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TABLE 7.2 Properties of the DFT

Property Time Domain Frequency Domain
Notation x(n), y(n) X&), Y&)
Periodicity x(n)y =x(n+N) Xk)=X&+N)
Linearity arx1(n) + aaxp(n) a1 X1(k) + ax Xo(k)
Time reversal x(N —n) X(N — k)
Circular time shift x((n — D)n X (k)e i2HIN
Circular frequency shift x(n)el2miN X (& -D)n
Complex conjugate x*(n) X*(N —k)
Circular convolution x1(n) ® xa2(n) X1(k) X, (k)
Circular correlation - x(n) ® y*(—n) X(k)Y*(k)
Multiplication of two sequences x1(n)x2(1) %X 1(k)y ® Xa(k)
Parseval’s theorem }{5 x(n)y*(n) i NZ_I X (k) Y*(k)
n=0 N =

and

N—~1
. 1 - o
Foy() = v § :ny(k)eﬂ”“/N
k=0

-1
X(k)Y*(k)ejzn’kl/N

z| =

Hence (7.2.50) follows by evaluating the IDFT at [ = 0.
The expression in (7.2.50) is the general form of Parseval’s theorem. In the
special case where y(n) = x(n), (7.2.50) reduces to

N-1 N-1

1
> kP = 5 > X @P (7.2.51)
k=0

n=0

which expresses the energy in the finite-duration sequence x(n) in terms of the fre-
quency components {X (k)}.
The properties of the DFT given above are summarized in Table 7.2.

7.3 Linear Filtering Methods Based on the DFT

Since the DFT provides a discrete frequency representation of a finite-duration se-
quence in the frequency domain, it is interesting to explore its use as a computational
tool for linear system analysis and, especially, for linear filtering. We have already
established that a system with frequency response H (w), when excited with an input

signs
The

trans -
that
quer
can (

In tt
linee
proc
freq
time
the
fast

7.3.

Intl
alen
fort
outy
don

anl

whe

“ast

Sin
dur

Ift
of i

to:




2(k)

“(k)

eorem. In the

(7.2.51)

erms of the fre-

e 7.2.

rite-duration se-
a computational
Ve have already
ed with an input

7.3 Linear Filtering Methods Based on the DFT 481

signal that has a spectrum X (w), possesses an output spectrum Y(w) = X(w)H(w).
The output sequence y(n) is determined from its spectrum via the inverse Fourier
transform. Computationally, the problem with this frequency-domain approach is
that X (»), H(w), and Y (w) are functions of the continuous variable . As a conse-
quence, the computations cannot be done on a digital computer, since the computer
can only store and perform computations on quantities at discrete frequencies.

On the other hand, the DFT does lend itself to computation on a digital computer.
In the discussion that follows, we describe how the DFT can be used to perform
linear filtering in the frequency domain. In particular, we present a computational
procedure that serves as an alternative to time-domain convolution. In fact, the
frequency-domain approach based on the DFT'is computationally more efficient than
time-domain convolution due to the existence of efficient algorithms for computing
the DFT. These algorithms, which are described in Chapter 8, are collectively called
fast Fourier transform (FFT) algorithms.

7.3.1 Use of the DFT in Linear Filtering

In the preceding section it was demonstrated that the product of two DFT’s is equiv-
alent to the circular convolution of the corresponding time-domain sequences. Un-
fortunately, circular convolution is of no use to us if our objective is to determine the
output of a linear filter to a given input sequence. In this case we seek a frequency-
domain methodology equivalent to linear convolution.

Suppose that we have a finite-duration sequence x(n) of length L which excites
an FIR filter of length M. Without loss of generality, let

x(n) =0, n<0andn>1L

h(n) =0, n<Oandn>M

where h(n) is the impulse response of the FIR filter.
The output sequence y(n) of the FIR filter can be expressed in the time domain
as the convolution of x(n) and h(x), that is

M-1

Yy = hk)x(n = k) : (73.1)

k=0

Since h(n) and x(n) are finite-duration sequences, their convolution is also finite in
duration. In fact, the duration of y(n) is L + M — 1.
The frequency-domain equivalent to (7.3.1) is

Y(w) = X(w)H(w) (7.3.2)

If the sequence y(n) is to be represented uniquely in the frequency domain by samples
of its spectrum ¥ (w) at a set of discrete frequencies, the number of distinct samples
must equal or exceed L+ M —1. Therefore,a DET of size N > L+ M —1 isrequired
to represent {y(n)} in the frequency domain.
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Now if
Y(k) = Y(@)o=2mk/n, k=0,1,...,N=1
= X (w)H (0)|w=2rk/N> k=0,1,...,N—1

then
Y k) = X(k)H k), k=0,1,...,N -1 (7.3.3)

where {X (k)} and {H (k)} are the N-point DFT's of the corresponding sequences x (1)
and h(n), respectively. Since the sequences x (1) and h(n) have adurationlessthan NV,
we simply pad these sequences with zeros to increase their length to N. This increase
in the size of the sequences does not alter their spectra X (w) and H (w), which are
continuous spectra, since the sequences are aperiodic. However, by sampling their
spectra at N equally spaced points in frequency (computing the N -point DFTs),
we have increased the number of samples that represent these sequences in the
frequency domain beyond the minimum number (L or M, respectively).

Since the (N = L + M — 1)-point DFT of the output sequence y(n) is sufficient
to represent y(n) in the frequency domain, it follows that the multiplication of the
N-point DFTs X (k) and H (k), according to (7.3.3), followed by the computation
of the N-point IDFT, must yield the sequence {y(n)}. In turn, this implies that the
N -point circular convolution of x(n) with h(n) must be equivalent to the linear con-
volution of x(n) with h(rn). In other words, by increasing the length of the sequences
x(n) and h(n) to N points (by appending zeros), and then circularly convolving the
resulting sequences, we obtain the same result as would have been obtained with
linear convolution. Thus with zero padding, the DFT can be used to perform linear
filtering.

The following example illustrates the methodology in the use of the DFT in
linear filtering.

EXAMPLE 7.3.1
By means of the DFT and IDFT, determine the response ofthe FIR filter with impulse response

hn) = {%,2, 3}

to the input sequence
x(n) = {}, 2,2,1}

Solution.  The input sequence has length L = 4 and the impulse response has length
M = 3. Linear convoluation of these two sequences produces a sequence of length N = 6.
Consequently, the size of the DFTs must be at least six.

For simplicity we compute eight-point DFTs. We should also mention that the efficient
computation of the DFT via the fast Fourier transform (FFT) algorithm is usually performed
for a length N that is a power of 2. Hence the eight-point DFT of x(n) is

7
X(k) — Zx(n)e—j27rk11/8

n=0

= 1+ eIk L gpminki2 § g I3/ k=0,1,...,7
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This computation yields

X(0) =6, X =

2442 [443V2
2 2

XQ=-1-j XQ= +J

X@) =0, XO&= —j

X)) =-1+/, XM=
The eight-point DFT of h(n) is

7
H(k) — Z h(n)e—jZJTkn/S
n=0
=14 2€—~jﬂk/4 + 3e—jnk/2
Hence

H() =6, H(1)=1+«/§—j(3+«/§>, HQ) =—2—j2

H(3)=1—ﬁ+j(3—ﬁ), H@4) =2
HE) =1-v2-j(3-+2), H(6) = —2+ j2

H(7)=1+ﬁ+j(3+f2)

The product of these two DFTs yields Y (k), which is
Y (0) = 36, Y1) = —14.07 — j17.48, Y(2) = j4, Y (3) = 0.07 4 j0.515
Y(4) =0, Y (5) = 0.07 — j0.515, Y(6) = —j4, Y(7) = —14.07 + j17.48
Finally, the eight-point IDFT is
7
ymy =Y YRS, n=0,1,....7
k=0
This computation yields the result
y(n) = {%, 4,9,11,8,3,0,0}
We observe that the first six values of y(n) constitute the set of desired output values.

The last two values are zero because we used an eight-point DFT and IDFT, when, in fact, the
minimum number of points required is six.
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Although the multiplication of two DFTs corresponds to circular convolution Therefi
in the time domain, we have observed that padding the sequences x(n) and A(n)
with a sufficient number of zeros forces the circular convolution to yield the same

output sequence as linear convolution. In the case of the FIR filtering problem T Th
in Example 7.3.1, it is a simple matter to demonstrate that the six-point circular Same §¢
convolution of the sequences ;
" It
h(n) = {1,2,3,0,0,0) (7.3.4) y(n) o
aliasin
x(n) = {%i 2’ 2a 1’ O’ O} (735) : aliasec
results in the output sequence
Simila:
y{n) = {%, 4,9,11,8, 3} (7.3.6) '

which is the same sequence obtained from linear convolution.

It is important for us to understand the aliasing that results in the time domain ; All oth

when the size of the DFTs is smaller than 7 + M —1. The following example focuses
on the aliasing problem.

EXAMPLE?7.3.2

Determine the sequence y(n) that results from the use of four-point DFTs in Example 7.3.1.

o Theref
Solution. The four-point DFT of h(n) is 3(0) #
discuss
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Therefore,
ym) = {%, 7,9,11}

The reader can verify that the four-point circular convolution of h(x) with x(n) yields the
same sequence y(n).

If we compare the result (), obtained from four-point DFTs, with the sequence
y(n) obtained from the use of cight-point (or six-point) DFTs, the time-domain
aliasing effects derived in Section 7.2.2 are clearly evident. In particular, y(4) is
aliased into y(0) to yield

50) = y(0) +y@) =9

Similarly, y(5) is aliased into y(1) to yield
(1) =y +y6) =7
All other aliasing has no effect, since y(n) =0forn > 6. Consequently, we have

Q) =y@) =9
53 =y =11

Therefore, only the first two points of $(n) are corrupted by the effect of aliasing [i.e.,
$(0) # y(0) and (1) # y(1)]. This observation has important ramifications in the
discussion of the following section, in which we treat the filtering of long sequences.

7.3.2 Filtering of Long Data Sequences

In practical applications involving linear filtering of signals, the input sequence x (n) is
often a very long sequence. Thisis especially true in some real-time signal processing
applications concerned with signal monitoring and analysis.

Since linear filtering performed via the DET involves operations on a block of
data, which by necessity must be limited in size due to limited memory of a digital
computer, a long input signal sequence must be segmented to fixed-size blocks prior
to processing. Since the filtering is linear, successive blocks can be processed one
at a time via the DFT, and the output blocks are fitted together to form the overall
output signal sequence.

We now describe two methods for linear FIR filtering a long sequence on a
block-by-block basis using the DFT. The input sequence is segmented into blocks
and each block is processed via the DFT and IDFT to produce a block of output
data. The output blocks are fitted together to form an overall output sequence
which is identical to the sequence obtained if the long block had been processed via
time-domain convolution.

The two methods are called the overlap-save method and the overlap-add method.
For both methods we assume that the FIR filter has duration M. The input data se-
quenceis segmented into blocks of L points, where, by assumption, L >> M without
loss of generality.




