Minimum Cost Spanning Tree Algorithms
(Greedy Algorithms):

— Kruskal’s

— Prim’s

Kruskal’s Algorithm

Tree is built edge by edge. Include edges in the
tree in non—decreasing order of their cost. Anedge
is included in the tree if it does not form any cycle
with the edges already in the tree.

T = Empty

While T contains less than n—1 edges and E not
empty
Proceed as follows:
Choose an edge (v,w) from E of lowest cost,
Delete (v,w) from E,
If (v,w) does not create a cycle in T
add(v,w) to T
Else discrad (v,w)
If T contains fewer than n—1 edges then no
spanning tree.

Example

O
©) ©

10}

® O 06 9 O &

10

Implementation and Complexity:
Use heap sort for sorting edges. O(e log e)

Maintain information about components (forest)
generated during the algorithm in form of sets of
vertices to check for cycles.

Prim’s Algorithm

Tree is built edge by edge. The set of selected
edges always form a tree. Always select an edge
with the lowest cost from unselected edges, such
that a single tree is formed (no cycles).

Prim’s Algorithm

Tree is built edge by edge. The set of selected
edges always form a tree. Always select an edge
with the lowest cost from unselected edges, such
that a sfngle tree is formed (no cycles).

Complexity: O(n2)

- Better implementations are possible, such as
using Fibonacci heaps.

Topological Sort

— Assume a DAG

— Topological Order is a linear list of all the
vertices, such that if there 1s an edge from v to w,
the v preceds w in the list.

— Use:
Scheduling Tasks, Identifying Pre-requisites

Example

Course Number
Ci
2
Cc3
C4
Cs
C6
Cc7
Ccs8
C9
C10
cln
c12
ci13
Cl4
C1s

Course Name
Introduction to Programming
Numerical Analysis
Data Structures
Assembly Language
Automata Theory
Artificial [ntefligence
Computer Graphics
Machine Arithmetic
Analysis of Algorithms
Higher Level Languages
Compiler Writing
Operating Systems
Analytic Geometry and Calculus |
Analytic Geometry and Calculus 1]
Linear Algebra

Prerequisites
None

C1, Cl4
Cl.Ci4
C1,Ci3
Ci1s

C3
C3.C4,.C10
C4

C3

C3,C4

c10

Cll

None

C13

Cl4

(a) Courses Needed for a Computer Science Degree at Some Hypothetical University

Algorithm

If every vertex has a predecessor
Halt (cycles exist)

For all vertices:
Pick a vertex (v) with no predecessors
output v that vertex
delete v and all the edges leading out of v;

1(1961 ‘97 "uef “ouf *Auedwio)) oog [|iH-MBIDON) P03y -smaN Sunisauiduy]
Buipping L10)snpnw e ut 100y [edrd4) e jO UONINLISUOD 3Y) 10§ YoM JOV $E°9 24n81y

®

m>cvm n>cvm m>ovm
1021UDY 2w @ s Kiom

S3wbij pup sbuUljil} 10|DAI[3 jJO eduD[og

sAop ¢

Sijom (03111393

shop 2

fop|

AJUOSDW ysiuld
’

ysiu) 3 w 3)isnody | “ajgiop

shop ¢
1

@S

@ *E®)
[T

i
Hsini @ 38 uoa @ @ _ stop g @) skop ¢ | skop g Gi)skop ¢

8 buninod ydiodusiiry “(j38d) yuiog bulst G) " ool
shep g .

ysiulj 10014

Kuosews Loy @)

i

ﬂ skop ¢

s100Q

shop QI

51351y

“3je |jDA IjDINSYY

shop G

wiog

shop ¢ AU skop g @ skop g @m.hovm@ skop v_@m.»a_v 2 e Kovv»ﬁdkm

saImxi) @ s1onp

joosdaiy
Aoidg

27016 ysDS- S|10M LIDPIND

shop Of

Euiquinig

Activity Networks and PERT Diagrams

Use Network (Directed Graph) Models. Repre-
sent subprojects, tasks, or activities either as:

—vertices of a graph, with directed edges showing
the precedence relation among tasks. Activity
time 1s labelled on vertices. Activity On Vertices
(AOV) network,

— or as weighted edges, with weights showing the
execution time of tasks. The vertices show the
synchronization points. All in—edge activities
must complete before out—edge activities start.
Therefore, a vertex represents end of some events
and start of other events. Activity On Edge
(AOE). PERT (Performance Evaluation and Re-
view Technique) Diagram.

In an AOE: Activity is an edge, event is a vertex.

Activity Networks and PERT Diagrams

— Evaluating Performance of Projects

— Identifying Bottleneck and potential improve-
ments to speed—up in order to reduce the comple-
tion time of a project.

Exampl-es of AOE

(a) AOE Network. Activity Graph of a Hypothetical Project.

event interpretation
v, start of project
v, completion of activity a,
v completion of activities a, and a,
vg completion of activities uag and a,
vy compietion of project

(b) Interpretation for Some of the Events in the Activity Graph of (a).

Analyzing PERT Diagram and Critical Path

— Critical Path: A path of longest length in PERT
diagram. Length is the sum of weights on the
edges (or vertices). It gives the minimum time to
complete the project.

— Earliest Time of an event (represented by a ver-
tex), is the length of the longest path from the
starting vertex to that vertex.

— Earliest Start Time for all the activities repre-
sented by edges leaving a vertex is equal to the
Earliest Time of that vertex.

— Latest Time of an activity: How late an activity
start without increasing the project duration.

— Critical Activity: If
Earliest Start Time = Latest Time

— Criticality of an activity: Latest Time —Earliest
Start Time

We should try to speed up critical activities to
speed—up the completion of the project.

Activity Networks, Topological Sort, and Critical Paths 383
count link vertex dur link
I onil +—[2161 F {3147 F a5 ni]
2 l = 5] 1 [nir]
3 i ——'I 5 I i l nil I
4 ! ———-I’ [| 2 I nill
5 2 +— 7] 9] F—-< 8] 7 [nin]
6 | (8] 4] ni]
7 | ——4 9 l 2 l nil |
8 —~—I 9 l 4] nllI
9 nil
(a) Adjacency Lists for Figure 6.34(a)
ee (01 21 [B1 [[51 (61 [71 1[8 1[91 stack
initial 0 0 0 0 0 0 0 0 0 Lt
4 . il
output v, 0 6 4 5 0 0 0 0 o 3 j ;
. 2 i
6 Bk
output v, 0 6 4 5 0 7 0 0 0 3 j' :
2 i
output v, - 0 6 4 S5 0 7 0 1 0 li]
Jil
output v, 0 6 4 5 5 7T 0o 1 o0 [2] *[‘I
il
output v, 0 6 4 5 7 7 0 11 0 L5l ;
[l
! i
output v, 0 6 4 5 7 7 16 14 0 L?LJ ,';
|
output v, 0 6 4 S 7 7 16 14 16 A !
output v, 0 6 4 5 7 71 16 M 18 |9]
’H
output v, i ,}
il
(b) Computation of ee ' }!’
il
Figure 6.35 Action of modified topological order !

Network Flow Problem

Maximizing flow of material, information etc., in
a Network, from a source node to a sink node.

Examples: Liquids flowing through pipes, Parts
through assembly lines, Current through electri-
cal networks, information through communica-
tion networks. |

Example:

Edmonton Saskatoon

ncouver \o

Calgary - Regina
(a) | (b)

Figure 27.1 (a) A flow network G = (V, E) for the Lucky Puck Company’s truck
ing problem. The Vancouver factory is the source s, and the Winnipeg warehous
is the sink ¢. Pucks are shipped through intermediate cities, but only c¢(u, v) crate.
per day can go from city u to city v. Each edge is labeled with its capacity. (b) ¢
flow f in G with value |f] = 19. Only positive net flows are shown. If f(u,v) >0
edge (u,v) is labeled by f(u,v)/c(u.v). (The slash notation is used merely to sep
arate the flow and capacity; it does not indicate division.) If f(u,v) < 0, edg
(u,v) is labeled only by its capacity.

Network Flow Problem

Network G(V,E) is a connected directed graph.

— Each edge (u,v) has a nonnegative capacity :

c(u,vy) = 0

— Each edge (u,v) has a flow : f(u,v) = c(u,v).
frepresents the net flow from vertex v to vertex u.

— Flow f has a skew symmetry property:
f(u,v) = — f(v,u). Flow in the reverse direction.

Network Flow Problem

Problem is to maximize flow from source to sink,
under the following constraints.

1. Total Flow out of Source =
Total flow into the ‘Sink =

2. mflow of a node = outflow of that node (except
source and sink). In other words, for all # (exclud-
ing source and sink), the value of flow f,

Ifl = > fy) =0

The Ford-Fulkerson Method
1. Initialize flow fon all the edges to O.

2. From the source to the sink, find a path along
which we can push more flow. Augment the flow
along this path as follows:

The amount of flow that can be pushed on a path p:
Min{c(u,v) — f(u,v): where (u,v) is in path p }

Therefore, increase flow of each link on p by this
amount. |
You can use —f(v,u) to check for the possible exis-

- tence of other paths.

3. Keep repeating Step 2, until no more paths are
possible.

(a)

(b)

(©

@

(&

Example

Figure 27.6 The execution of the basic Ford-Fulkerson algorithm. (a)~(d) Suc-
cessive iterations of the while loop. The left side of each part shows the residual
network G, from line 4 with a shaded augmenting path p. The right side of each
part shows the new flow f that resuits from adding f, to f. The residual network
in (a) is the input network G. (e) The residual network at the last while loop test.
It has no augmenting paths, and the flow f shown in (d) is therefore a maximum
flow.

