Week 11 (Notes)

Analysis of Rehashing

- How many comparisons of keys occur on the
average during both successful and unsuccessful

search.

Types of Re-Hashing and Probing:
a. Random (Uniform Hashing)
b. Linear

c. Quadratic

Analysis of Random Probing

Prob[hitting an occupied cell in the a hash table]

Prob[hitting an empty entry in the a hash table]

Average number of comparisons for an
unsuccessful search = U(\):

Let k probes are made for an unsuccessful search.

Prob[k unsuccessful searches]

U(\)=

Analysis of Random Probing

Average number of comparisons for a success-
ful search = S(\)

= Number of unsuccessful searches or insertion
steps (averaged over A)

Why?

Such number depends on how the insertion was
done on the first place and hence it depends on the
loading factor A. Approximate such insertion as
a continuous function U(A) and find its average

A

U(x) d(x) =1/n J 1/(1-x) d(x)

0

A

S(\) = /A J

=1\ In [1/(1-0)]

--=-> Complexity of search ?

Retrieval from a hash table with 20,000 items in
40,000 possible positions is no slower, on aver-
age, than retrieval from a table with 20 items in 40
possible positions.

Results for other Rehashing Methods

Linear: Avg. number of comparisons for:

Unsuccessful search: 1/2 (1+ 1/[(1 -MN)(1 - 7»)])
Successful search: 1/2 (1+ 1/(1-2))

Quadratic: Same as random probing.

Chaining

- Build a linked list of the records whose keys
hash to the same address. (simplest method to
resolve hash clashes)

Types of Chaining

- Coalesced Hashing
- Separate Chaining

Coalesced Hashing

- Approach:
Building a linked list using buckets of the table.
- Limitation:

- Assumes Fixed Table Size

- Advantages:
- Efficient in terms of Probing

- Deletion 1s easier

Many variations are possible.

- The amount of time required for a search de-
pends on the length of the lists associated with the
items hash bucket.

Example of Coalesced Hashing

Separate Chaining

- This method is useful when items are added to
the table, potentially growing beyond table size.

- Approach:

Building a linked list for the items hashing to the
same value.

- Advantages:

- Efficient in terms of Probing, since list can
be ordered (using searching methods of
dynamic ordered array)

- Deletion 1s easier

- Limitation:

- Extra space for pointers

Analysis of Hashing

Analysis of Chaining:

For an unsuccessful search of a separate chained
hash table, each of the buckets is equally likely to
be searched so the average time for an unsuccess-
ful search is:

Example:

4+2+2+4+2+2+1)/11=7/11=1.545

- If the lists are ordered, then we can cut this time
in half (average).

- For a successful search, assume each record is
equally likely to be sought. 7 elements can be
found with 1 probe (operation), 6 with 2, 2 with 3,
and 1 with 4.

Analysis of Chaining

Average length of a chain with given n elements in
the table (excluding the target) = (n-1)/t = A
The average length of the chain with target

1+ A

Average # of comparisons for a successful search
= 1+(Average Length without target)/2

So, on the average, 1 + 4/2 comparisons for a
successful search.

Efficiency of Hashing Methods
(based on loading factor)

Perfect Hash Function

Givenasetofnkeys{kl, k2,... kn},aperfect hash
function h satisfies the following property:

h(ki) '= h(kj) for all distinct1and ;.

If for n keys, h fills up only the first n positions,
then h is a minimal perfect hash function.

Perfect hash function depends on a given set of
keys.

Perfect Hash Function

Ex:

Key Set =17, 138, 173, 294, 306, 472, 540, 551

h(key) = (key + 25)/64

Hash values: 0, 2, 3,4, 7,8, 9, 10

Not Minimal since it requires a table of 11 posi-
tions to distribute 9 keys.

h(key) = (key - 7) |72 if key <= 306
h(key) = (key - 42) |72 if key > 306
Hash values: 0,1, 2, 3, 4, 7, 8,
MINIMAL !!

Various polynomial time algorithms exist to find a
perfect hash function for a given set of keys.

