Week 10 (Notes)

Tables and Hashing

- Objective 1n searching and insertion:
Retrieving a key with 0(1) accesses of a search
table.

————— > Tree methods cannot do it.

- Most Effective Method: Access key 1’srecord as
table [key 1]. Not usually practical. Why?

- Looking for some function (mapping) f, such
that:

f(key i) --->]
where table [j] contains key 1’s record.

- Static (Fixed Size Table) and Dynamic Hashing

Table Access

- Row and Column Major Indexing
Indexing function??

- Access Table: An auxilliary array to find data
stored elsewhere.

Hash Function

- A function that transforms a key into a table in-
dex 1s a hash function

- If r 1s a record whose key hashes into index j,
then j 1s the hash key of .

-An Example of a hash function:

Table of size 1000, keys 0..999. key % 1000.

Observation: Note two distinct values 75 & 1075
map to the same location using the above hash
function -- collision.

Hash Function

- Make table (size ¢) larger than the # of items (n)
to insert to reduce possibility of having two keys
yielding the same value.

- Partitioning of a hash table into buckets (b) each
with s slots. (one slot holds one record). t=sb.

Loading Factor: A = n/t

Identifier Density: n/T , Tis the distinct possi-
ble combinations to form a key.

Choosing a Hash Function

Note: A good hash function minimizes collisions
and spreads records uniformly through the table.
Also it should be easy to compute.

- Should depend on the entire key

Limitation: Items in a hash table are not stored
sequentially by key nor is there a practical method
for traversing the items in key sequence.

Problem of overflow: A new identifier mapped
to a full bucket. When s=1, collision and overflow
occurs simultaneously.

Advantage: Close to constant time access of a re-
cord given its key and a ““perfect hash function”

Some Hash Functions

1. The division method - remainder after dividing
by tablesize

Table of size 1000, keys 0..999.

f(key) = key % 1000.

(Best results happen if tablesize is prime).

2. Midsquare method - key is multiplied by itself
and some middle digits of the squared value of the
key are used as the index.

3. Folding method - breaks key into parts which
are summed or XORed together to give hash
value.

4. Random (Uniform) - Use a random number
generator with output (hash value) dependent on
the key.

Hash Collision and Overflow

A hash collision happens when two distinct keys,

k; and k; , map to the same location in hash table,

ie. f(k;)=1(k;)
Collision and Overflow Handling Techniques

(1) Chaining - create a linked list of all records
that hash to the same location.

(2) Rehashing: Use a rehash function to relocate
the item which can’t be placed, and then to locate
the item when it wasn’t in the location given by the
original hash function.

General Requirements for Hashing

- Designing a good hash function

- Resolving Collisions

The hashing (and rehashing) procedure used for
insertion is also used for searching

Rehashing (Open Addressing)

If the # of elements to put into table 1s known in
advance, then it may not be worth using the linked
list method (why?).

Open addressing hashing methods have been de-
vised to store n records 1n a table of size ¢, where
[>n.

Collision resolution is a key part of these methods
uses a rehash function to resolve collisions.

Insertion Methods

- Random (Uniform)

- Linear Probing

- Quadratic Probing

- General Rehsahing (Double Hashing)

- Deletion

- Analysis

Random Hashing (Uniform)

Use a pseudo-random number. Seed can be some
function of key.

Note: Every key 1s equally likely to be placed at
any empty position of of the hash table.

Linear Probing

The simplest open-addressing method -- When
there 1s a collision, just probe the next position in
the table ----- > Simplest Rehashing.

- Given hash function, key % 1000;
- Rehash function is j = (j+1) % 1000
- where key % 1000 = j initially.

3 possible outcomes of linear probe:

(1) the key matches; terminate search successful-
ly.

(2) there is no record present in the spot; terminate
search unsuccessfully.

(3) there is a record present and the key doesn’t
match; probe the next position, continuing until
either the key or an empty position is found, or
we eventually return to f(x) (Table is full).

Linear Probing

- Insertion: After an unsuccessful search, insert
it in the empty position found in table.

- Problem: Tendency of Clustering. Clustering
causes more time for search to find an empty spot.

- Implementation: A special key value 1s re-
quired to signal an empty spot in the table.

Quadratic Probing

_ Increment function is i

- Rehash function is j := (j+ i*) % 1000

0<i<b-1

General Rehash Function

- Primary Hash Function &
- Secondary Hash Function h,

h and h, should be different functions otherwise

a different more complicated clustering phenom-
enon could occur.

- Example of a Rehash Function: rh
rh(i,key) = (i + h,(key)) % Tablesize

Example

Deletion in Open-Addressing

Given open addressing method, can we easily de-
lete an item from the Hash table?

Suppose we want to delete the item
key =47, with h(47) = 1.
Can we just delete 47?

Deletion Problem in Open-Addressing

What if we have 3 values that originally hashed to
location 1, but 2 had to be rehashed to K and L.

4’7 was the first then placed in location i. Subse-
quent items were placed in k and 1 after rehash!

If we simply delete 47, how can we find 33 and
217

Need to mark a node as deleted rather than as
empty so that search can find values rehashed.

[s this a problem for chaining?

