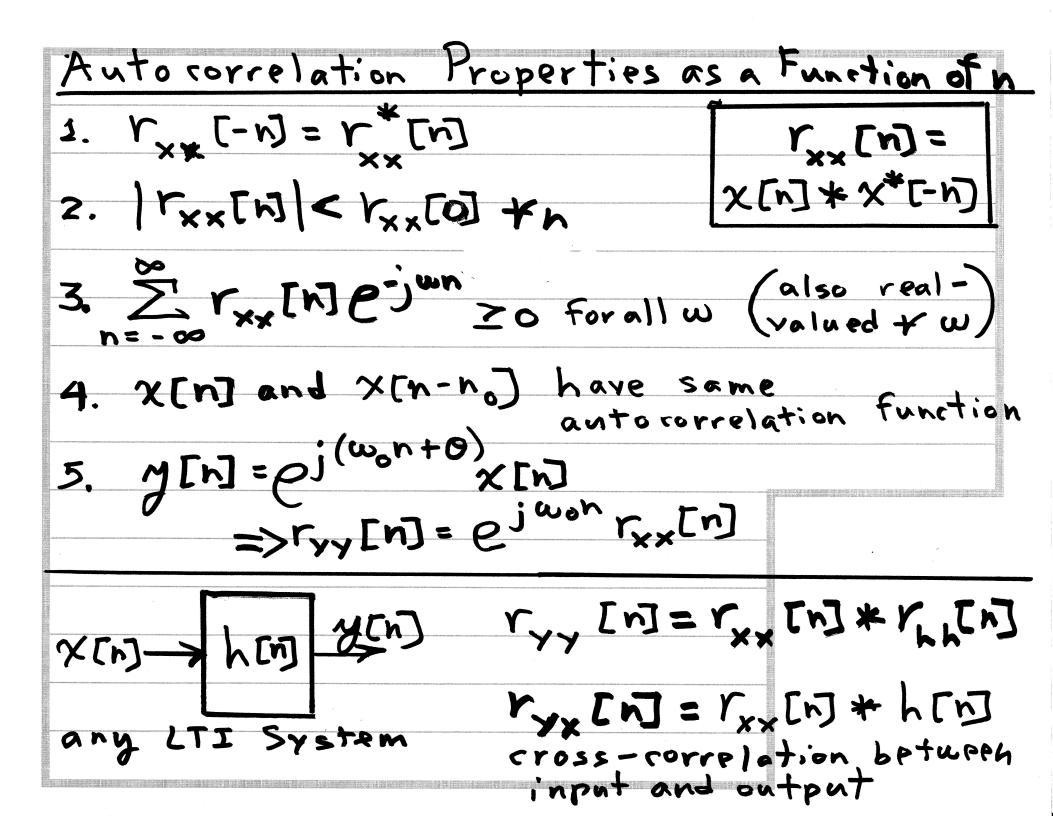
Connection Between Cross-Correlation & Matched Filtering
Z[N]= Y[N] * X*[-n]
hme [N]
= running matched filter output
= cross-correlation between y[n] and x[n]
If: $y[n] = \sum_{k=1}^{k} \alpha_k x[n-D_k]$
Then: $\Gamma_{v_{\mathbf{X}}}[n] = \left\{\sum_{k=1}^{K} \alpha_{k} \times [n-D_{k}]\right\} * \times [-n]$
= \squar_x[n-De]
Where: rxx[n] = x[n] * x*[-N] = correlation
Since: *[n-DR] * **[-N] = Y [n-DR]

8333 BB 3 B 5



$$\Gamma_{xx}[x] = \sum_{n=-\infty}^{\infty} x[n] \times [n-x]$$

1.
$$|r_{xx}[x]| \le r_{xx}[0]$$
 for all $|x|$

$$r_{xx}[0] = \sum_{n=-\infty}^{\infty} x^{2}[n] = E_{x} = energy$$

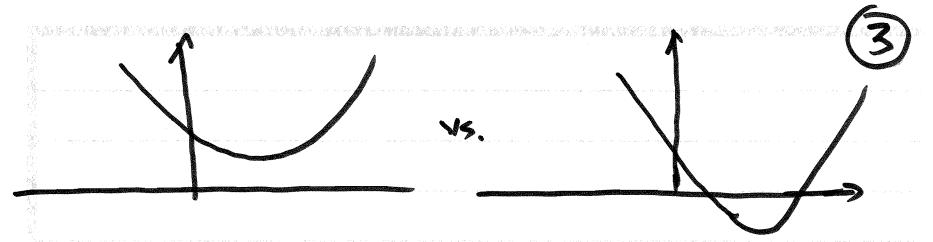
Proof: Tricty!

$$\sum_{n=-\infty}^{\infty} \{ \neq \times [n] + y [n-a] \}^{2} \geq 0$$

$$= z^{2} \sum_{n=-\infty}^{\infty} \times^{2} [n] + 2z \sum_{n=-\infty}^{\infty} \times [n] y [n-a]$$

$$+ \sum_{n=-\infty}^{\infty} y^{2} [n-a]$$

= 22 rxx[0] + 22 rxy[l] + ryy[0] >0 viewed as polynomial in 2 that can never go negative => must have complex-valued roots



Thus, discriminant must be such that $b^2-4ac < 0$ $a \neq z^2 + b \neq + c$ $a = r_{xx}[0]$ $b = 2 r_{xy}[x]$ $c = r_{yy}[0]$

THUS: $b - 4ac = 4 r_{xy}^{2}[R] - 4 r_{xx}[0] r_{yy}[0] \le 0$ $r_{xy}^{2}[R] \le r_{xx}[0] r_{yy}[0]$ $|r_{xy}[R]| \le |r_{xx}[0] r_{yy}[0]$

If
$$\gamma[n] = \alpha[n]$$
, then:
$$|\Gamma_{xx}[R]| \leq |\Gamma_{xx}[\sigma]|$$

$$|\Gamma_{xx}[R]| \leq |\Gamma_{xx}[\sigma]|$$

$$|\Gamma_{xx}[R]| \leq |\Gamma_{xx}[\sigma]|$$

$$|\Gamma_{xx}[R]| = |\Gamma_{xy}[R]|$$

$$|\Gamma_{xy}[R]| = |\Gamma_{xy}[R]|$$

$$|\Gamma_{xx}[G]| \leq |\Gamma_{xy}[G]|$$
then
$$|\Gamma_{xy}[R]| \leq |\Gamma_{xy}[R]|$$

From 1., S_{xx} (w) =
$$\sum_{k=-\infty}^{\infty} r_{xx}[k] e^{-jwk}$$

is real-valued for all w $S'_{\star}(\omega) = \times (\omega) \times^*(\omega) = |\times(\omega)|^2$ => energy density spectrum

I/O Relationships for (xx [1], ryx[1], and ryy[1] Recall: 5x[8] = x[8] * x*[-8] rx[8]= 4[1]* x*[-1] =(L[l] * x[l]) * x*[-l] = L[2] * (x[2] * ×*[-2]) = L[2] * (x) | x[n] h[n] -Similarly: r, [2]= r, [2] * r, [2]

. single target with no noise

· can model as LTI system:

Two-Target Case:

$$y[n] = T_{1} \times [n-D_{1}] + T_{2} \times [n-D_{2}]$$

$$= \chi[n] * \{T_{1} S[n-D_{2}] + T_{2} S[n-D_{2}]\}$$

= 次(1) * 上[1]

Just a reminder: x[n] is the transmitted signal, and we cross-correlate it with the received signal y[n] => r,x[l]=y[l]*x[-l] and look for peaks => target round-trip delays From previous result, we have:

rx[x]=rx[x]*h[x] = T, rx[x-p]+T, rx[x-p] Desire autocorrelation sequence that approximates a Kronecker Delta of [n], especially to resolve closely-spaced targets

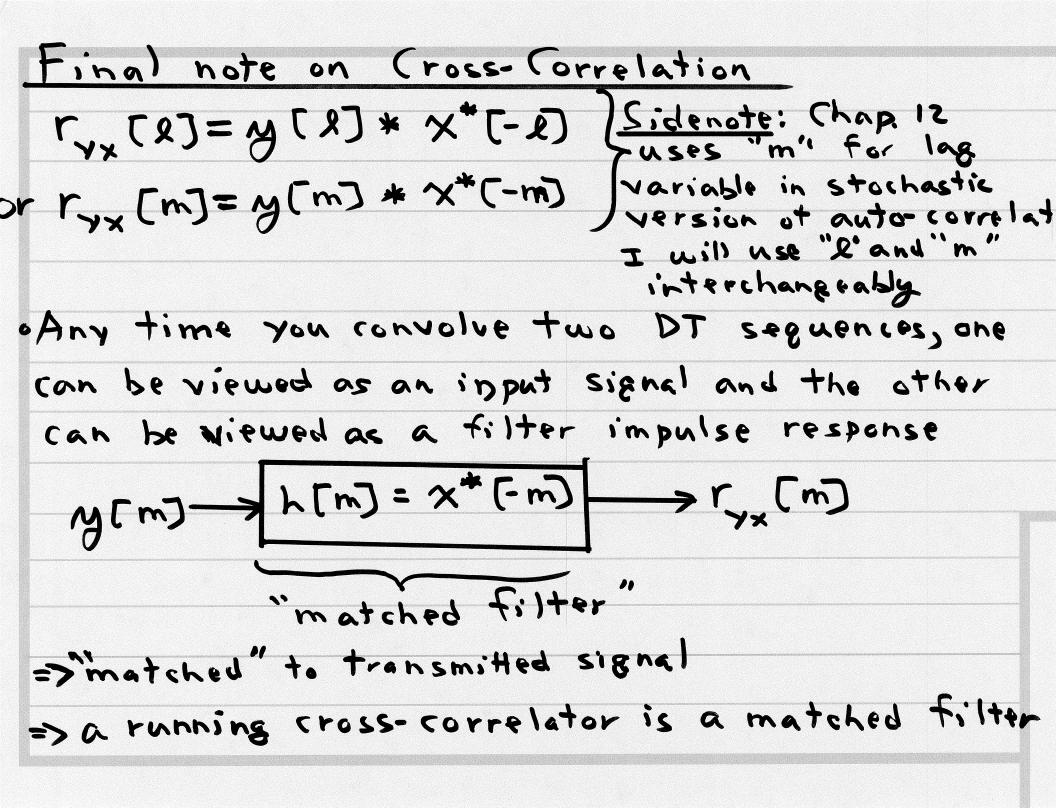
- · else [xx[Q-D,] overlaps with [xx [Q-D2]
- · rould yield only a single peak at some delay between D, and Dz
- . or weaker (smaller) target masked by the "sidelobes" of the stronger target
- · desire "constant modulus" signals, e.g.

 Seguence of "+1"s and "-1"s, Since for

 power amplifier efficiency, we operate

 in nonlinear region

Example 2.6.2
$$\times [n] = \alpha^n u[n]$$
 $\alpha = real-valued$
 $\Gamma_{xx}[x] = \sum_{n=0}^{\infty} x[n] \times [n-x]$
 $\alpha = real-valued$
 $\alpha = real-valu$



```
Nome additional properties of
  Anto-Correlation and Cross-Correlation
· First, note: o(n-ni) * o(n-nz)
                  = 5[n-(ni+n2)]
· In particular, if nz=-n, :
       S[n-n] * S[n+n] = S[n]
· Show: x [n] => autocorrelation is [xx[2]
x(h) and x(n-no) have same autocorrelation
· recall: x[n] +[n] A[n] where: LEJ + L-D]
        ryy[2] = rhh[2] * rxx[2]
```

is symmetric

- . A time-shift does not change auto-correlation
- · See Prob. 1, part (c) from Exam 1 for Fall 2006
- · Solution for exam used frequency domain to prove (and used "m" instead of "l")

(3) · Another result: If: y(n)=ej(won+0) x(n) Then: ryy[x] = ejust rxx[x] (1)[2]= y[2] * y*(-2)= y*(-2) * b[2] $= e^{-j(w_0^2(0)+0)} \times (-2) + e^{-j(w_0^2(0)+0)} \times (2)$ = e-joejo ejwol x*[-2] * ejwol x[2) = 50 ejuod x*[-R] ejuo(l-h)x[l-k) = ejust = ejust (x*(-e) * x(e))
= ejust = ejust = ejust = [0] = einer (xx (x)