This problem set is an exercise in interpretation. It will teach you about semantics and evaluation. From an electrical-engineering perspective, you will build a simple logic simulator. From an AI perspective, you will define the semantics of propositional logic by way of an evaluator or interpreter for propositional logic.

Propositional logic is a language defined as follows. true and false are truth values. You have a set \(\mathcal{P} \) of propositions (aka variables) \(p, q, r, \ldots \). A formula \(\Phi \) is either

- a truth value,
- a proposition,
- \((\neg \Phi) \),
- \((\Phi_1 \land \Phi_2) \), or
- \((\Phi_1 \lor \Phi_2) \).

When writing formulas in mathematical notation, we adopt the convention that \(\land \) has higher precedence than \(\lor \) and optionally eliminate parentheses when it does not change the parse of a formula.

A binding \(p \mapsto t \) maps the proposition \(p \) to the truth value \(t \). A truth assignment \(I \) is a set of bindings. A truth assignment maps \(p \) to \(t \) if it contains \(p \mapsto t \). A truth assignment is consistent if does not map any proposition to both true and false. A truth assignment is complete for \(\Phi \) if it maps every proposition in \(\Phi \) to a truth value. A truth assignment is redundant for \(\Phi \) if it maps some proposition that is not in \(\Phi \) to a truth value.

A valuation function \(\mathcal{V}(\Phi, I) \) assigns a truth value to a formula \(\Phi \) given a complete consistent truth assignment for \(\Phi \). Defining the valuation function specifies the semantics of propositional logic. We adopt the standard definition of \(\mathcal{V}(\Phi, I) \) as follows:

\[
\begin{align*}
\mathcal{V}(t, I) & \triangleq t \\
\mathcal{V}(p, I) & \triangleq t \text{ when } p \mapsto t \in I \\
\mathcal{V}(\neg \Phi, I) & \triangleq \neg \mathcal{V}(\Phi, I) \\
\mathcal{V}(\Phi_1 \land \Phi_2, I) & \triangleq \mathcal{V}(\Phi_1, I) \land \mathcal{V}(\Phi_2, I) \\
\mathcal{V}(\Phi_1 \lor \Phi_2, I) & \triangleq \mathcal{V}(\Phi_1, I) \lor \mathcal{V}(\Phi_2, I)
\end{align*}
\]

A row for \(\Phi \) is a pair \(\langle I, t \rangle \) where \(I \) is a complete consistent nonredundant truth assignment for \(\Phi \) and \(t = \mathcal{V}(\Phi, I) \). The truth table for \(\Phi \) is the set of all rows for \(\Phi \).

We will represent the truth values true and false as the SCHEME values #t and #f respectively. We will represent propositions as SCHEME symbols. We will represent the formulas \(\neg \Phi \), \((\Phi_1 \land \cdots \land \Phi_n) \), and \((\Phi_1 \lor \cdots \lor \Phi_n) \), as the SCHEME S-expressions (not \(\Phi \)), (and \(\Phi_1 \ldots \Phi_n \)), and (or \(\Phi_1 \ldots \Phi_n \)) respectively. We will represent the binding \(p \mapsto t \) as the SCHEME list \(\langle p \ t \rangle \). We will represent sets as SCHEME lists. Thus we will represent a truth assignment like \(\{p \mapsto true, q \mapsto false\} \) as \(\langle (p \ #t), (q \ #f) \rangle \). We will represent the row \(\langle I, t \rangle \) as the SCHEME list \(\langle I \ t \rangle \).
We want you to implement the following procedure:

\[
\text{truth-table } \Phi \\
\]

\[
\Phi \text{ is a formula. Returns the truth table for } \Phi.
\]

To help debug and test your implementation, we have provided the GUI (p2). The GUI allows you to create and edit formulas and interactively display their truth tables. The GUI has a mode which you can set by clicking on the buttons T, F, P, NOT, AND, and OR. It also has a parameter \(k \) which you can decrement and increment by clicking on the buttons \(-K\) and \(+K\) respectively. The GUI displays a formula. Initially it is empty. When you click on a formula or subformula, that formula or subformula is replaced with a new formula of type mode. New T and F formulas generate formulas that are truth values. New P formulas generate the proposition \(p_k \). New AND and OR formulas have arity \(k \). Whenever the formula does not contain any empty subformulas, the truth table is displayed.

Good luck and have fun!