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Figure 7.1.6 continued

7.1.3 The DFT as a Linear Transformation

The formulas for the DFT and IDFT given by (7.1.18) and (7.1.19) may be ex-
pressed as

N-1
X (k) = Z x(n)Wk", k=0,1,....N-1 (7.1.22)
n=0
=
x(n) = NZX(/C)W,;"”, n=01,...,N—1 (7.1.23)
k=0

where, by definition,
Wy = e /2N (7.1.24)

which is an Nth root of unity.
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We note that the computation of each point of the DFT can be accomplished
by N complex multiplications and (¥ — 1) complex additions. Hence the N -point
DFT values can be computed in a total of N> complex multiplications and N (N — 1)
complex additions.

Itisinstructive to view the DFT and IDFT aslinear transformations on sequences
{x(n)} and {X(k)}, respectively. Let us define an N-point vector xy of the signal
sequence x{n), n = 0,1,..., N — 1, an N-point vector Xy of frequency samples,
and an N x N matrix Wy as

(D) X(1)
XN = . , XN — )
4’/\4 LX(N‘—l) X(N-1)
. Q 1 Wy ‘ WI%I . W]IVV—I i
. w2z owh o WA
Wy = 2 i 2
i W{,V -t Wff” -t W1§IN~'1><N—1> o

With these definitions, the N -point DFT may be expressed in matrix form as
XN = WNXN . (7126)

where Wy is the matrix of the linear transformation. We observe that Wy isa
symmetric matrix, If we assume that the inverse of Wy exists, then (7.1.26) can be
inverted by premultiplying both sides by W;,l. Thus we obtain

xy = WylXy (7.1.27)

But this is just an expression for the IDFT.
In fact, the IDFT as given by (7.1.23) can be expressed in matrix form as

Xy = —]1\7W";\,XN (7.1.28)

where W}, denotes the complex conjugate of the matrix Wy . Comparison of (7.1.27)
with (7.1.28) leads us to conclude that

1
Wil = < Wi (7.1.29)

which, in turn, implies that
WyWy = Ny (7.1.30)

where Iy isan N x N identity matrix. Therefore, the matrix Wy in the transformation
is an orthogonal (unitary) matrix. Furthermore, its inverse exists and is given as
W3 /N. Of course, the existence of the inverse of Wy was established previously
from our derivation of the IDFT.
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EXAMPLE?7.1.3

Compute the DFT of the four-point sequence
x(m)y=(0 1 2 3)

Solution.  The first step is to determine the matrix W,. By exploiting the periodicity property
of W, and the symmetry property

W[l\c]+N/2 - —WII\CI

the matrix W, may be expressed as

TwWY W W) WP 11 1 1
w) wp wi ow} 1w, wi owi
Wo=lwo w2 wi wo|=11 w2 wo w2
4 4 4 4 ¢ g Wy
Lwe owi owiow) 1w} w2 owl
rr 1 1 1
| =i -1 J
J I R A S
A
Then
6
D42
X4 =W4X4 = 2_+2 J
~2-2j
The IDFT of X, may be determined by conjugating the elements in Wy to obtain W} and
then applying the formula (7.1.28). ' /

The DFT and IDFT are computational tools that play a very important role
in many digital signal processing applications, such as frequency analysis (spectrum
analysis) of signals, power spectrum estimation, and linear filtering. The importance
of the DFT and IDFT in such practical applications is due to a large extent to the
existence of computationally efficient algorithms, known collectively as fast Fourier
transform (FFT) algorithms, for computing the DFT and IDFT. This class of algo-
rithms is described in Chapter 8.

7.1.4 Relationship of the DFT to Other Transforms

In this discussion we have indicated that the DFT is an important computational
tool for performing frequency analysis of signals on digital signal processors. In view
of the other frequency analysis tools and transforms that we have developed, it is
important to establish the relationships of the DFT to these other transforms.
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Relationship to the Fourier series coefficients of a periodic sequence. A periodic
sequence {x,(n)} with fundamental period N can be represented in a Fourier series
of the form

N-1
xp(n) = Z crelTFRIN -0 <N <00 (7.1.31)
k=0

where the Fourier series coefficients are given by the expression

1 N-1 iren
Cp = N Z .xp(n)e 2 k/N’ k= 01 1a vy N -1 (7132)

n=0

If we compare (7.1.31) and (7.1.32) with (7.1.18) and (7.1.19), we observe that the
formula for the Fourier series coefficients has the form of a DFT. In fact, if we define
a sequence x(n) = x,(n), 0 <n < N —1, the DFT of this sequence is simply

Furthermore, (7.1.31) has the form of an IDFT. Thus the N -point DFT provides the
exact line spectrum of a periodic sequence with fundamental period N.

Relationship to the Fourier transform of an aperiodic sequence. We have already
shown thatif x(n) is an aperiodic finite energy sequence with Fourier transform X (),
which is sampled at N equally spaced frequencies wy, =27k/N,k=0,1,..., N -1,
the spectral components

X)) = X(@)lomzmiyy = Y, x(m)e” 2N g=0,1,... ,N-1 (7.134)

n=—00
are the DFT coefficients of the periodic sequence of period N, given by

oo

xp(n)= " x(n—IN) (7.1.35)

[=—00

Thus x,(n) is determined by aliasing {x(n)} over the interval 0 <n < N — 1. The
finite-duration sequence

sy JXp(m),  0<n<N-1
= {0, otherwise (7.1.36)

bears no resemblance to the original sequence {x(n)}, unless x(»n) is of finite duration
and length L < N, in which case

x(m)=%@), O0<n<N-1 (7.1.37)

Only in this case will the IDFT of {X (k)} yield the original sequence {x(rn)}.
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Relationship to the z-transform. Let us consider a sequence x(n) having the z-trans-

form
o8]

X@= Y xmz™" (7.1.38)

n==--00

with an ROC that includes the unit circle. If X (z) is sampled at the N equally spaced
points on the unit circle z; = ¢/2™*/V 0,1,2,..., N — 1, we obtain

X (k) = X(2)| ,mpjonni/n k=0,1,...,.N—1

00 (7.1.39)
— Z x(n)e—ﬂmlk/N

h=--00

The expression in (7.1.38) is identical to the Fourier transform X (w) evaluated at the
N equally spaced frequencies wy = 27k/N, k=0, 1,..., N — 1, which is the topic
treated in Section 7.1.1.

If the sequence x(r) has a finite duration of length N or less, the sequence can
be recovered from its N-point DFT. Hence its z-transform is uniquely determined
by its N -point DFT. Consequently, X (z) can be expressed as a function of the DFT
{X(k)? as follows:

N-1

X@) =) x(mz™"

n=0

N-1 1 N-1
X@ =) [ﬁ > X (kyel> /N } z"

n=0 k=0
(7.1.40)

1 N-1 N-1 ' "
X@ =5 X)) (eﬂﬂk/Nz—l)
k=0 n=0

1—g NN X (k)
X@)=— ; 1 — ei2nk/N ;1

When evaluated on the unit circle, (7.1.40) yields the Fourier transform of the finite-
duration sequence in terms of its DFT, in the form

1—eJoN X1 X (k)

— —j(w—27k/N)
N k=01 e

X(w) = (7.1.41)

This expression for the Fourier transform is a polynomial (Lagrange) interpolation
formula for X (w) expressed in terms of the values {X (k)} of the polynomial at a set
of equally spaced discrete frequencies wy = 27k/N,k=0,1,..., N —1. With some
algebraic manipulations, it is possible to reduce (7.1.41) to the interpolation formula
given previously in (7.1.13).
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Relationship to the Fourier series coefficients of a continuous-time signal. Suppose
that x,(t) is a continuous-time periodic signal with fundamental period T, = 1/Fp.
The signal can be expressed in a Fourier series

oo
Xa(t) = Y crel?mhTo (7.1.42)

k==—00

where {c;} are the Fourier coefficients. If we sample x,(¢) at a uniform rate F; =
N/T, =1/T, we obtain the discrete-time sequence

x0 x
X(Vl) = xa(nT) — Z ckejZHkFonT — Z CkejZJTkn/N
k=—c0 k=—00
(7.1.43)
N-1 00 .
— Z [ Z Ck—lN:I e]2nkn/N
k=0 Li=—o00
It is clear that (7.1.43) is in the form of an IDFT formula, where
x>
X(k)=N Y civ=N& (7.1.44)
[=—00
and
(e8]
&= ) ok (7.1.45)
[=—00

“Thus the {¢;} sequence is an aliased version of the sequence {c}.

Properties of the DFT

In Section 7.1.2 we intfroduced the DFT as a set of N samples {X (k)} of the Fourier
transform X (w) for a finite-duration sequence {x(n)} oflength L < N. The sampling
of X (») occurs at the N equally spaced frequencies wy = 27k/N,k =0,1,2,..., N~
1. We demonstrated that the N samples {X (k)} uniquely represent the sequence
{x(n)} in the frequency domain. Recall that the DFT and inverse DFT (IDFT) for
an N -point sequence {x(n)} are given as

N-1
DFT: X(k) =Y xmW§, k=0,1,...,N—1 (7.2.1)
n==0
1 N-1
IDFT: x(n) = N X®Wy,  n=0,1,....N-1 (7.2.2)
k=0

where Wy is defined as
Wy = e /27/N (7.2.3)
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In this section we present the important properties of the DFT. In view of the re-
Iationships established in Section 7.1.4 between the DFT and Fourier series, and
Fourier transforms and z-transforms of discrete-time signals, we expect the prop-
erties of the DFT to resemble the properties of these other transforms and series.
However, some important differences exist, one of which is the circular convolution
property derived in the following section. A good understanding of these properties
is extremely helpful in the application of the DFT to practical problems.
The notation used below to denote the N-point DFT pair x(n) and X (k) is

x(n) %Fi X&)

7.2.1 Periodicity, Linearity, and Symmetry Properties
Periodicity. If x(n) and X(k) are an N -point DFT pair, then

x(m-+N)=x(n) foralln (7.2.4)
X+ N)= X(k) for all & (7.2.5)

These periodicities in x(n) and X (k) follow immediately from formulias (7.2.1) and
(7.2.2) for the DFT and IDFT, respectively.

We previously illustrated the periodicity property in the sequence x(n) for a
given DFT. However, we had not previously viewed the DFT X (k) as a periodic
sequence. In some applications it is advantageous to do this.

Linearity. If

x1(m) 2 X1(8)

and
DFT
X2(n) < Xy (k)

then for any real-valued or complex-valued constants a; and gy,
DFT
arxy(n) + arxz(n) A a1 X1 (k) + ax Xo (k) (7.2.6)

This property follows immediately from the definition of the DFT given by (7.2.1).

Circular Symmetries of a Sequence. As we have seen, the N-point DFT of a finite
duration sequence x(n), of length L < N, is equivalent to the N-point DFT of a
periodic sequence x,(n), of period N, which is obtained by periodically extending
x{(n), that is,
oo
Xp(n) = Y x(n—IN) (7.2.7)

l=—00




466 Chapter 7 The Discrete Fourier Transform: Its Properties and Applications

Now suppose that we shift the periodic sequence x,(n) by & units to the right. Thus
we obtain another periodic sequence

o0
xm) =xp(n—k)= Y x(n—k—IN) (7.2.8)
[=—00
The finite-duration sequence
oy | x5 (), 0<n<N-1
x(m) = {Of7 otherwise (7.2.9)

is related to the original sequence x(n) by a circular shift. This relationship is illus-
trated in Fig. 7.2.1 for N = 4.

x(n) 4

xp(n) 4 4 4

x'(n) \ 4
[ i
1 ? )
01 2 3
(d)
x(1) x'(1)
x(2) x0) X2 x'(0)
(€]
x(3) © x'(3)

Figure 7.2.1 Circular shift of a sequence.
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In general, the circular shift of the sequence can be represented as the index
modulo N. Thus we can write

x'(n) = x(n — k, modulo N)

=x((n— k)N

(7.2.10)

For exampile, if k =2 and N = 4, we have
x'(n) = x((n —2))4
which implies that
x'(0) = x((=2))4 = x(2)
(D) = x((-1))a = x(3)
x'(2) = x((0)4 = x(0)
x'(3) = x (14 = x(D)

Hence x'(n) is simply x(n) shifted circularly by two units in time, where the counter-
clockwise direction has been arbitrarily selected as the positive direction. Thus we
conclude that a circular shift of an N -point sequence is equivalent to a linear shift of
its periodic extension, and vice versa.

The inherent periodicity resulting from the arrangement of the N-point sequence
on the circumference of a circle dictates a different definition of even and odd sym-
metry, and time reversal of a sequence.

An N-point sequence is called circularly even if it is symmetric about the point
zero on the circle. This implies that

x(N —n) =x(n), l<n<N-1 (7.2.11)

An N -point sequence is called circularly odd if it is antisymmetric about the point
zero on the circle. This implies that

x(N —n) = —x(n), l<n<N-1 (72.12)

The time reversal of an N-point sequence is attained by reversing its samples
about the point zero on the circle. Thus the sequence x((—n))y is simply given as

x((=n))y = x(N —n), 0<n=sN-1 (7.2.13)

This time reversal is equivalent to plotting x () in a clockwise direction on a circle.
An equivalent definition of even and odd sequences for the associated periodic
sequence x,(n) is given as follows

even:  xp(n) = xp(—n) = x,(N —n) ©(7.2.14)

odd: x,(n) = —xp(~n) = —x,(N —n)
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If the periodic sequence is complex valued, we have

conjugate even: x,(n) = x;‘(N - n)

(7.2.15)
conjugate odd: x,(n) = —x;‘,‘(N —n)
These relationships suggest that we decompose the sequence x,(n) as
xp(n) = xpe(n) + xpo(n) (7216)
where .
xpe(n) = i[xp(n) + x;(N - I’l)]
(7.2.17)

1 *
Xpo(n) = 'i[xp(n) - xp(N —n)]

Symmetry properties of the DFT. The symmetry properties for the DFT can be
obtained by applying the methodology previously used for the Fourier transform.
Let us assume that the N -point sequence x(n) and its DFT are both complex valued.
Then the sequences can be expressed as

x(n) = xp(n) + jxr(n), 0<n<N-1 (7.2.18)
Xy = Xgr(k) + jX (K, 0<k<N-1 (7.2.19)
By substituting (7.2.18) into the expression for the DFT given by (7.2.1), we obtain

vl 2mkn 2mkn
Xrk) = nX:(; [xR(n) cos i + x;(n) sin N :| (7.2.20)
N-1
k 2
X, (k) = — Z:% [xR(n) sin 2’; T xi(n) cos Jxm] (72.21)

Similarly, by substituting (7.2.19) into the expression for the IDFT given by (7.2.2),
we obtain

N-1
2 2
xp(n) = % g ,:XR(k) cos T;f” — X;(k)sin ”k”] (7.2.22)
yRR 2rkn 2mkn
i)=Y [XR(k) sin + X/ (k) cos ] (72.23)
N k=0

Real-valued sequences. If the sequence x(n) is real, it follows directly from (7.2.1)
that
X(N — k) = X*(k) = X (k) (7.2.24)

Consequently, | X (N —k)| = | X (k)| and LX (N ~k) = — /X (k). Furthermore, x;(n) =
0-and therefore x(n) can be determined from (7.2.22), which is another form for the
IDFT.
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Real and even sequences. If x(n) is real and even, that is,
x(n) = x(N —n), O0<n<N-1
then (7.2.21) yields X;(k) = 0. Hence the DFT reduces to
N-1

2k
= , 0<k<N-1 2.
X (k)= ) x(m)cos = <kx (7.2.25)

n=0

which is itself real valued and even. Furthermore, since X;(k) = 0, the IDFT re-
duces to v

Nl 2mkn

x(n) = % Z X (k) cos

k=0

D<n<N-1 (7.2.26)

Real and odd sequences. If x(#) is real and odd, that is,
x(n) = —x(N —n), O<n<N-1
then (7.2.20) yields Xg(k) = 0. Hence

2

k
N”, O<k<N-1 (7.2.27)

N-1
X(k)=—j Yy x(n)sin

n=0
which is purely imaginary and odd. Since Xz (k) = 0, the IDFT reduces to
N-1

1 2k
x() = j 3 X()sin % 0<n<N-1 (7.2.28)
=0

Purely imaginary sequences. In this case, x(n) = jx;(n). Consequently, (7.2.20) and
(7.2.21) reduce to

N 2rkn
Xp(k) = ZO x7 () sin — (7.2.29)
N-1
2mkn
X;(k) =Y xs(n)cos ~ (7.2.30)

n=0

We observe that Xz (k) is odd and X; (k) is even,
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If x;(n) is odd, then X;(k) = O and hence X(k) is purely real. On the other
hand, if x; (n) is even, then X (k) = 0 and hence X (k) is purely imaginary.
The symmetry properties given above may be summarized as follows:

x(n) = xg(n) + x3(n) + jxj(n) + jx7(n)
| (7.231)

X(k) = XE(k) + X2(k) + X50K) + jX20k)

All the symmetry properties of the DFT can easily be deduced from (7.2.31). For
example, the DFT of the sequence

Xpe(n) = 3[x,(n) + x3(N —n)]
is
Xg(k) = Xg(k) + Xz (k)
The symmetry properties of the DFT are summarized in Table 7.1. Exploitation

of these properties for the efficient computation of the DFT of special sequences is
considered in some of the problems at the end of the chapter.

TABLE 7.1 Symmetry Properties of the DFT

N -Point Sequence x(n),

0O<n=<N-1 N -Point DFT
x(n) X%
x*(n) X*(N —k)
x*(N —n) X*(k)
xr(1) Xee(k) = 3[X (k) + X*(N — k)]
iXi() Xeolk) = 3[X (k) ~ X*(N — k)]
Xee(n) = 3[x(n) + x*(N — n)] X (k)
Xeo(n) = 3[x(n) — x*(N = n)] J X1tk
Real Signals
Any real signal X (k) =X*(N —k)
x(n) Xr(k) = Xp(N — k)

X;(k) = —X;(N —k)
X (k)| = [X(N — k)l
LX(k)=—LX(N —-k)
Xee(n) = 3[x(n) + x(N — n)] Xr(k)
Xeo(n) = 3[x(n) — x(N — n)] J X (k)
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7.2.2 Multiplication of Two DFTs and Circular Convolution

Suppose that we have two finite-duration sequences of length N, x1(r) and xp(n).
Their respective N -point DFTs are

N~1

Xi(k) =) xa(mye Nk =0,1,...,N -1 (7.2.32)
n==0
N-1

Xa(k) =Y xp(m)e™ Nk =0,1,...,N -1 (7.2.33)

n=0

If we multiply the two DFTs together, the result is a DFT, say X3(k), of a sequence
x3(n) oflength N. Let us determine the relationship between x3(n) and the sequences
x1(n) and x(n).
‘We have
X3(k) = X1(k)Xo(k), k=0,1,...,N—1 (7.2.34)

The IDFT of {Xs(k)} is

1 N-1 _
x3(m) =+ D Xa(kye /N

=
<

(7.2.35)

=
-

1 o
= X10k) X (k) rhm/N
k

i
=

Suppose that we substitute for X;(k) and X»(k) in (7.2.35) using the DFTs given in
(7.2.32) and (7.2.33). Thus we obtain

g =1 N-1
. —j2xkn/N —j2nki/N i2nkm/N
x3(m) = i Z I:Z x1(n)e 7" :l |:Z xp(De™! } e’
k=0 Ln=0 1=0
(7.2.36)
1 Nt N—-1 N-1
— ﬁ le(n) Z x2 () l: e/2nk(m-—n—l)/N:'
n=0 [=0 k=0
The inner sum in the brackets in (7.2.36) has the form
Nz—:l { N, N a=1
ak = 1 —da (7.2.37)
— T4 a#l

where a is defined as

a = ej27t(m—n—-l)/N
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We observe that a = 1 when m —n —1 is a multiple of N. On the other hand, ¥ =1
for any value of a # 0. Consequently, (7.2.37) reduces to

N-1 i
Z S N, l=m —n + pN = ((m —n))y, paninteger (7.2.38)
—~ 0, otherwise

k

If we substitute the result in (7.2.38) into (7.2.36), we obtain the desired expression
for x3(m) in the form

N-1
x3m) =Y xmx(m—n)y, m=01,...,N-1 (7.2.39)

n=0

The expression in (7.2.39) has the form of a convolution sum. However, it is not
the ordinary linear convolution that was introduced in Chapter 2, which relates the
output sequence y(n) of a linear system to the input sequence x(n) and the impulse
response i(n). Instead, the convolution sum in (7.2.39) involves the index ((m —n))x
and is called circular convolution. Thus we conclude that multiplication of the DFTs
of two sequences is equivalent to the circular convolution of the two sequences in
the time domain.

The following example illustrates the operations involved in circular convolution.

EXAMPLE7.2.1

Perform the circular convolution of the following two sequences:
x1(n) = {%, 1,2,1}

x(n) = {%, 2,3,4)

Solution.  Each sequence consists of four nonzero points. For the purposes of illustrating the
operations involved in circular convolution, it is desirable to graph each sequence as points on
acircle. Thus the sequences x;(n) and x; (n) are graphed as illustrated in Fig. 7.2.2(a). We note
that the sequences are graphed in a counterclockwise direction on a circle. This establishes
the reference direction in rotating one of the sequences relative to the other.

Now, x3(m) is obtained by circularly convolving x; (#) with x;(n) as specified by (7.2.39).
Beginning with m = 0 we have

3
x3(0) = Y x1(m)xa((—m)N

n=0

x2((—n))4 is simply the sequence x,(n) folded and graphed on acircle asillustrated in Fig. 7.2.2(b).

In other words, the folded sequence is simply x,(n) graphed in a clockwise direction.

The product sequence is obtained by multiplying x; (n) with x,((—n))4, point by point.
This sequence is also illustrated in Fig. 7.2.2(b). Finally, we sum the values in the product
sequence to obtain

x3(0) =14
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Folded sequence
x0)=1
x(3)=4 (1) =2
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Folded sequence rotated by one unit in time
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x(0) =1 xy(2)=3
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»3)=4
Folded sequence rotated by two units in time

x(2) =3
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Folded sequence rotated by three units in time
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x(1)=2

X(2)=3 x(0) =1

O

(a) x2(3) =4

Product sequence

®
i
8 ‘ 4
3
Product sequence
(©
2
2 ‘ 6
4
Product sequence
@

Product sequence

(&)

Figure 7.2.2 Circular convolution of two sequences.
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For m = 1 we have

3
X)) =Y xmx((l—n)s

n=0

It is easily verified that x; ((1 — n))4 is simply the sequence x;((—n))4 rotated counterclockwise
by one unit in time as illustrated in Fig. 7.2.2(c). This rotated sequence multiplies x{(n) to
yield the product sequence, also illustrated in Fig. 7.2.2(c). Finally, we sum the values in the
product sequence to obtain x3(1). Thus

X3(1) =16

For m = 2 we have

3
x3(2) =Y 1 m)x(2 - n)
n=0

Now x3((2 — n))4 is the folded sequence in Fig. 7.2.2(b) rotated two units of time in the
counterclockwise direction. The resultant sequence is illustrated in Fig. 7.2.2(d) along with
the product sequence x; (7)x2((2 — n))4. By summing the four terms in the product sequence,
we obtain

X3 (2) =14

For m = 3 we have

3
x303) =Y xmx (3 =)

n=0

The folded sequence x;((—n))4 is now rotated by three units in time to yield x((3 — n))4 and
the resultant sequence is multiplied by x1(n) to yield the product sequence as illustrated in
Fig. 7.2.2(e). The sum of the values in the product sequence is

X3 (3) =16

We observe that if the computation above is continued beyond m = 3, we simply repeat
the sequence of four values obtained above. Therefore, the circular convolution of the two
sequences xq(n) and x»(n) yields the sequence

x3(n) = {}4, 16,14, 16}

From this example, we observe that circular convolution involves basically the
same four steps as the ordinary linear convolution introduced in Chapter 2: folding
(time reversing) one sequence, shifting the folded sequence, multiplying the two se-
quences to obtain a product sequence, and finally, summing the values of the product
sequence. The basic difference between these two types of convolution is that, in
circular convolution, the folding and shifting (rotating) operations are performed in
a circular fashion by computing the index of one of the sequences modulo N. In
linear convolution, there is no modulo N operation.

The reader can easily show from our previous development that either one of the
two sequences may be folded and rotated without changing the result of the circular
convolution. Thus

N-1
x3(m) =Y xa(mx((m—n)y, m=01,...,N—1 (7.2.40)
n=0

The following example serves to illustrate the computation of x3(r) by means of
the DFT and IDFT.
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EXAMPLE7.2.2

By means of the DFT and IDFT, determine the sequence x3(n) corresponding to the circular
convolution of the sequences x1(r) and x;(n) given in Example 7.2.1.

Solution.  First we compute the DFTs of x;(n) and x,(n). The four-point DFT of x;(n) is

3
X1(k) = Y xy(mye™ Ak =0,1,2,3
n=0

— 2+e—jrrk/2 +26~jnk +e—j3n’k/2

Thus
X1(0) =6, X;(1) =0, Xi2)=2, . X3 =0

The DFT of x;(n) is

3
Xa(ky =) xp(n)e”Fmke, £k=0,1,2,3

n=0

= 1 20~ ITkI2 | 3pimk 4 4oi3nk/2
Thus
X,(0) =10, X2(1) = =2+ j2, X2y = -2, X2(3) =-2—j2
When we multiply the two DFTs, we obtain the product
X3(k) = X1(k) X2 (k)
or, equivalently,
X3(0) = 60, X3(1) =0, X3(2) = —4, X3(3)=0

Now, the IDFT of X3(k) is

3
x3(n) = Z X3(k)ej2nnk/4’ n=0123
k=0

= 3—1(60 — 4eim™my

Thus
x3(0) = 14, x3(1) =16, x3(2) = 14, x3(3) = 16

~ which is the result obtained in Example 7.2.1 from circular convolution.

We conclude this section by formally stating this important property of the DFT.
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Circular convolution. If
DFT
x1(n) A X1(k)

and
x2(n) %T» X5 (k)

then
() ® x2(n) P—NFE X1 (k) X2(k) (72.41)

where x1(n) ® x2(n) denotes the circulaf convolution of the sequence x1(n) and
XZ(H).

7.2.3 Additional DFT Properties
Time reversal of a sequence. If
x(n) %’F—E X (k)
then
DFT
x((—n))y =x(N —n) T) X{(~k)y =X(N —k) (7.2.42)

Hence reversing the N-point sequence in time is equivalent to reversing the DFT
values. Time reversal of a sequence x () is illustrated in Fig. 7.2.3.
Proof From the definition of the DFT in (7.2.1) we have

N-1

DFT{X(N — I’l)} = Zx(N _ n)e“jZHkn/N

n=0

If we change the index from n to m = N —n, then

N-1
DFT{x(N —n)} = Z x(m)e=S2mkN=m)/N

m=0

x(2) x(6)

x4 x4)

Figure 7.2.3
Time reversal of a
sequence. x(6) x(2)
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x(6)
x(7)

x(~n) x(0)
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N-1
—_ Z x(m)eJZﬂkm/N

m=0
N-1
= Z x(m)e ImmIN-BIN — ¥ (N — k)
m=0
We note that X(N — k) = X((—k)n, 0 <k <N —-1.
Circular time shift of a sequence. If

x(n) 25"5 X (%)

then ‘
x((n — D)y (D_NF_T) X (kye~/2ek/N

Proof From the definition of the DFT we have
N-1 .
DFT{.X((}’I — l))N} = Z x((n — l))Ne—jZHkn/N

n=0

-1

= Zx((” — [y)ye—i2mkn/N

n=0

N-1
+ Z x(n — e~ Ikn/N

n=l
But x((n — ))y = x(N — [ + n). Consequently,
-1 . I |
ZX((n — l))Ne-JZHkn/N = Zx(N —1+ n)e'—jzﬂkn/N

n=0 n=0

N-1
= Z x(m)e~IkmTDIN
m=N-I

Furthermore,
N1 N—1-1
Zx(n — [y~ i2rkn/N Z X (m)e~i2rkm+D/N
n==l m=0
Therefore,
N-1
DFT{x((n — 1))} = Z X (m)e—J2mk@n+)/N

m=0

— X(k)e—ﬂnkl/N

(7.2.43)
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Circular frequency shift. If

x(n) ?NE; X (k)

then
x(n)e /N EAE} Xk — D)y (7.2.44)

Hence, the multiplication of the sequence x(n) with the complex exponential se-
quence e¢/27%*/N is equivalent to the circular shift of the DFT by / units in frequency.
This is the dual to the circular time-shifting property and its proof is similar to that
of the latter.

Complex-conjugate properties. If
x(m) S5 X (@)
then
x*(n) A X*((=k)y = X*(N — k) (7.2.45)
The proof of this property is left as an exercise for the reader. The IDFT of X*(k) is

1 N-1

N-1
. 1 )
2nkn/N _ 2w k(N ~n)/N
5 2 X (el = [—N Y X (kyel 2N }

k=0 k=0

Therefore,
X ((=n))y = x*(N —n) Bgi X*(k) (7.2.46)

Circular correlation. In general, for complex-valued sequences x(n) and y(n), if
x(n) 2}‘;3 X %)

and
v 5 ¥ ()

then
Py &3 Ryk) = XWOY* (0 (7.247)

where 7y, (!) is the (unnormalized) circular crosscorrelation sequence, defined as
N-1

Fry() = ) x(m)y*(( —I)HN
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Proof We can write 7, (/) as the circular convolution of x(n) with y*(—n), that s,
Fry() = x() ® y* (=)
Then, with the aid of the properties in (7.2.41) and (7.2.46), the N-point DFT of

Froy() is
ny(k) = X(k)Y* (k)

In the special case where y(n) = x(n), we have the corresponding expression for
the circular autocorrelation of x(n),

- DFT
Fax(l) <> Rax(®) = X () (7.2.48)
Multiplication of two sequences. If
DFT
xy(m) <> Xy(k)

and
DFT
x2(n) A X, (k)

then .
X Wxm) <> X100 ® X2() (7.2.49)

This property is the dual of (7.2.41). Its proof follows simply by interchanging
the roles of time and frequency in the expression for the circular convolution of two
sequences.

Parseval’s Theorem. For complex-valued sequences x(x) and y(n), in general, if

x(n) 2;3 X (k)

and
y) 2 ¥ ()
then
N-1 1 N-1
o xm)ytm) =< Y XKV k) (7.2.50)
n=0 N k=0

Proof The property follows immediately from the circular correlation property in
(7.2.47). We have

N-1

D x(n)y*(n) = Fiy (0)

n=0
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TABLE 7.2 Properties of the DFT

Property Time Domain Frequency Domain
Notation x(n), y(n) X0, Y k)
Periodicity x(n)=xm+N) X&k)=Xk+N)
Linearity a1x1(n) + axxa(n) a1 X1 (k) + ax Xy (k)
Time reversal x(N —n) X(N —k)
Circular time shift x((n = D)w X (kye /2RI
Circular frequency shift x(n)ei2rin/N X(k —D)n
Complex conjugate x*(n) X*(N =k)
Circular convolution x1(n) ® x2(n) X1(k) X5 (k)
Circular correlation x(n) ® y*(—n) Xk)Y*k)
Multiplication of two sequences x1(n)xy(n) %X 1(k) ® X, (k)
Parseval’s theorem Ni:l x{n)y*(n) l IS XEY*k)
n=0 N k=0

and

1 N-1 . _
Foy®) = > Ry (ke 4/N

e
(=]

=

X(k)Y*(k)ejzn'kl/N

S
i

Hence (7.2.50) follows by evaluating the IDFT at [ = 0.
The expression in (7.2.50) is the general form of Parseval’s theorem.- In the
special case where y(n) = x(n), (7.2.50) reduces to

N-1 1 N-1
> )’ = - > Ix P (7.2.51)
n=0 k=0

which expresses the energy in the finite-duration sequence x(n) in terms of the fre-
quency components {X (k)}.
The properties of the DFT given above are summarized in Table 7.2,

7.3 Linear Filtering Methods Based on the DFT

Since the DFT provides a discrete frequency representation of a finite-duration se-
quence in the frequency domain, it is interesting to explore its use as a computational
tool for linear system analysis and, especially, for linear filtering. We have already
established that a system with frequency response H (), when excited with an input

sigi
The
tra
tha
que
can

In

fin¢
prc
fre
fimr
the
fas

7.2

In

ale
for
ou
do

an

wi

as

Sis
du




