (12.2.38) is fu rth e r  ap p ro x ­
im ated  as

v a r [ /> / / ( / ) ]  *  r2xx(f) f '*  W2(0)d0j

H A f )

1/2

M-l
-  £  w 2( m )

(Af—1)

(12.2.40)

12.2.4 Performance Characteristics of Nonparametric 
Power Spectrum Estimators

In  th is section we com pare  th e  quality  o f the  B a rtle tt, W elch, an d  B lackm an  and  
T ukey  pow er sp ectrum  estim ates. A s a m easu re  o f quality , we use th e  ra tio  o f its 
variance to  th e  sq u a re  o f th e  m ean  of th e  p o w er spectrum  es tim ate  th a t is,

i E [ P ?A f ) } } 2
Q a = (12.2.41)

t>ar[P£( f ) ]
w here  A =  B , W , o r  B T  fo r th e  th re e  pow er sp e c tru m  estim ates. T h e  recip rocal o f 
th is quan tity , called the  variabil i ty , can also  be used  as a m easu re  o f p erfo rm ance. 

F o r re fe rence , the p erio d o g ram  has a m ean  and  variance

w here

E[P*Af)] = f  ’ r„(0)WW -  8)de 
J- l /2

v a r [ / > „ ( / ) ] = r , V / ) [ l  +  ( | ^ ) 2'
\ N s i n 2 n f /

1 /  sin n f  N  \ 2 
WB( f )  =  ~  ~ L r  

N  V sin n f  J

(12.2.42)

(12.2.43)

(12.2.44)

i-l/2
E [P* i ( f ) ]  -+ r „ ( / )  /  w B(d)de  =  u>,(0) r „ ( / )  =  r „ ( / )  

J - 1/2 (12.2.45)

var[/>„(/)] -► r l x( f )
H en ce , as ind ica ted  previously , the  p e rio d o g ram  is an asym pto tically  unb iased  
estim ate  o f th e  p o w er spectrum , bu t it is n o t consisten t because its variance does 
n o t ap p ro ach  ze ro  as N  increases to w ard  infinity.

A sym pto tically , the  p erio d o g ram  is ch arac te rized  by the  q u a lity  fac to r

r 2 (f )r\ _  xx^J } 1
Q p  =  z.1-, =  1 (12.2.46)

r l A f )
T h e  fact th a t Qp  is fixed an d  in d ep en d en t o f th e  d a ta  leng th  N  is a n o th e r  ind ica tion  
o f th e  p o o r  quality  o f th is estim ate .



Sec. 12.2 Nonparametric Methods for Power Spectrum Estimation 917

Bartlett power spectrum estimate. T he m ean  an d  v ariance  o f  th e  B a rtle tt 
p o w er sp e c tru m  es tim ate  a re

E [ P ? A f ) ] =  [  r xxm w B( f -
J - 1/2

6)dd

v a r [ / £ ( / ) ]  =  - r  1 ( f )
/  s in 2 jr /A f  V  

^  \  M  sin 2 n f  )

and
1 /  sin n f  M  \ 2 

WB( f )  =  —  . J .
M  \  s i n ^ /  /

A s N  —y oo and  M  —y oo,  w hile K  =  N / M  rem ains fixed, w e find th a t
r 1/2

£ [* * « < /) ]  r „ ( / )  /  w ,(/)r f/ =  r xx( f ) w B(0) =  r „ ( / )
7 - 1 /2-1/2 

v a r[P /x( / ) ]

(12.2.47)

(12.2.48)

(12.2.49)

(12.2.50)

r L ( / )

W e o b se rv e  th a t th e  B a rtle tt pow er spectrum  es tim a te  is asym pto tically  u n b i­
ased  an d  if K  is allow ed  to  increase w ith an increase in N ,  th e  e s tim ate  is also co n ­
sistent. H en ce , asym pto tically , th is estim ate  is charac te rized  by th e  quality  fac to r

N
Q b =  K  =  —  

M
(12.2.51)

T h e  freq u en cy  reso lu tion  o f th e  B a rtle tt e s tim ate , m easu red  by tak ing  the 
3-dB w idth o f th e  m ain  lobe  o f th e  rec tan g u la r w indow , is

0.9
A /  =  —

J M
H en ce , M  =  0 .9 /A/  an d  th e  quality  fac to r  becom es

N
Q b =

0 .9 /A  /
=  l . I N A f

(12.2.52)

(12.2.53)

Welch power spectrum estimate. T h e  m ean  an d  varian ce  o f th e  W elch 
po w er spectrum  estim ate  are ,1/2

w here

and

£ [ * £ ( / ) ] =  f r̂ mw(f-B)de

v a r[ j£ ( /)]  = 9 ,
— r 2 ( f ) ,
8 L xx

2 2  w ( n ) e - j2*f *

fo r no  o verlap

for 50%  o verlap  an d  
trian g u la r w indow

(12.2.54)

(12.2.55)

(12.2.56)



A s  N  oo and  M  -*  oo, th e  m ean  converges to

£ [ * £ ( / > ] - >  r « ( / )  (12.2.57)

and  the  variance converges to  zero , so th a t th e  e s tim a te  is consisten t.
U n d e r  the  tw o conditions given by (12.2.56) th e  quality  fac to r  is

NL  =  — , fo r n o  overlap

Qw  =  SL  =  16N fo r 50%  overlap  and  (12.2.58)
9 — 9 M  ' tr ia n g u la r  w indow  

O n  th e  o th e r  hand , the  spectral w idth o f  th e  tr ia n g u la r  w indow  a t th e  3-dB po in ts is

A /  =  —  (12.2.59)
M

C onsequen tly , th e  quality  fac to r  exp ressed  in  te rm s o f A f  an d  N  is

0.78N  A /, fo r n o  o v erlap

=  1 3 9 N A f  fo r ^ 0/° o v erlaP and  (12.2.60)
tr ia n g u la r  w indow

Blackman-Tukey power spectrum estimate. T h e  m ean  and  variance  o f 
this es tim ate  a re  ap p rox im ated  as

- 1/2
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E[Pf / ( f )]  *  f  r xxm w ( f - d ) d 8
J - M l- 1/2

(12.2.61)

v a r [ P / / ( / ) ]  *  r;x(f )
1 >7—1- r w (m)  
NL m=-(W-1)

w h ere  u>(m) is th e  w indow  sequence  used  to  ta p e r  th e  e s tim ated  au to co rre la tio n  
sequence . F o r the  rec tan g u la r and  B a rtle tt  ( trian g u la r)  w indow s w e have

1 r* '1 2/ s ( 2 M / N ,  re c ta n g u la r  w indow  ^
N  ” < " ) = {  2 U / 3 N .  tr ia n g u la r  w indow  (12'2 '62)

I t  is c lear from  (12.2.61) th a t th e  m e a n  v alue  o f th e  e s tim ate  is asym ptotically  
u nb iased . Its quality  fac to r fo r the  tr ia n g u la r  w indow  is

Q bt =  1 - 5 ^  (12.2.63)
M

Since th e  w indow  leng th  is 2M  — 1, th e  frequency  reso lu tio n  m easu red  a t th e  3-dB 
po in ts  is

A /  =  ^  =  —  (12.2.64)
2 M  M

and hence

Q bt  =  x r i N & f  =  2 .3 4 W A / (12.2.65)
U.64
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TABLE 12.1 QUALITY OF POWER 
SPECTRUM ESTIMATES

Estimate Quality Factor

Bartlett
Welch

l.UNAf
1.39NA/

(50% overlap) 

Blackman-T ukey 2.34 Af A/

T hese  resu lts  a re  sum m arized  in T ab le  12.1. It is ap p a re n t from  th e  resu lts 
we have o b ta in e d  th a t th e  W elch and  B lac k m a n -T u k ey  po w er sp ectrum  estim ates 
a re  som ew hat b e tte r  th a n  th e  B a rtle tt e stim ate . H ow ever, th e  d ifferences in p e r ­
fo rm ance are  relatively  sm all. T he m ain  po in t is th a t th e  q uality  fac to r  increases 
w ith  an  in crease  in th e  leng th  N  o f th e  data . T h is charac te ris tic  b eh av io r is n o t 
sh a red  by th e  p erio d o g ram  estim ate . F u rth e rm o re , th e  q uality  fac to r d ep en d s on  
the  p ro d u c t o f  th e  d a ta  leng th  N  an d  th e  frequency  re so lu tio n  A f .  F o r a d e ­
sired  level o f quality , A f  can b e  d ecreased  (frequency  re so lu tio n  in creased ) by 
increasing  th e  leng th  N  o f th e  data , and  vice versa.

12.2.5 Computational Requirements of Nonparametric 
Power Spectrum Estimates

T h e  o th e r  im p o rta n t aspect o f  the  n o n p a ram etric  p o w er sp ectrum  estim ates is 
th e ir  com p u ta tio n a l req u irem en ts . F o r  th is com parison  w e assum e the  estim ates 
a re  based  on  a  fixed am o u n t o f d a ta  N  an d  a specified reso lu tio n  A f .  T h e  radix-
2 F F T  a lgo rithm  is assum ed in all th e  com pu ta tions. W e shall co u n t only the  
n u m b er of com plex  m ultip lica tions re q u ire d  to  com p u te  th e  p o w er sp ec tru m  esti­
m ate .

Bartlett power spectrum estimate

F F T  leng th  =  M  =  0 .9 /A /

N u m b er o f F F T s =  —  =  1.11W A f  
M  J

N u m b er o f co m p u ta tio n s =  log2 M j  ~  —  log2

Welch power spectrum estimate (50% overlap)

F F T  leng th  =  M  — 1 .2 8 /A /

N u m b er o f F F T s =  —  =  1.56N A f
M

Number of computations =  —  I — log2 M( y ' o f e * )
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In  ad d itio n  to  the  2 N /Af FFTs, th e re  a re  add itio n a l m u ltip lica tions req u ired  
fo r w indow ing the  data . E ach  d a ta  reco rd  req u ires  M  m ultip lications. T h e re fo re , 
the to ta l n u m b er o f co m p u ta tio n s is

1 28 5 12
T o ta l co m p u ta tio n s =  2 N  +  N  log2 ——  =  N  lo g , ——

A f  -  A f

Blackman-Tukey power spectrum estimate. In  th e  B iac k m a n -T u k ey  
m ethod , the  au to co rre la tio n  rxx{m) can be co m p u ted  efficiently  via th e  F F T  a l­
gorithm . H ow ever, if th e  n u m b er o f d a ta  po in ts  is large, it  m ay n o t be  possib le  to  
com pu te  one A ppoint D F T . F o r exam ple , we m ay have N  =  105 d a ta  p o in ts  but 
only th e  capacity  to  p erfo rm  1024-point D F T s. Since th e  a u to co rre la tio n  sequence  
is w indow ed to  2 M  — 1 po in ts  w here  M  <£: N,  it is possible to  c o m p u te  th e  desired  
2 M  — 1 po in ts o f  rxx(m)  by segm en ting  th e  d a ta  in to  K  =  N f l M  reco rds and  th en  
com puting  2A /-point D F T s and  o ne  2 M -poin t ID F T  via th e  F F T  algorithm . R a d e r
(1970) has d escribed  a m eth o d  fo r perfo rm in g  th is co m p u ta tio n  (see  P ro b lem  12.7).

If  we base th e  co m pu ta tional com plex ity  o f th e  B lac k m a n -T u k ey  m eth o d  on 
th is ap p roach , we ob ta in  th e  follow ing co m p u ta tio n a l req u irem en ts .

F F T  length =  2 M  =  1 .28 /A /

/  N  \  N
N um ber o f  F F T s =  2 K  +  1 =  2 { —  ) +  1 ^  —

\ 2 M  J M

N u m b er o f com p u ta tio n s =  log2 2 M)  =  N  log2

W e can neglect th e  add itional M  m u ltip lica tions req u ired  to  w indow  the  a u to co r­
re la tion  sequence  rxx(m),  since it is a  relatively  sm all num ber. F inally , th e re  is the  
add itio n a l com p u ta tio n  req u ired  to  p e rfo rm  the F o u rie r  tran sfo rm  o f the  w indow ed 
au to co rre la tio n  sequence. T he F F T  a lgo rithm  can be used fo r  th is com pu ta tion  
w ith som e zero  pad d in g  fo r pu rp o ses o f in te rp o la tin g  the  sp e c tra l e stim ate . A s a 
resu lt o f these  ad d itio n a l com p u ta tio n s, th e  n u m b er o f co m p u ta tio n s is increased  
by a sm all am oun t.

F rom  these  resu lts we conclude  th a t th e  W elch  m e th o d  re q u ire s  a little  m ore 
com p u ta tio n a l p o w er th an  d o  th e  o th e r  tw o m ethods. T h e  B a rtle tt  m eth o d  a p p a r­
ently  req u ires  th e  sm allest n u m b er o f com pu ta tions. H ow ever, th e  d ifferences in 
the com p u ta tio n a l req u irem en ts  of th e  th ree  m eth o d s a re  re la tiv e ly  small.

12.3 PARAMETRIC METHODS FOR POWER SPECTRUM ESTIMATION

T he n o n p aram etric  po w er sp ec tru m  estim atio n  m eth o d s describ ed  in th e  p reced ing  
section  a re  re latively  sim ple, w ell u n d ersto o d , and  easy  to  c o m p u te  using th e  F F T  
algo rithm . H ow ever, th ese  m eth o d s re q u ire  th e  availability  o f long  d a ta  reco rds in 
o rd e r  to  o b ta in  th e  necessary  freq u en cy  reso lu tio n  req u ired  in m an y  applications. 
F u rth e rm o re , th ese  m eth o d s su ffer from  spectra l leak ag e  effects, d ue  to  w indow -
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ing, th a t a re  in h e re n t in fin ite-leng th  d a ta  records. O ften , th e  sp ec tra l leakage 
m asks w eak signals th a t a re  p re sen t in th e  data .

F rom  o ne p o in t o f view, th e  basic lim ita tion  o f the n o n p a ra m e tric  m eth o d s is 
th e  in h e ren t assum ption  th a t th e  au to co rre la tio n  estim ate  rxx(m)  is ze ro  fo r m > N,  
as im plied  by (12.1.33). T h is assum ption  severe ly  lim its th e  frequency  reso lu tion  
and  th e  quality  of th e  p o w er sp ectrum  es tim ate  th a t is ach ieved . F ro m  a n o th e r  
v iew poin t, th e  in h e ren t assum ption  in the p e rio d o g ram  es tim a te  is th a t the  d ata  
are  period ic  w ith  p erio d  N .  N e ith e r  o n e  o f  th ese  assum ptions is realistic.

In th is section  we describe  p o w er spectrum  es tim atio n  m e th o d s th a t  do  n o t 
req u ire  such assum ptions. In  fact, th ese  m eth o d s extrapolate  th e  values o f  the  
a u to co rre la tio n  fo r lags m > N.  E x trap o la tio n  is possib le  if w e have som e a priori  
in fo rm atio n  on how  th e  d a ta  w ere g en era ted . In  such a case a m odel fo r th e  signal 
genera tion  can be co n stru c ted  w ith a  n u m b er o f  p a ra m e te rs  th a t  can be es tim ated  
from  the o b se rved  data . F rom  the m odel and  th e  e s tim ated  p a ram e te rs , we can 
com pu te  the  p o w er density  spectrum  im plied by th e  m odel.

In  effect, th e  m od elin g  ap proach  e lim inates th e  n e e d  fo r w indow  functions 
and th e  assum ption  th a t th e  au to co rre la tio n  se q uence  is ze ro  fo r \m\ >  N.  A s a 
co n sequence , parametric  (m odel-based ) pow er spectrum  es tim atio n  m e th o d s avoid 
th e  p rob lem  o f leakage and  p rov ide b e tte r  frequency  reso lu tio n  th an  d o  th e  F FT - 
based , n o n p a ram e tric  m eth o d s d escribed  in th e  p reced in g  section . T h is is esp e­
cially true  in app lica tions w here  sh o rt d a ta  reco rds are  availab le  d u e  to  tim e-v a rian t 
o r  tran sien t p h en o m en a .

T he p a ram e tric  m eth o d s co nsidered  in th is section a re  based  o n  m odeling  
the  d a ta  se q uence  * («) as th e  o u tp u t o f a  linear system  ch a rac te rized  by a ra tional 
system  function  o f the  form

w h ere  w(n)  is th e  in p u t sequence  to  th e  system  and  th e  o b se rved  d a ta , x(n) ,  
rep re sen ts  th e  o u tp u t sequence .

In pow er sp ec tru m  estim atio n , the  in p u t sequence  is n o t o bservab le . H o w ­
ever, if th e  obse rv ed  d a ta  a re  ch aracterized  as a s ta tio n ary  ran d o m  p rocess, then  
th e  in p u t se q uence  is also  assum ed to  b e  a  s ta tio n ary  ran d o m  process. In  such a 
case th e  po w er d ensity  spectrum  o f th e  d a ta  is

w here  r  ,*„*,(/) is th e  p o w er density  sp ectrum  o f  th e  in p u t seq u en ce  an d  H ( f )  is 
the  frequency  response  o f  th e  m odel.

(12.3.1)

T h e  co rre sp o n d in g  d ifference  eq u a tio n  is
p

(12.3.2)

r „ ( / )  =  \ n ( f ) \ 2r ww( f )
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Since o u r  objective is to  estim ate  th e  pow er density  sp e c tru m  r „ ( / ) ,  it is 
con v en ien t to  assum e th a t th e  in p u t seq u en ce  w(n)  is a ze ro -m ean  w hite noise 
se quence  w ith au to co rre la tio n

Yww(m) =  ^ S ( m )

w h ere  a 2 is th e  variance  (i.e., a 2 =  £ [|u>(«)|2]). T h en  th e  p o w er density  spectrum  
o f th e  o b se rved  d a ta  is sim ply

T „ ( / )  =  o l \ H { f ) \ 2 =  (12.3.3)

In  S ection  11.1 w e described  the  re p re se n ta tio n  o f a s ta tio n a ry  ran d o m  process as 
given by (12.3.3).

In  th e  m o d el-based  app roach , th e  sp ectrum  es tim atio n  p ro ced u re  consists 
o f tw o  steps. G iv en  th e  d a ta  se q uence  x(n) ,  0  <  n <  JV -  1, w e estim ate  the  
p a ra m e te rs  {a*} an d  (6*) o f th e  m odel. T h en  fro m  these  es tim ates , w e com pute 
th e  p o w er sp ec tru m  estim ate  accord ing  to  (12.3.3).

R ecall th a t th e  ran d o m  p rocess x ( n)  g e n e ra te d  by  th e  p o le -z e ro  m odel in
(12.3.1) o r  (12.3.2) is called  an  autoregress ive-moving average  (A R M A ) process  o f 
o rd e r  (p , q)  and  it is usually  d en o ted  as A R M A  (p , q).  I f  q =  0 and  fro =  the 
resu lting  system  m odel has a system  fu n c tio n  H( z)  =  1 /A (z) a n d  its o u tp u t x(n)  
is called  a n  autoregressive  (A R ) process  o f o rd e r  p.  T h is is d e n o te d  as AR(/>). 
T h e  th ird  possib le m odel is o b ta in ed  by se tting  A(z)  =  1, so th a t  H(z)  — B{z).  Its 
o u tp u t x(n)  is called  a  m o vi ng  average  (M A ) process  o f o rd e r  q  and  d en o ted  as 
M A (^ ).

O f  these  th re e  lin ea r  m odels th e  A R  m odel is by fa r th e  m ost w idely used. 
T h e  reaso n s a re  tw ofold . F irst, th e  A R  m odel is su itab le  fo r rep re sen tin g  spectra  
w ith n arro w  p eak s (resonances). Second, th e  A R  m odel resu lts  in very sim ple 
lin ear eq u a tio n s fo r  th e  A R  p aram e te rs . O n  th e  o th e r  h an d , th e  M A  m odel, as 
a g en e ra l ru le , req u ires  m any  m o re  coeffic ients to  re p re se n t a  n a rro w  spectrum . 
C onsequen tly , it is rare ly  used  by itse lf  as a m o d el fo r  sp e c tru m  es tim ation . By 
com bin ing  po les an d  zeros, th e  A R M A  m o d el p ro v id es a m o re  efficient rep re sen ­
ta tio n , from  th e  v iew poin t o f the  n u m b e r  o f m o d el p a ram e te rs , o f th e  spectrum  
o f  a  ran d o m  process.

T h e  d ecom position  th eo rem  d u e  to  W old  (1938) asserts th a t  any  A R M A  or 
M A  p rocess can be re p re se n te d  un iquely  by  an  A R  m o d el o f possib ly  infinite o rd er, 
and  any  A R M A  o r  A R  process can  be  re p re se n te d  by  a M A  m o d el o f possibly 
infinite o rd er. In  view  of this th eo rem , th e  issue o f m odel se lec tio n  reduces to 
selecting  th e  m odel th a t requ ires th e  sm allest n u m b er o f p a ra m e te rs  th a t a re  also 
easy  to  com p u te . U sually , th e  choice in  p rac tice  is th e  A R  m o d el. T h e  A R M A  
m odel is used to  a lesse r ex ten t.

B e fo re  describ ing  m eth o d s fo r es tim ating  th e  p a ra m e te rs  in  a n  A R (p ) , MA(<?), 
a n d  A R M A (p , q)  m odels, it is useful to  estab lish  th e  basic re la tio n sh ip s betw een 
th e  m o d el p a ra m e te rs  an d  th e  au to co rre la tio n  se q u en ce  yxx(m).  In  add ition , we 
re la te  th e  A R  m o d el p a ram e te rs  to  th e  coeffic ients in  a lin ear p re d ic to r  fo r the 
p rocess x(n) .



Sec. 12.3 Parametric Methods for Power Spectrum Estimation 923

12.3.1 Relationships Between the Autocorrelation and 
the Model Parameters

In  Section  11.1.2 we estab lished  the basic  re la tio n sh ip s betw een  th e  au to co rre la tio n  
{ ^ ( m ) }  and  th e  m odel p a ra m e te rs  {a*} an d  {bk}. F o r th e  A R M A (p , q)  process, 
th e  re la tio n sh ip  given by (11.1.18) is

Yxx (m)  =

~22QkYxx>jn -  k), m > q

p

~ 2 2  otYxxim - ^  +  <*122  0 < m  < q
*=l *=o

y*x (—m),  m  < 0

(12.3.4)

T h e  re la tionsh ips in (12.3.4) p ro v id e  a fo rm ula  fo r de te rm in in g  th e  m odel 
p a ra m e te rs  {ak} by restric ting  ou r a tte n tio n  to  th e  case m > q.  T hus th e  se t o f 
lin ear eq u a tio n s

~Yxx(q) Yxxiq ~  1) • Yxxiq ~  p  +  1 ) '
Yxxiq +  1) Yxxiq) • Yxx (q +  P +  2)

-Yxx(q  +  / ? - ! ) Yxx(q +  p -  2) • • Yxxiq)

Yxxiq +  1)
yxx(q +  2)

-Yxxiq  +  P ) -

(12.3.5)

can be  used  to  so lve fo r th e  m odel p a ra m e te rs  {ak} by using  es tim ates o f  the 
a u to co rre la tio n  se q uence  in place o f Yxx ) fo r m  >  q.  T h is p ro b lem  is d iscussed 
in S ection  12.3.8.

A n o th e r  in te rp re ta tio n  o f the  re la tio n sh ip  in (12.3.5) is th a t th e  values o f 
th e  a u to co rre la tio n  Yxx ) iox m > q a re  u n iquely  d e te rm in ed  from  th e  po le  
p a ra m e te rs  {ak} and  the  values o f yxx(m)  fo r 0 <  m  <  p.  C onseq u en tly , th e  linear 
system  m odel au tom atica lly  ex ten d s th e  values o f the  a u to co rre la tio n  sequence
Yxx(m) fo r m  > p.

If  th e  po le  p a ra m e te rs  {a*} a re  o b ta in ed  from  (12.3.5), th e  resu lt does n o t 
h e lp  us in d e te rm in in g  th e  M A  p a ra m e te rs  {i*}, b ecause  th e  eq u a tio n

q - m  p

° l  2 2 h ( f t bk+m =  Yxx(m) +  ' Y 2 a kYxx{m -  k) 0 <  m  <  q

d ep en d s on  th e  im pulse response  h(n).  A lth o u g h  th e  im pulse response  can be 
exp ressed  in te rm s o f  th e  p a ra m e te rs  {£*} by long division o f  B(z)  w ith th e  know n 
A(z ) ,  th is ap p ro ach  resu lts in a se t o f  n o n lin ea r eq u a tio n s  fo r th e  M A  p a ra m ­
eters.
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I f  we a d o p t an  A R (p )  m o d e l fo r th e  o b se rved  d a ta , the  re la tio n sh ip  betw een  
th e  A R  p a ram e te rs  and  th e  au to co rre la tio n  seq u en ce  is o b ta in ed  by se tting  q  =  0 
in (12.3.4). T hus w e o b ta in

Y x x ( m )  =

p

~ Y 2 akYxx(m -  k) ,  m >  0
*=i

p (12.3.6)
- J 2 akYxx(m - k )  +  ct^, m =  0 

Jt=i
Yxx( ~ m )- m < 0

In th is case, th e  A R  p a ra m e te rs  {a*) a re  o b ta in ed  from  th e  so lu tio n  o f th e  Y u le -  
W alk er o r  n o rm al eq u a tio n s

Yxx (0) 

Y x x ( l )

Y x x ( ~  1 )  

Y x x (  0)

- Y x x i p -  1 )  Y x x i p -  2)

Y x x i - P  +  1)  

Y x x ( ~ P  +  2)

Kr jr (0)

~a\  " ’  Y x x i 1)  "

a2 Yxx  (2)

. Y x x ( P ) .

(12.3.7)

and  th e  variance  a 2 can  be  o b ta in ed  from  th e  eq u a tio n

p

=  Y x x i® )  +  Y 2 a k Y x x i ~ k ) (12.3.8)

- 1 - ~a l ~
a\

=
0

- a p _ _ 0  _

T he eq u a tio n s in (12.3.7) and  (12.3.8) are  usually  com bined  in to  a  single m atrix  
eq u a tio n  o f th e  fo rm

Yxx  ( 0 )  Yx x  (  1 )

Y x x ( l )  Yxx  ( 0 )  ■■■ Y x x ( - p  + 1)
(12.3.9)

L y „ ( p )  Y x x i p - 1) ••• y « (0 )
Since th e  co rre la tio n  m atrix  in (12.3.7), o r  in (12.3.9), is T o ep litz , it can be effi­
ciently  inverted  by  use  o f th e  L e v in so n - D u rb in  a lgo rithm .

T hus all th e  system  p a ra m e te rs  in th e  A R (/?) m odel a re  easily  d e te rm in ed  
from  know ledge o f  th e  a u to co rre la tio n  se q uence  yxx(m)  fo r 0 <  m  <  p.  F u rth e r­
m ore , (12.3.6) can b e  used  to  ex ten d  th e  au to c o rre la tio n  se q u en ce  fo r  m > p,  once 
th e  {at) a re  d e te rm in ed .

Finally , fo r  com p le ten ess, we ind ica te  th a t in a M A (^ ) m o d el fo r  th e  observed  
data , th e  au to co rre la tio n  seq u en ce  yjjr(m) is re la te d  to  th e  M A  p a ra m e te rs  [bk] by 
th e  eq u a tio n

9
< ? l Y ^ b kbk+m, 0 < m  < q  

Y x x ( m ) 1=0 (12.3.10)
0, m  > q
y*x( - m ) ,  m <  0

which was established in Section 11.1.
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W ith  this b ack g ro u n d  estab lished , w e now  describe  th e  p o w er sp ec tru m  es­
tim ation  m eth o d s fo r th e  A R (/?), A RM A (/?,<?), an d  MA(<?) m odels.

12.3.2 The Yule-Walker Method for the AR Model 
Parameters

In th e  Y u le -W a lk e r  m e th o d  we sim ply estim ate  th e  au to co rre la tio n  from  the  
d a ta  and  use th e  estim ates in (12.3.7) to  solve fo r th e  A R  m odel p aram eters . 
In  th is m eth o d  it is des irab le  to  use th e  b iased  fo rm  o f th e  a u to co rre la tio n  esti­
m ate ,

^  N - m —1

rxx(m) = — y '  jc*(n)jc(« +  m)  m >  0 (12.3.11)
N  “

n = 0

to  ensu re  th a t th e  au to co rre la tio n  m atrix  is positive  sem idefin ite . T h e  resu lt is 
a s tab le  A R  m odel. A lth o u g h  stab ility  is n o t a critical issue in po w er spec­
tru m  es tim ation , it is co n jec tu red  th a t a stab le  A R  m o d el b est rep re sen ts  the  
data.

T h e  L e v in so n -D u rb in  algo rithm  d escribed  in C h a p te r  11 w ith  rxx( m ) substi­
tu ted  for yxx(m)  yields th e  A R  p a ram eters . T h e  co rre sp o n d in g  p o w er spectrum  
es tim ate  is

2
P r w ( f )  = --------------- ^ ---------------- (12 3 12)

"  II +  £ L i  aP( *)e- J2*/ l l2

w h ere  ap(k) a re  es tim ates o f th e  A R  p a ram e te rs  o b ta in ed  from  th e  L ev in so n - 
D u rb in  recu rsions and

<7l p =  £ /  =  rxx(0) f [ [ l  -  M ) | 2] (12.3.13)
*=i

is th e  es tim ated  m in im um  m ean -sq u are  value fo r th e  p th -o rd e r  p red ic to r. A n  
exam ple  illustra ting  th e  frequency  reso lu tio n  capab ilities o f  th is e s tim a to r  is given 
in Section  12.3.9.

In  estim ating  the  p o w er spectrum  o f sinuso idal signals via A R  m odels, Lacoss 
(1971) show ed th a t spectra l peak s in an  A R  sp ec tru m  es tim a te  a re  p ro p o rtio n a l 
to  th e  sq u a re  o f th e  po w er o f  th e  sinuso idal signal. O n  the  o th e r  hand , th e  a rea  u n ­
d e r  th e  peak  in th e  pow er density  spectrum  is linearly  p ro p o rtio n a l to  the  pow er o f 
th e  sinusoid. T h is charac te ris tic  b eh av io r ho lds fo r all A R  m o d el-based  estim ation  
m ethods.

12.3.3 The Burg Method for the AR Model Parameters

T he m e th o d  devised  by  B urg  (1968) fo r estim ating  th e  A R  p a ra m e te rs  can  be 
view ed as an  o rder-recu rsiv e  least-squares la ttice  m eth o d , b ased  on the  m in im iza­
tion  o f  th e  fo rw ard  an d  backw ard  e rro rs  in linear p red ic to rs , w ith  the  constra in t 
th a t th e  A R  p a ra m e te rs  satisfy th e  L ev in so n -D u rb in  recu rsion .
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T o  derive  the  es tim ato r, suppose  th a t we a re  given th e  d a ta  * (n ), n =  0, 
1.........N  — 1, an d  let us consider th e  fo rw ard  an d  back w ard  lin e a r  p red ic tio n  esti­
m a tes  o f o rd e r  m, given as

m
x(n)  =  — y  am (fc) x  (rt — fc)

*=1 (12.3.14)
m

x( n  -  m)  =  — (fc)x(n + k  — m)
k = 1

and  th e  co rre sp o n d in g  fo rw ard  and  b ackw ard  e rro rs  f m{n) an d  gm(n) defined as 
f m{n) =  x(n)  — x(n)  and  gm(n) = x(n — m) — x(n — m) w h ere  am(k),  0 < k  <  
m — 1, m =  1, 2 , . . . ,  p,  are  the p red ic tio n  coeffic ients. T h e  least-squares e rro r  
is

A'-l
+  \ g M \ 2] (12.3.15)

n=/n

T his e r ro r  is to  be m inim ized by se lecting  th e  p red ic tio n  coeffic ients, sub ject 
to  the  co n s tra in t th a t th ey  satisfy th e  L e v in so n -D u rb in  recu rsio n  given by

am(k) =  am- i(* )  -I- - k )  1 < fc <  m -  1 (12.3.16)

1 <  m  <  p

w here K m =  a m(m) is th e  m th reflec tion  coeffic ient in th e  la ttice  filter rea liza tion  
o f  th e  p red ic to r. W hen  (12.3.16) is su b s titu ted  in to  th e  expressions fo r f m(n) 
and  gm(n),  th e  resu lt is th e  p a ir  o f o rd er-recu rsiv e  eq u a tio n s  fo r the  fo rw ard  and  
backw ard  p red ic tion  e rro rs  given by (11.2.4).

N ow , if we sub stitu te  from  (11.2.4) in to  (12.3.16) and  p e rfo rm  th e  m inim iza­
tio n  o f £m w ith  respec t to  th e  com plex-valued  reflec tion  coeffic ien t K m, w e o b ta in  
th e  resu lt

N-1
fm-i(n)g*m-i (n  - D

K m =  ------------------------------------  m =  1 ,2 , . . . ,  p  (12.3.17)

n=m

T h e  te rm  in th e  n u m e ra to r  o f (12.3.17) is an  e s tim ate  o f th e  crossco rre la tion  b e ­
tw een  th e  fo rw ard  and  backw ard  p red ic tion  e rro rs . W ith  th e  no rm aliza tion  factors 
in th e  d en o m in a to r  o f (12.3.17), it is a p p a re n t th a t  |AT,J <  1, so  th a t th e  all-pole 
m odel o b ta in e d  from  th e  d a ta  is stab le . T h e  re a d e r  shou ld  n o te  th e  sim ilarity  o f
(12.3.17) to  its sta tis tical c o u n te rp a rts  given by  (11.2.29).

W e n o te  th a t  th e  d e n o m in a to r in  (12.3.17) is sim ply th e  leas t-sq u ares e s tim ate  
o f  th e  fo rw ard  and  b ackw ard  erro rs , and  E ^ _ v  respec tive ly . H en ce  (12.3.17)
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can be exp ressed  as

-  1)

K m = m  =  1, 2 , . . . ,  p (12.3.18)

w h ere  +  E bm- \  is an  estim ate  o f th e  to ta l sq u a red  e r ro r  E m. W e leave it as 
an  exercise  fo r th e  re a d e r  to  verify  th a t th e  d en o m in a to r  te rm  in (12.3.18) can  be 
co m p u ted  in an o rder-recu rsive  fashion accord ing  to  th e  re la tio n

T o  sum m arize, the  B urg  a lgo rithm  co m p u tes th e  reflec tion  coefficients in 
th e  eq u iv a len t lattice  s tru c tu re  as specified by (12.3.18) and  (12.3.19). and  th e  
L ev in so n -D u rb in  a lgo rithm  is used  to  ob ta in  th e  A R  m o d el p a ram eters . F ro m  
the  es tim ates o f th e  A R  p a ram eters , we fo rm  th e  p o w er sp ectrum  estim ate

T h e  m ajo r ad van tages o f  th e  B urg  m eth o d  fo r estim ating  the  p a ram e te rs  o f 
th e  A R  m odel a re  (1) it resu lts in high frequency  reso lu tio n , (2) it yields a s tab le  
A R  m odel, and  (3) it is com pu ta tio n a lly  efficient.

T h e  B urg  m e th o d  is know n to  have severa l d isadvan tages, how ever. F irst, 
it exh ib its spectra l line sp litting  a t high signal-to-noise ratios, [see th e  p a p e r  by 
F o u g ere  e t al. (1976)]. B y line sp litting , w e m ean  th a t th e  sp ec tru m  o f x(n)  m ay 
have a  single sha rp  p eak , b u t th e  B urg  m e th o d  m ay re su lt in tw o o r m ore  closely 
spaced  peaks. F o r h ig h -o rd er m odels, the m e th o d  also  in tro d u ces spurious peaks. 
F u rth e rm o re , fo r sinuso idal signals in noise , th e  B urg  m e th o d  exh ib its a  sensitivity  
to  th e  in itia l phase  o f a  sinusoid, especially  in sh o rt d a ta  records. T h is sensitivity  
is m an ifest as a  frequency  shift from  th e  tru e  frequency , resu lting  in a  phase  d e ­
p e n d e n t frequency  bias. F o r m o re  details on  som e o f th ese  lim ita tions th e  re a d e r  
is re fe rre d  to  th e  p ap e rs  o f C hen  and  S tegen  (1974), U lrych  an d  C layton (1976), 
F o u g ere  e t  al. (1976), K ay and  M arp le  (1979), Sw ingler (1979a, 1980), H errin g  
(1980), and  T ho rv a ld sen  (1981).

S everal m odifica tions have b een  p ro p o sed  to  overcom e som e o f the  m o re  
im p o rta n t lim ita tions o f th e  B urg  m ethod : nam ely , th e  line sp litting , spurious 
p eak s , an d  frequency  bias. Basically, th e  m odifica tions involve th e  in troduc tion  
o f  a  w eigh ting  (w indow ) sequence  on  th e  sq u a re d  fo rw ard  and  backw ard  e r ­
ro rs . T h a t is, th e  least-squares op tim ization  is p e rfo rm e d  on  th e  w eigh ted  sq u a red

E m =  (1 -  \Km |2) £ m_i -  |/m -] (m -  1)[2 -  |gm_,(m  -  2 ) |2 (12.3.19)

w here  E„, =  E ^  + E b is the  to ta l least-squares e rro r . T h is resu lt is d ue  to  A n d ersen
(1978).

2 (12.3.20)
p

1 +  j 2 a p( k ) e - W ‘
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e rro rs

N - 1

£™b =  £  wm(n)[ \ fm(n)\2 +  |gm(n)[2] (12.3.21)

w hich, w hen m inim ized , resu lts in th e  reflec tion  coefficient e s tim a te s

A '- l

']Tl Wm--i(n)fm- i ( n ) g Z_ l (n -  1)

K m =  ~1 ~ L--------------------------------------------------  (12.3.22)

-  E +  |gm- i (n  -  1)|2]
1  n=m

In p a rticu la r, w e m en tio n  th e  use o f a H am m in g  w indow  u sed  by Sw ingler 
(1979b), a q u ad ra tic  o r  p arab o lic  w indow  used by K aveh  an d  L ip p e rt (1983), the 
energy w eighting  m e th o d  used  by N ikias an d  Sco tt (1982), a n d  th e  da ta -ad ap tiv e  
energy  w eighting  used  by H elm e and  N ikias (1985).

T hese  w indow ing and  energy  w eighting  m e th o d s have p ro v ed  effective in 
reducing  the o ccu rrence  o f  line sp litting  and  spu rious peaks, an d  a re  also  effective 
in reducing  frequency  bias.

T h e  B urg  m e th o d  fo r po w er sp ec tru m  es tim ation  is usually  associated  with 
m a x i m u m  entropy spect rum est imation , a  c rite rio n  used by B urg  (1967, 1975) as a 
basis fo r  A R  m odeling  in p a ram e tric  sp ec tru m  estim ation . T h e  p ro b lem  considered  
by B urg  w as how  b est to  ex trap o la te  from  th e  given values o f th e  au to co rre la tio n  
sequence  yxx{m),  0 <  m < p , th e  values fo r  m > p,  such th a t th e  en tire  au to c o rre ­
lation  sequence  is positive  sem idefin ite. Since an infin ite n u m b er o f ex trap o la tio n s 
are  possib le, B urg  p o stu la ted  th a t th e  ex trap o la tio n s  b e  m ad e  on  th e  basis o f m axi­
m izing u n certa in ty  (en tro p y ) o r  random ness , in the  sense th a t th e  sp ectrum  Txx{ f )  
o f th e  process is th e  fla tte st o f all sp ec tra  w hich have  th e  g iven au to co rre la tio n  
values yxx(m),  0 <  m  <  p.  In  p articu la r th e  en tro p y  p e r  sam ple is p ro p o rtio n a l to  
the  in teg ra l [see B urg  (1975)]

r 1/2
/  In r xx( f ) d f  (12.3.23)

J - l / 2

B urg  found  th a t th e  m axim um  o f th is in teg ra l sub ject to  th e  (p  +  1) constra in ts
rl f l

/  =  Yxx(m) 0 < m < p  (12.3.24)
J - 1/2

is th e  A R (p )  p rocess fo r w hich th e  given au to co rre la tio n  se q u en ce  yxx(m),  0 <  
m < p  is re la ted  to  th e  A R  p a ra m e te rs  by th e  eq u a tio n  (12.3.6). T h is so lu tion  
p rov ides an  ad d itio n a l ju stification  fo r th e  use o f  th e  A R  m odel in  pow er spectrum  
estim ation .

In  view  of B u rg ’s basic w o rk  in m axim um  e n tro p y  sp e c tra l es tim ation , the 
B urg  p o w er sp ec tru m  es tim atio n  p ro ced u re  is o ften  called  th e  m a x i m u m  entropy  
m et ho d  (M E M ). W e  sh o u ld  em phasize, how ever, th a t the  m ax im um  e n tro p y  spec­
tru m  is iden tical to  th e  A R -m o d e l sp ectrum  only  w hen  th e  ex ac t au to co rre la tio n
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yxx(m)  is know n . W hen  only  an  e s tim ate  o f yxx(m)  is availab le  fo r 0 < m < p,  th e  
A R -m o d e l e s tim ates o f Y u le -W a lk e r and  B urg  a re  n o t m axim um  en tro p y  spec­
tra l es tim ates. T h e  g en e ra l fo rm ula tion  for th e  m axim um  e n tro p y  sp ec tru m  based  
on estim ates o f th e  a u to co rre la tio n  sequence  resu lts in a  se t o f n o n lin ea r  e q u a ­
tions. S o lu tions fo r th e  m axim um  en tro p y  spectrum  w ith  m easu rem en t e rro rs  in 
th e  co rre la tio n  seq u en ce  have  b een  o b ta in ed  by N ew m an (1981) an d  S cho tt and  
M cC lellan  (1984).

12.3.4 Unconstrained Least-Squares Method for the AR 
Model Parameters

A s describ ed  in  th e  p reced in g  section , th e  B u rg  m e th o d  fo r  d e te rm in in g  th e  p a ­
ra m e te rs  o f  th e  A R  m o d el is basically a least-squares la ttice  a lgo rith m  w ith th e  
ad d ed  co n s tra in t th a t th e  p red ic to r  coefficients satisfy th e  L ev inson  recu rsion . A s 
a re su lt o f  th is co n stra in t, an  increase in the  o rd e r  of th e  A R  m odel req u ire s  only 
a  single p a ra m e te r  op tim iza tio n  a t each  stage. In  c o n tra s t to  th is ap p ro ach , we 
m ay use an  u n co n s tra in ed  least-squares algo rithm  to  d e te rm in e  th e  A R  p a ra m e ­
ters.

T o  e lab o ra te , we fo rm  th e  fo rw ard  and  backw ard  lin ea r  p red ic tio n  estim ates 
and  th e ir  co rre sp o n d in g  fo rw ard  an d  backw ard  e rro rs  as in d ica ted  in (12.3.14) an d  
(12.3.15). T h en  we m inim ize the sum  of sq uares o f bo th  e rro rs , th a t is,

N -1

£p -  Y l ^ f p ^ 2 +n=p
p 2 P 2"

x( n)  +  ' Y \ ap ^ x n̂ ~  k ) + x(n -  p)  +  2 2 Op(k )x(n + k -  p)
„ *=i k=1

(12.3.25)
w hich is th e  sam e p erfo rm an ce  index as in the  B urg  m eth o d . H ow ever, we do n o t 
im pose th e  L e v in so n -D u rb in  recu rsion  in (12.3.25) fo r th e  A R  p a ram ete rs . T h e  
u n co n s tra in ed  m in im ization  o f £p w ith  respec t to  th e  p red ic tio n  coeffic ients yields 
th e  se t o f lin ea r  eq u a tio n s

£ M * ) ^ ( U )  =  - r „ ( l ,  0) l =  l , 2 , . . . , p  (12.3.26)
k=l

w here , by defin ition , th e  au to co rre la tio n  rxx( l , k )  is

JV-1
r „ ( / ,  k)  =  ~  k)x *(n — 0  +  x ( n  -  P +  l)x*(n — p  +  £)] (12.3.27)

n—p

T h e  resu lting  resid u a l least-squares e r ro r  is

p
e Lp s  =  r „ (  0 ,0 )  +  £ t f , ( * ) r „ ( 0 ,  k ) (12.3.28)

t - i
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H en ce  th e  u n co n s tra in ed  least-squares pow er sp e c tru m  es tim a te  is

£ ls
P ^ i f )  = ----------------E---------------T (12.3.29)

1 +  i 2 a p( k ) e - J^ k 
k=l

T h e  co rre la tio n  m atrix  in  (12.3.27), w ith e lem en ts  rxx(l, k) ,  is n o t T oep litz , so  
th a t the  L e v in so n -D u rb in  algorithm  can n o t b e  app lied . H o w ev er, th e  co rre la tion  
m atrix  has sufficient s tru c tu re  to  m ak e  it possib le  to  dev ise co m p u ta tio n a lly  effi­
cien t a lgo rithm s w ith  co m p u ta tio n a l com plexity  p ro p o rtio n a l to  p 2. M arp le  (1980) 
devised  such an  a lgo rithm , w hich has a  la ttice  s tru c tu re  and  em ploys L ev in so n - 
D urb in -ty p e  o rd e r  recu rsions an d  add itional tim e recursions.

T his form  o f  th e  uncon stra in ed  least-squares m e th o d  d esc rib e d  has also been  
called  th e  u n wi nd o w ed  data least-squares m eth o d . I t  has b een  p ro p o sed  fo r spec­
tru m  es tim ation  in severa l p apers, including the  p ap e rs  by  B u rg  (1967), N u tta ll 
(1976), and  U lrych  and  C lay ton  (1976). Its p erfo rm an ce  ch arac te ris tics  have been  
found  to  be  su p e rio r  to  th e  B urg  m eth o d , in th e  sense th a t th e  u n co n s tra in ed  least- 
sq uares m e th o d  does n o t exh ib it th e  sam e sensitiv ity  to  such p ro b le m s as line sp lit­
ting, frequency  b ias, and  spu rious peaks. In  view o f  th e  c o m p u ta tio n a l efficiency of 
M a rp le ’s a lgo rithm , w hich is co m p arab le  to  th e  efficiency o f th e  L ev in so n -D u rb in  
algo rithm , the  u n co n stra in ed  least-squares m e th o d  is very a ttra c tiv e . W ith  this 
m eth o d  th e re  is no  g u a ran tee  th a t th e  estim ated  A R  p a ra m e te rs  yield a stab le  
A R  m odel. H o w ev er, in spectrum  es tim ation , th is is n o t co n s id ered  to  be a 
p rob lem .

12.3.5 Sequential Estimation Methods for the AR Model 
Parameters

T h e  th re e  po w er sp ectrum  es tim ation  m e th o d s  d escribed  in th e  p reced in g  sections 
fo r the  A R  m o d el can be classified as b lock  p rocessing  m eth o d s. T h ese  m eth o d s 
o b ta in  estim ates o f th e  A R  p a ra m e te rs  from  a b lock  o f d a ta , say jr(n), n =  0, 
I , . , N  — I.  T h e  A R  p aram e te rs , b ased  on  th e  b lock  o f N  d a ta  p o in ts, a re  th en  
used to  o b ta in  th e  p o w er sp ec tru m  estim ate .

In  s itu a tio n s w here  d a ta  are  availab le  on  a co n tin u o u s basis, we can still 
segm ent th e  d a ta  in to  b locks o f N  p o in ts and  p erfo rm  sp e c tru m  estim atio n  on 
a b lock-by-block basis. T h is is o ften  d o n e  in p rac tice , fo r b o th  rea l-tim e and 
no n -rea l-tim e app lications. H ow ever, in such app lica tions, th e re  is an  a lternative  
ap p ro ach  based o n  se q u en tia l (in  tim e) es tim ation  o f  th e  A R  m o d e l p aram e te rs  as 
each  new  d a ta  p o in t becom es available. B y in tro d u c in g  a  w eig h tin g  function  in to  
p as t d a ta  sam ples, it is possib le  to  deem phasize  th e  effect o f o ld e r  d a ta  sam ples 
as new  d a ta  are  received .

S equen tia l la ttice  m e th o d s based  o n  recursive leas t sq u a res  can  b e  em ployed  
to  o p tim ally  e s tim a te  th e  p red ic tio n  an d  reflec tion  coeffic ients in th e  la ttice  re­
alization  o f  th e  fo rw ard  and  backw ard  lin ear p red ic to rs . T h e  recursive  eq u a ­



Sec. 12.3 Parametric Methods for Power Spectrum Estimation 931

tions fo r th e  p red ic tio n  coeffic ients re la te  directly  to  the  A R  m odel p a ram eters . 
In ad d itio n  to  the o rder-recu rsiv e  n a tu re  o f th ese  eq u a tio n s , as im plied  by the  
la ttice  s tru c tu re , we can also o b ta in  tim e-recu rsive  eq u a tio n s fo r th e  reflection  
coeffic ients in th e  la ttice  and  fo r th e  fo rw ard  and  b ackw ard  p red ic tion  coeffi­
cients.

S eq u en tia l recu rsive  least-squares a lgo rithm s are  equ iv a len t to  th e  unco n ­
stra in ed  least-squares, b lock p rocessing  m e th o d  d escribed  in th e  p reced ing  sec­
tion . H en ce  th e  pow er spectrum  estim ates o b ta in ed  by th e  se q u en tia l recursive 
leas t-squares m e th o d  re ta in  th e  des irab le  p ro p e rtie s  o f the  b lock processing  algo­
rith m  describ ed  in Section  12.3.4. Since th e  A R  p a ram e te rs  a re  being  continuously  
e s tim a ted  in a  sequen tia l e stim ation  a lgo rithm , p o w er sp ec tru m  estim ates can be 
o b ta in e d  as o ften  as des ired , from  once p e r  sam ple  to  once  every  N  sam ples. By 
p ro p erly  w eigh ting  p as t d a ta  sam ples, th e  se q u en tia l es tim ation  m eth o d s are  p a r ­
ticu larly  su itab le  for estim atin g  an d  track in g  tim e-v a rian t p o w er sp e c tra  resu lting  
from  n o n sta tio n a ry  signal sta tistics.

T he co m p u ta tio n a l com plexity  o f se q u en tia l e s tim atio n  m eth o d s is generally  
p ro p o rtio n a l to  p,  th e  o rd e r  o f th e  A R  process. A s a consequence , sequen tia l 
e s tim atio n  a lgo rithm s a re  com pu ta tio n a lly  efficient and, from  this v iew point, m ay 
o ffe r som e advan tag e  o v e r th e  b lock  processing  m ethods.

T h e re  a re  n u m ero u s refe ren ces on seq u en tia l estim atio n  m ethods. T he p a ­
pers  by G riffiths (1975), F rie d la n d e r (1982a, b ), and  K aloup tsid is and  T heod o rid is  
(1987) a re  particu la rly  re lev an t to  th e  sp ectrum  es tim ation  p rob lem .

12.3.6 Selection of AR Model Order

O n e o f th e  m ost im p o rtan t aspects of th e  use o f th e  A R  m odel is th e  se lection  
o f  th e  o rd e r  p.  A s a g en era l ru le , if we se lect a  m odel w ith to o  low  an  o r ­
d er, we o b ta in  a  highly sm o o th ed  spectrum . O n  th e  o th e r  hand , if p  is se lec ted  
to o  high, we ru n  th e  risk o f in troduc ing  spu rio u s low -level p eak s in the  spec­
tru m . W e m en tio n ed  prev iously  th a t o ne  ind ica tion  o f th e  p e rfo rm an ce  o f  th e  
A R  m odel is th e  m ean -sq u are  value  o f  the  resid u a l e rro r , which, in general, is 
d iffe ren t fo r each o f th e  estim ato rs  described  above. T h e  characteristic  of th is 
resid u a l e r ro r  is th a t it d ecreases as th e  o rd e r  o f  th e  A R  m odel is increased . 
W e can m o n ito r  th e  ra te  o f decrease and  decide to  te rm in a te  th e  p rocess w hen 
th e  ra te  o f d ecrease  b eco m es re la tive ly  slow. I t is ap p a re n t, how ever, th a t th is 
a p p ro ach  m ay  be im precise  and ill-defined, and  o th e r  m eth o d s should  be  investi­
gated .

M uch w ork  has b een  done by various resea rch e rs  o n  th is p ro b lem  and  m any 
e x p erim en ta l resu lts  have  been  given in th e  li te ra tu re  [e.g., th e  p ap e rs  by  G ersch  
and  S harpe  (1973), U lrych  and  B ishop  (1975), T o n g  (1975, 1977), Jo n e s  (1976), 
N u tta ll (1976), B e rrym an  (1978), K av eh  an d  B ruzzo n e  (1979), and  K ashyap 
(1980)].

T w o o f  th e  b e tte r  know n  c rite ria  fo r se lecting  th e  m o d el o rd e r have been  
p ro p o sed  by  A k a ik e  (1969, 1974). W ith  th e  first, ca lled  th e  f i nal  predict ion error
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(FPE)  criterion,  th e  o rd e r is se lec ted  to  m inim ize th e  p e rfo rm an ce  index

FPE('’, = <(̂ 373t) d2'3-30*
w here  a 2p is th e  es tim ated  variance o f  th e  linear p red ic tio n  e rro r . T h is p e rfo r­
m ance index is based  on  m inim izing th e  m ean -sq u a re  e r ro r  fo r a o n e -step  p red ic to r.

T h e  second c rite rio n  p ro p o sed  by A k a ik e  (1974), called  th e  A k a i k e  i n forma­
t ion criterion (A IC ), is based  o n  se lecting  the  o rd e r  th a t m inim izes

A IC (p )  =  In a l p +  2 p / N  (12.3.31)

N o te  th a t the  te rm  a 2p decreases and  th e re fo re  In er2p also  d ec reases  as th e  o rd er 
o f th e  A R  m odel is increased . H ow ever, 2 p / N  increases w ith  an  increase in p.  
H en ce  a m in im um  value is o b ta in ed  fo r som e p.

A n  alte rn a tiv e  in fo rm atio n  c rite rio n , p ro p o sed  by R issan en  (1983), is based  
on  se lecting  th e  o rd e r  th a t  mini mi ze s  the description length (M D L ), w here  M D L  
is defined  as

M D L (/j)  =  N \ r \ a 2p +  p i n  N  (12.3.32)

A  fou rth  crite rio n  has b een  p ro p o sed  by P arzen  (1974). T h is is called  the  
criterion autoregressive transfer  (C A T ) function  an d  is defined  as

C A T (p)  =  ( I  £  _ L  ) -  J -  (12.3.33)

w here

(12.3.34)

T h e  o rd e r p  is se lec ted  to  m inim ize C A T (/?).
In  applying th is crite ria , th e  m ean  should  b e  rem oved  fro m  th e  d a ta . Since 

a 2k d ep en d s o n  th e  type  o f spectrum  es tim ate  we o b ta in , th e  m o d el o rd e r is also 
a function  o f th e  criterion .

T h e  ex p erim en ta l resu lts  given in th e  re fe ren ces ju s t c ited  ind ica te  th a t 
th e  m o d el-o rd er se lection  crite ria  d o  n o t y ield  defin itive resu lts . F o r  exam ple, 
U lrych  and  B ishop  (1975), Jo n e s  (1976), an d  B e rry m an  (1978), found  th a t the  
F P E (p )  crite rion  ten d s to  u n d e res tim a te  th e  m o d el o rd er. K ashyap  (1980) show ed 
th a t th e  A IC  crite rio n  is sta tistically  inconsis ten t as N  — oo.  O n  th e  o th e r  
h an d , the  M D L  in fo rm atio n  c rite rio n  p ro p o sed  b y  R issan n  is sta tistically  con­
sisten t. O th e r ex p erim en ta l resu lts ind ica te  th a t fo r  sm a d a ta  leng ths, th e  o r ­
d e r  o f th e  A R  m odel shou ld  be se lec ted  to  b e  in th e  ran g e  N /3  to  N f l  for 
good  results. I t  is a p p a re n t th a t in  th e  absence  o f any p r io r  in fo rm atio n  re ­
gard ing  the  physical p rocess th a t re su lted  in th e  d a ta , o n e  shou ld  try  d iffer­
en t m odel o rd e rs  and  d iffe ren t c rite ria  and , finally, co n s id er th e  d ifferen t 
results.
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12.3.7 MA Model for Power Spectrum Estimation

A s show n in Section  12.3.1, th e  p a ra m e te rs  in a M A (^ ) m o d el are  re la te d  to  th e  
sta tis tical a u to co rre la tio n  yxx(m)  by  (12.3.10). H ow ever,

w h ere  th e  coeffic ients [dm] a re  re la te d  to  th e  M A  p a ra m e te rs  by th e  expression

It is a p p a re n t from  these  expressions th a t we do  n o t have to  solve fo r th e  M A  
p a ram e te rs  {£>*} to  estim ate  th e  po w er spectrum . T h e  estim ates o f  th e  au to c o rre ­
lation  yxx(m)  fo r  |«?| < q suffice. F rom  such estim ates we co m p u te  th e  es tim ated  
M A  pow er spectrum , given as

w hich is iden tica l to  th e  classical (n o n p a ra m e tric )  po w er sp ec tru m  estim ate  d e ­
sc ribed  in S ection  12.1.

T h e re  is an a lte rn a tiv e  m e th o d  fo r d e te rm in in g  {bk} based  on  a  h igh -o rder 
A R  ap p ro x im atio n  to  th e  M A  process. T o  be specific, le t th e  MA(<?) p rocess be 
m o d eled  by an  A R (p )  m odel, w here  p  > >  q.  T h en  B(z)  =  1 / A( z ) ,  o r  equ ivalen tly , 
B(z )A( z )  =  1. T hus th e  p a ra m e te rs  {bk} an d  {ak} a re  re la te d  by a convo lu tion  sum , 
w hich can b e  expressed  as

w here {a„} a re  th e  p a ra m e te rs  o b ta in ed  by fitting  the  d a ta  to  an  A R (p )  m odel.
A lth o u g h  th is set o f eq u a tio n s can  be easily  solved fo r th e  {£*}, a  b e tte r  fit is 

o b ta in ed  by using  a  least-squares e r ro r  crite rion . T h a t is, we fo rm  th e  sq u a red  e r ro r

which is minimized by selecting the MA(?) parameters {£*}. The result of this

(12.3.35)

g-\m\

(12.3.37)

(12.3.36)

an d  th e  p o w er spectrum  fo r the  MA(<7) p rocess is

(12.3.38)

(12.3.39)

n =  0 
n t^O

(12.3.40)

2

ao = l, ak = 0, k < 0 (12.3.41)
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minimization is
►~ib  =  - R J r aa (12.3.42)

w here th e  e lem en ts  o f and  raa a re  given as

p-tf-jl
Raa(\i ~  y |) =  2 2  i , j  =  l , 2 , . . . , q

n=0

(12.3.43)p-i
raa 0  ) =  2 2  n +  ' I =  1, 2, . . . ,

This least sq u a res m eth o d  fo r d e te rm in in g  th e  p a ra m e te rs  o f th e  MA(<j) 
m odel is a ttr ib u te d  to  D u rb in  (1959). I t  has b een  show n by K ay  (1988) th a t this 
es tim ation  m eth o d  is app rox im ate ly  th e  m axim um  like lihood  u n d e r  th e  assum ption  
th a t th e  observed  p rocess is G aussian .

T he o rd e r  q o f the  M A  m odel m ay  be  d e te rm in ed  em pirica lly  by  severa l 
m ethods. F o r exam p le , th e  A IC  fo r M A  m odels has th e  sam e form  as fo r A R  
m odels,

A lC (tf) =  l n < 4  +  ^  (12.3.44)

w here a 2q is an  e s tim ate  o f th e  variance o f th e  w hite  noise. A n o th e r  ap p roach , 
p ro p o sed  by C how  (1972b), is to  filter th e  d a ta  w ith the  inverse  MA(<y) filter and 
test th e  filtered  o u tp u t fo r w hiteness.

12.3.8 ARMA Model for Power Spectrum Estimation

T he B urg  algorithm , its variations, and  th e  leas t-sq u ares m e th o d  d escribed  in th e  
prev ious sections p ro v id e  re liab le  h igh -reso lu tion  sp ec tru m  e s tim a tes  b ased  o n  
the  A R  m odel. A n  A R M A  m odel p rov ides us w ith an  o p p o rtu n ity  to  im prove on 
th e  A R  sp ectrum  es tim ate , p e rh ap s, by using few er m odel p a ra m e te rs .

T h e  A R M A  m odel is p articu larly  a p p ro p ria te  w hen  th e  signal has b e e n  cor­
ru p ted  by  noise. F o r  exam ple, suppose  th a t th e  d a ta  x ( n ) a re  g e n e ra te d  by  an 
A R  system , w here th e  system  o u tp u t is co rru p ted  by  add itive w h ite  noise . T he 
z-transfo rm  of th e  au to co rre la tio n  o f the  re su ltan t signal can  b e  ex p ressed  as

r ’ A z )  =  J u m ? T ) + " ’
(12.3.45)

_  a l  + < t„ 2 A ( z ) A ( z  j )

w here cr„2 is th e  varian ce  o f th e  add itive  noise. T h e re fo re , th e  p rocess x(n)  is 
A R M A (/j, p),  w h ere  p  is th e  o rd e r  o f th e  au to co rre la tio n  p rocess . T h is re la ­
tionsh ip  p rov ides som e m otivation  fo r investigating  A R M A  m o d e ls  fo r pow er 
spectrum  estim ation .

A s we hav e  d em o n s tra ted  in S ection  12.3.1, th e  p  ra m e te rs  o f  th e  A R M A  
m odel a re  re la ted  to  th e  au to co rre la tio n  by  th e  e q u a ' on in (12.3.4). F o r  lags
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|m | >  q,  th e  e q u a tio n  involves only  th e  A R  p a ra m e te rs  {a*}. W ith  estim ates 
su b s titu ted  in p lace o f yxx(m),  we can  solve th e  p  eq u a tio n s  in  (12.3.5) to  o b ta in  
o*. F o r  h ig h -o rd er m odels, how ever, th is ap p ro ach  is likely to  yield p o o r  estim ates 
o f  th e  A R  p a ra m e te rs  d ue  to  th e  p o o r  estim ates o f th e  au to co rre la tio n  fo r large 
lags. C onsequen tly , th is ap p ro ach  is n o t recom m ended .

A  m o re  re liab le  m e th o d  is to  co n stru c t an  o v e rd e te rm in e d  se t o f linear e q u a ­
tions fo r m  >  q,  and  to  use th e  m eth o d  o f least sq u a res o n  th e  se t o f o v e rd e te r­
m ined  eq u a tio n s , as p ro p o sed  by C adzow  (1979). T o  e lab o ra te , suppose  th a t 
th e  a u to co rre la tio n  sequence  can b e  accu ra te ly  e s tim a ted  u p  to  lag M,  w here 
M  >  p  +  q.  T h e n  w e can w rite  the  follow ing se t o f  lin ea r  equations:

rxx(q) 
rxx(q +  1)

,rxx( M  -  1) 

o r equ ivalen tly ,

rxx(q ~  1) 
rxx(q)

rxx( M - 2 )

rXx(q -  p  +  1) 
rxx(q -  p  +  2)

rxx( M  -  p)

R r r S  --- Tr

-] ~a\  ‘ ~rxx(q +  1)~
o2

=  _
rxx(q + 2 )

. r xx(M)  _
(12.3.46)

(12.3.47)

Since is o f  d im ension  ( M  — q)  x  p,  and  M  — q > p  we can  use th e  least-squares 
c r ite rio n  to  so lve fo r th e  p a ra m e te r  vecto r a. T h e  resu lt o f th is m in im ization  is

a =  - ( R '  R „ r (12.3.48)

T h is  p ro ced u re  is called  the  least-squares modi f i ed  Yu l e - Wa l ke r  method.  A  
w eigh ting  fac to r  can also  be app lied  to  th e  au to co rre la tio n  seq u en ce  to  d eem p h a- 
size th e  less re liab le  es tim ates for large lags.

O nce th e  p a ram e te rs  fo r th e  A R  p a r t o f th e  m odel have b een  estim ated  as 
in d ica ted  above, we have  th e  system

p
A(z) =  1 +  £ ^ “* (12.3.49)

t=i

T h e  se q uence  x( n)  can  now  be filte red  by th e  F IR  filter A(z )  to  yield th e  sequence

p
v(n) =  x (n ) +  2 2 & tx (n — k) n =  0 , 1 , . . . ,  N  — 1 (12.3.50)

*=i

T h e  cascade o f  th e  A R M A (p , q)  m odel w ith  A(z)  is app ro x im ate ly  th e  MA(<?) 
p ro cess g e n e ra te d  by th e  m odel B{z).  H en ce  w e can  app ly  th e  M A  estim ate  given 
in th e  p reced in g  section  to  ob ta in  th e  M A  spectrum . T o  be  specific, th e  filtered  
seq u en ce  v(n) fo r  p  <  n <  N —1 is used  to  form  th e  e s tim a ted  co rre la tio n  sequences 
ruv(m),  from  w hich  we ob ta in  th e  M A  spectrum

^ A( / )  =  L  rw ( m ) e ~ ^ (12.3.51)
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First, we observe th a t th e  p a ra m e te rs  {£>*} a re  n o t re q u ire d  to  d e te rm in e  th e  pow er 
spectrum . Second, w e o b se rv e  th a t r„„(m ) is an  e s tim a te  o f th e  a u to c o rre la tio n  fo r 
the  M A  m odel given by (12.3.10). In  fo rm ing  th e  estim ate  rvv(m),  w eighting  (e.g., 
w ith  th e  B a rtle tt  w indow ) m ay  be  used  to  deem p h asize  c o rre la tio n  es tim ates fo r 
large lags. In  ad d itio n , th e  d a ta  m ay  b e  filte red  by a  b ackw ard  filter, th u s crea ting  
an o th e r  sequence , say vb(n),  so th a t b o th  v(n) a n d  vb(n) can  b e  used  in fo rm ing  
th e  estim ate  o f th e  au to co rre la tio n  r„„(m), as p ro p o sed  by K ay  (1980). F inally , 
the es tim ated  A R M A  po w er spectrum  is

pMA/
P * RMA( f )  =  -----------vjL- l l l ------  (12.3.52)

1+Ea

T h e  p rob lem  o f o rd e r se lection  fo r  th e  A R M A (p , g ) m o d e l has b e e n  inves­
tiga ted  by Chow  (1972a, b) and  B ruzzo n e  and  K aveh  (1980). F o r  th is p u rp o se  the  
m in im um  o f the  A IC  index

A IC (p , q)  =  I n a l "  + ~ ~  (12.3.53)

can be used , w here  6 l pq is an  es tim ate  o f th e  varian ce  o f th e  in p u t e rro r . A n  
add itional te s t on  th e  ad equacy  o f a p a rticu la r  A R M A (p , q)  m o d e l is to  filter the  
d a ta  th ro u g h  the  m odel and  te s t fo r w hiteness o f th e  o u tp u t da ta . T h is  req u ires th a t 
th e  p a ram e te rs  o f  th e  M A  m odel be co m p u ted  from  th e  e s tim ated  au to co rre la tio n , 
using spectral fac to riza tion  to  d e te rm in e  B(z)  from  D(z)  =

F o r  add itio n a l read in g  o n  A R M A  p o w er sp e c tru m  es tim a tio n , th e  re a d e r  is 
re fe rred  to  th e  p ap e rs  by G ra u p e  e t al. (1975), C adzow  (1981, 1982), K ay (1980), 
and  F rie d la n d e r (1982b).

12.3.9 Some Experimental Results

In  th is section  we p resen t som e ex p erim en ta l resu lts  on  th e  p e rfo rm an ce  o f A R  
and  A R M A  pow er sp ec tru m  es tim ates o b ta in e d  by  using  artificially  g e n e ra ted  data . 
O u r  ob jective is to  co m p are  th e  sp ec tra l estim atio n  m eth o d s on  th e  basis o f th e ir  
frequency  reso lu tion , bias, an d  th e ir  ro b u stn ess in th e  p resen c e  o f  add itive  noise.

T h e  d a ta  consist o f  e ith e r  o n e  o r  tw o  sinuso ids an d  add itiv e  G aussian  noise. 
T h e  tw o sinusoids a re  spaced  A f  ap a rt. C learly , th e  u n d erly in g  process is 
A R M A (4 ,4). T h e  resu lts th a t a re  show n em ploy  an  A R (p)  m o d e l fo r these 
data . F o r  high signal-to -no ise ra tio s  (S N R s) we exp ec t th e  A R (4 )  to  b e  ad eq u a te . 
H ow ever, fo r low SN R s, a h ig h e r-o rd e r  A R  m o d el is n eed ed  to  ap p ro x im a te  th e  
A R M A (4 ,4) p rocess. T he re su lts  given below  a re  consisten t w ith  th is  s ta te m e n t. 
T h e  S N R  is defined  as 101og10 w h ere  a 2 is variance  o f  th e  add itive noise
and  A is th e  am p litu d e  o f th e  sinusoid.

In  Fig. 12.6 w e illu stra te  th e  resu lts fo r  N  =  20  d a ta  po in ts  b a se d  on  an A R (4 ) 
m odel w ith  a S N R  =  20 dB  an d  A f  =  0.13. N o te  th a t th e  Y u le -W a lk e r  m e th o d  
gives an ex trem ely  sm o o th  (b ro a d ) sp e c tra l e s tim ate  w ith  sm all peak s . I f  A f  is
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Figure 12.6 Comparison of AR spectrum estimation methods.

d ecreased  to  A f  =  0.07, the Y u le -W alk e r m eth o d  no  longer reso lves th e  p eak s as 
illu stra ted  in Fig. 12.7. Som e bias is also ev iden t in th e  B urg  m eth o d . O f course , by 
increasing  th e  n u m b er o f d a ta  po in ts the Y u le -W alk e r m e th o d  even tually  is able 
to  resolve th e  peaks. H ow ever, the B urg  and  least-sq u ares m eth o d s a re  clearly  
su p e rio r  fo r sh o rt d a ta  records.

T h e  effect o f add itive  noise on  th e  es tim ate  is illu stra ted  in Fig. 12.8 fo r  the  
leas t-sq u ares m eth o d . T h e  effect o f filter o rd e r on  th e  B urg  and  least-squares 
m e th o d s is illu stra ted  in Figs. 12.9 and  12.10, respectively . B o th  m e th o d s exhibit 
spu rious p eak s as th e  o rd e r  is increased  to  p  =  12.

T h e  effect o f in itial phase  is illu stra ted  in Figs. 12.11 and  12.12 fo r th e  B urg  
and  leas t-sq u ares m ethods. I t is c lear th a t th e  least-squares m e th o d  exh ib its less 
sensitiv ity  to  in itia l p h ase  th a n  th e  B urg  algorithm .

A n  exam ple  o f line sp litting  fo r th e  B urg  m eth o d  is show n in Fig. 12.13 w ith 
p  =  12. It does no t o ccu r fo r th e  A R (8 ) m odel. T h e  least-squares m eth o d  d id 
n o t exh ib it line sp litting  u n d e r  th e  sam e conditions. O n  th e  o th e r  hand , th e  line 
sp litting  on  th e  B urg  m e th o d  d isap p eared  w ith an increase in th e  n u m b er o f  d a ta  
po in ts  N.

F igures 12.14 a n d  12.15 illu stra te  th e  reso lu tion  p ro p e rtie s  o f th e  B u rg  and  
least-sq u ares m e th o d s  fo r  A f  =  0.07 an d  N  =  20 po in ts  a t low S N R  (3 dB ). 
Since th e  add itive  noise p rocess is A R M A , a  h ig h er-o rd er A R  m odel is req u ired  
to  p ro v id e  a g ood  ap p ro x im atio n  a t low SN R . H en ce  th e  frequency  reso lu tion  
im proves as th e  o rd e r  is increased .

-10
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Figure 12.7 Comparison of AR spectrum estimation methods.
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Figure 1Z8 Effect of additive noise on LS method.
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Figure 12.9 Effect of filler order of Burg method.

Figure 12.10 Effect of filter order o d  LS method.
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Figure 12.11 Effect of initial phase on Burg method.
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Figure 12.12 Effect of initial phase on LS method.
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Frequency (cycles/sample)

Figure 12.13 Line splitting in Burg method.

FigHre 12.14 Frequency resolution o f B urg m ethod with N  =  20 points.
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Frequency (cycles/sample)

Figure 12,15 Frequency resolution of LS method with N — 20 points.

T he F P E  fo r th e  B urg  m e th o d  is illu stra ted  in Fig. 12.16 fo r  an  S N R  =  3 dB. 
F o r th is SN R  th e  op tim um  value  is p  =  12 accord ing  to  th e  F P E  crite rion .

T h e  B urg  an d  least-squares m eth o d s w ere also  te s te d  w ith  d a ta  from  a n a r­
row band  process, o b ta in ed  by exciting a fou r-po le  (tw o  pairs o f  com plex -con jugate  
po les) n arro w b an d  filter an d  se lecting  a p o rtio n  o f th e  o u tp u t se q u en ce  fo r th e  d a ta  
reco rd . F igure 12.17 illu stra tes the  su p e rp o sitio n  o f 20 d a ta  re c o rd s  o f  20 po in ts 
each . W e observe  a relatively  sm all variability . In  co n trast, th e  B u rg  m e th o d  
exh ib ited  a  m uch la rg er  variab ility , ap p rox im ate ly  a  fac to r  o f 2 c o m p ared  to  the  
least-squares m eth o d . T h e  resu lts  show n in Figs. 12.6 th ro u g h  12.17 are  tak en  
from  P oo le  (1981).

F inally , we show  in Fig. 12.18 th e  A R M A (1 0 ,10) spec tra l es tim a te s  o b ta in ed  
by K ay (1980) fo r tw o  sinuso ids in no ise using th e  leas t-sq u ares A R M A  m eth o d  
describ ed  in Section  12.3.8, as an  illu stra tio n  o f th e  quality  o f  p o w er sp ectrum  
es tim ation  o b ta in ed  w ith  th e  A R M A  m odel.

12.4 MINIMUM VARIANCE SPECTRAL ESTIMATION

T h e  spectra l e s tim a to r  p ro p o sed  by C apon  (1969) w as in ten d ed  fo r  use in large 
seism ic a rrays fo r freq u e n cy -w a v e  n u m b e r  estim atio n . I t w as la te r  ad ap ted  to  
s ingle-tim e-series sp e c tru m  es tim atio n  by  L acoss (1971), w ho  d e m o n s tra te d  th a t
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Figure 12.16 Final prediction error for 
Burg estimate.

-12

20 points 
4 poles
; 1.;t  = .95f±̂ - 23' 
Zi = ,95e *

20 data sequences

.20 .22 .24 .26 .28 .30 .32 .34 
Frequency (cycles/sample)

.36 .38 .40

Figure 12.17 Effect of starting point in sequence on LS method.
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Frequency (cycles/sample)

(b)

Figure 12.18 A R M A  (10, 10) power 
spectrum  estim ates from  paper by Kay 
(1980). Reprinted with permission from 
the IEE E.

th e  m eth o d  p rov ides a  m in im um  variance  unb iased  estim ate  o f  th e  spec tra l com ­
p o n en ts  in the  signal.

Follow ing th e  d ev e lo p m en t o f  L acoss, le t us consid er an  F IR  filter w ith  coef­
ficients a*, 0 <  k <  p,  to  b e  d e te rm in ed . U n like  th e  lin ear p red ic tio n  p ro b lem , we 
d o  n o t constra in  ao to  be unity . T hen , if th e  o b se rv ed  d a ta  * (« ) , 0 <  n <  N  — 1, 
a re  passed  th ro u g h  th e  filter, th e  resp o n se  is

p
y(n) =  21<ikx(n - k )  =  X '(n )a

k=0
(12.4.1)
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X l (n) =  [jr(n ) x(n  — 1) x ( n  -  p)  ] is th e  d a ta  v ec to r  and  a  is th e  filter co ef­
ficient vecto r. If w e assum e th a t £ [* (« )]  =  0, th e  variance o f th e  o u tp u t seq u en ce  is

a 2 =  £ [ |y (n ) |2] =  £ [a* 'X * (n )X ' (n)a]
(12.4.2)

=  a * T „ a

w h ere  T xx is th e  a u to co rre la tio n  m atrix  o f the  seq u en ce  jc(n), w ith e lem en ts  yxx(m).
T h e  filter coeffic ients are  se lec ted  so th a t a t th e  freq u en cy  f s, th e  frequency  

resp o n se  o f  th e  F IR  filter is no rm alized  to  un ity , th a t is,

£ ■; ake - j2*k}' =  1 
k = 0

T his co n s tra in t can also be w ritten  in m atrix  fo rm  as

E * '( / / ) a  =  1 (12.4.3)
w h ere

E '( / , )  =  [ l  e*2** ej2*pf']

B y m inim izing the  variance  a 2 sub jec t to  th e  co n s tra in t (12.4.3), we ob ta in  an  
F IR  filter th a t passes th e  frequency  co m p o n en t / /  u n d is to rted , w hile co m p o n en ts  
d is tan t from  / /  a re  severe ly  a tten u a ted . T h e  resu lt o f  th is m in im ization  is show n 
by Lacoss to  lead  to  th e  coeffic ient vector

a =  r - 1 E* E* ( / , )  (12.4.4)

If  a  is su b s titu ted  in to  (12.4.2), w e o b ta in  th e  m in im um  variance

? 1
CTmin =  ------------- i---------- (12.4.5)

E ' o n r - ' E ' a , )

T h e  expression  in (12.4.5) is the  m in im um  variance  p o w er sp ec tru m  es tim ate  
a t th e  freq u en cy  f s. By changing  / /  over th e  range 0 <  f t <  0.5, w e can  o b ta in  
th e  po w er sp e c tru m  es tim ate . I t  shou ld  be n o te d  th a t a lth o u g h  E ( / )  changes w ith  
th e  cho ice o f frequency , F ^ 1 is com p u ted  only  once. A s d e m o n s tra te d  by L acoss
(1971), th e  co m p u ta tio n  o f the  q u ad ra tic  fo rm  E ' c a n  be d o n e  w ith  a 
single D F T .

W ith  an  e s tim ate  R „  o f th e  a u to co rre la tio n  m atrix  su b s titu ted  in p lace  o f 
T j j , w e o b ta in  th e  m in im um  variance  pow er sp e c tru m  es tim a te  o f C ap o n  as

p W ( f )  = -----------------------  (12.4.6)
P ( / ) R ^ E * ( / )

I t  has b een  show n by L acoss (1971) th a t th is po w er sp ectrum  e s tim a to r  yields 
e s tim ates o f  th e  sp ec tra l p eak s p ro p o rtio n a l to  the  p o w er a t th a t frequency . In  
constras t, th e  A R  m e th o d s  describ ed  in Section  12.3 re su lt in es tim ates o f th e  
spectra l p eak s  p ro p o rtio n a l to  th e  sq u a re  o f th e  po w er a t th a t frequency .

T his m in im um  varian ce  m eth o d  is basically a  filter b an k  im p lem en ta tio n  fo r 
th e  sp ec tru m  es tim ato r. I t  d iffers basically fro m  the filter b an k  in te rp re ta tio n  o f  
th e  p e rio d o g ram  in  th a t  th e  filter coeffic ients in th e  C a p o n  m e th o d  a re  op tim ized .
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E x p erim en ts  o n  th e  p erfo rm an ce  o f this m e th o d  co m p ared  w ith  th e  p e r­
fo rm ance o f th e  B u rg  m e th o d  have b een  d o n e  by L acoss (1971) and  o thers. In 
genera l, th e  m in im um  v ariance  estim ate  in (12.4.6) o u tp e rfo rm s th e  n o n p a ram etric  
spectra l e s tim ato rs  in frequency  reso lu tion , bu t it does n o t p ro v id e  th e  high fre ­
quency reso lu tio n  o b ta in e d  fro m  th e  A R  m eth o d s o f B urg  and  th e  unconstra in ed  
least squares. E x ten siv e  com parisons b e tw een  th e  B urg  m e th o d  an d  th e  m ini­
m um  variance m e th o d  hav e  b e e n  m ad e  in th e  p a p e r  by L acoss. F u rth e rm o re , 
B urg  (1972) d em o n s tra te d  th a t fo r a k now n  co rre la tio n  se q u en ce , the  m inim um  
variance sp ectrum  is re la ted  to  th e  A R  m o d el sp ectrum  th ro u g h  th e  eq u a tio n

w here r*xR(f, k) is th e  A R  p o w er sp ectrum  o b ta in ed  w ith an A R (it)  m odel. T hus 
th e  recip rocal o f th e  m in im um  v ariance  estim ate  is eq u a l to  th e  averag e  o f the  
recip rocals o f  all sp ec tra  o b ta in e d  w ith A R ( k )  m odels for 1 <  k < p.  Since 
low -order A R  m odels, in genera l, do  no t p rov ide  good  reso lu tio n , th e  averag ing  
o p era tio n  in (12.4.7) red u ces the  frequency  reso lu tio n  in th e  sp ec tra l estim ate . 
H en ce  we conclude th a t  th e  A R  pow er sp ectrum  estim ate  o f o rd e r  p  is su p e rio r 
to  th e  m in im um  v ariance  estim ate  o f o rd e r  p +  1.

T h e  re la tio n sh ip  given by (12.4.7) rep re sen ts  a  freq u e n cy -d o m ain  re la tionsh ip  
betw een  th e  C apon  m in im um  variance  e s tim a te  and  th e  B urg  A R  estim ate . A  
tim e-dom ain  re la tio n sh ip  b e tw een  these  tw o e s tim ates also can be es tab lished  as 
show n by M usicus (1985). T h is has led  to  a com pu ta tio n a lly  effic ient algorithm  
fo r the  m in im um  variance  es tim ate .

A d d itio n a l re fe ren ce s to  th e  m eth o d  of C apon  an d  co m p ariso n s w ith o th e r  
e s tim ato rs  can be found  in th e  lite ra tu re . W e cite th e  p ap ers  o f C a p o n  and  G o o d ­
m an  (1971), M a rz e tta  (1983), M a rze tta  and  L ang  (1983, 1984), C a p o n  (1983), and  
M cD onough  (1983).

12.5 EIGENANALYSIS ALGORITHMS FOR SPECTRUM ESTIMATION

In  Section  12.3.8 we d e m o n s tra te d  th a t an  A R (p )  p rocess c o r ru p te d  by  add itive 
(w hite) noise is eq u iv a len t to  an  A R M A (/? , p)  p rocess. In th is sec tion  we co n ­
sider th e  special case in w hich the  signal com p o n en ts  a re  sinuso ids c o rru p te d  by 
add itive w hite  no ise . T h e  a lg o rith m s a re  based  on  an  e igen -d eco m p o sitio n  o f th e  
co rre la tio n  m atrix  o f  th e  n o ise -co rru p te d  signal.

F ro m  o u r p rev io u s d iscussion  o n  th e  g en era tio n  o f sinuso ids in C h a p te r  4, 
we recall th a t a  rea l sinuso idal signal can  be  g en e ra ted  via th e  d iffe ren ce  equ a tio n ,

w here  a\  =  2 c o s 2 jt/* , 02 =  1, and  initially , x ( - l )  =  —1, x ( —2) =  0. T his system  
has a  p a ir  o f com plex -con jugate  p o le s (a t f  =  f  an d  f  =  —f t )  an d  th e re fo re  
g en e ra te s  th e  sinuso id  x(n) — cos 2n f kn, fo r  n >  f

(12.4.7)

x  (n) =  — d]X(n  — 1) — 02 x ( n  — 2) (12.5.1)



In  gen era l, a signal consisting  o f p  sinuso idal co m p o n en ts  satisfies the  d iffe r­
en ce  e q u a tio n

2 P
x(n)  =  -  2 2 a„x (n ~  m ) (12.5.2)

m=l

an d  co rre sp o n d s to  th e  system  w ith system  function

H{z)  = --------------------  (12.5.3)2 p
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..tZ
1

T h e  po lynom ial
2 p

A(z)  =  1 +  (12-5 '4>
m=l

has 2 p  ro o ts  on  the  u n it circle w hich co rre sp o n d  to  th e  frequencies o f  th e  sinusoids.
N ow , sup p o se  th a t the  sinusoids a re  co rru p te d  by a w hite no ise sequence 

ic(rt) w ith £ [ t i f ( n ) |2] =  <r2. T hen  w e observe  th a t

y(n)  =  x (n)  +  w(n)  (12.5.5)

If w e su b stitu te  x(n)  =  y ( n ) — w(n)  in (12.5.2), w e ob ta in

2 p

y ( n ) -  w(n)  ~  -  ^ [ . v ( n  -  m) -  w(n  -  m)]am
m=1

o r, equ ivalen tly ,
2p 2 p

T  amy(n — m)  — Y J  omw(n — m)  (12.5.6)
m=0 m=0

w here , by defin ition , a0 =  1.
W e observe  th a t  (12.5.6) is th e  d ifference eq u a tio n  fo r an  A R M A (p , p)  p ro ­

cess in w hich  b o th  the  A R  and  M A  p a ra m e te rs  a re  iden tica l. T h is sym m etry  is a 
c h arac te ris tic  o f  th e  sinusoidal signals in w hite noise. T h e  d ifference  eq u a tio n  in 
(12.5.6) m ay  be ex p ressed  in  m atrix  fo rm  as

Y 'a  =  W 'a  (12.5.7)

w h ere  Y r =  [y (n )  y(n  — 1) • ■ ■ y(n -  2p)  ] is th e  o b se rv ed  d a ta  vecto r o f d i­
m en sio n  (2p  4 -1 ) , W ' =  [ win)  w(n  — 1) ■ • • w(n  -  2p )  ] is th e  noise vector, 
an d  a =  [ 1 a\ ■■■ ct2P ] is th e  coeffic ient vecto r.

If  we p rem u ltip ly  (12.5.7) by Y  an d  tak e  th e  exp ec ted  value , we o b ta in

E ( Y Y >  =  £ (Y W ')a  =  £ [ (X  -I- W )W r]a
(12.5.8)

r yya =  < a

w h ere  w e have u sed  th e  assum ption  th a t th e  se q u en ce  w(n)  is zero  m ean  and  
w h ite , and  X  is a  de term in is tic  signal.
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T h e  eq u a tio n  in (12.5.8) is in th e  fo rm  o f a n  e ig en eq u a tio n , th a t  is,

( I V - < r 2I)a  =  0  (12.5.9)

w here  c 2 is an  eigenvalue  o f th e  au to co rre la tio n  m atrix  T >7. T h e n  th e  p a ra m e te r  
v ecto r a is an  e igenvecto r associated  w ith th e  eigenvalue  cr2. T h e  e ig en eq u a tio n  
in (12.5.9) form s th e  basis fo r th e  P isa ren k o  h arm o n ic  deco m p o sitio n  m ethod .

12.5.1 Pisarenko Harmonic Decomposition Method

F o r p  random ly -phased  sinusoids in add itive  w hite noise , th e  a u to c o rre la tio n  val­
ues are

y „ (0 )  =  ° l  +  Y 2  Pi

(12.5.10)

Yyy(k) =  22 COS^ n f , k  k i t  0

w here  Pj =  A] / 2  is th e  average  p o w er in the  ith  sinusoid  and  A, is th e  co rre sp o n d ­
ing am plitude. H en ce  we m ay w rite

c o s 2 j t / i  c o s  2 tt f i  
cos 4 ;r /i c o s  4 j t /2

cos 2 n f p 
cos 4 n f p

n r  p r r  y .w d) n
P2

—
Yyy( 2)

- P p - - Y y y (p ) -

(12.5.11)

.c o s  2 n p f i  cos 2 ttp /2  cos 2:

If  w e know  the frequencies f j ,  1 < i <  p , we can use this e q u a tio n  to  d e te rm in e  
the  pow ers o f th e  sinusoids. In  p lace  o f yxx(m), we use the  e s tim ates rxx(m). O nce 
th e  pow ers a re  know n, th e  no ise variance  can  b e  o b ta in e d  from  (12.5.10) as

=  ''v v (O )

p
y.p,
1=1

(12.5.12)

T h e  p rob lem  th a t rem ain s is to  d e te rm in e  th e  p  f req u e n c ies /■, 1 < 1 < 
p,  w hich, in tu rn , req u ire  know ledge o f  th e  e igen v ec to r a co rre sp o n d in g  to  the  
e igenvalue  cr2. P isa ren k o  (1973) obse rv ed  [see also P apou lis (1984) and  G re n a n d e r 
and  Szego (1958)] th a t  fo r an  A R M A  pro cess consisting  o f p  sinu so id s in  add itive 
w hite no ise , th e  variance  a 2 co rre sp o n d s to  th e  m in im um  eigen v a lu e  o f  r vv w hen 
th e  d im ension  o f the  au to co rre la tio n  m atrix  equ a ls  o r  exceeds (2p  + 1 )  x  (2p  + 1 ) . 
T h e  d es ired  A R M A  coefficient vecto r co rre sp o n d s to  th e  e ig en v ec to r associated  
w ith th e  m inim um  eigenvalue. T h e re fo re , th e  frequ en c ies / , ,  1 <  i <  p  are 
o b ta in e d  from  th e  ro o ts  o f th e  po lynom ial in  (12.5.4), w here  th e  coeffic ients are  
th e  e lem en ts  o f th e  e igen v ec to r a co rre sp o n d in g  to  th e  m in im um  eigenvalue  <r2.

In  sum m ary, th e  P isa ren k o  h arm o n ic  deco m p o sitio n  m e th o d  p ro ceed s as 
follow s. F irs t we es tim ate  r yy from  th e  d a ta  (i.e., w e fo rm  th e  au to co rre la ­
tion  m atrix  R yy). T h en  we find th e  m in im um  eigenvalue  and  th e  co rrespond ing  
m in im um  eigenvecto r. T h e  m in im um  eigen v ec to r y ields th e  p a ra m e te rs  o f th e
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A R M A (2 /? ,2 p )  m odel. F ro m  (12.5.4.) we can com pu te  th e  roo ts  th a t co n stitu te  
the  frequ en c ies {/,}. By using these  frequencies, we can  solve (12.5.11) for th e  
signal p ow ers {/’,} by substitu ting  the  estim ates ryy(m)  fo r  y vy(m).

A s will be seen  in th e  follow ing exam ple, th e  P isa ren k o  m e th o d  is based  on  
th e  u se  o f a  no ise  subspace e igenvecto r to  estim ate  the freq u en c ies o f the  sinusoids.

Example 125.1

Suppose that we are given the autocorrelation values yvv,(0) =  3, yv,( l)  =  1, and 
Yyy (2) =  0 for a process consisting of a single sinusoid in additive white noise. D eter­
mine the frequency, its power, and the variance of the additive noise.

Solution The correlation matrix is
r 3  i o- 

1 3 1 
-0 1 3 J

The minimum eigenvalue is the smallest root of the characteristic polynomial 

- 3 - A  1 0 
g ( k ) =  1  3 - X  1

.  0 1 3 - k j

Therefore, the eigenvalues are A.) =  3, k2 =  3 +  ->/2. ^  =  3 -  \ f l .
The variance of the noise is

a] =  Amjn =  3 -  V2

The corresponding eigenvalue is the vector that satisfies (12.5.9), that is.

=  (3 -  k)(k2 -  6X + 7} =  0

- V 2  1 0  ' - 1 - - o -

1 y / 2  1 = 0

.  0  1 y / 2 . - 0 2 - . 0 .

The solution is ai =  - y / 2 .  and a2 = \.
The next step is to use the value aj and a2 to determine the roots of the 

polynomial in (12.5.4). We have

s2 - n/2z +  1 =  0
Thus

1 . . 1 
Zl’ Z2 V2 J V2

Note that |zi| =  |z2| =  1, so that the roots are on the unit circle. The corresponding 
frequency is obtained from

Z; =*'"■■ ’ 1
s / 2 + y V2

which yields / i  =  | .  Finally, the power of the sinusoid is 

P \  COS 2 n f l  =  Yyy ( 1 )  =  1

/>! =  V 2

and its amplitude is A = J2PX = \/2v^.
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As a check on our computations, we have 

a l  = y,.v(0) -  Pi 

= 3 - -Jl
which agrees with An,jn.

12.5.2 Eigen-decomposition of the Autocorrelation Matrix 
for Sinusoids in White Noise

In the p rev ious d iscussion  we assum ed th a t the sinuso idal signal consists o f p  real 
sinusoids. F o r m ath em atica l conven ience  we shall now  assum e th a t th e  signal 
consists of p  com plex sinuso ids o f the form

p

x (n)  =  22 A ,eJ(2,t/‘n+,f‘, (12.5.13)
;=i

w here the  am plitudes {A;} and  the  frequencies j / ;-} a re  u n k n o w n  and  th e  phases 
{<f>, } a re  statistically  in d ep en d en t ran d o m  variables unifo rm ly  d is tr ib u ted  on  (0, 2n) .  
T hen  the  ran d o m  p rocess x(n)  is w ide-sense s ta tio n ary  w ith au to c o rre la tio n  func­
tion

y ,,(m ) =  22 Piei2nf'm (12.5.14)
/=!

w here, for com plex sinusoids, P, =  A ? is th e  po w er of th e  / th  sinuso id .
Since the sequence  o b se rved  is y(n)  =  x (m)  + w ( n ), w h ere  w{n)  is a w hite 

noise sequence w ith sp ec tra l density  erj, th e  a u to co rre la tio n  fu n c tio n  fo r v(n) is

Yyy(m) =  yIX( m ) + a l S ( m )  m =  0, ± 1 , . . . ,  ± { M  -  1) (12.5.15)

H ence the  M  x  M  a u to co rre la tio n  m atrix  fo r y ( n ) can be ex p ressed  as

r Vv =  r „  +  ctu2i  (12.5.16)

w here r fJt is th e  au to co rre la tio n  m atrix  fo r the signal x(n)  and  a l l  is the  au to c o r­
re la tion  m atrix  for th e  noise. N o te  th a t if select M  > p , T IX w hich is o f  d im ension 
M  x M  is no t o f full ran k , because  its ran k  is p.  H ow ever, T vv is full ran k  because 
<7*1 is o f ran k  M.

In fact, the  signal m atrix  T** can be rep re sen ted  as
p

T xx =  22 (12.5.17)
1 = 1

w here H  d en o tes th e  con jugate  tran sp o se  and  s, is a signal v ec to r o f  d im ension  M  
defined as

s,- =  f l ,  ei7* f \ e iA*{\  l!* ] (12.5.18)

Since each  vector (o u te r  p ro d u  '0  s ,s f  is a m atrix  o f  ran k  1 and  since th e re  a re  p  
v ec to r p ro d u c ts , th e  m atrix  T*, is o f rank  p.  N o te  th a t if the  sinuso ids w ere real, 
th e  co rre la tio n  m atrix  T JJf has ran k  2p.
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N ow , le t us p e rfo rm  an  eigen-decom position  o f th e  m atrix  L e t the  
eigenvalues {A/} be o rd e re d  in decreasing  value  w ith  k\  >  Aj >  A,3 >  • • - >  k M and  
le t th e  co rre sp o n d in g  e igenvecto rs b e  d e n o te d  as {v,, i =  1 , . . . ,  M}.  W e assum e 
th a t th e  e igenvecto rs a re  no rm alized  so  th a t vj1 ■ v, =  . In  the  absence  o f noise 
th e  eigenvalues A., , i =  1, 2 , . . . ,  p,  a re  non zero  w hile k p+i =  k p+2 =  • • • =  =
0. F u rth e rm o re , it follow s th a t th e  signal co rre la tio n  m atrix  can be  expressed  
as

p

r „  =  (12.5.19)
/=i

T hus, th e  e igenvecto rs v(, i =  1, 2 , . . . , p  span  the  signal subspace as do  th e  
signal vecto rs s, , i =  1, 2 , . , . ,  p.  T hese  p  e igenvectors fo r th e  signal subspace a re  
called  th e  principal  eigenvectors  and  the  co rre spond ing  e igenvalues a re  called th e  
principal  eigenvalues.

In  th e  p resen ce  o f noise , the  noise au to co rre la tio n  m a trix  in (12.5.16) can be 
re p re se n te d  as

M
o ] \  =  a l  2 2  W ?  (12.5.20)

/=i

By su b s titu tin g  (12.5.19) and  (12.5.20) in to  (12.5.16), we ob ta in

r w =  2 2 k ‘*iVil + 2 2 ^ y ‘y ^
1=1 1=1

(12.5.21)

=  2 2 (k ‘ +  +  2 2  fT- v' v/ /
1=1 i=p+i

T his e igen -decom position  se para te s th e  eigenvecto rs in to  tw o  sets. T h e  se t {v,, i =
1, 2 , . . . ,  p],  w hich are  th e  principal eigenvectors, span th e  signal subspace, w hile
th e  se t {v,, i =  p  +  \ .........M],  w hich are  o rth o g o n a l to  th e  p rincipal e igenvectors,
a re  said to  b e lo n g  to  th e  noise subspace. Since the  signal vec to rs  {s,, / =  1 ,2 , ,  p]  
a re  in th e  signal subspace, it  follow s th a t th e  {s, } a re  sim ply  lin ear com binations 
o f the  p rincipal e igenvecto rs and  a re  also o rth o g o n a l to  th e  vecto rs in  th e  noise 
subspace.

In  th is co n tex t w e see th a t th e  P isa ren k o  m e th o d  is b a se d  on  an  es tim ation  o f 
the  freq u en c ies by using  th e  o rthog o n a lity  p ro p e rty  b e tw een  th e  signal vectors and  
th e  vectors in  th e  no ise subspace. F o r  com plex sinuso ids, if  w e se lect M  =  p  +  1 
(fo r rea l sinuso ids we se lect M  =  2 p  +  1), th e re  is only a single e igenvecto r in 
th e  no ise  subspace  (co rresp o n d in g  to  th e  m in im um  eigen v a lu e) w hich m ust b e  
o rth o g o n a l to  th e  signal vectors. T h u s we have 

p
s f  vp+i =  2 2  i p + i t t  +  l ) e ' j2nf'k =  0 i =  1 , 2 , . . . ,  p  (12.5.22)

i=0

But (12.5.22) implies that the frequencies {/;} can be determined by solving for
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th e  zeros o f the  polynom ial
p

V(z )  =  J 2 vp + ^ k +  1^ ~ k (12.5.23)
n=0

all o f w hich lie o n  the un it circle. T h e  angles o f these  ro o ts  a re  2n f , ,  i =  1,
2....... P-

W h en  th e  n u m b er o f sinusoids is unknow n , th e  d e te rm in a tio n  o f p  m ay 
prove to  be difficult, especially  if the  signal level is n o t m uch h ig h e r th an  th e  noise 
level. In  theo ry , if M  >  p  +  1, th e re  is a m ultip lic ity  (M  -  p ) o f th e  m inim um  
eigenvalue. H ow ever, in p rac tice  th e  (Af—p)  sm all e igenvalues o f  R vv will p robab ly  
be d ifferen t. By com puting  all th e  eigenvalues it m ay be possib le  to  d e te rm in e  p  
by g roup ing  th e  M  — p  sm all (noise) e igenvalues in to  a se t and  averag ing  th em  to 
o b ta in  an  estim ate  o f cr*. T hen , th e  average value can  be  used  in (12.5.9) a long 
w ith Ryj, to  d e te rm in e  th e  co rre spond ing  eigenvector.

12.5.3 MUSIC Algorithm

T h e  m ultip le  signal classification (M U S IC ) m eth o d  is also a no ise  subspace fre ­
quency estim ator. T o  develop  th e  m eth o d , le t us first co n sid er th e  “ w eigh ted” 
spectra l estim ate

M
P ( f ) =  2 2  w*ls " ( / ) v*i2 (12.5.24)

*=/>+i

w here {v*, jt =  p  +  1 , ___M } are  the  e igenvecto rs in th e  noise subspace, { u ; * )  are
a se t o f positive w eights, an d  s ( / )  is th e  com plex sinuso idal v ec to r

s ( / )  =  (12.5.25)

N o te  th a t a t /  =  / ; ,  s ( / , )  =  s,, so  th a t a t any one o f  th e  p  sinuso idal frequency  
com p o n en ts  o f th e  signal, w e have

/> (/,)  =  0 i =  1 , 2 , . . . , / ?  (12.5.26)

H ence , the  recip rocal o f P ( f )  is a sharp ly  p eak ed  function  o f frequency  an d  p ro ­
vides a m e th o d  fo r estim ating  th e  frequencies o f th e  sinuso idal com p o n en ts . T hus 

1 1

2 2  I® ( / ) n  |
*=p+ i

(12.5.27)

A lth o u g h  theo re tica lly  1 / P ( f )  is infinite a t /  =  / , ,  in p rac tice  th e  es tim ation  e rro rs  
resu lt in finite va lues fo r  1 / P ( f )  a t all frequencies.

T he M U S IC  sinuso idal freq u en cy  es tim a to r  p ro p o sed  by Schm idt (1981, 
1986) is a  special case o f (12.5.27) in w hich  th e  w eigh ts wk — 1 fo r  all k. H en ce

2 2  |sH( / ) ”* |2 
k=p+1

^ m u s ic ( / )  =  —jj --------------------  (12.5.28)
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T h e  es tim ate  o f th e  sinusoidal frequencies a re  the  p eaks o f Pm usicC/)- O nce th e  
sinuso idal freq u en c ies a re  es tim ated , the  p o w er o f each  o f th e  sinusoids can  b e  
o b ta in ed  by solving (12.5.11).

12.5.4 ESPRIT Algorithm

E S P R IT  (e s tim atio n  o f  signal p a ram e te rs  via ro ta tio n a l invariance  tech n iq u es) is 
y e t a n o th e r  m e th o d  fo r estim ating  frequencies o f a sum  o f sinuso ids by  use o f  
an  e igen -d eco m p o sitio n  app roach . A s we o b se rve  from  the  d ev e lo p m en t th a t 
follow s, w hich  is d ue  to  R o y  e t al. (1986), E S P R IT  exp lo its an  underly ing  r o ta ­
tio n a l invariance  o f signal subspaces sp anned  by tw o tem p o ra lly  d isp laced  d a ta  
vectors.

W e again  consider th e  estim atio n  o f p  com plex-valued  sinuso ids in add itive  
w hite  noise . T he received  sequence  is given by th e  vector

y(n)  =  [?(« ). y(n  +  1 ) , . . . ,  y(n  +  M  -  1)]'
(12.5.29)

=  x(n) + w (n)

w here  x(n) is the  signal vecto r and  w(n) is th e  noise vecto r. T o  exp lo it th e  d e ­
term in is tic  ch a rac te r  o f the  sinusoids, we define the  tim e-d isp laced  v ecto r z(n)  =  
y (n +  1). T hus

z(n)  =  [z(n), z(n +  1).........z(n  +  M  -  1)]'
(12.5.30)

=  [;y(n +  1), y(n  +  2 ).........y(n  +  Af)]'

W ith  th ese  defin itions we can express th e  vectors y(n) and  z(n) as 

y (rt) =  Sa +  w (n)
(12.5.31)

i  (n ) =  S $ a  +  w(n)

w h ere  a  =  [ a \ , a i , . . ap]r, cii =  A , , and  $  is a  d iagonal p  x p  m atrix  consist­
ing o f th e  re la tiv e  p h ase  b e tw een  ad jacen t tim e sam ples o f each  o f  th e  com plex  
sinusoids,

$  =  d ia g [e '2,r/l, ej2jrf2, . . . ,  ei 2nf>] (12.5.32)

N o te  th a t th e  m atrix  &  re la te s  th e  tim e-d isp laced  v ecto rs y(n)  and  z(n)  an d  can  
b e  called  a  ro ta tio n  o p e ra to r. W e also  n o te  th a t  <l> is u n itary . T h e  m atrix  S is th e  
Af x  p  V an d e rm o n d e  m atrix  specified by  the  co lum n vecto rs

s, =  [1, e}2*fl , ejAnf‘, . . . ,  ] i =  1 , 2 .........p  (12.5.33)

N ow  th e  au to co v arian ce  m atrix  for the d a ta  vec to r y(n) is

r y,  =  E [y (n )y " (n )]

=  S P S W +  a l l
(12.5.34)
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w h ere  P  is the  p  x  p  d iagonal m atrix  consisting  o f th e  p o w ers o f  th e  com plex 
sinusoids,

P  =  d iag [|a i |2, \a2\2, - . . ,  \ap |2]
(12.5.35)

=  d ia g [ f i ,  P2.........Pp]

W e observe th a t P  is a  d iagonal m atrix  since com plex sinuso ids o f d iffe ren t 
frequencies a re  o rth o g o n a l o v er th e  infin ite in terval. H ow ever, w e shou ld  em p h a­
size th a t th e  E S P R IT  a lg o rith m  does n o t req u ire  P  to  be d iagonal. H en ce  the 
algo rithm  is app licab le  to  th e  case in w hich the  covariance  m a tr ix  is es tim ated  
from  finite da ta  records.

T h e  crosscovariance m atrix  o f th e  signal vecto rs y(n) an d  z (tt) is

T v. =  £ [y (n )z ff(n)] =  S P $ " S "  +  T w
w here

IV  =  £ [w (n )w w(n +  1)]

0 0 0

(12.5.36)

(12.5.37)

T h e  au to  and crosscovariance m atrices r vv and  T v; are  given as

rvv =
r  yw(0) yyy(l) • yvv(A/ -  1) "1

y ;v(D Yyy(0) • Yyyi M - 2 )

- y ; y ( M - 1) Yyy(M -  2) • Yyy( 0) -

r  Kw(i) Yyy (2) Yyv(M)  -1
yyy(0) yyy(l) • Y y y ( M - l )

- Yyy ( M  — 2) Y'yy( M -  3) • yyy(l) -

(12.5.38)

(12.5.39)

w here Yyy(m) =  £ [y * (n )y (n + m )]. N o te  th a t b o th  T yy a n d  1%, a re  T o ep litz  m atrices.
B ased  on th is fo rm u la tio n , th e  p ro b lem  is to  d e te rm in e  th e  freq u en c ies {ft)  

and  th e ir  pow ers {/*,■} from  th e  a u to co rre la tio n  seq u en ce  [yyy(m)}.
F rom  th e  underly ing  m odel, it is c lea r th a t th e  m atrix  S P S W has ra n k  p.  

C onsequen tly , T vv given by (12.5.34) has (M  -  p)  iden tical e ig envalues equal to 
a 2. H en ce

T yy -  a l l  =  S P S W =  C yy (12.5.40)

F rom  (12.5.36) we also  have

(12.5.41)-  a 2T w =  S P * HS H m  C

N ow , le t us co n sid er th e  m atrix  C yy — XCyz, w hich  can b e  w ritte n  as

Cyy -  kCyi =  SP(I -  \ * H)SH (12.5.42)
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C learly , th e  co lum n space o f S P S W is iden tical to  th e  co lum n space o f S P $ HS W. 
C onseq u en tly , th e  ran k  o f C vv -  XCy: is equal to  p.  H ow ever, we n o te  th a t if 
X =  exp(;'27r/(), th e  rth  row  of (I — is ze ro  and , h en ce  the  ran k  of [I —

expO ‘2 ^ - /) ]  is p  — 1. B u t A, =  e x p { j 2 n f i ) ,  i =  1, 2 , . . . ,  p,  a re  th e  generalized  
e igenvalues o f th e  m atrix  p a ir  (C yy, C n ). T hu s th e  p  gen era lized  eigenvalues {A, } 
th a t lie on  th e  un it circle co rre sp o n d  to  th e  e lem en ts o f th e  ro ta tio n  o p e ra to r  
3>. T h e  rem ain in g  M  — p  genera lized  eigenvalues o f th e  p a ir  {Cvv, C v;} which 
co rre sp o n d  to  th e  com m on  null space o f these  m atrices, a re  ze ro  [i.e., th e  ( M  — p)  
e igenvalues a re  a t th e  o rig in  in th e  com plex p lane].

B ased  o n  th ese  m ath em atica l re la tionsh ips we can fo rm u la te  an  algorithm  
(E S P R IT ) for es tim ating  th e  frequencies {/■]. T h e  p ro ced u re  is as follows:

1. F rom  th e  d a ta , co m p u te  th e  a u to co rre la tio n  values r yy(nt), m =  1 ,2 ........ M,
and  fo rm  th e  m atrices R vv and  R v- co rre sp o n d in g  to  estim ates o f r vv and
rv:

2. C o m p u te  th e  e igenvalues o f R vv. F o r M  >  p,  th e  m in im um  eigenvalue is an 
estim ate  o f a 2.

3. C o m p u te  C vv =  R vv — a*I  and  C v- =  R vc — <7*Q, w h ere  Q  is defined in
(12.5.37).

4. C o m p u te  th e  genera lized  eigenvalues o f  th e  m atrix  p a ir  (C TT, C v- |.  T he p  
g enera lized  e igenvalues o f th ese  m atrices th a t lie on  (o r n ear) th e  un it circle 
d e te rm in e  th e  (e stim ate )  e lem en ts of $  and  h ence  th e  sinusoidal frequencies. 
T he rem ain in g  M  — p  e igenvalues will lie a t (o r  n ea r)  th e  origin.

O n e  m e th o d  for d e te rm in in g  th e  pow er in th e  sinuso idal com p o n en ts  is to  
solve th e  e q u a tio n  in (12.5.11) w ith ryy{m)  su b s titu ted  fo r y yy(m).

A n o th e r  m e th o d  is based  on th e  co m p u ta tio n  o f th e  genera lized  eigenvecto rs 
{v,} co rre sp o n d in g  to  th e  generalized  e igenvalues {A, }. W e have

(C vv -  A., c v:)v, =  S P (I -  X/ =  0 (12.5.43)

Since th e  co lum n space o f (Cyy—k( -Cyz) is iden tical to  th e  co lum n space sp an n ed  by 
the  v ecto rs {S;, j  ^  /} g iven by (12.5.33), it follow s th a t th e  genera lized  eigenvecto r 
v, is o rth o g o n a l to  sj5 j  ^  i. S ince P  is d iagonal, it follow s from  (12.5.43) th a t the  
signal pow ers a re

y h C  v
Pi =  ~ n r i r  i =  (12 .5 .44)

| V " S , | 2

12.5.5 Order Selection Criteria

T h e  eigenanalysis m eth o d s d escribed  in th is section  fo r estim atin g  th e  frequencies 
an d  th e  pow ers o f th e  sinuso ids, also  p rov ide  in fo rm atio n  ab o u t th e  n u m b er o f 
sinuso idal co m ponen ts . If  th e re  a re  p  sinusoids, th e  e igenvalues associated  with th e



956 Power Spectrum Estimation Chap. 12

signal subspace are  [kj+cr*, i — 1 ,2  . . . , / >} w hile th e  rem ain ing  {M —p ) e igenvalues 
are  all equal to  a 2 . B ased  on  th is e igenvalue  decom position , a te s t can  be designed 
th a t com p ares th e  eigenvalues w ith  a  specified th resh o ld . A n  a lte rn a tiv e  m eth o d  
also uses th e  e igen v ec to r deco m p o sitio n  o f th e  e s tim ated  au to co rre la tio n  m atrix  
of th e  observed  signal and  is based  o n  m atrix  p e rtu rb a tio n  analysis. T his m ethod  
is d ecribed  in th e  p a p e r  by F uchs (1988).

A n o th e r  ap p ro ach  based  on  an  ex tension  a n d  m odifica tion  o f  the  A IC  crite ­
rion  to  the  e igen -decom position  m eth o d , h as b e e n  p ro p o sed  by W ax and  K ailath  
(1985). If the  eigenvalues o f th e  sam ple  a u to co rre la tio n  m atrix  a re  ran k ed  so th a t 
•̂i > k2 > ■ ■ ■ > k M , w h ere  M  > p,  th e  n u m b er o f sinusoids in  th e  signal subspace 

is es tim a ted  by se lecting  th e  m in im um  value o f M D L (p ), given as

w here

M D L (p ) =  — log
G(p)

M p ) J
+ E (p ) (12.5.45)

g (p ) =  n p  =  0 ,1 .........M - l

A (p )  =
1

M /—/>+]

M —p

(12.5.46)

1
E (P) =  2 p(-2 M  ~  P')loZ N

N:  n u m b er o f sam ples used to  e s tim ate  th e  M  
au to co rre la tio n  lags

Som e resu lts on  th e  quality  o f  th is o rd e r  se lec tion  c rite rio n  a re  given in the  p ap er 
by  W ax and K ailath  (1985). T h e  M D L  crite rio n  is g u a ra n te e d  to  b e  consistent.

12.5.6 Experimental Results

In  th is section we illu stra te  w ith an exam ple , th e  reso lu tion  charac te ris tics  o f the 
eigenanalysis-based  spectra l e s tim atio n  a lgo rithm s an d  co m p are  th e ir  p erfo rm ance 
w ith th e  m odel-based  m eth o d s and n o n p aram etric  m ethods. T h e  signal sequence  
is

4

x(n)  =  2 2  A iej an f 'n+4,' ) +  w(n)  
i=l

w here  A, =  1, i =  1, 2, 3, 4, {tp,} a re  sta tistically  in d e p e n d e n t ran d o m  variab les 
uniform ly d istrib u ted  on (0, 2jt), {w(rt)) is a zero -m ean , w hite  n o ise  se q uence  w ith 
variance  a 2, and  th e  frequencies a re  f \  =  —0.222, fa — —0.166, f s  =  0.10, and 
f i  =  0.122. T h e  se q uence  {jt(n), 0 <  n <  1023} is u sed  to  e s tim a te  th e  num b er 
o f  freq u en cy  co m p o n en ts  an d  th e  co rre sp o n d in g  values o f th e ir  frequencies for 
a 2 = 0 .1 ,  0.5, 1.0, an d  M  — 12 ( leng th  o f  th e  es tim a ted  au to c o rre la tio n ).
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Frequency

Figure 12.19 Power spectrum estimates from Blackman-Tukey method.

F igures 12.19, 12.20, 12.21, and  12.22 illu stra te  th e  e s tim ated  p o w er spectra  
o f the  signal using the  B lac k m a n -T u k ey  m eth o d , th e  m in im um  variance  m e th o d  
o f C apon , th e  A R  Y u le -W a lk e r m eth o d , and  th e  M U S IC  a lgorithm , respectively . 
T h e  resu lts  from  th e  E S P R IT  a lgo rithm  a re  given in T ab le  12.2. F rom  th ese  resu lts 
it is a p p a re n t th a t (1) th e  B lac k m a n -T u k ey  m e th o d  d o es n o t p ro v id e  sufficient

Figure H 2 0  Power spectrum estimates from minimum variance method.
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Figure 1X21 Power spectrum estimates from Yule-Walker A R  method.

reso lu tion  to  e s tim ate  th e  sinuso ids from  th e  d a ta ; (2) th e  m in im um  variance 
m e th o d  of C apon  reso lves only  the  freq u en c ies f \ ,  f 2 bu t no t / 3 an d  / 4; (3) the 
A R  m ethods resolve all f requencies fo r cr2 =  0.1 and  cr2 =  0.5; an d  (4) th e  M U SIC  
and  E S P R IT  a lgo rithm s n o t only  reco v er all fou r sinusoids, bu t th e ir  p e rfo rm an ce  
for d ifferen t va lues o f cr2 is essen tia lly  ind istingu ishab le . W e fu r th e r  observe  th a t

Frequency

Figure 12.22 Power spectrum estimates from MUSIC algorithm.
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TABLE 12.2 ESPRIT ALGORITHM

h h h I a

0.1 -0.2227 -0,1668 -0.1224 —0.10071

0.5 -0.2219 -0.167 -0.121 0.0988

1.0 -0.222 -0.167 0.1199 0.1013

True values -0.222 -0.166 0.122 0.100

th e  reso lu tio n  p ro p e rtie s  o f  the  m in im um  variance  m e th o d  and  th e  A R  m e th o d  is 
a function  o f th e  no ise  variance. T h ese  resu lts  clearly  d e m o n s tra te  th e  p o w er o f 
th e  e igenanalysis-based  a lgorithm s in resolv ing sinuso ids in  add itive  noise.

In  conclusion , w e shou ld  em phasize th a t th e  h igh -reso lu tion , eigenanalysis- 
based  sp ec tra l es tim ation  m eth o d s d escribed  in th is section , nam ely  M U S IC  and  
E S P R IT , a re  n o t only  applicable  to  sinusoidal signals, b u t app ly  m o re  generally  
to  th e  estim atio n  o f  n arro w b a n d  signals.

12.6 SUMMARY AND REFERENCES

P ow er sp ec tru m  es tim ation  is o ne  o f  th e  m ost im p o rta n t a re a s  o f resea rch  and  a p ­
p lica tions in d ig ita l signal p rocessing . In  th is c h a p te r  we h av e  d escribed  th e  m ost 
im p o rtan t p o w er spectrum  es tim ation  tech n iq u es an d  a lgo rith m s th a t  have b e e n  
d ev e lo p ed  o v er th e  p as t cen tury , beg inn ing  w ith  the  n o n p a ram etric  o r  classical 
m e th o d s b ased  o n  th e  p e rio d o g ram  an d  concluding w ith th e  m o re  m o d ern  p a ra ­
m etric  m e th o d s  b ased  on  A R , M A , and  A R M A  lin ear m odels. O u r  tre a tm e n t 
is lim ited  in scope to  sing le-tim e-series spectrum  es tim atio n  m eth o d s, based  on 
second  m o m en ts  (au to co rre la tio n ) o f th e  sta tis tical da ta .

T h e  p a ra m e tric  and  n o n p a ram e tric  m eth o d s th a t w e d escribed  have  b een  
ex ten d ed  to  m u ltichannel a n d  m ultid im ensional sp ectrum  es tim ation . T h e  tu to ria l 
p a p e r  by M cC lellan  (1982) tre a ts  th e  m u ltid im ensional spectrum  es tim atio n  p ro b ­
lem , w hile th e  p a p e r  by Jo h n so n  (1982) tre a ts  th e  m u ltich an n e l sp e c tru m  es tim a­
tio n  p ro b lem . A d d itio n a l sp ectrum  es tim ation  m e th o d s  hav e  b een  d eveloped  fo r 
use w ith h ig h e r-o rd e r  cum u lan ts  th a t  involve th e  b isp ec tru m  and  th e  trispectrum . 
A  tu to ria l p a p e r  o n  th ese  topics has b een  pub lished  by N ik ias an d  R a g h u v eer 
(1987).

A s ev idenced  from  o u r  p rev ious d iscussion, pow er sp e c tru m  estim atio n  is an  
a re a  th a t has a ttra c te d  m any  re sea rch ers an d , as a resu lt, th o u sa n d s  o f p ap ers  have 
b een  p u b lish ed  in  th e  techn ica l lite ra tu re  on  th is subject. M uch  o f th is w ork  has 
b een  co n cern ed  w ith  new  a lgorithm s an d  techn iques, a n d  m odifica tions o f ex ist­
ing  techn iques . O th e r  w o rk  has been  concern ed  w ith  o b ta in in g  an  u n d erstan d in g  
o f th e  capab ilities an d  lim ita tions o f  th e  various pow er sp e c tru m  m eth o d s. In 
th is co n tex t th e  sta tis tical p ro p e rtie s  an d  lim ita tions o f th e  classical n o n p a ram e tric  
m e th o d s  have b een  th o ro u g h ly  analyzed  an d  are  w ell u n d e rs to o d . T h e  p aram e tric  
m e th o d s  hav e  also  b e e n  investiga ted  b y  m any resea rch ers , b u t th e  analysis o f th e ir
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perform ance is difficult and, consequently, few er results are available. Som e of the 
papers that have addressed the problem  o f perform ance characteristics o f param et­
ric m ethods are those of Krom er (1969), Lacoss (1971), Berk (1974), Baggeroer  
(1976), Sakai (1979), Swingler (1980), Lang and M cClellan (1980), and Tufts and 
Kumaresan (1982).

In addition to the references already given in this chapter on the various 
m ethods for spectrum estim ation and their perform ance, we should include for 
reference som e of the tutorial and survey papers. In particular, w e cite the tutorial 
paper by Kay and Marple (1981), which includes about 280 references, the paper 
by Brillinger (1974), and the Special Issue on Spectral Estim ation o f the IE E E  
P roceedings, Septem ber 1982. A nother indication o f  the widespread interest in 
the subject o f spectrum estim ation and analysis is the recent publication o f  texts 
by Gardner (1987), Kay (1988), and M arple (1987), and the IE E E  books edited  
by Childers (1978) and K esler (1986).

M any com puter programs as w ell as software packages that im plem ent the 
various spectrum estim ation m ethods described in this chapter are available. One 
software package is available through the IE E E  (P rogram s fo r  D igita l S ignal P ro ­
cessing, IE E E  Press, 1979); others are available com mercially.

12.1 (a) By expanding (12.1.23), taking the expected value, and finally taking the limit as 
To -+ oo, show that the right-hand side converges to 

(b) Prove that

12 2  For zero mean, jointly Gaussian random variables, X2, X 3, X*, it is well known 
[see Papoulis (1984)] that

E W xX iX 3X t ) =  £(X iX 2)£ (X 3X4) +  £ (X 1X3)£ (X 2X4) +  E (X iX t )E (X 2X  3)

Use this result to derive the mean-square value of r^(m), given by (12.1.27) and the 
variance, which is

1 2 3  By use of the expression for the fourth joint moment for Gaussian random variables,

P R O B L E M S

v a r^ fm )] =  E[\r'xz(m)\2] -  \E[r'xx(m)]{

show that

(a) E [P„(fx)P*Ah)]  =  a* ■ 1 +
sinjr(/i +  f i )N  

[Afsin7r(/i +/2)[ 1
+
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(b) cov[/>„(/,)/>„(/2)] =

+

sin 7T(fi + f 2)N
N  sin jt(/i +  / 2) 

sin ^ (/i -  f 2)N  1

(c) var[/> „(/)] =  crj

A? s i n n - ( / i

|  / s i n 2 j r /W \2] 
j + y N  sin 2jt/  )  }

h ) \

under the condition that the sequence x(n)
N  sin 2jt/ 1

is a zero-mean white Gaussian noise sequence with variance a],
12.4  Generalize the results in Problem 12.3 to a zero-mean Gaussian noise process with 

power density spectrum r „ ( / ) .  Then derive the variance of the periodogram Pxr( f ), 
as given by (12.1.38). {Hint: Assume that the colored Gaussian noise process is the 
output of a linear system excited by white Gaussian noise. Then use the appropriate 
relations given in Appendix A.)

12.5 Show that the periodogram values at frequencies /* =  k /L , k =  0, 1 , . . . ,  L -  1, given 
by (12.1.41) can be computed by passing the sequence through a bank of N  IIR filters, 
where each filter has an impulse response

M « ) =  e -j2*nk,f/u(n)

and then compute the magnitude-squared value of the filter outputs at n =  N. Note 
that each filter has a pole on the unit circle at the frequency f t .

12.6 Prove that the normalization factor given by (12.2.12) ensures that (12.2.19) is satisfied.
12.7 Let us consider the use of the DFT (computed via the FFT algorithm) to compute 

the autocorrelation of the complex-valued sequence x(n ), that is,
1 N - m - l

i'u(m) =  — x*(n)x(n + m), m > 0 
N

/IsbO

Suppose the size M  of the FFT is much smaller than that of the data length N. 
Specifically, assume that N = KM .
(a) Determine the steps needed to section x(n) and compute rxx(m) for —(M/2) + 1 < 

m < (M/2) -  1, by using 4K  A/-point DFTs and one M-point IDFT
(b) Now consider the following three sequences x\(n), x2(n), and x^(n), each of du­

ration M. Let the sequences x\(n) and x2(n) have arbitrary values in the range
0 < n < (M/2) -  1, but are zero for (M/2) < n < M — 1. The sequence xi(n) is 
defined as

x i(n) =
xi(n).

x i H>
„ M  , 

"2

< rt < M -  1

Determine a simple relationship among the M-point DFTs Xi(k), X2(k), and
* 3  ( J t ) .

(c) By using the result in part (b), show how the computation of the DFTs in part
(a) can be reduced in number from AK to 2K.

12J5 The Bartlett method is used to estimate the power spectrum of a signal x(n). We 
know that the power spectrum consists of a single peak with a 3-dB bandwidth of 
0 .0 1 cycle per sample, but we do not know the location of the peak.
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(a) Assuming that N  is large, determine the value of M = N / K  so that the spectral 
window is narrower than the peak.

(b) Explain why it is not advantageous to increase M beyond the value obtained in 
pan (a).

12.9 Suppose we have N = 1000 samples from a sample sequence of a random process.
(a) Determine the frequency resolution of the Bartlett, Welch (50% overlap), and 

Blackman-Tukey methods for a quality factor Q =  10.
(b) Determine the record lengths (Af) for the Bartlett, Welch (50% overlap), and 

Blackman-Tukey methods.
12.10 Consider the problem of continuously estimating the power spectrum from a sequence 

x  (n) based on averaging periodograms with exponential weighting into the past. Thus 
with P ® \ f )  =  0, we have

1 — l M_1
C ( / )  =  l Y '  xm(n)e-

where successive periodograms are assumed to be uncorrelated and w is the (expo­
nential) weighting factor.
(a) Determine the mean and variance of for a Gaussian random process.
(b) Repeat the analysis of part (a) for the case in which the modified periodogram 

defined by Welch is used in the averaging with no overlap.
12.11 The periodogram in the Bartlett method can be expressed as

M -l /
„-J2n/n

m=-<Af-1) V /

where r (J*(m) is the estimated autocorrelation sequence obtained from the j'th block 
of data. Show that P ^ ( f )  can be expressed as

/ *> (/ ) =  E ' ! ( f ) R ^ E ( f )

where

£ ( / )  =  [ l  eila} ■■■ ]'

and therefore,

12.12 Derive the recursive order-update equation given in (12.3.19).
12.13 Determine the mean and the autocorrelation of the sequence jcfn), which is the output 

of a ARMA (1,1) process described by the difference equation

x(n) =  (n — 1) +  w(n) -  w(n -  1) 

where u>(n) is a white noise process with variance crj.
12.14 Determine the mean and the autocorrelation of the sequence jc(n) generated by the 

MA(2) process described by the difference equation

x(n)  =  w(n) -  2w(n -  1) +  w(n — 2) 

where w(n) is a white noise process with variance a*.



Chap. 12 Problems 963

12.15 An MA(2) process has the autocorrelation sequence

6cr2 m =  0

Yxx (m ) =

a l m = 0
35 ,

-  — cr2. m = ±  1
62

7*al m = ±  2
62

—4ct2 , m =  ± 1  

—2  a 2, m =  ± 2  

0, otherwise
(a) Determine the coefficients of the MA(2) process that have the foregoing auto­

correlation.
(b) Is the solution unique? If not, give all the possible solutions.

12.16 An MA(2) process has the autocorrelation sequence

y„(m) =

(a) Determine the coefficients of the minimum-phase system for the MA(2) process.
(b) Determine the coefficients of the maximum-phase system for the MA(2) process,
(c) Determine the coefficients of the mixed-phase system for the MA(2) process.

12.17 Consider the linear system described by the difference equation

v(n) =  0.8v(n — 1) +  x(n) + x(n — 1)

where x(n)  is a wide-sense stationary random process with zero mean and autocorre­
lation

* ,(« >  =  G ) 1" 1

(a) Determine the power density spectrum of the output y(n).
(b) Determine the autocorrelation yyy(m) of the output.
(c) Determine the variance o\2 of the output.

12.18 From (12.3.6) and (12.3.9) we note that an AR(p) stationary random process satisfies 
the equation

p f 2 
Yxx(m) +  =  { .q “”

m =  0,
1 < m < p.

where ap(k) are the prediction coefficients of the iinear predictor of order p  and a 2 
is the minimum mean-square prediction error. If the (p + 1) x (p + 1) autocorrelation 
matrix Txx in (12.3.9) is positive definite, prove that:
(a) The reflection coefficients |K„| < 1 for 1 < m < p.
(b) The polynomial

p
Ap(z) =  1 +  y ^ a p(k)z~k 

*«i
has all its roots inside the unit circle (i.e., it is minimum phase).

12.19 Consider the AR(3) process generated by the equation

x(n) = %x(n -  1) +  %x(n -  2) -  %x(n -  3) +  w(n) 

where w(n) is a stationary white noise process with variance a*.
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(a ) D eterm ine the coefficients o f the optim um  p =  3 linear predictor.
(b) D eterm ine the autocorrelation sequence y „ (m ), 0 <  m <  5.
(c) D eterm ine the reflection coefficients corresponding to  the p =  3 linear predictor.

1 2 2 0 *  A n  A R (2 )  process is described by the d ifference equation

x (n) =  0.81jc (n — 2) +  w(n)

where w(n) is a white noise process with variance er2 .
(a ) D eterm ine the param eters o f the M A (2 ), M A (4 ), and M A (8 ) m odels which pro­

vide a minimum m ean-square erro r fit to  the data x (n ).
(b )  P lot the true spectrum  and those o f the MA(<?), q =  2, 4, 8 , spectra  and com pare 

the results. Com m ent on how well the M A (g ) m odels approxim ate the A R (2 )  
process.

12.21 A n M A (2) process is described by the d ifference equation

x  («) =  w(n) +  0.81u>(n — 2)

w here w(n) is a white noise process with variance a 2 .
(a ) D eterm ine the param eters o f the A R (2 ) , A R (4 ) , and A R (8 )  m odels that provide 

a minimum m ean-square error fit to the data x(n).
(b ) P lo t the true spectra m and those o f the A R (p ) , p =  2. 4 , 8. and com pare 

the results. Com m ent on how well the A R (p ) m odels approxim ate the M A (2) 
process.

1 2 2 2  T h e  z-transform  o f the autocorrelation  yT I(m )of an A R M A ( 1 ,1) process is

TIX(z) =  a lH(z ) H(z~ ' )

(a) Determine the minimum-phase system function H(z).
(b )  Determine the system function H (z) for a mixed-phase stable system.

12.23 Consider a FIR filter with coefficient vector

[ 1 —2 r  COS 6  t 2 ]

(a) Determine the reflection coefficients for the corresponding FIR lattice filter.
(b ) Determine the values of the reflection coefficients in the limit as r  1.

1224  An AR(3) process is characterized by the prediction coefficients

o3(l)  =  —1.25. a3( 2) =  1.25, a3(3) =  - 1

(a) Determine the reflection coefficients.
(b ) Determine yxx(m)  for 0 < m < 3.
(c) Determine the mean-square prediction error.

1225  The autocorrelation sequence for a random process is

1 , m =  0

■0.5, m =  ± 1

0.625, m =  ± 2

■0.6875, m =  ±3
0 otherwise
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D eterm in e the system functions A „ (z)  for the prediction-error filters for m =  1, 2, 3, 
the reflection  coefficients {K m}, and the corresponding m ean-square prediction errors.

12 .26  (a) D eterm in e the pow er spectra for the random  processes generated by the following
difference equations.
(1 ) x (n ) =  — 0.81jr(n — 2) +  ui(n) — w(n — 1)
(2 ) x(n)  =  u>{n) — w(n — 2)
(3 ) x (n ) =  —0 .8 1 *(n  — 2) +  ui(n)

w here w{n) is a  w hite noise process with variance cr2 .
(b) Sketch  the spectra for the processes given in part (a).
(c) D eterm in e the autocorrelation  yX I(m) fo r the processes in (2 ) and (3).

12 .27  T h e  autocorrelation  sequence for an A R  process x(n)  is

(a) D eterm in e the difference equation for i (n ) .
(b) Is  your answer unique? I f  not, give any o ther possible solutions.

12 .28  R ep eat Problem  12.27 for an A R  process with autocorrelation

i , nm  
Vi:r(ffi) =  a' ' cos

where 0  <  a <  1.

1 2 2 9  T h e B a rtle tt m ethod is used to  estim ate the pow er spectrum  o f a signal from  a se­
quence x (n) consisting o f N  =  2400 samples.
(a) D eterm in e the sm allest length M  o f each segm ent in the B artlett m ethod that 

yields a frequency resolution o f A/  =  0.01.
(b) R e p ea t part (a ) for A/ =  0.02.
(c) D eterm in e the quality factors Q b for parts (a ) and (b ).

1 2 3 0  Prove that a F IR  filter with system function

p

A„(Z) =
*>1

and reflection  coefficients | AT* | <  1 for 1 <  k <  p — 1 and | ATP | > 1 is m axim um phase 
[all th e roots o f A p (z ) lie outside the unit circle].

1 2 3 1  A  random  process x (n ) is characterized by the pow er density spectrum

i \ e W - Q .9 ?
» U )  ~  _  JQ 9 |2|cjr2T/ +  jQ 9l2

w here cr2 is a constant (scale factor).
(a) I f  we view r „ ( / )  as the pow er spectrum  at the output o f a  linear p o le-zero  

system H ( z )  driven by white noise, determ ine H (z).
(b) D eterm in e the system function o f  a stable system  (noise-w hitening filter) that 

produces a white noise output when excited by x(n).

1 2 3 2  T h e  W -point D F T  o f a random  sequence x(n) is

N-1
X (k )  =  y '^ x ( n ) e - j2*nk/"

HkO

A ssum e that E [x {n )]  =  0 and E [x (n )x (n  + m )]  =  cr25(m ) [i.e., x(n) is a white noise 
process].
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(a) Determine the variance of X(k).
(b) Determine the autocorrelation of X(k).

1233 Suppose that we represent an ARMA(p, q) process as a cascade of a MA(<?) followed 
by an AR(p) model. The input-output equation for the MA(<y) model is

v(n) =  2 2 b t w(n -  k)
*=o

where w(n) is a white noise process. The input-output equation for the AR(p) model 
is P

x(n) + 22a/cX(n -  k) = v(n)
*=i

(a) By computing the autocorrelation of v(n), show that
q—m

Yw(m) =  o l ' y ' b l b i+m
Jt=0

(b) Show that
p

Yw(m) =  2 2  aky vx(m + k) a„ =  1
*s=0

where yM(m) =  £[u{n +  m)jr*(n)]:
1234 Determine the autocorrelation yxx(m) of the random sequence

x(n) =  A cos(ti>i« + <p)

where the amplitude A and the frequency w\ are (known) constants and <j> is a uni­
formly distributed random phase over the interval (0 ,2 t t ) .

1235 Suppose that the AR(2) process in Problem 12.20 is corrupted by an additive white 
noise process v(n) with variance crjf. Thus we have

y(n) =  x(n) +  v(n)

(a) Determine the difference equation for y(n) and thus demonstrate that y(n) is an 
ARMA(2, 2) process. Determine the coefficients of the ARM A process.

(b) Generalize the result in part (a) to an AR(p) process
p

x(n) =  -  ^ 2  ak(xn ~  k) +  w(n) 
t-i

and
>(ti) =  x(n) +  v(n)

1236 (a) Determine the autocorrelation of the random sequence
K

X(n ) =  2 2  At  COS(<ot n + </>k) +  ttf(/j)
*« l

where (A*} are constant amplitudes, [cot] are constant frequencies, and {4>t) are 
mutually statistically independent and uniformly distributed random phases. The 
noise sequence w(n) is white with variance

(b) Determine the power density spectrum of x(n).
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1237 The harmonic decomposition problem considered by Pisarenko can be expressed as 
the solution to the equation

a"'rvva =  tr2a"a

The solution for a can be obtained by minimizing the quadratic form a*'rvva subject to 
the constraint that a*'a =  1. The constraint can be incorporated into the performance 
index by means of a Lagrange multiplier. Thus the performance index becomes

£  =  a*T vva 4- A(1 — a*'a)

By minimizing £ with respect to a, show that this formulation is equivalent to the 
Pisarenko eigenvalue problem given in (12.5.9) with the Lagrange multiplier play­
ing the role of the eigenvalue. Thus show that the minimum of £  is the minimum 
eigenvalue a 2.

12.38 The autocorrelation of a sequence consisting of a sinusoid with random phase in noise 
is

y„(m) =  P cos2jr/im

where f \  is the frequency of the sinusoidal, P is its power, and is the variance of 
the noise. Suppose that we attempt to fit an AR(2) model to the data.
(a) Determine the optimum coefficients of the AR(2) model as a function of a* 

and f i .
(b) Determine the reflection coefficients K\ and K 2 corresponding to the AR(2) 

model parameters.
(c) Determine the limiting values of the AR(2) parameters and (K\, K 2) as <xu2 -*■ 0 . 

1239 This problem involves the use of crosscorrelation to detect a signal in noise and esti­
mate the time delay in the signal. A  signal x (n) consists of a pulsed sinusoid corrupted 
by a stationary zero-mean white noise sequence. That is,

x(n)  =  y(n — no) +  ui(n) 0 < n < N  — 1

where w(n) is the noise with variance and the signal is

y(n) =  A cos twon, 0 < n < M — 1 
= 0 , otherwise

The frequency a>o is known but the delay h0, which is a positive integer, is unknown, 
and is to be determined by crosscorrelating x(n)  with _y(n). Assume that N  > M + n0. 
Let N- 1

ri y (.m) =  Y  y ( n  -  m )x(n )
n* 0

denote the crosscorrelation sequence between x(n) and y(n). In the absence of noise 
this function exhibits a peak at delay m =  n0. Thus n0 is determined with no error. 
The presence of noise can lead to errors in determining the unknown delay.
(a) For m =  no, determine E[riy(n(,)]. Also, determine the variance, var[riV(rtB)], 

due to the presence of the noise. In both calculations, assume that the double 
frequency term averages to zero. That is, M  3> 2n/wo.

(b) Determine the signal-to-noise ratio, defined as

SNR =  l % < ^
var[r^(n0)j
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(c) What is the effect of the pulse duration M on the SNR?
12.40* Generate 100 samples of a zero-mean white noise sequence w(n) with variance a j  =  

j 2, by using a uniform random number generator.
(a) Compute the autocorrelation of u>(n) for 0 < m < 15.
(b) Compute the periodogram estimate Pz l ( f )  and plot it.
(c) Generate 10 different realizations of w(n) and compute the corresponding sample 

autocorrelation sequences n(m ), 1 < k < 10 and 0 < m < 15.
(d) Compute and plot the average periodogram for part (c):

r>v(m) =  -L 2 * “ , r*(m)

(e) Comment on the results in parts (a) through (d).
12.41* A random signal is generated by passing zero-mean white Gaussian noise with unit 

variance through a filter with system function

( 1  +  az~l +  0 . 9 9 i - 2 ) ( l  -  a z - 1 +  0 . 9 8 ; - ; )

(a) Sketch a typical plot of the theoretical power spectrum r „ { / )  for a small value 
of the parameter a (i.e., 0 < a < 0.1). Pay careful attention to the value of the 
two spectral peaks and the value of Pzx(a>) for co = n/2.

(b) Let a =  0.1. Determine the section length M required to resolve the spectral 
peaks of T„ ( / )  when using Bartlett’s method.

(c) Consider the Blackman-Tukey method of smoothing the periodogram. How 
many lags of the correlation estimate must be used to obtain resolution compa­
rable to that of the Bartlett estimate considered in part (b)? How many data 
must be used if the variance of the estimate is to be comparable to that of a 
four-section Bartlett estimate?

(d) For a — 0.05, fit an AR(4) model to 100 samples of the data based on the 
Yule-Walker method and plot the power spectrum. Avoid transient effects by 
discarding the first 200 samples of the data.

(e) Repeat part (d) with the Burg method.
(f) Repeat parts (d) and (e) for 50 data samples and comment on similarities and 

differences in the results.



Appendix 
Random Signals, Correlation 
Functions, and Power Spectra

In this appendix we provide a brief review o f the characterization o f  random  
signals in terms o f statistical averages expressed in both the time domain and the 
frequency domain. The reader is assumed to have a background in probability 
theory and random processes, at the level given in the books o f H elstrom  (1990) 
and P eeb les (1987).

Random Processes

M any physical phenom ena encountered in nature are best characterized in statis­
tical terms. For exam ple, m eteorological phenom ena such as air temperature and 
air pressure fluctuate randomly as a function o f time. Thermal noise voltages gen­
erated in the resistors o f electronic devices, such as a radio or television receiver, 
are also randomly fluctuating phenom ena. These are just a few  exam ples o f ran­
dom  signals. Such signals are usually m odeled as infinite-duration infinite-energy  
signals.

Suppose that we take the set o f waveform s corresponding to the air tem per­
ature in different cities around the world. For each city there is a corresponding  
waveform  that is a function o f  time, as illustrated in Fig. A .I . The set o f all possible 
w aveform s is called an ensem ble  o f tim e functions or, equivalently, a ran d o m  p ro ­
cess. T he waveform  for the tem perature in any particular city is a single realization  
or a sam ple  fu n c tio n  o f the random  process.

Similarly, the thermal noise voltage generated in a resistor is a single real­
ization or a sam ple function o f  the random process consisting o f  all noise voltage 
w aveform s generated by the set o f all resistors.

The set (ensem ble) o f  all possible noise w aveform s o f  a random process 
is denoted  as X  (r, S ), w here t represents the time index and S  represents the 
set (sam ple space) o f all possible sam ple functions. A  single waveform  in the  
ensem ble is d enoted  by x ( t ,  s) . Usually, w e drop the variable s (or S ) for notational 
convenience, so  that the random process is denoted as X  (r) and a single realization  
is denoted  as x ( t) .

A1
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Figure A.1

H aving defined a random process X  ( t) as an ensem ble o f sam ple functions, let 
us consider the values o f the process for any set o f  tim e instants ti > t2 > • ■ ■ > t„, 
where n is any positive integer. In general, the sam ples X,. =  x(r, ), i =  1, 2 , . . . ,  n 
are n random variables characterized statistically by their joint probability density 
function (PD F ) denoted  as p (x tl, x,2, . . . ,  x , j  for any n.

Stationary Random Processes

Suppose that w e have n sam ples o f  the random  process X ( t)  at t =  i =  1, 
2 , . . . ,  n, and another set o f  n sam ples displaced in  tim e from the first set by an 
am ount z . Thus the second set o f  sam ples are X,i+T =  X (tj +  z ) , i  =  1, 2 , . . . ,  n , as
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shown in Fig. A .I . This second set of n random variables is characterized by the  
joint probability density function p (x ,i+T, . . . , x lii+T). The jo int P D Fs o f the two sets  
o f random variables may or may not be identical. W hen they are identical, then

for all r and all n, then the random process is said to be stationary in the strict 
sense. In other words, the statistical properties o f a stationary random process are 
invariant to a translation o f  the time axis. On the other hand, w hen the joint PD Fs 
are different, the random process is nonstationary.

Statistical (Ensemble) Averages

Let us consider a random process X ( t ) sam pled at time instant t — t,. Thus X (ti)  
is a random variable with P D F  p {x ti). The / th m o m e n t o f the random  variable is 
defined as the expected  value  o f X l (tj), that is,

In general, the value o f the /th m om ent depends on the tim e instant tit if the P D F  
o f X,, depends on t,. W hen the process is stationary, how ever, p {xu+T) — p {xr.) for 
all x. H ence the P D F is independent o f time and, consequently, the /th  m om ent 
is independent o f time (a constant).

N ext, let us consider the two random variables X ,t =  X (?,), i =  1 , 2, corre­
sponding to sam ples o f X  (t) taken at t =  t] and t =  12. The statistical (ensem ble) 
correlation betw een X t] and X,2 is m easured by the joint m om ent

Since the joint m om ent depends on the time instants ti and ti,  it is denoted as 
Y x x i h ,  h ) and is called the autocorrelation fu n c tio n  o f the random  process. W hen  
the process X (/) is stationary, the joint PD F o f  the pair (X tj, X,2) is identical to  
the joint P D F  o f the pair (Xfl+r, X,1+T) for any arbitrary r. This im plies that the 
autocorrelation function o f X (t)  depends on the tim e difference t \ —ti =  x. H ence  
for a stationary real-valued random process the autocorrelation function is

T herefore, yXI{x)  is an even  function. W e also note that yzx(0) =  E ( X 2 ') is the 
average p o w e r  o f  the random process.

There exist nonstationary processes with the property that the m ean value 
o f the process is a constant and the autocorrelation function satisfies the property 
Yxz(t  1, *2)  =  Y xx ih  — h ) -  Such a process is called wide-sense stationary. Clearly,

P (xh , x l2........ x ,J  =  p (x lt+T, x,1+x, . . . .  x,„+z) (A .l)

(A .2)

(A .3)

yxx( r) =  E [X tl+TX h] (A .4)

O n the other hand,

y « ( - r )  =  £ ( * „ - , * „ )  =  £ ( * , ; * , ;+r) =  ^ ( r ) (A .5)



w ide-sense stationarity is a less stringent condition than strict-sense stationarity. 
In our treatment we shall require only that the processes be w ide-sense stationary.

R elated to the autocorrelation function is the autocovariance function, which 
is defined as

C „ ( l i , l 2 )  =  E{ [Xtl -  m ( f i ) ] [ X , j  -  m (r 2)]}

(A .6)
=  Y x x (h ,t2) — m (t\)m (t2)

where m (t\)  =  E {X tl) and m (t2) =  E (X ,2) are the m ean values o f  X h and X n , 
respectively. W hen the process is stationary,

cXx (h , h )  =  cxx(fi -  t2) =  cxx(t ) =  yxx(r) -  m \  (A .7)

where r =  h  — t2. Furthermore, the variance o f  the process is a }  =  <^,(0) =  
X™(0 ) - m 2.

Statistical Averages for Joint Random Processes

Let X (t)  and Y ( t ) be two random processes and let X tj =  X(r,-), i =  1, 2 , . .  . , n ,  
and Y,< =  y{rj), j  =  1, 2 , . . . ,  m , represent the random variables at tim es h  > h  >  
• • • > / „  and t{ >  t'2 > ■ ■ ■ > t'm, respectively. The two sets o f random  variables are 
characterized statistically by the joint P D F

......>,;)
for any set o f  tim e instants {/,} and \t'}  and for any positive in teger values o f m 
and n.

The crosscorrelation fu n c tio n  o t X ( t )  and Y (t) , denoted as yxv (t\ , t2)> is defined  
by the joint m om ent

/ OO 00

I j:tly,2p ( x t], y,2) d x tldy,2 (A .8)
•00 * '—00

and the crosscovariance is

C xy(tu h ) =  yxy( t \ , t 2) -  m x (ti)m y (t2) (A .9)

W hen the random processes are jointly and individually stationary, we have 
YxyVi, h )  =  Yxyih -  t2) and cxy(ti, t2) =  cxy(h -  t2). In this case

^ ( - r )  =  E( XtlYll+r) =  E (X ,r r Yt’) =  yyx( r) (A .10)

T he random processes X ( t)  and Y (t)  are said to  be statistically independent 
if and only if

p ( xh x<., y ,’, .........y t>m) =  p (xh , . . . , x tt )p(y,> , - . . , y , m)

for all choices o f  t- and for all positive integers n  and m.  The processes are said 
to  be uncorrelated if
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Yxy(h, t2) =  E (X ,t)E{Y ,t) (A .ll)

so that cxy(ti, t2) =  0.



A  com plex-valued random process Z(/)  is defined as

Z {t) =  X (t)  +  j Y ( t )  (A .12)

where X( t )  and K(/) are random processes. The joint P D F  o f  the com plex-valued  
random variables Z,, =  Z(r,), i =  1, 2 , ,  is given by the joint P D F  o f the
com ponents (X l;, Yti), i =  1, 2 ........ n. Thus the P D F  that characterizes Z,,, i =  1,
2 .........n is

p (x n , x l2.........x t„ ,y „ ,y l2, . . . , y , m)

A  com plex-valued random process Z (t)  is encountered in the representation  
o f the in-phase and quadrature com ponents o f  the low pass equivalent o f a nar­
rowband random  signal or noise. A n  important characteristic o f such a process is 
its autocorrelation function, which is defined as

=  E {Z h Z* )

=  E [(X t] +  j Y tl)(X ,2 -  j Y ,2)] (A .13)

=  Yxxih, h )  +  yvv('i, h )t+  j [ Y y A h ,h )  — Yxy(t\- h ) \

W hen the random  processes X (r)  and Y (t)  are jointly and individually stationary, 
the autocorrelation function of Z (t)  becom es

YzztiU*2) =  Yzz01 -  t2) =  /;;(T)

w here t — ti — t2. The com plex conjugate of (A .13) is

Y*z (r) =  £ (Z *  Z,i_r) =  y « ( - r )  (A .14)

N ow , suppose that Z(r) =  X (t)  +  j Y ( t )  and W(/)  =  U (t) +  j V ( t )  are two  
com plex-valued random  processes. Their crosscorrelation function is defined as

Y z v d u t i )  =  e (z „ w ;j

=  E [(X h + j Y li)(U l2 ~ j V t2)} . (A .15)

=  Yxuihi h )  +  Y yvU \,h ) +  j[Y yu(h , h )  — Yxvih* h)]

W hen X (t) ,  Y (t) , U (t), and V ( t ) are pairwise stationary, the crosscorrelation func­
tions in (A .15) becom e functions o f the time difference z  — — t2. In addition, 
w e have

y; j  r) =  E (Z * W ,t. T) =  E (Z * + tWh ) =  y wz( - T )  (A .16)

Power Density Spectrum

A  stationary random process is an infinite-energy signal and hence its Fourier 
transform d oes not exist. The spectral characteristic o f a random process is ob ­
tained according to  the W iener-K hinchine theorem , by com puting the Fourier 
transform o f  the autocorrelation function. That is, the distribution o f power with
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frequency is given by the function

(A.17)

The inverse Fourier transform is given as

(A .18)

W e observe that

y « (  0 ) =  f Z c r  ** (F )dF  

=  £ ( * ? )  > 0
(A .19)

Since E (X ?) =  yxx (0) represents the average pow er of the random  process, which 
is the area under r ^ F ) ,  it follow s that r ^ F )  is the distribution o f pow er as a 
function of frequency. For this reason, TXX(F )  is called the p o w e r  density  spectrum  
o f the random process.

If the random process is real, y IX(z)  is real and even and hence r„(F) is real 
and even. If the random process is com plex valued, yxx(r) =  yxx(—z)  and, hence

Therefore, rxx(F) is always real.
The definition o f the pow er density spectrum can be extended to two jointly  

stationary random processes X ( t ) and Y (t) ,  which have a crosscorrelation function 
yxv(z). The Fourier transform o f  yxy(z)  is

which is called the cross-pow er density spectrum . It is easily show n that T*V(F ) =  
r v,(-F ) . For real random processes, the condition is Pyx(F ) =  I \ v(—F).

Discrete-Time Random Signals

This characterization o f  continuous-tim e random  signals can be easily  carried over 
to discrete-time signals. Such signals are usually obtained by uniform ly sampling 
a continuous-tim e random process.

A  discrete-time random process X{n) consists o f an ensem ble o f sam ple se ­
quences x (n ). The statistical properties o f  X {n )  are similar to the characterization  
of X (/), with the restriction that n is now an integer (tim e) variable. T o  be specific, 
we state the form for the im portant m om ents that w e use in this text.

aoc  a  c c

n j F )  =  /  y*x (z )e j2nfrdT =  /  y ; j - z ) e - ' 2"F'd z

(A.20)



(A .24)

The /th m om ent o f X(n)  is defined as

E { X ‘n) =  f  x'nP(xn)d xn (A .21)
J - O C

and the autocorrelation sequence is

/ OC /• 00

/  xnx kp{xnyx k)dx„dxk (A .22)

■oc . / - 0 0

Similarly, the autocovariance is

c „ ( n , t )  =  Y xxin .k) -  E {X „ )E (X k) (A .23)

For a stationary process, we have the special forms (m =  n — k)

Yxx(n - k )  =  yxx(m)

Cxx(n -  k) =  cxx(m) =  -  m]

where m , =  E (X „) is the m ean of the random process. T he variance is defined as 
a 2 =  =  yjr (0 ) -  m \.

For a com plex-valued stationary process Z(n) =  X (n )  +  jY (n ) ,  w e have

y„ (m ) =  yxx (m ) +  yvv (m) +  j  [yyx (m) -  yxx (m )] (A .25)

and the crosscorrelation sequence o f tw o com plex-valued stationary sequences is

Y zA m ) =  Yxu(m) -I- yyv(m) +  j [ y yu{m) -  yxv(m )] (A .26)

A s in the case o f  a continuous-tim e random process, a discrete-tim e random  
process has infinite energy but a finite average power and is given as

E (X 2n) =  yxx (0) (A .27)

By use o f the W iener-K hinchine theorem , we obtain the pow er density spectrum  
of the discrete-tim e random  process by com puting the Fourier transform of the 
autocorrelation sequence yxx(m ), that is,

00

r , , ( / ) =  2 2  Y x x { m )e ~ M m (A .28)
m = —oc

T he inverse transform relationship is

r i /2
Y xx(m )=  T x x ( f ) e iln fm d f  (A .29)

J-\a
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- 1/2

W e observe that the average pow er is

f \ a
YxA  0) =  /  r  xx( f ) d f  (A .30)

J —1/2

so that r xx( f )  is the distribution o f  pow er as a function o f  frequency, that is, 
Vxx( f )  is the power density spectrum  o f  the random process X (n ),  The properties 
w e have stated for Trx(F ) also hold for Vxx( f ) .
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Time Averages for a Discrete-Time Random Process

A lthough we have characterized a random  process in terms o f statistical averages, 
such as the m ean and the autocorrelation sequence, in practice, we usually have 
available a single realization o f  the random process. Let us consider the problem  
of obtaining the averages o f the random process from a single realization. T o  
accom plish this, the random process m ust be ergodic.

B y definition, a random process X (n )  is ergodic if, with probability 1, all 
the statistical averages can be determ ined from a single sam ple function of the 
process. In effect, the random process is ergodic if  tim e averages obtained from  
a single realization are equal to the statistical (ensem ble) averages. U nder this 
condition we can attem pt to estim ate the ensem ble averages using time averages 
from a single realization.

T o illustrate this point, let us consider the estim ation o f the m ean and the 
autocorrelation o f the random process from a single realization x (n ). Since we 
are interested only in these two m om ents, we define engodicity with respect to 
these parameters. For additional details on the requirem ents for m ean ergodicity 
and autocorrelation ergodicity which are given below , the reader is referred to the 
b ook  o f  Papoulis (1984).

Mean-Ergodic Process

G iven a stationary random process X (n ) with m ean

In general, w e view  m x in (A .31) as an estim ate o f  the statistical m ean w hose  
value w ill vary with the different realizations o f the random process. H ence m x is 
a random  variable with a P D F  p (m x). L et us com pute the expected  value o f  m, 
over all possible realizations o f  X (n ). Since the sum m ation and the expectation  
are linear operations we can interchange them , so that

Since the m ean value o f the estim ate is equal to  the statistical m ean, we say that 
the estim ate m , is unbiased.

N ext, we com pute the variance o f rhx. W e have

let us form the tim e a erage

(A .31)

v a r ( /n j  =  E(\mx\2) -  \mx \2
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But

£ ( |/” ,|2 )  =  (2 /v'+ T )2 5 1  £'  n = —A/ k=—N

N N

T herefore,

(A .33)

If var(mx) -*• 0 as A' -*• oo, the estim ate converges with probability 1 to  the 
statistical m ean m x. Therefore, the process X (n )  is m ean ergodic if

U nder this condition, the estim ate m x in the limit as N  —> oc becom es equal to  
the statistical m ean, that is,

Thus the tim e-average m ean, in the limit as TV -*• oo, is equal to  the ensem ble 
m ean.

A  sufficient condition for (A .34) to hold is .if

which im plies that cxx(m ) —► 0 as m  -*• oo. T his condition holds for m ost zero-m ean  
processes encountered in the physical world.

Correlation-Ergodic Processes

N ow , let us consider the estim ate o f  the autocorrelation yxx(m) from a single 
realization o f the process. Follow ing our previous notation, w e denote the estim ate 
(for a com plex-valued signal, in general) as

(A .34)

(A .35)

00

(A .36)

(A.37)



A gain, we regard rxx(m) as a random variable for any given lag m, since it is a 
function o f the particular realization. The expected value (m ean value over all 
realizations) is

1  N
E [r„ (m )] -  V  E [x*(n )x (n  +  m)]

2N + 1
(A .38)

=  2

Therefore, the expected value o f the tim e-average autocorrelation is equal to the 
statistical average. H ence we have an unbiased estim ate o f yxx (m).

T o determ ine the variance o f the estim ate rxx(m),  we com pute the expected  
value o f  \rxx(m )\2 and subtract the square o f  the m ean value. Thus

var[r„(m )] =  E [\rxx(m )\2] -  |y „ (m ) |2 (A .39)

But
j N  N

E[\rXI(m ) |2] =  t t t — T  Y  E[x*{n)x(.n  +  m )x(k )x* (k  +  m)] (A .40) 
(2N  -I-1)2 n± ? Nkt ? N

The expected value o f the term ;c*(n)jc(n +  m )x(k )x* (k  +  m ) is just the autocorre­
lation sequence o f  a random process defined as

vm(n) =  x*(n)x(n +  m)

H ence (A .40) m ay be expressed as

E  E  t f ’O - W
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( 2N  + l ) 2

«  —  T  ( i - J s L W )
2 N  +  1 V 2 N  + l ) rvv V '

n=-Nk=-N  

2  N
(A .41)

and the variance is

var[r„(m )] =  ^  (*  ~  a v + t )  <A AZ)

If var[rxx(m)] -*■ 0 as N  -*■ oo, the estim ate rxx(m)  converges with probability 
1 to  the statistical autocorrelation yxx(m).  U nder these conditions, the process is 
correlation ergodic and the tim e-average correlation is identical to  the statistical 
average, that is,

1 N
lim r Y ]  x * ( n ) x ( n + m )  =  yxx(m)  (A .43)

N-COO 2 N  +  1 n“ Ar

In our treatm ent o f random  signals, w e assum e that the random  processes are 
m ean ergodic and correlation ergodic, so  that w e can deal with tim e averages o f  
the m ean and the autocorrelation obtained from a single realization o f  the process.



S B
Random Number Generators

In som e o f the exam ples given in the text, random numbers are generated to sim ­
ulate the effect o f noise on signals and to illustrate how the m ethod o f correlation  
can be used to detect the presence o f  a signal buried in noise. In the case o f  
periodic signals, the correlation technique also allow ed us to estim ate the period  
o f the signal.

In practice, random number generators are often used to sim ulate the effect 
o f noiselike signals and other random phenom ena encountered in the physical 
world. Such noise is present in electronic devices and system s and usually limits 
our ability to com m unicate over large distances and to be able to detect relatively  
weak signals. By generating such noise on a com puter, w e are able to study 
its effects through sim ulation o f com m unication systems, radar detection systems, 
and the like and to assess the perform ance o f such system s in the presence o f  
noise.

M ost com puter software libraries include a uniform random number gener­
ator. Such a random  num ber generator generates a num ber betw een  zero and 
1 with equal probability. W e call the output o f the random  number generator a 
random  variable. If A  denotes such a random variable, its range is the interval 
0 < A <  1.

W e know that the numerical output o f a digital com puter has lim ited preci­
sion, and as a consequence, it is im possible to represent the continuum  o f numbers 
in the interval 0 <  A < 1. H ow ever, w e can assume that our com puter represents 
each output by a large num ber o f bits in either fixed point or floating point. C onse­
quently, for all practical purposes, the number o f outputs in the interval 0 < A < 1 
is sufficiently large, so that we are justified in assuming that any value in the 
interval is a possible output from the generator.

The uniform probability density function for the random variable A , denoted  
as p (A ) , is illustrated in Fig. B .la . W e note that the average value or m ean value 
o f A , denoted as m A, is m A =  The integral o f  the probability density function, 
which represents the area under p (A ) ,  is called the probability distribution function

B1
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P(A)

A
0

2

(a)

A
0

(b) Figure B .l

o f the random variable A  and is defined as

F (A ) =  f  p (x )d x (B. l )
J  — OC

For any random variable, this area must always be unity, which is the maximum  
value that can be achieved by a distribution function. H ence

and the range o f F(A)  is 0 < F (A )  < 1 for 0 < A  <  1.
If we wish to  generate uniformly distributed noise in an interval (b , b +  1 ) 

it can simply be accom plished by using the output A  o f the random  number gen­
erator and shifting it by an am ount b. Thus a new random variable B  can be 
defined as

which now has a mean value m s =  b +  For exam ple, if b =  — the random  
variable B  is uniformly distributed in the interval ( —| ,  | ) ,  as show n in Fig. B.2a. 
Its probability distribution function F ( B )  is show n in Fig. B.2b.

A  uniformly distributed random variable in the range (0 ,1)  can be used 
to generate random variables with other probability distribution functions. For 
exam ple, suppose that we wish to generate a random variable C  with probability 
distribution function F(C) ,  as illustrated in Fig. B.3. Since the range of F i C ) is 
the interval (0 , 1 ), w e begin by generating a uniformly distributed random variable 
A  in the range (0,1) .  If we set

(B.2)

B =  A + b (B.3)

F (C ) =  A (B.4)

then

C =  F ~ l ( A ) (B.5)
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Figure B.2

Figure B3

Thus w e solve (B .4) for C and the solution in (B .5) provides the value o f C 
for which F (C ) =  A. By this m eans we obtain a new  random variable C  with 
probability distribution F (C ). This inverse m apping from A  to C  is illustrated in 
Fig. B.3.

Example B.1

Generate a random variable C that has the linear probability density function shown 
in Fig. B.4a, that is,

p(C)={2'  05 C - 2
0 , otherwise

Solution This random variable has a probability distribution function

F(C)
0 ,
iC 2A1- ' 
1 ,

C < 0 
0 < C  < 2 
C > 2

which is illustrated in Fig. B.4b. We generate a uniformly distributed random variable 
A and set F(C)  =  A.  Hence

F( C)  — j C 1 =  A
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Upon solving for C, we obtain

Figure B.4

c  = i J a

Thus we generate a random variable C with probability function F (C ). as shown in 
Fig. B.4b.

In Exam ple B .l  the inverse m apping C =  F - 1 (A) was sim ple. In som e cases 
it is not. This problem  arises in trying to generate random  numbers that have a 
normal distribution function.

N oise encountered in physical system s is often characterized by the normal or 
Gaussian probability distribution, which is illustrated in Fig. B.5. The probability

Figure B.5
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density function is given by

— oo <  C  <  oo (B .6 )

w here ct2 is the variance o f  C, which is a measure o f the spread o f the probability  
density function p{C ). The probability distribution function F (C )  is the area under 
p(C ) over the range ( —0 0 , C). Thus

U nfortunately, the integral in (B.7) cannot be expressed in terms o f sim ple func­
tions. C onsequently, the inverse m apping is difficult to  achieve.

A  way has been found to circum vent this problem . From probability the­
ory it is known that a (R ayleigh distributed) random variable R, with probability 
distribution function

is related to a pair o f Gaussian random variables C and D , through the transfor­
mation

w here © is a uniform ly distributed variable in the interval (0, 2 n ). The parameter 
ct2 is the variance o f C and D. Since (B .8 ) is easily inverted, we have

where A  is a uniform ly distributed random  variable in the interval (0,1) .  N ow  if 
w e generate a second uniformly distributed random  variable B  and define

then from (B .9) and (B .10), w e obtain tw o statistically independent Gaussian dis­
tributed random  variables C  and D .

The m ethod described above is often  used in practice to  generate Gaussian  
distributed random  variables. A s shown in Fig. B.5, these random  variables have 
a m ean value o f zero and a variance a 2. If a nonzero m ean G aussian random  
variable is desired, then C  and D  can be translated by the addition o f  the mean  
value.

A  subroutine im plem enting this m ethod for generating G aussian distributed 
random  variables is given in Fig. B.6 .

(B.7)

0 ,
1  _

R  <  0 
R > 0

(B.8)

D  — R sin ©

C =  R co s© (B.9)

(B.10)

F (R ) =  1 -  e~ R2f2n2 =  A

and hence

( B . l l )

©  s= 2nB (B.12)
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S U B R O U T I N E  G A U S S  9 X I N , B , S I G M A , Y O U T )  

P I = 4 . 0 * A T A N  (1.0)

B = 2 . 0 * P I * B

R = S Q R T  ( 2 , 0 * ( S I G M A * * 2 ) * A L O G ( 1 . 0 / ( 1 .0-XIN) ) ) 

Y O U T = R * C O S (B }

R E T U R N

E N D

C N O T E :  T O  U S E  T H E  A B O V E  S U B R O U T I N E  F O R  A

C G A U S S I A N  R A N D O M  N U M B E R  G E N E R A T O R

C  Y O U  M U S T  P R O V I D E  A S  I N P U T  T W O  U N I F O R M  R A N D O M  N U M B E R S

C  X I N  A N D  B

C  X I N  A N D  B M U S T  B E  S T A T I S T I C A L L Y  I N D E P E N D E N T  

C

Figure B.6 S u b ro u tin e  fo r g e n e ra tin g  G au ss ian  ran d o m  v a ria b le s



Appendix
Tables of Transition 
Coefficients for the Design of 
Linear-Phase FIR Filters

In Section 8.2.3 we described a design m ethod for linear-phase FIR filters that 
involved the specification of Hr(a>) at a set o f equally spaced frequencies (ok =  
2n (k  +  cr)/M, where a  =  0 or a  =  3 , k =  0, 1 , . . . ,  (M  — l ) / 2  for M  odd and k =  0,
1 , 2 ____ (M /2 )  — 1 for M  even, w here M  is the length o f the filter. Within the
passband of the filter, w e select Hr (a>k) =  1, and in the stopband, Hr(a)k ) — 0. For 
frequencies in the transition band, the values o f H r(cok) are optim ized to minimize 
the maximum sidelobe in the stopband. This is called a m in im a x  op tim iza tion  
criterion.

The optim ization o f the values o f Hr (cu) in the transition band has been per­
formed by Rabiner et al. (1970) and tables o f transition values have been provided 
in the published paper. A  selected number o f  the tables for low pass FIR filters 
are included in this appendix.

Four tables are given. Table C .l lists the transition coefficients for the 
case a =  0 and one coefficient in the transition band for both M  odd and M  
even. Table C.2 lists the transition coefficients for the case a  =  0, and two  
coefficients in the transition band for M  odd and M  even . Table C.3 lists the 
transition coefficients for the case a  =  \ ,  M  even  and one coefficient in the 
transition band. Finally, Table C.4 lists the transition coefficients for the case 
a  =  5 , M  even , and tw o coefficients in the transition band. The tables also in­
clude the level o f the maximum sidelobe and a bandwidth parameter, denoted

T o use the tables, w e begin with a set o f specifications, including (1) the 
bandwidth o f the filter, which can be defined as (2 jt/A /)(B W  +  a ) ,  where BW  is 
the num ber o f  consecutive frequencies at which H(a)k) =  1, (2) the width o f the 
transition region, which is roughly 2 n /M  tim es the num ber of transition coeffi­
cients, and (3) the m aximum  tolerable sidelobe in the stopband. The length o f the 
filter can be selected  from the tables to  satisfy the specifications.

as BW .

C1



TABLE C.1 TRANSITION COEFFICIENTS FOR a  =  0

Af Odd Af Even

BW Minimax Ti BW Minimax 7i

Af =  15 Af =  16
1 -42.30932283 0.43378296 1 -39.75363827 0.42631836
2 -41.26299286 0.41793823 2 -37.61346340 0.40397949
3 -41.25333786 0.41047636 3 -36.57721567 0.39454346
4 -41.94907713 0.40405884 4 -35.87249756 0.38916626
5 -44.37124538 0.39268189 5 -35.31695461 0.38840332
6 -56.01416588 

Af =  33
0.35766525 6 -35.51951933  

Af =  32
0.40155639

1 —43.03163004 0.42994995 1 -42.24728918 0.42856445
2 -42.42527962 0.41042481 2 -41.29370594 0.40773926
3 -42.40898275 0.40141601 3 -41.03810358 0.39662476
4 -42.45948601 0.39641724 4 -40.93496323 0.38925171
6 -42.52403450 0.39161377 5 -40.85183477 0.37897949
8 -42.44085121 0.39039917 8 -40.75032616 0.36990356

10 -42.11079407 0.39192505 10 -40.54562140 0.35928955
12 -41.92705250 0.39420166 12 -39.93450451 0.34487915
14 -44.69430351 0.38552246 14 -38.91993237 0.34407349
15 -56.18293285 

Af =  65
0.35360718

M =  64
1 -43.16935968 0.42919312 1 -42.96059322 0.42882080
2 -42.61945581 0.40903320 2 -42.30815172 0.40830689
3 -42.70906305 0.39920654 3 -42.32423735 0.39807129
4 -42.86997318 0.39335937 4 -42.43565893 0.39177246
5 -43.01999664 0.38950806 5 -42.55461407 0.38742065
6 -43.14578819 0.38679809 6 -42.66526604 0.38416748

10 -43.44808340 0.38129272 10 -43.01104736 0.37609863
14 -43.54684496 0.37946167 14 —43.28309965 0.37089233
18 -43.48173618 0.37955322 18 -43.56508827 0.36605225
22 -43.19538212 0.38162842 22 —43.96245098 0.35977783
26 -42.44725609 0.38746948 26 -44.60516977 0.34813232
30 -44.76228619 0.38417358 30 -43.81448936 0.29973144
31 -59.21673775 

Af =  125
0.35282745

Af =  128
1 -43.20501566 0.42899170 1 -43.15302420 0.42889404
2 -42.66971111 0.40867310 2 -42.59092569 0.40847778
3 -42.77438974 0.39868774 3 -42.67634487 0.39838257
4 -42.95051050 0.39268189 4 -42.84038544 0.39226685
6 -43.25854683 0.38579101 5 -42.99805641 0.38812256
8 -43.47917461 0.38195801 7 -43.25537014 0.38281250

10 -43.63750410 0.37954102 10 -43.52547789 0.3782638
18 -43.95589399 0.37518311 18 -43.93180990 0.37251587
26 -44.05913115 0.37384033 26 -44.18097305 0.36941528
34 -44.05672455 037371826 34 -44.40153408 0.36686401
42 -43.94708776 0.37470093 42 -44.67161417 0.36394653
50 -43.58473492 0.37797851 50 -45.17186594 0.35902100
58 -42.14925432 0.39086304 58 -46.92415667 0.34273681
59 -42.60623264 0.39063110 62 -49.46298973 0.28751221
60 -44.78062010 0.38383713
61 -56.22547865 0.35263062

Source: Rabiner ct al. (1970); ©  1970 IEEE; reprinted with permission.
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TABLE C.2 TRANSITION COEFFICIENTS FOR a  =  0

M  Odd M  Even

BW Minimax T\ Ti BW Minimax Tx t2

Af =  15 M =  16
1 -70.60540585 0.09500122 0.58995418 1 -65.27693653 0.10703125 0.60559357
2 -69.26168156 0.10319824 0.59357118 2 -62.85937929 0.12384644 0.62201631
3 -69.91973495 0.10083618 0.58594327 3 -62.96594906 0.12827148 0.62855407
4 -75.51172256 0.08407953 0.55715312 4 -66.03942485 0.12130127 0.61952704
5 -103.45078300 0.05180206 0.49917424 5 -71.73997498 0.11066284 0.60979204

M =  33 M =  32
1 -70.60967541 0.09497070 0.58985167 1 -67.37020397 0.09610596 0.59045212
2 -68.16726971 0.10585937 0.59743846 2 -63.93104696 0.11263428 0.60560235
3 -67.13149548 0.10937500 0.59911696 3 -62.49787903 0.11931763 0.61192546
5 -66.53917217 0.10965576 0.59674101 5 -61.28204536 0.12541504 0.61824023
7 -67.23387909 0.10902100 0.59417456 7 -60.82049131 0.12907715 0.62307031
9 -67.85412312 0.10502930 0.58771575 9 -59.74928167 0.12068481 0.60685586

11 -69.08597469 0.10219727 0.58216391 11 -62.48683357 0.13004150 0.62821502
13 -75.86953640 0.08137207 0.54712777 13 -70.64571857 0.11017914 0.60670943
14 — 104.04059029 0,05029373 0.49149549

M =  65 M =  64
1 —70,66014957 0.09472656 0.58945943 1 -70.26372528 0.09376831 0.58789222
2 —68,89622307 0.10404663 059.476127 2 -67.20729542 0.10411987 0.59421778
3 -67.90234470 0.10720215 0,59577449 3 -65.80684280 0.10850220 0.59666158
4 —67.24003792 0.10726929 0.59415763 4 -64.95227051 0.11038818 0.59730067
5 -66.86065960 0.10689087 0.59253047 5 -64.42742348 0.11113281 0.59698496
9 -66.27561188 0.10548706 0.58845983 9 -63.41714096 0.10936890 0.59088884

13 -65.96417046 0.10466309 0.58660485 13 -62.72142410 0.10828857 0.58738641
17 -66.16404629 0.10649414 0.58862042 17 -62.37051868 0.11031494 0.58968142
21 -66.76456833 0.10701904 0.58894575 21 -62.04848146 0.11254273 0.59249461
25 -68.13407993 0.10327148 0.58320831 25 -61.88074064 0.11994629 0.60564501
29 -75.98313046 0.08069458 0.54500379 29 -70.05681992 0.10717773 0.59842159
30 -104.92083740 0.04978485 0.48965181

M = 125 M  --= 128
1 -70.68010235 0.09464722 0.58933268 1 -70.58992958 0.09445190 0.58900996
2 -68.94157696 0.10390015 0.59450024 2 -68.62421608 0.10349731 0.59379058
3 -68.19352627 0,10682373 0.59508549 3 -67.66701698 0.10701294 0.59506081
5 -67.34261131 0.10668945 0.59187505 4 -66.95196629 0.10685425 0.59298926
7 -67.09767151 0.10587158 0,59821869 6 -66.32718945 0.10596924 0.58953845
9 -67.058012% 0.10523682 0.58738706 9 -66,01315498 0.10471191 0.58593906

17 -67.17504501 0.10372925 0.58358265 17 -65.89422417 0.10288086 0.58097354
25 -67.22918987 0.10316772 0.58224835 25 -65.92644215 0.10182495 0.57812308
33 -67.11609936 0.10303955 0.58198956 33 -65.95577812 0.10096436 0.57576437
41 -66.71271324 0.10313721 0.58245499 41 -65.97698021 0.10094604 0.57451694
49 -66.62364197 0.10561523 0.58629534 49 -65.67919827 0.09865112 0.56927420
57 -69.28378487 0.10061646 0.57812192 57 -64.61514568 0.09845581 0.56604486
58 -70.35782337 0.09663696 0.57121235 61 -71.76589394 0.10496826 0.59452277
59 -75.94707718 0.08054886 0.54451285
60 -104.09012318 0.04991760 0.48963264

Source: Rabiner et al. (1970); ©  1970 IEEE; reprinted with permission.
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TABLE C.3 TRANSITION 
COEFFICIENTS FOR a = \

BW Minim ax h

1
Af =  16 

-51.60668707 0.26674805
2 -47.48000240 0.32149048
3 -45.19746828 0.34810181
4 -44.32862616 0.36308594
5 -45.68347692 0.36661987
6 -56.63700199 0.34327393

1
M =32  

-52.64991188 0.26073609
2 -49.39390278 0.30878296
3 -47.72596645 0.32984619
4 -46.68811989 0.34217529
6 -45.33436489 0.35704956
8 -44.30730963 0.36750488

10 -43.11168003 0.37810669
12 -42.97900438 0.38465576
14 -56.32780266 0.35030518

1
Af = 64 

-52.90375662 0.25923462
2 -49.74046421 0.30603638
3 -48.38088989 0.32510986
4 -47.47863007 0.33595581
5 -46.88655186 0.34287720
6 -46.46230555 0.34774170

10 -45.46141434 0.35859375
14 -44.85988188 0.36470337
18 -44.34302616 0.36983643
22 -43.69835377 0.37586059
26 -42.45641375 0.38624268
30 -56.25024033 0.35200195

1
Af = 128 

-52.96778202 0.25885620
2 -49.82771969 0.30534668
3 -48.51341629 0.32404785
4 -47.67455149 0.33443604
5 -47.11462021 0.34100952
7 -46.43420267 0.34880371

10 -45.88529110 0.35493774
18 -45.21660566 0.36182251
26 -44.87959814 0.36521607
34 -44.61497784 036784058
42 -44.32706451 037066040
50 -43.87646437 037500000
58 -42.30969715 0.38807373
62 -56.23294735 035241699

Source: Rabiner el al. (1970); ©  1970
IEEE; reprinted with permission.
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TABLE C.4 TRANSITION COEFFICIENTS FOR
1

BW Minimart Ti T2

M = 16
1 -77.26126766 0.05309448 0.41784180
2 -73.81026745 0.07175293 0.49369211
3 -73.02352142 0.07862549 0.51966134
4 -77.95156193 0.07042847 0.51158076
5 -105.23953247 0.04587402 0.46967784

M = 32
1 -80.49464130 0.04725342 0.40357383
2 -73.92513466 0.07094727 0.49129255
3 -72.40863037 0.08012695 0.52153983
5 -70.95047379 0.08935547 0.54805908
7 -70.22383976 0.09403687 0.56031410
9 -69.94402790 0.09628906 0.56637987

11 -70.82423878 0.09323731 0.56226952
13 -104.85642624 0.04882812 0.48479068

M = 64
1 -80.80974960 0.04658203 0.40168723
2 -75.11772251 0.06759644 0.48390015
3 -72.66662025 0.07886963 0.51850058
4 -71.85610867 0.08393555 0.53379876
5 -71.34401417 0.08721924 0.54311474
9 -70.32861614 0.09371948 0.56020256

13 -69.34809303 0.09761963 0.56903714
17 -68.06440258 0.10051880 0.57543691
21 -67.99149132 0.10289307 0.58007699
25 -69.32065105 0.10068359 0.57729656
29 -105.72862339 0.04923706 0.48767025

M == 128
1 -80.89347839 0.04639893 0.40117195
2 -77.22580583 0.06295776 0.47399521
3 -73.43786240 0.07648926 0.51361278
4 -71.93675232 0.08345947 0.53266251
6 -71.10850430 0.08880615 0.54769675
9 -70.53600121 0.09255371 0.55752959

17 -69.95890045 0.09628906 0.56676912
25 -69.29977322 0.09834595 0.57137301
33 -68.75139713 0.10077515 0.57594641
41 -67.89687920 0.10183716 0.57863142
49 -66.76120186 0.10264282 0.58123560
57 -69.21525860 0.10157471 0.57946395
61 -104.57432938 0.04970703 0.48900685

Source; Rabiner et al. (1970); © 1970 IEEE;
reprinted with permission.
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A s an illustration, the filter design for which Af =  15 and

corresponds to a  =  0, B W  =  4, since Hr(p>k) =  1 at the four consecutive fre­
quencies a>k =  I n k  115, k — 0, 1, 2, 3, and the transition coefficient is T\ at the 
frequency a>k =  8 n / l5 .  The value given in T able C .l for M  =  15 and B W  =  4 is 
7\ =  0.40405884. The m aximum  sidelobe is at —41.9 dB , according to  Table C .l.



S  Appendix D
List of MATLAB Functions

In this A ppendix, we list several M A T L A B  functions that the student can use to  
solve som e o f the problem s numerically. The list includes the m ost relevant M A T ­
L A B  functions for each o f the chapters, but it is not exhaustive. H ow ever, this list 
is cum ulative in the sense that once a function is listed in any chapter, it is not re­
peated in subsequent chapters. T hese M A T L A B  functions are obtained from two 
sources: (1) the student version o f M A T L A B  and (2) the book  entitled D igital S ig ­
na l Processing Using M A  T L A B .  (PW S Kent 1996), by V.K. Ingle and J.G . Proakis.

Our primary objective in listing these M A T L A B  functions is to inform the 
student who is not familiar with M A T L A B  of the existence o f  these functions and 
to encourage the student to use them in the solution o f som e of the homework  
problems.
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sin (x ), co s(x ) , tan (x )  

a b s(x )

rea l(x )

im ag(x)

co n j(x )  

ex p (z)  

su m (x)

prod (x)

an gle(x)

log(a;>

D1

trigonom etric functions
absolute values o f a vector x  with real or com plex  
com ponents.
takes the real part o f each com ponents o f the vector  
x .

takes the imaginary part o f each com ponent o f the 
vector x .

com plex-conjugate o f each com ponent o f x .  
ex(cos^  +  j  sin >), where z =  x  +  j y ,  
sum of the (real or com plex) com ponents o f the vec­
tor x .

product o f the (real or com plex) com ponents of the  
vector x .

com putes the phase angles o f  each com ponent o f the 
vector x .

com putes the natural logarithm  of each o f the e le ­
m ents o f x .



s q r t ( x )
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conv(x, h )  

fliplr(x) 
filter(b, a , x )

filler(6.1, x )

ran d (l, N )

randn(l, N )

xcorr(x, y )

xcorr(x)

C H A P T E R  3  

roots(a)

residuez(b, a )

D2

loglO(x)

deconv(i>, a) 

poly(r) 

pzplotz(b, a)

com putes the logarithm to the base 1 0  o f the elem ents  
o f  x .
com putes the square root o f the elem ents o f x .

convolution o f the two (vector) sequences x  and h .

folds the (vector) sequence x .
solves the difference equation with coefficients

a  =  [a0, a \ , . . . , a „ ]

b =  [fr0, b i , . . . , b m]

x  =  input sequence

im plem ents an FIR filter with input x  and coeffi­
cients b.
generates a length N  random sequence that is uniform  
in the interval (0 , 1 ).
generates a length N  sequence o f Guassian random  
variables with zero m ean and unit variance, 

com putes the crosscorrelation of the two sequences x  
and y.
com putes the autocorrelation of the sequence x .

List of MATLAB Functions App. D

com putes the roots o f the polynom ial with coefficients

a  =  [ a o ,  • • • ,  q n \

com putes the residues in a partial fraction expansion, 
where

b =  coefficients o f numerator polynom ial 
[i>o, b \ , . . .  bM]

a  =  coefficients o f denom inator polynom ial 
[ a o ,  £>i, ■ -<3w]

com putes the result o f dividing b by a  in a polynom ial 
part p  and a rem ainder r.
com putes the coefficients o f the polynom ial p  with  
roots r.
plots the poles and zeros in the z-plane given the co­
efficient vectors b and a .
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fi)ter(b, a , x, x ic)

CHAPTER 4 

freqz(6, a , N )

freqz(6, a , N , ‘whole’) 

freqz(b, a , u>) 

grpdelay(t>, a, N )

grpdelay(b, a , TV, ‘whole’)

CHAPTER 5 

dfs(x, N )

Jdfs ( y , N )

rem (n. N )  
m od(n, N )  
dft(x, N )  
idft(AT, N )  
ovrlpsav(x, h, N )

CHAPTER 6

ffl(x , N )  
i » ( X ,  N )  
fftshift(x)

CHAPTER 7 
dir2cas(b, a)

im plem ents the filter given by a difference equation  
with coefficient vector b and a, input x  and initial 
conditions x ir.

com putes an //-p o in t com plex frequency response vec­
tor and an Appoint frequency vector o j ,  uniform over  
the interval 0  <  co < n ,  for filter with coefficient vec­
tor & and a.
same com putation as freqz(£, a, N), except that the  
frequence range is 0  < co <  2n. 
com putes the frequency response o f the system  at the  
frequencies specified by the vector  

com putes the group delay o f  the filter with num era­
tor polynom ial having coefficients b and denom inator 
polynom ial with coefficients o , at N points over the  
interval (0 , jr).

sam e as above, except that the frequency range is 0  <
oj <  I n .

com putes the discrete fourier series (D F S) coefficient 
array for the periodic signal sequence x  with period  
N.
com putes the signal sequence from the D FS coeffi­
cient array y.
determ ines the rem ainder after dividing n by N. 
com putes n m od N.
com putes the Appoint D F T  o f the data sequence x. 
com putes the N -point inverse D F T  o f X .  
im plem ents the overlap-save m ethod to  perform block  
convolution where N is the block length.

im plem ents a radix-2, W-point FFT algorithm, 
im plem ents a radix-2, N -point inverse FFT algorithm, 
rearranges the outputs o f fft so that the zero fre­
quency com ponent is the center o f the spectrum.

converts a direct form structure to the cascade form.
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cas2dir(bo, B ,  A )

dir2par(b, a )  
par2dir(C0B, A )  
dir21atc(b)

latc2dlr(AT)

dir2ladr(b, a)

Iadr2dir(AT, C )

casfiltr(60, B , A , x )

parfiltr(C, B ,  A , x )

latcfilt(i£, x )

ladrfilt(K, C . x )

round(x)

fix(x)

sign(x)

ss2tf(J4 , jB, C , D , i u )

ss2zp(J4, D , C , D , tu ) 
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converts a cascade structure to the direct form struc­
ture.

converts direct form to the parallel form  structure, 

converts a parallel form to the direct form structure, 
converts a F IR  direct form  structure to an all-zero 
latice structure.
converts an all-zero lattice structure to the direct form  
structure.

converts direct form IIR structure to pole-zero lattice- 
ladder structure.

converts a lattice-ladder structure to the direct form  
IIR  structure.

im plem ents the cascade form IIR and F IR  realization  
of a filter with input sequence x .  

im plem ents the parallel form IIR realization o f a dil- 
ter with input sequence x .

im plem ents the FIR lattice filter realization with input 
sequence x .

im plem ents the lattice-ladder realization o f a filter 
with input sequence x .

rounds the com ponents o f  the vector x  to  the nearest 
integer
rounds (truncates) the com ponent o f the vector x  to 
the nearest integer toward zero, 
each com ponent o f x  is set to  + 1  if it is positive and
— 1  if it is negative.
com putes the transfer function H (x )  o f a system  given 
the state-space description of the form

x  — A x  +  Bu

y  =  C x  +  D u

from the i'wth input.
com putes the transfer function H (s)  and expresses it 
in factored form, thus, giving the po les and zeros o f  
H (s).

boxcar(M)
bartlett(M)
hanning(M)

generates an Af-point rectangular window, 
generates an M -point Bartlett window, 

generates an Af-point H anning window.
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hammiitg(M)
blackm an(M )
kaiser(M)
buttap(iV)

chebiap(iV, R „)

ellipap(7V, R P, A S)

freqs(fc>, a , u>) 

butter(iV, u n )  

chebyl(7V, R p, urn)  

cheby2(AT, A S iu>n) 

e l l i p ( N , R p , A s ,u>n)

bilinear(z, p. fc, fs)

bilinear(num, den, fs)

remez(7V, / ,  m )

remez( N ,  / ,  m ,  ‘ftype') 

butter(7V, w n , ‘high’) 

botter(iV, w n , ‘bandpass’) 

chebyl(iV , i i , ,,  w n , ‘high’)

generates an M -point H am m ing window, 
generates an M -point Blackm an window, 
generates an M -point kaiser w indow , 
provides the coefficients o f  an analog lowpass Butter­
worth filter o f  order N ,  with norm alized frequency, in 
cascade form.
provides the coefficients o f  an analog low pass Cheby­
shev filter o f order N ,  with norm alized frequency and 
passband ripple R p, in cascade form, 
provides the coefficients o f an analog lowpass elliptic 
filter o f  order N , passband ripple Rp, stopband attenu­
ation A 2, with norm alized frequency, in cascade form, 
com putes the frequency response o f an analog filter, 
with co in rad/sec.
designs a digital lowpass Butterworth filter o f  order 
N  and cutoff frequency con.
designs a digital lowpass C hebyshev filter o f  order N  
passband ripple Rp, and cutoff frequency con. 
designs a Type 2 lowpass C hebyshev filter or order 
N ,  stopband ripple A„ and cutoff frequency con. 
designs a digital lowpass elliptic filter o f  order N , pass- 
band ripple Rp , stopband ripple A s, and cu toff fre­
quency cun.
uses the bilinear transformation to  convert an analog  
filter with zeros z, po les p , and gain k, into a digital 
filter, with fs being the sam ple frequency in H z. 
uses the bilinear transformation to  convert an ana­
log filter with numerator polynom ial coefficients num, 
denom inator polynom ial coefficients den, and sam ple 
frequency fs, in to a digital filter, 
uses the R em ez algorithm to  determ ine the coeffi­
cients o f an optim um  equiripple, linear phase FIR fil­
ter o f length N  +  1, from frequency specifications /  
and gains m  for each band.
sam e description as above with ‘ftype’ used to specify  
a H ilbert transform or differentiator, 
designs a highpass Butterworth filter o f order N  and 
3-dB cutoff frequency con.
designs a 2 N -order bandpass Butterworth filter, with 
3-dB passband col < co < co2, w here con =  [twl, co2\. 
designs a highpass C hebyshev filter o f order N ,  pass­
band ripple Rp, and cutoff frequency con.



ellilp(iV, R p, A s , w n)

lp2bp(num, den, u>o, B u t)  

lp2bs(num, den, u jo . B ur)  

lp2hp(num, den, u o )  

Ip2lp(num, den, u>o) 

polyfit(x, y , n )

C H A P T E R  9

spline(x, y ,  x i )  
spline(jTit, x , t)

D 6

designs an elliptic bandpass filter o f  order N , pass­
band ripple Rp, stopband attenuation A s , and cutoff 
frequencies a>n =  [a>l, w2],
transforms an analog lowpass filter to  an analog band­
pass filter.
transforms an analog lowpass filter to  an analog band­
stop filter.
transforms an analog lowpass filter to  an analog high- 
pass filter.
transforms an analog low pass filter to  an analog low- 
pass filter with cutoff frequency coo. 
finds a polynom ial p  such that p (x )  fits the data in a 
vector y  in a least squares sense.

List of MATLAB Functions App. D

cubic spline data interpolation, 
uses cubic spline interpolation, w here x  and n t s are 
arrays containing sam ples x (n )  at m s , and t  is an ar­
ray that contains a fine grid at which the function is 
evaluated.

C H A P T E R  10 

dnsample(x, M ) dow nsam ples the sequence x  by the factor M .
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Characteristic polynomial, 101. 547
Chebyshev filters, 683-689
Chirp signal, 484

Chirp-z transform algorithm. 482-486 
Circular convolution, 415-420 
Coding, 22-38 

Comb filter, 345-349 
Complex envelope, 740 

Constant-coefficient difference equations, 
95-111 

solution of, 100-111 
Continuous-time signals 

exponentials. 19-20 
sampling of, 2 1 -24, 269-279 
sampling theorem for, 29-31, 269-279 

Convolution (linear), 75-82 
circular, 415-420 

properties, 82-85 
sum, 75 

Correlation, 1J 8—133. A3 
autocorrelation, 122, 325-330, A3 

computation, 130-131 
cross-correlation, 120, 325-327 
of periodic signals. 124, 130 
properties, 122— 124 

Coupled-form oscillator, 352-354 
Cross-power density spectrum, A6

Dead band, 584
Decimation, 784-787
See also Sampling rate conversion

Deconvolution. 266, 355-359, 363-365 
homomorphic. 266. 365-367 

Delta modulation, 758 
Difference equations. 9 1 - 1 11 

constant coefficient, 100-111 
solution, 100-111 

homogeneous solution. 100-103 
particular solution. 103-104 
for recursive systems. 95. I l l  
total solution. 105-111 
from one-sided ;-translomi. 201-202 

Differentiator, 652 
design of, 652-657 

Digital resonator. 340 

Digital sinusoidal oscillator. 353-354 
Digital-to-analog (D/A) converter. 5, 22, 

3 8 .7 63 -7 7 4  

oversampling. 774 
Dirichlet conditions 

for Fourier series, 234 

for Fourier transform. 243 
Discrete Fourier transform (DFT). 399-402 

computation, 449-473 
butterfly, 460, 464, 466 
decimination-in-frequency FFT 

algorithm, 461—464 

decimination-in-time FFT algorithm, 
456-461 

direct, 449—450
divide-and-conquer method, 450-473 
in-place computations, 461 
radix-2 FFT algorithms, 456-464 
radix-4 FFT algorithms, 465—469 
shuffling of data, 461 
split radix. 470-473  
via linear filtering. 479-486 

definition, 401 
IDFT, 401
implementation of FFT algorithm, 

473-479 
properties, 409-425  

circular convolution, 415-420 
circular correlation, 423 
circular frequency shift, 422 
circular time shift, 421-422 
complex conjugate, 423 
linearity, 410 

multiplication, 415-420

11
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Parseval's theorem, 424 
periodicity, 410 

symmetry, 413—415 

table. 415 
time reversal. 421 

relationship to Fourier series. 407. 409 
relationship to Fourier transform, 407 
relationship to £-transform, 408 
use in frequency analysis, 433-440  
use in linear filtering, 425-433 

Discrete-time signals, 9, 43-55 
antisymmetric (odd), 5 1 
correlation, 1 IS—133 
definition, 9, 43 
exponential, 46-47 
frequency analysis of. 247-264 
nonperiodic, 50 
periodic. 14-19 
random, 12 
representation of, 44 
sinusoidal, 16-18 
symmetric (even), 51 
unit ramp, 45 
unit sample, 45 

unit step, 45 
Discrete-time systems, 56-71 

causal, 68-69, 86-87 
dynamic, 62
finite-duration impulse response. 90-91
finite memory, 62, 90-91
implementation of, 500-556
infinite-duration impulse response. 90-91
infinite memory, 62, 90-91
linear, 65

memoryless, 60
noncausal, 68-69
nonlinear, 67
nonrecursive, 94-95

recursive, 92-93
relaxed, 59
representation, 44
shift-invariant, 63-65
stability test for, 213-219
stability triangle, 216
stable (BIBO), 69-70, 87-90
static, 62
time-invariant, 63-65 

unit sample (impulse) response, 76-82 
unstable, 69-70, 87-90 

Distortion 

amplitude, 317 
delay. 332 

harmonic, 378 
phase, 317 

Down sampling, 54, 55 
See also Sampling rate conversion 

Dynamic range, 35, 561, 751

Eigenfunction, 307 
Eigenvalue. 307, 547 
Eigenvector, 547 
Elliptic fitters, 689-690 
Emigy 

definition, 47
density spectrum, 243-246, 260-264

partial. 391 
signal. 47-49 

Energy density spectrum, 243-246, 
260-264 

computation. 897-902 
Ensemble, AI 

averages, A3-A3 
Envelope, 740-741 

complex, 740 
Envelope delay, 332 
Ergodic, A8

correlation-ergodic, A9-A10 

mean-ergodic, A8-A9 
Estimate (properties) 
asymptotic bias, 904 

asymptotic variance, 904 
bias, 904 
consistent, 904 

variance, 904 
See also Power spectrum estimation

Fast Fourier transform (FFT) algorithms, 

448-475 
application to 

correlation, 477-479 
efficient computation of DFT, 448-475 
linear filtering, 477-479 

implementation. 473-475 

minor FFT, 473 
phase FFT, 473 
radix-2 algorithm. 456-464 

decimation-in-frequcncy. 461-464 
decimation-in-time. 456-461 

radix-4 algorithm, 465-469 
split-radix, 470-473 

Fibonacci sequence, 201, 548-549, 553 
difference equation, 201-202 
state-space form, 548-549, 553 

Filter

bandpass, 331, 337-338 
definition, 317, 330-332 
design of linear-phase FIR, 620-665 

transition coefficient for, C1-C5 

design of HR filters, 330-354, 666-692 
all pass, 350-352 
comb, 345-349 

notch, 343-344
by pole-zero placement, 333-354 
resonators (digital), 340-343 

distortion. 317 
distortionless, 332 
frequency-selective, 331 

highpass, 331. 333-334 
ideal. 331-332
least squares inverse, 711-718 
lowpass, 331, 333-334 
nonideal, 332-333 

passband ripple, 619 
stopband ripie, 619 
transition band, 619 

prediction error filter, 512. 858 
smoothing, 39 
structures, 500-556 
Wiener filter, 715, 880-890 

n h e r  banks, 825-831

critically sampled, 829 
quadrature minor, 833-841 
uniform DFT, 826-829 

Filter transformations, 338-340, 692-700 
analog domain. 693-698 
digital domain, 698-700  

lowpass-lo-highpass, 338-340 
Filtering 

of long data sequences, 430-433 
overlap-add method for, 430-432 
overlap-save method for, 430-431 
via DFT, 430-433 

Final prediction error (FPE) criterion, 
931-932 

Final value theorem, 200 
FIR filters 

antisymmetric, 620-622 
design, 620-665 

comparison of methods, 662-665 
differentiators, 652-657 
equiripple (Chebyshev) approximation, 

637-661
frequency sampling method, 630-637 
Hilbert transformers, 657-662 
window method, 623-630 

linear phase property, 621-623 
symmetric, 62(W>22 

FIR filter structures, 502-519 
cascade form, 504-505 
direct form, 503-504 

conversion to lattice form, 518-519 
frequency sampling form, 506-510 
lattice form, 511-561, 877 

conversion to direct form, 516-517 
transposed form, 525-526 

FIR systems, 90, 94, 115 
First-order hold, 768-769 

Fixed-point representation, 557-560 
Floating-point representation, 561-564 
Flowgraphs, 521-524 

Folding frequency, 28, 274-275 
Forced response, 96-97 
Forward predictor, 515, 857-858 
Fourier series, 20, 232-240, 247-250 

coefficients of, 234-235, 247-248 
for continuous-time periodic signals, 

232-240 
for discrete-time periodic signals, 

247-250
Fourier transform, 240-243, 253-256 

of continuous-time aperiodic signals, 
240-243 

convergence of, 256-259 

of discrete-time aperiodic signals, 
253-256 

inverse, 242 
properties 

convolution, 297-298 
correlation, 298 
differentiation, 303-304 

frequency shifting, 300 
linearity, 294-295 
modulation, 300-302 

multiplication, 302-303 
Paraeval’s theorem, 302
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Fourier transform (continued) 
symmetry, 287-294 
table, 304 
time-reversal, 297 
time-shifting, 296
relationship to ;-transform, 264-265 
of signals with poles on unit circle, 

267-268 
Frequency, 14-18 

alias, 18, 26 
content, 29 
folding, 28, 274-275 
fundamental range, 19 
highest. 19 
negative. 15 
normalized, 24 
positive, 15 
relative, 24 

Frequency analysis
continuous-time aperiodic signals, 

240-243 
continuous-time periodic signals, 

232-240
discrete-time aperiodic signals, 253-256 
discrete-time periodic signals, 247-250 
dualities, 282-286 

for LTI systems, 305-330 
table of formulas for, 285 

Frequency response. 311 
computation. 321—325 
to exponentials, 306-314 
geometric interpretation of, 321-325 
magnitude of, 311 
phase of. 311
relation to system function, 319-321 
lo sinusoids, 311-314 

Frequency transformations (see Filter 
transformations)

Fundamental period, 17

Gibbs phenomenon, 259, 629 
Goertzel algorithm, 480-481 
Granular noise, 753 
Group (envelope) delay, 332

Harmonic distortion. 378, 779-780 
High-frequency signal. 280 
Hilbert transform, 618 
Hilbert transformer, 657-662, 739 
Homomorphic 

deconvolution, 365-367 
system, 366

HR filters 
design from analog filters, 666-692 

by approximation of derivatives, 
667-671

by bilinear transformation, 676-680, 
692

by impulse invariance, 671-676 
by maiched-z transformation, 681 
least-squares design methods, 706-724 
frequency domain optimization, 

719-724 
least squares inverse, 711—718

Prony’s (least squares), 706-708 
Shanks' (least squares), 709-710 
Padi approximation. 701-705 
pole-zero placement, 333-354 

IIR filter structures, 519-556 
cascade form, 526-528 
direct form, 519-521 
lattice-ladder, 531-539, 878-880 
parallel fonn, 529-531 
second-order modules, 527 
state-space forms, 539-556 
transposed forms. 521-526 

Impulse response. 108-110 
Initial value theorems, 172 
Innovations process, 852-854 
Interpolation, 30-31, 273, 784, 787-790 

first-order hold, 768-771 
function, 30, 763 

ideal, 30-31. 273 
linear, 38, 768-774 

See also Sampling-rate conversion 
Inverse filter, 355-356 
Inverse Fourier transform, 242, 256 
Inverse system, 355, 357 
Inverse ’-transform, 160-172, 184-197 

by contour integration, 160-161, 

184-186 
integral formula, 160 
partial fraction expansion, 188-197 
power series, 186-188

Lattice filters, 511-516, 531-539, 859. 
876-880 

AR structures, 877-878 
ARMA structure, 878-880 
MA structure, 857-859 

Leakage, 434, 899 
Least squares 

filter design, 706-724 
inverse filter, 711-718 

Levinson-Durbin algorithm, 716, 865-868 
generalized, 868. 893 
split Levinson. 891 

Limit cycle oscillations, 583-587 
Linear filtering 

based on DFT, 425-433 
overlap-add method, 430-432 
overlap-save method, 430-431 

Linear interpolation, 768-774 
Linear prediction. 512, 857-876 

backward, 860-863 
forward. 857-860 
lattice filter for, 859-860 
normal equations for, 864 
properties of, 873-876 

maximum-phase, 843-844 
minimum-phase, 842-843 
orthogonality. 844 
whitening, 844 

Linear prediction filter (see Linear 
prediction)

LTI systems 
moving average, 115, 117 
second order, 115-116 
structures. 111-118

canonic form, 114 
direct form I. 111-112 
direct form II, 113-114 
nonrecursive, 116-118 
recursive, 116-118 

weighted moving average, 115 
Low-frequency signal, 279 
Lowpass filter, 331

Maximal ripple filters. 644 
Maximum entropy method. 928 
Maximum-phase system, 361-362 
Mean square estimation, 882 

orthogonality principle, 884-886 
Minimum description length (MDL), 932 
Minimum-phase system, 359-362 
Minimum variance estimate, 942-946 
Mixed-phase system, 361-362 
Moving-average filter, 309 
Moving-average (MA) process, 855, 922 

autocorrelation of, 857 
Moving-average signal, 115 
Multichannel signal. 7 
Multidimensional signal, 7 -8

Narrowband signal. 281 
Natural response. 97 
Natural signals. 282-283 
Noise subspace, 951 
Noise whitening filter, 854 
Normal equations, 864 

solution of, 864-873 
Levinson-Durbin algorithm, 865-868 

Schur algorithm. 868-872 
Number representation, 556-564 

fixed-point. 557-561 
floating point, 561-564 

Nyquist rate, 30

One’s complement. 558 
One-sided z-transform, 197-202 
Orthogonality principle, 884-885 
Oscillators (sinusoidal generators)

CORDIC algorithm for, 354 
coupled-form, 353-354 

digital. 352 
Overflow, 588-589 
Overtap-add method, 430-432  
Overlap-save method, 430-431 
Overload noise, 418 
Oversampling A/D, 756-762 

Oversampling D/A, 774

Paley-Wiener theorem, 616 
Parseval's relations 

aperiodic (energy) signals, 244, 260. 302 
DFT. 424

periodic (power) signals, 236, 251 
Partial energy, 363
Partial fraction expansion (tee Inverse 

r-transform)
Periodogram, 902-906  

estimation of, 902-906  
mean value. 903
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variance, 903 
Phase. 14, 741 

maximum. 359-363 
minimum, 359-363 
mixed, 359-363 
response, 311 

Pisarenko method, 948-950 
Poles, 172 

complex conjugate, 193-194, 218-219 
distinct, 178-179, 189-191. 217 
location, 178-181 
multiple-order, 179, 191-192 

Polyphase filters, 797-800 
for decimation, 800 
for interpolation, 797 

Power 
definition, 49 

signal. 50 
Power density spectrum, 235-240 

definition. 236
estimation of (see Power spectrum 

estimation) 
periodic signals, 235-240, 250-253 
random signals, A5-A7 
rectangular pulse train, 237-240 

Power spectrum estimation 
Capon (minimum variance) method.

942-945 
direct method. 899 
eigenanalysis algorithms, 950-959 

ESPRIT. 953-955 
MUSIC, 952 
order selection, 955-956 

Pisarenko, 948-950 
experimental results, 936-942 
from finite data, 902-908 
indirect method, 899 
leakage, 899
nonparametric methods, 908-920  

Bartlett, 910-911, 917 
Blackman-Tukey, 913-916, 918-919 
computational requirements, 919-920 
performance characteristics, 916-919 
Welch, 911-913, 917-918 

parametric (model-based) methods, 

920-942 
AR model, 924
AR model order selection, 9 3 1 -932 

ARMA model, 924, 934-936 
Burg method, 925-928 
least-squares, 929-930 
MA model, 924, 933-934 

maximum entropy method. 928 
model parameters, 923-924 

modified Burg, 928 
relation to linear prediction. 923-924 

sequential least squares, 930-931 
Yule-Walker. 925 

use of DFT, 906-908 
Prediction coefficients, 857 
Prediction-error filter, 512, 858 

properties of, 873-876 
Principal eigenvalues, 951 
Probability density function, A1-A3 
Probability distribution function. B1-B2

Prony's method, 706-708 
Pseudorandom sequences 

Barker sequence. 148 
maximal-length shift register sequences, 

148-149

Quadrature components, 740 
Quadrature mirror filters 

for perfect reconstruction, 833-841 
for subband coding, 832 

Quality, 916-919 
of Bartlett estimate, 917 
of Blackman-Tukey estimate, 918-919 
of Welch estimate, 917-918 

Quantization, 21-22, 33-38, 750-753 
in A/D conversion. 750-753 
differential, 756 
differential predictive. 757 
dynamic range, 35, 561, 751 
error. 37. 42, 582-598 
in filler coefficients, 569-582 
rounding. 35, 565-567 
truncation. 35. 564-565 
level, 35. 750 
resolution. 35. 561 
step size, 35. 5 6 1 

Quantization effects 
in A/D conversion. 37-38, 753-756 
in computation of DFT, 486-493 

direct computation. 487-489 
FFT algorithms. 489-493 

in filter coefficients, 569-582 
fixed-point numbers, 557-560 

one’s complement, 558-559 
sign-magnitude. 558 
table of bipolar codes, 752 
Iwo's complement. 559-560 

floating-point numbers, 561-564 
limit cycles, 583-587 

dead band, 584 
overflow, 588-589 
zero-input, 584 

scaling to prevent overflow, 588-589  
statistical characterization, 590-598 

Quantizer 

midrise, 750 
midtread. 750 
resolution. 750-752 

uniform. 750

Random number generators. BI-B 6 
Gaussian random variable. B4-B6 

subroutine for. B6 
Random processes. 327-330. A I-A 10 

averages, A3-A8 
autocorrelation. A3 
autocovariance, A4 
for discrete-time signals, A6-A7 
expected value, A3 
moments. A3 
power. A3 

cofielation-crgodic, A 9-A 10 

discrete-time. A6-A7 
ergodic, A8
jointly stationary, A2-A3

mean-ergodic, A8-A9 
power density spectrum, A5-A6 
response of linear systems, 327-330 

autocorrelation, 327-329 

expected value, 328 
power density spectrum, 329-330 

sample function, A 1 

stationary, A3 
wide-sense, A3 

time-averages, A8-A9 
Random signals (see Random processes) 

Rational z-transforms, 188-196 

poles, 172-174 
zeros, 172-174 

Recursive systems, 116-118 
References, R1-R15
Reflection coefficients, 512, 536. 863-864 

Resonator (see Digital resonator)
Reverse (reciprocal) polynomial. 515, 861 

backward system function. 515, 861 
Round-off error, 565-567, 590-598

Sample function. Al 
Sample-and-hold, 748-749, 765 
Sampling, 9, 21. 23, 269-279, 742-746 

aliasing effects. 27-28, 271-279 

of analog signals, 23-33, 269-279.

742-746 
of bandpass signals. 742-746 
of discrete-time signals. 782-845 

frequency, 23
frequency domain, 394-399
interval, 23

Nyquist rate, 30
period, 23

periodic, 23
rate, 23

of sinusoidal signals, 24-28 

theorem, 29-30 
time-domain, 24-28, 269-279 

uniform, 23 
Sampling-rate conversion, 782-845 

applications of, 821-845 
for DFT filter banks, 825-831 
for interfacing, 823 

for lowpass filters, 824 

for oversampling A/D and D/A.
843-844 

for phase shifters. 821-822 
for subband coding, 831-832 

for transmultipiexing, 841-843 

by arbitrary factor. 815-821 

of bandpass signals, 810-815 
decimation, 784-787 

filter design for, 792-806 

interpolation, 784. 787-790 

multistage, 806-810 
polyphase filters for, 797-800 

by rational factor, 790-792 

Sampling theorem, 29-30, 269-279 
Schur algorithm, 868-872 

pipelined architecture for, 872-873 

split-Schiir algorithm. 892
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Schur-Cohn stability test. 213-215 
conversion to lattice coefficients.

213-214 

Shanks' method, 709-710 
Sigma-delta modulation. 758 

Sign magnitude representation, 558 
Signal flowgraphs, 521-526 
Signals, 2-3 

analog, g 

antisymmetric, 51 

aperiodic. 50 
bandpass, 280. 738-742 

complex envelope. 740 
envelope, 741

quadrature components. 740 
continuous-time. 8 
deterministic. 11 
digital. 11
discrete-time, 9, 43-55 
electrocardiogram (ECG), 7 
equivalent lowpass. 740 

harmonically related. 19 
multichannel. 7 
multidimensional, 7 
natural. 282

frequency ranges. 2K2-283 
periodic, 15 

random, 12, AI-A 10 
correlation-ergodic. A9-A10 
ergodic. A9 
expected value of, A4 

mean-ergodic. A9-A10 
moments of. A4-A7 
statistically independent. A4 
strict-sense stationary'. A3 
time-averages, A 8-A I0 
wide-sense stationary. A3 

unbiased. A8 
unconelated. A4 

seismic, 283 

sinusoidal. 14 
speech. 2-3 

symmetric, 51 

Signal subspace, 951 
Sinusoidal generators {.tee Oscillators) 
Spectrum, 230-232 

analysis. 232

estimation of. 232. 896-959 
line, 237

Set also Power spectrum estimation 
Split-radix algorithms. 470-473 
Stability of LTI systems, 208-217 

of second-order systems, 215-217 

Stability triangle. 216 
State-space analysis, 539-566 

definition of stale, 540 

for difference equations. 540-542 
LTI state-space model. 542 
output equation. 542 

relation to impulse response, 551-553

solution of state-space equations, 
543-544 

state equations, 542 
state space, 541 
state-space realizations 

cascade form, 555 
coupled form, 556 
minimal, 546
normal (diagonal) form, 555 
parallel form, 555 

state transition matrix, 544 
state variables, 539 
z-domain, 550-554 
zero-input response, 544 
zero-state response. 544 

Steady-state response. 206-207, 314-316 
Structures. 111-118 

direct form I, 111-112 
direct form II, 113-114 

Subband coding, 831-833 
Superposition principle, 65 
Superposition summation, 76 
System, 3, 56-59 

dynamic, 62 
finite memory, 62 
infinite memory, 62 
inverse, 356 
invertible, 356 
relaxed, 59 

Syslem function 181-184, 319-321 
of all-pole system, 183 
of all-zero system, 182-183 
of LTI systems, 182-183 
relation to frequency response, 319-321 

System identification, 355, 363-364 
System modeling, 855 
System responses 

forced, 96-97 
impulse, 108-110 
natural (free), 97, 204 
o f  relaxed pole-zero systems, 172-184 
steady-stale, 206-207 
of systems with initial conditions.

204-206 
transient, 107, 206-207 

zero-input, 97 
zero-state, 96

Toeplitz matrix, 865, 883
Time averages, A8-A10
Time-limited signals, 281
Transient response. 107, 206-207. 314-315
Transition band, 619
Transposed structures, 521-526
Truncation error, 35, 564-565
Two’s complement representation, 559

Uniform distribution, 487-488, 565-568, 
755

Unit circle, 265, 267
Unit sample (impulse) response. 108-110

Unit sample sequence, 45

Variability. 916 
Variance, 487-lXX, 591-593

Welch method. 911-913, 917-918, 919-920 
Wideband signal, 281 
Wiener filters, 715, 880-890 

for filtering, 8 8 1 
FIR structure, 715, 881-884 
IIR structure, 885-889 
noncausal. 889-890 
for prediction. 881 
for smoothing. 881 

Wiener-Hopf equation, 882 
Wiener-Khintchine theorem. 299 
Window functions, 626 
Wold representation, 854 
Wolfer sunspot numbers, 10 

autocorrelation, 127-128 
graph. 128 
table, 127

Yule-Walker equations, 857 
modified. 935 

Yule-Walker method, 925

Zero-input linear, 98 
Zero-input response, 97 
Zero-order hold. 38. 765 
Zero padding. 400 
Zero-state linear, 98 
Zeros, 172
Zoom frequency analysis, 850-851 
Z-Iran s forms

definition, 151-152 
bilateral (two-sided), 151-152 
unilateral (one-sided), 197-202 

inverse, 160-172. 184-197 
by contour integration, 160-161, 

184-186
by partial fraction-expansion, 188-197 
by power series, 186-188 

properties, 161-172 
convolution. 168-169 
correlation, 169-170 
differentiation, 166-167 
initial value theorem, 172 
linearity. 161-163 
multiplication, 170-171 

Parseval’s relation, 171-172 
scaling. 164-165 
table of, 173 
time reversal, 166 
time shifting, 163-164 

rational, 172-184
region of convergence (ROC), 152-160 
relationship of Fourier transform,

264-265 
table of, 174




