EE538 Digital Signal Processing I

Fall 2008

Topic:

I. Review: Discrete-Time Signals, Systems, & Transforms

A. Basic Sampling Theory and D/A Conversion
 Lectures: 15
 Reading: P&M Text: 1.1-1.4

B. Discrete-Time Linear Systems
 Lectures: 2.1-2.3
 Reading: P&M Text: 2.4.1, 2.4.2, 2.5, 2.6

C. Z Transform
 Lectures: 3.1-3.5
 Reading: P&M Text: 3.5

D. Discrete-Time Fourier Transform
 Lectures: 4.1-4.5

E. Frequency Selective Linear Filtering
 Lectures: 5.1-5.4

F. Sampling and Reconstruction
 Lectures: 6.1-6.6

G. Multirate DSP ***most emphasis***
 1. Efficient Up-sampling/Down-sampling
 2. Multi-Stage Interpolation
 3. Digital Subbanding
 Lectures: 11.2-11.4

H. Applications: CD Players, Cell Phones, wireless networks
 Lectures: 11.9

II. Digital Filter Design
 Lectures: 6

A. FIR Filters – Equiripple Designs
 Lectures: 10.2.4-10.2.6

B. IIR Filters
 Lectures: 10.3.5

 1. Common analog filters
 2. Bilinear transformation
 3. Frequency transformations
 Lectures: 10.3.3, 10.4

III. Discrete Fourier Transform
 Lectures: 3

A. Definition and Properties
 Lectures: 7.1-7.4

B. Fast Fourier Transform Algorithms
 Lectures: 8.1.1, 8.1.2, 8.1.3

 1. Divide and Conquer Approach
 2. Radix-2 FFT
 3. Sectioned Convolution
 Lectures: 7.3, 8.2-8.3

IV. Nonparametric methods of power spectrum estimation
 Lectures: 3

A. Discrete random processes
 Lectures: 12.1-12.2

B. Estimation of autocorrelation sequence
 Lectures: 14.1.2

C. Periodogram; Smoothed periodograms
 Lectures: 14.2

V. Model-Based Spectrum Estimation
 Lectures: 9

A. Autoregressive (AR) Modelling
 Lectures: 14.3

B. Forward/Backward Linear Prediction
 Lectures: 12.3

C. Levinson-Durbin Algorithm
 Lectures: 12.4

D. Minimum Variance Method
 Lectures: 14.4

E. Eigenstructure Methods I: MUSIC
 Lectures: 14.5.2, 14.5.3

F. Eigenstructure Methods II: ESPRIT
 Lectures: 14.5.1, 14.5.4

G. Applications in Speech Processing, Communications, and Acoustics

VI. Adaptive Signal Processing
 Lectures: 6

A. Applications: Equalization, etc
 Lectures: 13.1

B. Adaptive Direct-Form FIR Filters - LMS
 Lectures: 13.2

C. Adaptive Direct-Form FIR Filters - RLS
 Lectures: 13.3