DISCRETE-EVENT SIMULATION:
GENERAL PRINCIPLES AND
COMPUTER SIMULATION LANGUAGES

This chapter develops a common framework for the modeling of complex
systems, and introduces some of the major discrete-event simulation languages
currently in use. The modeling approach is called discrete-event simulation. As
briefly discussed in Chapter 1, a system is modeled in terms of its state at each
point jn time, and vatious events whose occurrence causes a change in state.
Discrete-event modeling is appropriate for those systems for which significant
changes in system state occur at discrete points-in time,

Every discrete-event simulation language has its own world view, or way
of looking at the system being modeled. The languages described in this chapter
can be classified as taking the event-scheduling approach or the process-
Eﬂﬂ.woaou approach to discrete-event modeling. The event-scheduling approach

state. The process-interaction approach allows the mu&wmﬂ 8 ooaonun,mﬂo ona

single eatity (s hx:ow_ as a customer) and. the sequence of events and’ mocsﬂ_mm it

o LA, S

undergoes as it “passes through” the system. When using a mounmmm-vﬁﬁoma

fanguage, such as FORTRAN, ALGOL, BASIC, or Pascel, a simulatorwonld

most likely adopt” the evént-scheduling approach. Languages such as GASP

facilitate the use of the event-scheduling approach, while GPSS provides one
implementation of the process-interaction approach. Some more modern lan-
guages, such as SIMSCRIPT and SLAM, allow the simulator to use either
approach or a mixture of the two, whichever is more appropriate for the problem
at hand.

Section 3.1 discusses the general principles of the event-scheduling and
process-interaction appreaches, and gives several examples by means of hand
simulations. Section 3.2 gives examples of modeling a simple system using
FORTRAN, SIMSCRIPT, GPSS, and SLAM, as well as briefly discussing
GASP.

3.1, Concepts in Discrete-Event Simulation

The concept of a system and a model of a system were discussed briefly
in Chapter 1. This chapter deals exclusively with dynamic, stochastic systems
(ie., involving time and containing random elements) which change in a
discrete manner, This section expands on these concepts and develops a frame-
work for the development of a discrete-event model of a system. The major
concepts are briefly defined and then Hlustrated by examples:

System A collection of entities (e.g., people and machines) that
interact together over time to accorsplish one or more goals
Mode] An abstract representation of a system, usually containing

logical andfor mathematical relationships which describe a
system in terms of state, entities and their attributes, sets,
events, activities, and delays

54 | Ch. 3 General Principles and Computer Simulation Larguages

System state A collection of variables that contain all the information
necessary to describe the system at any time

Entity Any object or component in the system which requires
explicit representation in the mode! {e.g., a server, a cus-
tomer, a machine)

Auributes The properties of a given entity (e.g., the priority of a waiting

customer, the routing of a job through a job shop)
Set A collection of (permanently or temporarily) associated
entities, ordered in some logical fashion (such asall customers
currently in a waiting line, ordered by first come, first served,
or by priority) :
An instantaneous occurrence that changes the state of a
system (such as an arrival of a new customer)
A duration of time of specified length {e.g., a service time or
interarrival time), which length is known when it begins
(although it may be defined in terms of a statistical distribu-
tion)
A duration of time of unspecified length, which length is not
known until it ends (e.g., a customer’s delay in 2 last in, first
out waiting line, which when it begins, depends on future
arrivals)

Event

Activity

Delay

Sets are sometimes called lists, queues, or chains; An activity can be deterministic
{e.g., 2 service time that aiways takes 5 minutes), or probabilistic {e.g., 5 & 3
miputes, unifermly distributed), or, in general, any type of mathematical
function. However it is characterized, the duration of an activity is computable
in the model at the instant it begins. By contrast, a delay typically ends when
some logical condition becomes true; this logical condition is usually a result
of the interaction of many events. A customer’s time spent in a waiting line is 2
typical example of delay. A delay is sometimes called a conditional wait, in
contrast to an activity, which is called an unconditional wait. Note that the
ending of an activity is an event, often termed a primary event, The beginning
and ending of a delay is called a conditional event, (The beginning of an activity
may be a primary or a conditional event.) The term “event” in this text refers
to a primnary event.

The systems considered here are dynamic, that is, changing over time,
Therefore, system state, entity attributes and the number of active entities, the
contents of sets, and the activities and delays currently in progress are all
functions of time and are constantly changing over time. Time itseif is represented
by a variable called CLOCK.,

ExsampLE 3.1 (ABLE AND BAKER, REVISITED)

Consider the Able-Baker carhop system of Example 2.2, A discrete-event model
has the following components: :

\
|

Lg(®), the number of cars waiting to be served at time ¢

L0 or ! to indicate Able being idle or busy at time 7

Lg(£), 0 or 1 to indicate Baker being idle or busy at time ¢

Neither the custemers {i.e., cars) nor the servers need to be explicitly
represented, except in terms of the state variables, unless certain
customer averages are desired (compare Examples 3.2 and 3.3)
Arrival event

Service completion by Able

Service completion by Baker

Interarrival time, defined in Table 2.11

Service time by Able, defined in Table 2.12

Service time by Baker, defined in Tablé 2.13

The wait in queue until Able or Baker becomes free

/ Sec. 3.1 Concepts in Discrete-Event Simulation ! 55

System state
Entities
Events
Activities

Delay

The definition of the model components provides a static description of the model,
Ir addition, a description of the dynamic relationships and interactions between the
components is also needed. Some questions that need answers include:

1. How does each event affect systern state, entity attributes, and set contents?

2. How are activities defined {i.e., deterministic, probabilistic, or some other
mathematical equation}? What event marks the beginning or end of each
activity? Can the activity begin regardless of system state, or is its beginning
conditioned on the system being in a certain state? (For example, a machining
“activity” cannot begin unless the machine is idle, not broken, and not in
maintenance,)

3. Which events trigger the beginning (and end) of each type of delay? Under
what conditions does a delay begin, or end?

4. What is the system state at time 07 What events should be generated at time 0
to “prime” the model—that is, to get the simulation started?

A discrete-event simulation is the modeling over time of a system all of whose
state changes occur at discrete points in time—those points when an event oceurs.
A discrete-event simulation (hereafter called a simulation) proceeds by producing a
sequence of system snapshots (or system images) which represent the evelution of the
system through time. A given snapshot at a given time (CLOCK. = 1) includes not oniy
the system state at time ¢, but also a list (called the future event tist) of all activities
currently in progress and when each such activity will end, the status of all entities and
current membership of all sets, plus the current values of cumulative statistics and
counters that will be used to calculate surumary statistics at the end of the simulation.
A prototype system snapshot is shown in Figure 3.1, (Not all models will contain every
element exhibited in Figure 3.1, Further i}lustrations are provided in the examples in
this chapter.) :

The mechanism for advancing simulation time and guaranteeing that ail events
occur in correct chronological order is based on the future event list. This list is a spe-
cial set which contains all events that have been scheduled to occur at a future time.
Scheduling a future event means that at the instant an activity begins, its duration is
k. computed (perhaps it is generated in “random” fashion) and the end-activity event,
together with its event time, is placed on the future event list. In the real world, most

56 | Ch. 3 General Principles and Computer Simulation Languages

Cumulative
Entities Future stetistios
Systemn and . event and
Clock state attributes Set) Set2 P list, FEL counters*

(3, 1)} — Type 3 event to
oceur at time £
(L, £3) — Type 1 event to
oceur at time ¢y

H x,p,02,..0

Figure 3.1. Prototype system snapshot at simulation time ¢,

future events are not scheduled but merely happen—such as random breakdowns or
random arrivals. In the model, such random events are represented by the end of some
activity, which in turn is represented by a statistical distribution,

At any given time 7, the future event list (FEL) contains all previously scheduled
future events and their associated event times (called 1y, 15, .. . in Figure 3.1). The
FEL is ordered by event time, meaning that the events are arranged chronologically;
that is, the event times satisfy

L - P P R A

Time ¢ is the value of CLOCK, the current value of sirnulation time. The event agso-
ciated with time ¢, is called the imminent event; that is, it is the next event that will
occur. After the system snapshot at simulation time CLOCK = ¢ is complete, the
CLOCK is advanced to simulation time CLOCK == ry, and the imminent event is
removed from the FEL and executed. Execution of the imminent avent mezans that a
new system snapshot for time ¢, is created based on the old snapshot at time 7 and the
nature of the imminent event. At time ty, new future events may or may not be gen-
erated, but if any are, they are scheduled by putting them in their proper position on
the FEL. After the new system snapshot for time ¢ 1 is completed, the clock is advanced
to the time of the new imminent event and that event is executed, This process repeats
until the simulation is over. The sequence of actions which & simulator {or simulation
language) must perform to advance the clock and build a new system snapshot is called
the evenr-scheduling/time-advance aigorithm, whose steps are listed in Figure 3.2
{and explained below), _

The length and contents of the FEL are constantly changing as the simulation
progresses, and thus its efficient management in a computerized simulation will have a
major impact on the efficiency of the computer program representing the model. The
management of a list is called list processing. The major list processing operations
performed on a2 FEL are removal of the imminent event, addition of a new event to
the list, and occasionally removal of some event (called cancellation of an event).
As the imminent event is usually at the top of the list, its removal is as efficient as pos-
sible, Addition of a new event (and cancellation of an old event) requires a search of
the list. The efficiency of this search depends on the logical organization of the list
and on how the search is conducted. In addition to the FEL, all the sets in a mode! are

Sec. 3.1 Concepts in Discrete-Event Simulation ! 87

Old system snapshot at time ¢

Swstam

CLOCK state Vs . Future event list .

i (5, 1,6) {3, 1;) — Type 3 event to occur at time fH
(1, t3) — Type 1 event to occur at time ts

(1, t3} = Type t event to ocour at time 3

2,1, = q{wn 2 event to occur at time 1,

Event-scheduling/time-advance algerithm

Step 1. Remove imminent event {event 3, time ¢;) from FEL,

Step 2. Advance CLOCK 1o imminent event time (i.e., advance CLOCK from 1 to 1)

Step 3, Execute imminent event: update system state, change entity attributes, and
set membership ag needad.

Step 4. Genarate future events (if necessary) and place on FEL in correct position,
(Example: Event 4 to occur et time %, where 1, < 1* < t3.)

Step 5. Update cumulative statistics and counters,

4__

New system snapshot at time 131

System

CLOCK state N Future event list e

I (5,1,% (1, t3) — Type | event to oogur ot time [
(4, t*) ~ Type 4 event to occur at time (*

(1, 133 — Type | event to occur st time 15

{2, 1.} — Type 2 event 10 occur at time 1,

Figure 3.2, Advancing simulation time and updating system image.

maintained in some logical order, and the operations of addition and removal of enti-
ties from the set also require efficient list-processing techniques. A brief introduction
to list processing in simulation is given by Law and Kelton {1982, Chap. 2).

The removal and addition of events from the FEL is illustrated in Figure 3.2,
Event 3 with event time ¢, represents, say, a service completion event at server 3, Since
it is the imminent event at time ¢, it is removed from the FEL in step | (Figure 3.2) of
the event-scheduling/time-advance algorithm. When event 4 (say, an arrival event)
with event time ¢* is generated at step 4, one possible way to determine its correct
position on the FEL is to conduct a top-down search:

58 |/ Ch. 3 General Principles and Computer Simulation Languages

If * < 15, place event 4 at the top of the FEL.
If t; << t* < #3, place event 4 second on the list,
If 13 < 1* <14, place event 4 third on the list.

If t, < ¢*, place event 4 Jast on the Hst.

(In Figure 3.2, it was assumed that ¢* was between 1, and 13.) Another way is to conduct
a bottom-up search. The least efficient way to maintain the FEL is to leave it as an
unordered list (additions placed arbitrarily at the top or bottom), which would require
at step 1 of Figure 3.2 a complete search of the list for the imminent event before each
clock advance. (The imminent event is the event on the FEL with the lowest event time.)

The system snapshot at time 0 is defived by the initial conditions and the genera-
tion of the so<called exogenous events. The specified initial conditions define the system
state at time 0. For example, in Figure 3.2, if t = 0, then the state (5, 1, 6) might repre-
sent the initial number of customers at three different poiots in the system. An exoge-
nous event is & happening “outside the system™ which impinges on the system. An
important example is an arrival to a queneing system. At time 0, the first arrival event
is generated, and scheduled on the FEL., The interarrival time is an example of an activ-
ity. When the clock eventually is advanced to the time of this first arrival, a second
arrival event is generated. First, an interarrival time is generated, say a*; it is added to
the current time, say CLOCK = ¢; the resulting (future) event time, ¢ + a* = s*, is
used to position the new arrival event on the FEL. This method of generating an exter-
nal arrival stream is called bootstrapping, and provides one example of how future
events are generated in step 4 of the event-scheduling/time-advance algorithm, Boot-
strapping is iHustrated in Figure 3.3, The first three interarrival times generated are
3.7, 0.4, and 3.3 time units. The beginning and end of an interarrival interval are
examples of primary events.

A second example of how future events are generated (step 4 of Figure 3.2) is
provided by a service completion event in a queueing simulation. When one customer
completes service, say at current time CLOCK. = r, if the next customer is present, then

At simulated time £, assumed to be the instant
of the nth amival, generate interarrivat
‘tirme 2*, compute #* = ¢ + a*, and schedule
future arrival on FEL to
occur at future time *

Arrival 1 2 3 PN
Time 0 37T 41 7.4 CLOCK = ¢ .
[

[—— - "

X /

Between successive atrival events, other
types of events may oceur, causing
system state to change

=3
Ll
3

Figure 3.3. Geperation of an external arrival stream by boot-
strapping.

Sec. 3.1 Concepts in Discrete-Event Simulation | 59

anew service time, say *, will be generated for the next customer. The next service com-
pletion event will be scheduled to occur at future time * = ¢ + s*, by placing onto the
FEL a new service completion event with event time #*. In addition, a service comp!le-
tion event will be generated and scheduled at the time of au arTival event provided
that, upen arrival, there is at least one idle server in the server group. A service time
is an example of an activity, Beginning service is a conditional event, because its
occurrence is triggered only on the condition that a customer is present and a server
is free, Service completion is an example of a primary event. Note that a conditional
event, such as beginning service, is triggered by a primary event occurring and certain
conditions prevailing in the system.

A third important example is the alternate generation of runtimes and downtimes
for a machine subject to breakdewns. At time 0, the first runtime will be generated and
an end-of-runtime event scheduled. Whenever an end-of-runtime event occurs, a down-
time will be generated and an end-of-downtime event scheduled on the FEL, When the
CLOCK is eventually advanced to the time of this end-of-downtime event, a runtime
is generated and an end-of-runtime event scheduled on the FEL., In this way, runtimes
and downtimes continually alternate throughout the simulation. A runtime and a
dovmtime are examples of activities, and end of runtime and end of downtime are
primary events.

Every simulation must have a stopping event, here called £, which defines how long
the simulation will runt. There are generally two ways to stop a simulation:

1. At time 0, schedule a stop simulation event at a future time Tp, Thus, before
simulating it is known that the simulation will ran over the time interval
{0, Tg). Example: Simulate a job shop for Tz = 40 hours.

2. Run length Tz is determined by the simulation itself. Generally, Tz is the time
of occurrence of some specified event E. Exarnples: T is the time of the 100th
service completion at a ¢certain service center, T is the time of breakdown of a
complex system. Tz is the time of disengagement or total kill (whichever occurs
first) in a combat sirmulation.

In case 2, Tz is not known ahead of time, Indeed, it may be one of the statistics of
primary interest t0 be produced by the simulation.

A systematic approach to simulation which concentrates on events and their
effects on system state is called an event-scheduling approach to discrete-event simula-
tion. This approach will be illustrated by the manual simulations of Saction 3.1.1 and
the FORTRAN and SIMSCRIPT simulations of Section 3.2. A different outlook is
provided by the process-interaction approach. A process is a time-ordered collection of
events, activities, and delays which are somehow related, say to some entity, Anexample
of a “customer process” is shown in Figure 3.4. Many processes are usually simul-
taneously active in a model, and the interaction among processes may be quite complex.
Figure 3.4 also illustrates the interaction between two successive customer processes
in a first come, first served single-server queve, Languages based on the process-
interaction approach include GPSS and SLAM; also, SIMSCRIPT IL5 (Release 8)
optionally aliows the use of the process-interaction approach. Itlustrations of these
process-based languages are given in Section 3.2

60 | Ch. 3 General Principles and Computer Simulation Languages

Customer n
£ - hl
End
Arrival Begin service
¢vent Delay service Activity event
¥ - * ——
Time Time
Interaction
Begin End
Arnival service service
event Delay Activity event
Time . - 2 Time

Customer n + |

Figure 3.4. Two interacting customer processes in a single-server
queue,

311, MAaNUAL SIMULATION UsSING EVENT SCHEDULING

In conducting an event-scheduling simulation, a simulation table is used to
record the successive system snapshots as time advances.

ExaMPLE 3.2 (SINGLE-CHANNEL QUEUE)

Reconsider the grocery store with one checkout counter which was simulated in
Exampie 2.1 by an ad hoc method. The system consists of those customers in the wait-
ing line plus the one (if any) checking out. The model has the following components:

Systetn state (LQ(r), LS(n), where LQ(r) is the number of customers in the wait-
ing line, and LS(r) is the number being served (0 or 1), at time ¢

Entities The server and customers are not explicitly modeled, except in
terms of the state variables above

Events Arrival {A)
Departure (D)

Stopping event (E), scheduled to occur at time 60
Activities Interarrival time, defined in Table 2.6

Service time, defined in Table 2.7
Delay Customer time spent in waiting line

The events on the FEL are written as (event type, event time), In this model, the
FEL will always contain either two or three events. The effect of the arrival and
departure events was first shown in Figures 2.2 and 2.3, and is shown in more detail
in Figures 3.5 and 3.6.

The simulation table for the checkout counter is given in Table 3.1, The reader
should cover all system spapshots except one, starting with the first, and attempt to
construct the next snapshot from the previous one and the event logic in Figures 3.5
and 3.6, The interarrival times and service times will be identical to those used in Table
2,10, namely:

Sec. 3.1 Concepts in Discrete-Event Simulation | 61

Artival event
occurs 2t CLOCK = ¢

Step 2 Step 3

Set LS(1y=1 | A Yes Faﬂnwﬂ.. _hm.“:

Step 4

Generate sefvice time s*;
schedule new departure
event al time ¢+ s*

E Step 4

Generate interattival time 2*;
schedule next arrival event
at time ¢ + a*

¥ Step s

Collect statistics

k

Retumn control 1o
time-advance routine
to continue simuiation

Figure 3.5, Execution of the arrival event.

interarrival Times 8 [1 8 3 8 e
Service Times 4 1 4 ki 2 4 -

Initial conditions are that the first customer arrives at time 0 and begins service. This
is reflected in Table 3.1 by the system snapshot at time zero (CLOCK = 0), with
LQ(O) = 0, LS(0) = 1, and both a departure event and arrival event on the FEL. Also,
the simulation is scheduled to stop at time 60, Only two statistics, server utilization and
maximum queue length, will be collected. Server utilization is defined by total server
busy time (B) divided by total time (Tz). Total busy time, B, and maximum queue
length, MQ, will be cumulated as the sirmulation progresses. A column headed “com-
ments” is included to aid the reader. (a* and 5™ are the gencrated interarrival and service
times, respectively.)

As soon as the system snapshot at time CLOCK = 0 is complete, the simulation
beging, At time 0, the imminent event is (D, 4). The CLQCK is advanced to time 4,
and (D, 4) is removed from the FEL. Since LS(f) =1 for 0 < 1 < 4 (i.e., the server
was busy for 4 minutes), the cumnulative busy time is increased from B — 0 to B = 4.
By the event logic in Figure 3.6, set L8(4) = 0 (the server becomes idleY. The FEI. ic

62 | Ch. 3 General Principles and Compurer Simulation Languages

Departurs event
oceurs at CLOCK = ¢

Step 3 Step 3
No Y
Set LS(r) =0 | =

Reduce LO(by 1

3 Step 4

Generate servics time s*;
schedule new departure
event at time ¢ + §*

w F Step 5

Collect statistics

r

Return control to
time-advance routine
o continue simulation

Figure 3.6, Execution of the departure event.

left with only two future events, (A, 8) and (E, 60). The simulation CLOCK is next
advanced to time 8 and an arrival event executed. The interpretation of the remainder
of Table 3.1 is left to the reader.

The simulation in Table 3.1 covers the time interval [0, 21]. At simulated time 21,
the system is empty, but the next arrival will oceur at future time 23. The server was
busy for 12 of the 21 time units simulated, and the maximum queue length was one.
This simulation is, of course, too short to draw any reliable conclusions. Exercise 1
asks the reader to continue the simulation and to compare the results to those in
Example 2.1, Note that the simulation table gives the system state at all times, not just
the listed times. For example, from time 15 to tite 18, there is one customer in service
and one in the waiting line.

When an event scheduling algorithm is computerized, only one snapshot (the
cutrent one or partially updated one) is kept in computer memory, With the idea of
implementing event scheduling in FORTRAN or some other general-purpose language,
the following rule should be followed. A new spapshot can be derived only from the
previous snapshot, newly generated random variables, and the event logic (Figures
3.5 and 3.6). Past snapshots should be ignored when advancing the clock. The current
snapshot should contain all information necessary to continue the simulation.

ExaMpLE 3.3 (THE CHECKOUT COUNTER SIMULATION,
CONTINUED)

Suppose that in the simulation of the checkout counter in Example 3.2 the simu-
lator desires to estimate mean response time and mean proportion of customers who

tnand 4 ar mare minntec in tha evetam A racmanes tima ic tha lanmth af fima o sstanan

Table 3.1, SIMULATION TABLE FOR CHECKOUT COUNTER (ExAmMe1E 3.2)

Cumulative

Sysiem State

Statistics

B

Comment MQ

Future Event Lixt
(D, 4) (A,8) (B 60)

L5{r}

L)

Clock

First A occurs

(a* = 8) Schedule next A
(s* = 4) Schedule first D

* First D occurs:

L= —]

(A, 8)

(D, 4)
(a* = 6) Schedule next A

Second A occurs:

(A, 8) (E, 60)
O, A 14 (E D

1) Schedule next 1D

Second D occurs: (D, 9)

*

0

(A, 14) (E, 60)

(A, 14)
4) Schedule next D

Third A occurs:

{s*

(A, 15) (D, 18) (E, 60}

14

(A, 15)

Fourth A occurs:

(D, 18) (A,23) (E 60)

15

(Customer delayed)

Third I oocurs: (D, 18)

(D,21) (A,23) (E 60)

18

(s* = 3) Schedule next D

12

(D, 21)

Fourth I occurs:

(A, 23) (E, 60)

0

21

64 | Ch. 3 General Principles and Computer Simulation Languages

spends in the system. In order to ¢stimate these customer averages, it is necessary to
expand the model in Example 3.2 to explicitly represent the individual customers. In
addition, to be able to compute an individual customer’s response time when that
customer departs, it will be necessary to know that customer’s arrival time, Therefore,
a customer entity with arrival time as an attribute will be added to the list of model
components in Example 3.2, These custorner entities will be stored in a set to be called
“CHECKOUT LINE"; they will be called C1, C2, C3, Finally, the notation for
events on the FEL will be expanded to indicate which customer is affected. Forexample,
(D, 4, C1) means that customer C1 will depart at time 4. The additiona} model com-
ponents are Iisted below:

Entities {Ci, #), representing custormer Ci who arrived at time 7

Events (A, 1, Ci}, the arrival of customer Ci at time ¢
(D, ¢, Cj), the departure of customer Cj at time 7

Set “CHECKCUT LINE,” the set of all custorners currently at the checkout
counter (being served or waiting to be served), ordered by time of artival

Three new cumulative statistics will be collected: §, the sum of customer response times
for ali customers who have departed by the current tie; F, the total number of cus-
tomers who spend 4 or more minutes at the checkout counter; and Np, the total number
of departures up to the current simulation time. These three cumulative statistics will
be updated whenever the departure event occurs; the logic for collecting these statistics
would be incorporated into step 5 of the departure event in Figure 3.6.

The simujation table for Example 3.3 is shown in Table 3.2, The same data for
interarrival and service times will be used again, so that Table 3.2 essentially repeats
Table 3.1, except that the new components are incladed (and the comment column
has been deleted). These new components are needed for the computation of S, F, and
Np. For example, at time 4 a departure event occurs for customer Cl. The customer
entity Cl is removed from the set “CHECK.OUT LINE”; the attribute “time of arrival”
is noted to be 0, so the response time for this customer was 4 minutes. Hence, S is
incremented by 4 minutes, and F and Np, are incremented by one customer. Similarly,
at time 21 when the departure event (D, 21, C4) is being executed, the response time
for customer C4 is computed by

Response time = CLOCK TIME — attribute “time of arxival”
= 21 - 15
= 6 minutes

Then 8 is incremented by 6 minutes, and F and Np by one customer,

For a simulation run length of 21 minutes, the average response time was $/Np =
15/4 = 3.75 minutes, and the observed proportion of customers who spent 4 or more
minutes in the system was F/Np = .75, Again, this simulation was far too short to
regard these estimates with any degree of accuracy. The purpose of Example 3.3,
however, was to illustrate the notion that in mapy simulation models the information
desired from the simulation (such as the statistics $/Np and F/Np) determine to some
extent the structure of the model.

Table 3.2. SIMULATION TABLE FOR EXAMPLE 3.3

Cumulative

Statistics

Future Event

Set
“CHECKOUT LINE"™

Sysrem State

LQ{t)

Np

List

LS()

Clock

[==B I R o I Y

= e IS I S B

LB - R R -
—

g & 2
. o B
m\ o~
8 5 _>
£@%ww
o T - .
SR
~=af8
Sogvwe
o o O %
egass
& & =
s g £

— 0 e O ey

ooooo

(=20 - -
-

(C3,14) (C4,15)

15

D, 18,C3) (A, 23,C5 (E, 60)
(D,21, G4 (A,23,C5) (E,60)

(A, 23,C5) (B, 60)

(C4, 15)

13
21

