Connection Between Cross-Correlation and Matched Filtering

\[z[n] = r_{yx}[n] = y[n] \ast x^*[-n] \]

\[= \text{running matched filter output} \]
\[= \text{cross-correlation between } y[n] \text{ and } x[n] \]

If: \[y[n] = \sum_{k=1}^{K} a_k x[n-D_k] \]

Then: \[r_{yx}[n] = \left\{ \sum_{k=1}^{K} a_k x[n-D_k] \right\} \ast x^*[-n] \]
\[= \sum_{k=1}^{K} a_k r_{xx}[n-D_k] \]

Where: \[r_{xx}[n] = x[n] \ast x^*[-n] = \text{auto-correlation} \]

Since: \[x[n-D_k] \ast x^*[-n] = r_{xx}[n-D_k] \]
Auto correlation Properties as a Function of n

1. $r_{xx}[-n] = r_{xx}^*[n]$

2. $|r_{xx}[n]| < r_{xx}[0] + n$

3. $\sum_{n=-\infty}^{\infty} r_{xx}[n] e^{-j\omega n} \geq 0$ for all ω (also real-valued $+\omega$)

4. $x[n]$ and $x[n-n_0]$ have same auto-correlation function

5. $y[n] = e^{j(\omega_0 n + \theta)} x[n]$
 $\Rightarrow r_{yy}[n] = e^{j\omega_0 n} r_{xx}[n]$

- $\mathbf{x}[n] \rightarrow h[n] \rightarrow y[n]$
- $r_{yy}[n] = r_{xx}[n] * r_{hh}[n]$
- $r_{yx}[n] = r_{xx}[n] * h[n]$
- Any LTI System
- Cross-correlation between input and output
Sect. 2.6.2 Properties of \(\mathcal{O} \)

Autocorrelation and Cross-Correlation Sequences

\[
\rho_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n] x[n-l]
\]

1. \(|\rho_{xx}[l]| \leq \rho_{xx}[0] \) for all \(l \)

\[
\rho_{xx}[0] = \sum_{n=-\infty}^{\infty} x^2[n] = E_x = \text{energy}
\]

2. \(\rho_{xx}[l] = \frac{\rho_{xx}[l]}{\rho_{xx}[0]} \)

\[
|\rho_{xx}[l]| \leq 1 + \rho
\]
Proof: Tricky!

\[\sum_{n=-\infty}^{\infty} \{z \times x[n] + y[n-l]\}^2 \geq 0 \]

\[= z^2 \sum_{n=-\infty}^{\infty} x^2[n] + 2z \sum_{n=-\infty}^{\infty} x[n]y[n-l] + \sum_{n=-\infty}^{\infty} y^2[n-l] \]

\[= z^2 r_{xx}[0] + 2z r_{xy}[l] + r_{yy}[0] \geq 0 \]

viewed as polynomial in \(z \) that can never go negative

\(\Rightarrow \) must have complex-valued roots
Thus, discriminant must be such that $b^2 - 4ac < 0$

$$a z^2 + b z + c \begin{cases} a = r_{xx}[0] \\ b = 2 r_{xy}[l] \\ c = r_{yy}[0] \end{cases}$$

Thus:

$$b^2 - 4ac = 4 r_{xy}^2[l] - 4 r_{xx}[0] r_{yy}[0] \leq 0$$

$$r_{xy}^2[l] \leq r_{xx}[0] r_{yy}[0]$$

$$| r_{xy}[l] | \leq \sqrt{r_{xx}[0] r_{yy}[0]}$$
If $y(n) = x(n)$, then:

\[|r_{xx}[l]| \leq \sqrt{r_{xx}[0]} \]

Also, follows that with

\[p_{xy}[l] = \frac{r_{xy}[l]}{\sqrt{r_{xx}[0] r_{yy}[0]}} \]

then

\[|p_{xy}[l]| \leq 1 + \varepsilon \]
Summarizing three main properties of auto correlation sequence \(r_{xx}[l] = x[l] \ast x^*[−l] \)

1. \(r_{xx}[-l] = r_{xx}^*[l] \)

2. \(|r_{xx}[l]| \leq r_{xx}[0] \)

3. \(\sum_{l=-\infty}^{\infty} r_{xx}[l] e^{-j\omega l} \geq 0 \)
 for all \(\omega \)

From 1., \(S_{xx}(\omega) = \sum_{l=-\infty}^{\infty} r_{xx}[l] e^{-j\omega l} \)

is real-valued for all \(\omega \)

\(S_{xx}(\omega) = X(\omega)X^*(\omega) = |X(\omega)|^2 \)

\(=> \) energy density spectrum
I/O Relationships for $r_{xx}[l]$, $r_{yx}[l]$, and $r_{yy}[l]$

Recall: $r_{xx}[l] = x[l] * x^*[-l]$

$r_{yx}[l] = y[l] * x^*[-l]$

$= (h[l] * x[l]) * x^*[-l]$

$= h[l] * (x[l] * x^*[-l])$

$= h[l] * r_{xx}[l]$

Similarly:

$r_{yy}[l] = r_{xx}[l] * r_{hh}[l]$
Ideal Radar Problem Revisited

Recall: $x[n] \ast \delta[n-n_0] = x[n-n_0]

Single target with no noise

$y[n] = T \times x[n-D]$

$= x[n] \ast \Gamma \delta[n-D]$

$h[n] = T \delta[n-D]$

Can model as LTI system:

$X[n] \rightarrow H[n] \rightarrow Y[n]$

$h[n] = T \delta[n-D]$

(We know: $r_{yx}[l] = r_{xx}[l] \ast h[l]$

Thus: $r_{yx}[l] = \Gamma r_{xx}[l-D]$
Two-Target Case:

\[y[n] = T_1 x[n-D_1] + T_2 x[n-D_2] \]

\[= x[n] * \left\{ T_1 \delta[n-D_1] + T_2 \delta[n-D_2] \right\} \]

\[= x[n] * h[n] \]

Just a reminder: \(x[n] \) is the transmitted signal, and we cross-correlate it with the received signal \(y[n] \Rightarrow r_{yx}[l] = y[l] * x^*[l] \)

and look for peaks \(\Rightarrow \) target round-trip delays

From previous result, we have:

\[r_{yx}[l] = r_{xx}[l] * h[l] \]

\[= T_1 r_{xx}[l-D_1] + T_2 r_{xx}[l-D_2] \]
Desire autocorrelation sequence that approximates a Kronecker Delta $\delta[n]$, especially to resolve closely-spaced targets.

- $r_{xx}[\ell-D_1]$ overlaps with $r_{xx}[\ell-D_2]$

- Could yield only a single peak at some delay between D_1 and D_2

- Or weaker (smaller) target masked by the "sidelobes" of the stronger target

- Desire "constant modulus" signals, e.g., sequence of "$+1"$'s and "$-1"$'s, since for power amplifier efficiency, we operate in nonlinear region
Example 2.6.2 \[x[n] = a^n u[n] \]
\[a = \text{real-valued} \]

\[r_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n] x[n-l] \]
\[|a| < 1 \]

Since \(r_{xx}[-l] = r_{xx}[l] \), let's compute \(x[n] \) real

\[r_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n] x[n+l] \]

\[= \sum_{n=-\infty}^{\infty} a^n u[n] a^{n+l} u[n+l] \]

\[= \sum_{n=0}^{\infty} a^n a^{n+l} = a^l \sum_{n=0}^{\infty} a^{2n} = a^l \sum_{n=0}^{\infty} (a^2)^n \]

\[= \frac{1}{1-a^2} a^l \]

\[\Rightarrow \]

\[r_{xx}[l] = \frac{1}{1-a^2} a^{1+l} \]
Final note on Cross-Correlation

\[r_{yx}(\ell) = y[\ell] \ast x^*(-\ell) \]

\[r_{yx}[m] = y[m] \ast x^*(-m) \]

Sidenote: Chap. 12 uses "m" for lag variable in stochastic version of auto-correlation.

I will use "\(\ell \) and "m" interchangeably.

Any time you convolve two DT sequences, one can be viewed as an input signal and the other can be viewed as a filter impulse response.

\[y[m] \rightarrow h[m] = x^*(-m) \rightarrow r_{yx}[m] \]

"matched filter"

⇒ "matched" to transmitted signal

⇒ a running cross-correlator is a matched filter
Some additional properties of Auto-Correlation and Cross-Correlation

1. First, note: $\delta[n-n_1] * \delta[n-n_2] = \delta[n-(n_1+n_2)]$

2. In particular, if $n_2 = -n_1$:

 $\delta[n-n_1] * \delta[n+n_1] = \delta[n]$

3. Show: $x[n] \Rightarrow$ auto-correlation is $r_{xx}[l]$

 $x[n]$ and $x[n-n_0]$ have same auto-correlation

4. Recall: $x[n] \rightarrow h[n] \rightarrow y[n]$

 where:

 $r_{hh}[l] = h[l] * h^*[l-\ell]$

 $r_{yy}[l] = r_{hh}[l] * r_{xx}[l]$
Consider: \(y[n] = x[n-n_0] = x[n] * \delta[n-n_0] \)

Thus:

\[r_{yy}[l] = r_{xx}[l] * h[l] \]

where \(h[l] = \delta[l-n_0] \)

\[r_{hh}[l] = \delta[l-n_0] * \delta[-l-n_0] \]

Delta fn, is symmetric

\[= \delta[l-n_0] * \delta[l+n_0] \]

Thus:

\[r_{yy}[l] = r_{xx}[l] * \delta[l] = r_{xx}[l] \]

A time-shift does not change auto-correlation

See Prob. 1, part (c) from Exam 1 for Fall 2006

Solution for exam used frequency domain to prove (and used "m" instead of "l") same result
Another result:

If: \[y(n) = e^{j(\omega_0 n + \theta)} x(n) \]

Then: \[r_{yy}[k] = e^{j\omega_0 k} r_{xx}[k] \]

\[r_{yy}[k] = y[k] * y^*(-k) = y^*(-k) * y[k] \]

\[= e^{-j(\omega_0 k + \theta)} x^*[-k] * e^{j(\omega_0 k + \theta)} x[k] \]

\[= \sum_{h=-\infty}^{\infty} e^{j\omega_0 h} x^*[-h] e^{j\omega_0 (k-h)} x[(k-h)] \]

\[= e^{j\omega_0 k} \sum_{h=-\infty}^{\infty} x^*(-h) x[(k-h)] = e^{j\omega_0 k} r_{xx}[k] \]