Programming R. L. Rivest, S.L. Graham
Techniques Editors

Perfect Hashing
Functions: A Single

Probe Retrieving
Method for Static Sets

Renzo Sprugnoli
Istituto di Elaborazione della Informazione
del Consiglio Nazionale delle Ricerche

A refinement of hashing which allows retrieval of
an item in a static table with a single probe is
considered. Given a set I of identifiers, two methods
are presented for building, in a mechanical way,
perfect hashing functions, i.e. functions transforming
the elements of I into unique addresses. The first
method, the “quotient reduction” method, is shown to
be complete in the sense that for every set I the
smallest table in which the elements of I can be stored
and from which they can be retrieved by using a
perfect hashing function constructed by this method
can be found. However, for nonuniformly distributed
sets, this methed can give rather sparse tables. The
second method, the “remainder reduction” method, is
not complete in the above sense, but it seems to pive
minimal (or almost minimal} tables for every kind of
set. The two techniques are applicable directly to
small sets. Some methods to extend these results to
larger sets are also presented. A rough comparison
with ordinary hashing is given which shows that this
method can be used conveniently in several practical
applications.

Key Words and Phrases: hashing, hashing
methods, hash coding, direct addressing, identifier-to-
address transformations, perfect hashing functions,
perfect hash coding, reduction, scatter storage,
searching

CR Categories: 3.7, 3.74, 4.34

Copyright & 1977, Association tor Computing Machinery, Inc.
Genera! permission to republish, but aot for profit. alt or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication. to its date of
1ssue. and to the lact that reprinting privileges were granted by per-
missicn of the Association for Computing Machinery.

Author's address: Istituto di Elaborazione della Informazione
del Consiglio Nazionale delle Ricerche. Via §. Maria 46, 156100
Pisa, Ttaly.

41

Introduction

This paper is devoted te a refinement of the well-
known technique of hashing, which allows retrieval of
an item in a static table with a single probe. Let [be a
given set of identifiers; if we wish to know whether an
identifier w belongs to I, it is commaon practice 10 use
an identifier-to-address function k to store the elements
of I in a hash table and then to use the same function &
to retrieve w in the table. In general, several probes
are necessary to locate w in the table or to be convinced
that w is not there (i.e. w & I).

However, if & transforms the identifiers in [into
unique addresses, a single probe is sufficient. Such a
transformation will be called a perfect hashing function.
In [4] Knuth defines an “amusing puzzle,” to find a
perfect hashing function for a given set I. He points
out that a slight modification of / may change #
completely so that the tedicus calculations to find A
become useless and everything has to be started over
from scratch.

Here we show how the problem of finding a perfect
hashing function for a given set / can be mechanized.
We claim that the use of perfect hashing functions can
be useful in many applications.

As a very simple exampie, let us consider an
Assembler/370 program dealing with a lot of dates, in
which the month is abbreviated to the first three
characters. A fast routine is to be designed to recognize
the month, to check if it is correctly spelled, and to
point to some related information. Since the set is so
small, a linear search is usually preferred. The month
abbreviations are stored in the table TABLE in the
last three bytes of a full word, with the first byte set to
zero; the month to be searched for is right adjusted in
the full word MONTH, located at the end of TABLE,
i.e. MONTH equals TABLE + 48.

Figure 1 gives a possible piece of coding, where,
on the right, we have written the units of time (see
Krnuth {3]) relative to each instruction. C is the number
of times the loop is executed. Assuming C = 6.5, we
have a total score of 34. We remark that it is useless
to unroll the loop because we wish to know explicitly
the index in the table for further use.

Now, according to the theory developed in Section
3, we can set up a perfect hash table with an appropri-
ate perfect hashing function (Table 1) and use the
piece of coding given in Figure 2.

The perfect hashing function is performed by the
four instructions in the shaded area. Summing up the
units of time we get a total score of 26, an improvement
of about 24 percent over the linear search.

As an example, let us suppose that MONTH con-
tains 'FEB'. In register 3 we load the characters 'EB’
corresponding to the decimal number 50626; adding 9
and multiplying by 2% = 256 we get 12962560; dividing
by 23, in register 2 we find the remainder 13, so that
the last shift gives 6 in register 3. In fact, 'FEB’ is the
month at location 6 in TABLE.

November 1977
of Volume 20
the ACM Number 11

Communications

Fig. 1.

L 1, MOHTH 2
LA 2,L00P 1
LA 31,4 1
LNR 1,3 1
LOOP LA 3,41(3) c
c 1,TABLL (3} pis
BWLR 2 C
C i,=r'48"' 2
BE FAILURE 1
Fig. 2
L 1, MONTH 2
LA 3.1 1
N 3,=X'FFFF' 2
SR 2,2 1
=LA 13,9100 1
= SLA=— 3 E 2
E=n——2,=F'23'—— 10
F—E&RpA— 2,31 =000——= 2
SLA 3,2 2
C 1,TABLE (2} 2
1

BWE FAILURE

Table I.

TABLE MAR
+1 OCT
+2 JUN
+3 SEFP
+4 AUG
+5 JAN
+6 FEEB
+7 APR
+8 DEC
+9 NOV
+10 JUL
+11 MAY

We have developed direct methods to derive per-
fect hashing functions for small sets, say with at most
10-12 elements, and we have extended our results to
larger sets.

In Section 1 we give some general definitions and a
more formal approach to the problem; in Section 2 we
present the “quotient reduction™ method for construct-
ing perfect hashing functions. Section 3 is devoted to
the “remainder reduction™ method, and, finally, in
Section 4, we extend our results to larger sets,

1. General Considerations

Essentially we are interested in functions defined
on sets of identifiers. However, because of the repre-
sentation of characters in the computer memory, we
may consider functions on integers without any loss of
generality.

Let N denote the set {0, 1, 2, 3, ...} of natural
numbers and Z the set of integers; forn, n’', m € Z,
“n mod m” is the remainder (=0) of the integer
division of n by m, and n = n' (modulo m) is the
congruence relation defined by: n modm = n’ mod m.
Furthermore, if n < m, [n, m] is the interval {n, n +
1,...,m =1, m}, the length of whichism — n + 1.

Z, denates the set of residues modulo m, i.e. the
interval [0, m — 1]; G, is the set of integers g such
that 0 < g < |m| and ¢ is prime to m; the number of
the elements in G,, is ¢{m), the Euler totient function
applied to m. Occasionally we use the group structure
of Z, and G, imposed by addition and multiplication
modulo m, respectively. Finally, x| and [x] denote the
floor and ceiting functions applied to the {real) number
x.

Given a set | = {w,, wa, ..., w,} of natural
numbers and w & N, we consider the problem of
determining in a practical way whether w € . Usually
the elements of ! are stored in a table with m (=n)
locations, and w is to be searched for in the table. Two
reviews of a variety of techniques usable for this
purpoese can be found in [4] and [7].

One of the most efficient techniques is hashing
(see also [2] and [5]}. The method consists in using a
hashing function h:N — Z, and storing an ¢lement w;
€ T at location hA(w,) in the table. The same function A
is then used to check whether 4 given w € N is present
in the table. Since several elements in / can hash 1o
the same address, different methods have been devel-
oped to store and locate colliding elements. Therefore
in general more than one probe (i.e. access to the
table} is necessary to verify that w £ I or to be
convinced that w & /. The average number of probes
can be made close to 1 at the cost of having sparse
tables, that is, tables with a loading factor n/m much
less than 1.

The set f may be static, that is, it does not change
during the execution of a program. In this case, the
distribution of the elements of / can be used to design
a hashing function # which improves on the usual
performance of hashing.

The best situation is given by a function k such that
k on I 1s injective and max A(7/) = n — 1. The first
condition assures that a single probe is sufficient to
retrieve an element, and the second assures that the
table is full. Given the set /, we are going to show that
it is possible 1o construct a function # (depending onJ)
which satisfies the first condition and allows us 10 use
a table with a loading factor very close to 1.

A perfect hashing function (phf for short) for/isa
function h;: N — N such that # on [is injective, min
h{f) = 0, and max h{J) = m — 1 for somem =n (m is
the length of the 1able). A minimal perfect hashing
function for / 1s one for whichm = n.

The elements in [are assumed to be in ascending
order; thus the set / is determined by its first element
w, and the ordered set of its lst-differences 8, = w,,,
- w; forevery({ €[1, n — 1]. Obviocusly any difference
w; — w; can be expressed in terms of the differences §,.

2. Quotient Reduction Method

The first, and perhaps the only, previous systematic
attempt to construct perfect hashing functions is given
in [1]. However, if we consider the set f = {1, 3, 8§,

Communications November 1977

of Volume 20
Number 11

the ACM

10
ha

5€1
IC
the
N:
SO
Wi,
fur

gh
ad

i
for

me
dis
be

Alg
alge

(a}
{b)
()

(d}
{e)
{f)

(2
(h)
()

Nt

(2
he

for

€o
54
w}
ca
an

84

12
nt

+1
CE

14, 17, 23}, given there as an example, the function
hiw} = [{w + 3)/5] is a far simpler minimai perfect
hashing function for 7 than the function described by
Greniewski and Turski.

This example illustrates the first method we pre-
sent, the quotient reduction method, Given a finite set
{ T N, the method consists in translating the set / and
then taking the integer quotients by some divisor N €
N: (Ywe&l) more formally, h(w) = [(w + s)}/N] for
some integer s depending on /. A function of this form
will be called a quotient reduction perfect hashing
function.

The translation term s can be decomposed s = gN
+ 5' for some integers g and 5" (0 < 3" < N}. The term
gN allows us to have i{w,) = 0, while ' is used to
adjust the elements of / to different intervals [N, (k
+ L)¥ — 1] so that

hiw) # h(w)) (2.1
foreveryi,j €[1,n] and i +j.

The perfect hashing functions generated by this
method are very simple and work well for uniformly
distributed sets. Furthermore the resuits obtained will
be used later to develop more general techniques.

Algorithm Q (Quotient reduction}: Given a set { as above, this
algonithm finds the best quotient reduction phf for 7.

(a) [find upper bound for N] Nye-min{[{w—w,—1)/(—i—1}] | i,
JE[l, a=1) and j>i+1};
(b) [initialize AJ Ae{1, Ny] (at the end of step (c) the set A will
contain all the possible values for ¥);
(c) [scan f] ¥, jE[1, n—1] such that j=i and §;+8§=<N, do:
(cl} {initialize D] d+«8,+8,—1; D«{1, 4] (at the end of step
(c3) the set D will contain ail the values N satisfying (2.1}
relative to § and f),
(c2) {find & and] medw;+ D=wy i Mew, —(w,+1);
O —m /N, 8" m/{d+ 1)];

(c3) [determine D] Y€ Z (§'=9=<4"), do: DDU[[m/8), | M/6)];

(c4) [update A} AwAND;

(d) [find N} Ne—maxA (N is taken as large as possible in order to
get the smallest table);

(e) [imitialize J] Je=Z; (at the end of step (f) the set J will contain
the integers s{0=s<¥) satisfving (2.1} for every i #);

() [determine J] Yi€[1l, n~1] such that §<N, do: JeJ N
{{ir—w,Jmod N | 0=r<8};

(g) {a smaller ¥, if necessary] if /=07, drop ¥ from A and go to
step (d);

{(h) [choose best f] let + be any element in J minimizing (w,+¢)mod
N (this condition assures that the table is of minimal length);

{i} [find 5] s~ —N{w,+1}/N].

Now let us show that this algorithm is correct.

First we prove that Ny is an upper bound for N. By
(2.1}, forj>1 + 1 wehave Alw)) — AW} > —i — 1;
hence (w, + 5) > (w; + 5) + (j —i — 1)¥, and so:

N =|w; —w — /G —i—1)] (2.2)

fori,j €{l,n]andj > i + 1.

As an example throughout this section, iet us
consider the set / = {17, 138, 173, 294, 306, 472,
540, 351, 618}. We compute N, by means of Table II,
which containg the differences of the elements in /. On
each row we have circled the least difference w, — w,,
and on the right we have computed |(w;, — w;, — 1)/(f

843

Table II.

1se=dilf,

Znd-diff. Ty =TT

Ird-difs. Passaf=12

dth-diff. 289;’34—’6?:55ﬁ312\ 256/ =B5

Fa

sth-difE, »‘Eqss:mz:waézg [323/4) =80

Gth-diff. [#12/5) =82
Tth-diff, |879/6] =79
deh-diff, |00,7) =85

— i — 1}]. Thus we have N, = 72 and, by step (b), A =
[1, 72].

Now, before explaining step (c), we have to analyze
the role plaved by the set J. So let us suppose that N
has already been found and consider steps (e) and (f).
For every w; € I, an admissible increment for w, is any
integer ¢ for which condition (2.1) is satisfied forj = i
+ 1:

Wiy + /N # [lw; + /N, (2.3)

In other words, an admissible increment for w; is any
translation value which adjusts w; and w,., to two
different intervals [kN, (K + I)N — 1]. Clearly a
quotient reduction phf for / can be found if and only if
there exists an admissible increment which works for
every w; € [,

The set of all the admissible increments for w; is
given by J*w) ={u —w, +AN]0=u < §andk €
Z}. In fact, lett = u — w,., + AN; then we have w; + ¢
=w, tu—wy, +tkN=u—-8+kNandw, +1t=
Wi ¥ U ~ Wiy + kN = u + kN, and relation (2.3)
holds if and only if 0 < & < 8.

We can ignore the term kN in the expression for
J*{w;) and define the set Jiw,) of the reduced admissible
tncrements for w;:

Jw) ={lt —wo,)mod N |[0=t <8} (2.4

Obviously, if §; = N, J(w,) = Zy and no computation
is necessary. Thus steps (e} and (f) determine the set J
= N&! Jw,) correctly, and, as we remarked above,
there exists a quotient reduction phf for [if and only if
I+ @

In our example, let us suppose N = 64 {=72 =
N,). In Table II we put in a box the 1st differences less

than 64. It is:

J(138) = {(¢t -~ 173)mod 64 | 0 = ¢ < 35} = [19, 53],
J(294) = {t — 306)mod 64 | 0 = ¢ < 12} = [14, 25],
J{540) = {{r — 551)mod 64 | 0 = ¢ < 11} = [25, 35],

and J = {25}, The reader can verify that for N = 65
and N = 63, J = ¢ and J = [16, 21], respectively.
Thus there exist quotient reduction phf’s for N = 63
and N = 64, but not for ¥ = 65.

Now, looking at the thing from the other side, we
can determine the set A of possible values of N for
which the associated set J is nonempty. We can prove
that if J # & (relative to N} then Yw,, w; € I (i <)

Communications November 1477
of Volume 20

I the ACM Number 11

there exists a multiple of N in the interval Ty = [m,,

M), wherem;; = (w; + 1) —w,, and My = w,,, — (w;

+ 1). In fact, by (2.4), Jw)) N J (w)) # & if and only if

there exist two elementsa €A = {w,,, — 1|0 =<t <

dyandb € B={w,, ~¢|0=r<§)suchthate =5

(modulo N). This means that the set of all the differ-

ences between the elements in B and the elements in

A must contain a multiple of N. But this set is just T,

because its limits are the cross-differences of the limits

of Band A.

The converse is not true because J can be empty
although the J(w,)’s are not pairwise disjoint. Thus
maxA is a better approximation to N than N,, but A
may contain elements which do not correspond te any
quotient reduction phf for I. Actually step (c) can be
eliminated; however, as shown by the example below,
when N is smaller than Ny, step (¢} can save a lot of
computations relative to the J{w,}’s.

Now, if we call D;; the set of positive integers with
a multiple in the interval T;;, we have to choose N in
the set A = [1, No¢] N N; Dy. By definition, it is D, =
Uisesm, [my/8), | My/8]]; however, we can remark
that:

‘{a) since N =< N, the usefu} lower limit for 8 is 8’ =
[m/Nl;

(b} the length of the interval T, isd = wy,, — {w; + 1)
—fw; + 1)+ w, +1 =5 + & — 1; so every
integer in [1, 4] has a multiple in T;;. This implies
that (i) every couple (i, j) for whichd = §; + §, ~
1 = N, can be ignored in the computation of A,
and (it) the upper limit for ¢ is 8 = [my/{d + 1)).

So we have Ty = [1, d] U Ugapee [[my/0], LMy/8]],

and step (c) determines the set A correctly.

In our exampie we have to consider the foliowing
intervals:

Tse = [122,167] forwhichd = 46,8 =2,¢" = 3;
Ty = [368,412] forwhichd =45,8' = 6,6 = §;
T, = [235,256] forwhichd = 22,8 =4,¢" =11,
SO

Dy, = [1,55] U [61, 72;

Dy, = [1,51] U [53, 58] U [62, 68];

Dy = [L,25] U [27, 28] U [30, 32] U [34, 36]

U [40, 42] U {47, 51] U [59, 64];
A= [1,25]) U [27, 28} U [30, 32) U [34, 36]
U [40, 42] U [47, 51} U [62, 64].

Noaw, every N € A can possibly determine one or
more quotient reduction phf’s. It is possible to show
that if N > N’ the table length for N is not longer than
any table iength for N'. Hence we choose N as large as
possible (steps (d) and (g)). In our exampie, for N =
64 = max A, it is J = {25}

Finalty, let us come to steps (h) and (i). Up 1o this
moment, we have found N and the set J of the reduced
admissible increments relative 10 N. Every 1 € J
determines a quotient reduction phf for /; in order to
have h(w,) = 0, the translation value s, is given by s, =
t — [(w, + 1}/N]. Since we are looking for the shortest

844

table, h(w,) is to be as small as possible. This occurs
when w, + 5, (which is non-negative and less than N}
takes its nearest value to 0. However, since w, + =
w, + 5, (modulo N), the quantity (w, + rymod N is to
be as small as possible, and this condition determines
the value ¢ of the “best” reduced admissible increment.

In our example, it is s = ¢ = 25, and the best
quotient reduction phf is A(w) = [(w + 25}/64]. 1t is
not minimal, as shown by the following table:

w 17 138 173 204 306 472 540 3551 618
hw) 0 2 3 4 5 7 8§ 9 10

Now, let us consider a possible improvement of the
quotient reduction method. Obviously, in order to
have an (almost) full table for a given set I, we should
have N = (w, — w,)/{n — 1). However, if the elements
in § are not uniformly distributed, N can be consider-
ably smaller than this best value; se the table is sparse.
Often it is possible to obtain shorter tables introducing
the concept of a cut. A cut consists in translating all
the elements in 7 larger than a certain vaiue (the cur
value) before performing the quotient reduction. Since
the cut value can be identified with some w, € [, the
index will be called the cut point and the perfect
hashing function 4 is defined by:

h(w,) = [(w; + 5}/N], Vi=y, (2.5)
hiw)) = [(w, + s + r)/N], Vi>1, '
for some integer r.

The problem consists in finding the cut value (or,
equivalently, the cut point) and the integer r for which
the table may be of minimal Jength. In order 1o sausfy
condition (2.3), the integer r should produce an admis-
sible increment commeon to all the elements in [. An
obvious appreach is to try successively all the elements
Wy, Wi, . . ., W,_; as possible cut values. This leads to
the following Algorithm C. An important peint in this
algorithm is the evalvation of N; we ignore the differ-
ences of elements in [on opposite sides of the cut
point. Actually the values of these differences will be
determined only when the integer r is known.

Algorithm € (Quotient reduction with a2 cut). Given a set [, this
algorithm determines the cut point r and the integer r, allowing us to
obtain the best cul reduction phf of the form (2.5).

{a) linitialize 1] te1;

(b) [upper bound for N Nge—min {(w,~w,~1)/(j —i—1}]| G, jE€[1. £]
or{,j€[¢+1,]} and j>>i+1} {ignore couples w,, w; such that i=r<j);

(c) [find A] evaluate A as in steps (b) and (c} of Algorithm Q;

{d) [find N,] N—maxa;

{e) [admissible increments] J—MN) {(v—w,,,) mod N,]0=v< 8}
Ju— 5L {{v—w,.,} mod N, |0=v<cs);

(f) [a smalier N,, if necessary] il either J, or J is empty, drop N,
from A and go to step {d);

(g) [lower bound for §;) Sy—min {(j—i—1) N+ 1=w;+w +§|ist<j);

{h) [find s*, §/] perform the foliowing steps:
(h1} pe—min {p€l, N]|(-w,—p) mod N,€J1.};
(h2} lets’ be the element in J, corresponding to the value of g
(h3) &/«min {§=8,] 3" €y such that f=w,,,+j*+p (modulo N,)};

(i) [determipe r_ 5] re—8; -8, 5,45 —Nliw,+s" /N,];

() [length of the table] L (w,+s,+r}/N,j—1;

Communications November 1977

of Volume 20
the ACM Numbar 11

(K}
it

tix
rit
€q
tht
ex
€q
tar

ing
1=

k'i

It
kN

n¢
de
ad
the

ing
va
ou
{2
us
ad
(k

tal
fo!

Al

ne:
fin

{a
{b

(c)
{d
Ch
(f}
{g.
(h

0]
()

the

to
tld
nts
eT-

ng
all

ce
he

5)

i

T W TR i e

(k) [loop on ¢] fe<+1 and go to step (b} if 1<n;
(1} [table of minimal length} let z any index for which L, is minimal
and output s, N, w_, r..

Now let us show that this algorithm is correct. For
fixed ¢, we consider the set/, = {w,|1 < i =<} U {w, +
r|t < i = n}; then the function (2.5) relative to I is
equivalent 10 a quotient reduction phf for 7,. However,
the 1st differences of f, equal the 1st differences of 7,
except for & = 8, + r. Thus the determination of r is
equivalent to the evaluation of §;, and the most impor-
tant steps of the algorithm are (g) and (h).

Step (g} determines a lower bound for §; by apply-
ing relation (2.2) to the set of differences w;, — w, (i <
¢ < j}. By steps (hl) and (h2) we have p = —w, — 5" +
k'N,and by (h3), 8, =w, + [+ + K" N =5, + "
— " + kN, where k = k' + k"; hence, for every w| €
L>8,wa+s =w,+8§-&+y =w, +j" +
kN. This proves that s* is a reduced admissible incre-
ment for wi. Since § = &, s' is a reduced admissible
increment for every element in [,. Actually p has been
defined in such a way that 5’ is the “best” reduced
admissible increment. Thus Ajgorithm C determines
the best cut reduction phf (2.5) correctly.

The run time of Algorithm C, however, is exceed-
ingly high, at least of order Kn®, where K is the largest
value of & — ¢ + 1 (step (¢3)). If we content
ourselves with a near-to-optimal function of the form
(2.5), we can find a far better algorithm. In fact, N is
usually very close to Ny, and, by construction, a cut
adjusts w, and w,,, to two consecutive intervals [kN,
{k + 1) N — 1]. Thus we may assume that the value
(w, — w, — 8}/N, + 3 approximates the length of the
table obtained using ¢ as a cut point. This leads to the
foilowing:

Algorithm § (Simplified quotient reduction with a cut). Given a set
I, this algorithm first determines the cut point corresponding to a
nearly optimal perfect hashing function of the form (2.5) and then
finds the other parameters of the function.

{a) [initialize ¢] r=1;

{b) [upper bound for N1 N} « min {[{w,—w,—1)/(j—i—-D}|{i, jE[L,
rlory, j€r+1, n]) and j=i+ 1)

{c) [approximate length of the table] L —{w,—w,—8)/NT,

(d) [loop on ¢] let r—~+1 and go to step (b) if t<n;

{e) [shortest table} let z be any index for which L, is minimal;

(0 [initialize N] Ne=NI+1;

{g) [decrement N) N«N—-1,

(h) [admissible increments] J, iz {(v—w,_|) mod N{0=v<8],
Sk {(v—wi.,) mod N[Osv<d)

{i) [lowecr bound for &;] 8e+—min{(j—i~ 1) N+ 1—w;+w,+8 iisz<}

(i) [find s, 8.] perform the following steps:
{j1) p+min {pe[l, ¥]|{-w.-p) mod NEL],
{12) let s’ be the element in J, corresponding to the value of g;
($3) 8,+—min {8=5,| Fj"EJp such that =w_,,+j"+p (modulo N}};

(k) [determing r, 5] re=b.— 8, s —N{w +sV/N];

{1} [output resulis] output s, &, w_, r.

Let us apply Algorithm § to our example; we get:

t 1 2 3 4 5 & 7 8
Ny T2 72 72 7T 77T B3 78
L 667 786 6467 818 6.04 692 7.1 685
845

s0 z = 5, Considering the differences in the shaded
area of Table II, we obtain 8, = 131. Now we have J,
= J(138) N J(294) = [54, 65] and J; = J(472} N J(540)
N J(551) = [30, 31]; so 5 = min {p € [1, 72]{(—306 —
p)mod 72 € [54, 65]} = 61, and s” = 65. Hence §; =
min {8 = 131|3" € [30, 31] such that § = 472 + " +
61 {modulo 72)}, and it is simple to see that § = 59 or
§ = 60 (modulo 72). However, 131 = 59 (modulo
72); so 8, = 131, r = =35, 5 = -7, The perfect
hashing function obtained is minimal and can be imple-
mented by the two Fortran statements;

IF(W.GT.306) W = W — 35
H = (W - 7)72

where H and W are INTEGER variables.

We conclude this section with three remarks:

(i) The programmer has to consider the fact that if w
> w, (and A(w) > m), w is compared to something
outside the table. Thus some care has to be taken
when allocating the table or an extra comparison
between A(w) and 1 must be introduced.

(it) It is possible to comsider cut reduction phf’s with
more than one cut. An algorithm similar to Algo-
rithm S is easily devised to get a near-to-optimal
function of this new tvpe.

(iii) All the functions considered in this section are
monotonic.

3. Remainder Reduction Method

As we have remarked, the gquotient reduction
method works well when the set [is uniformly distrib-
uted. However, this is not alwavs the case, especially
when the elements in ! are derived from identifiers
coded in EBCDIC. In {fact, the collating sequence for
letters and digits contains three large gaps—between [
and J, R and S, and Z and 0.

When the set [is not uniformly distributed, we can
scramble its elements to get a more uniform distribu-
tion and try to apply a quotient reduction phf to the
scrambled set, To scramble the ¢lements of f in a 1-1
manner, we take the moduli of the elements in { by
some appropriate integer divisor M. This method will
be called the remainder reduction method.

In order that the scrambled set I,y = {w; mod M|w,
€ [} C Z, be of interest to us, we shouid have:

w, %= w, {(modulo M), Vi,j €[l,n)andi #j. (3.1}

If D is the set of divisors of some difference w; — w, (j
> {), condition (3.1) is verified if and only if M & D.
In what follows, we suppose M & D if not otherwise
stated.

We are interested in obtaining remainder reduction
perfect hashing functicn of the form:

hiw) = [((d + wg) mod M)/N}. (3.2

In order to do this, the values d, g, N, and M must be
suitably chosen. In particular, to chose N and d, we

Communications November 1977
of Yolume 20
the ACM Number 11

—

need to consider some properties of the scrambled set
Iy with respect to a simpler form of function, which
we call a rotarion reduction perfect hashing function:

Alw) = [((d + w) mod M)/N]|. (3.3}

A (scrambied) set 7, will be called rotationally reduct-
ble by N € Z iff there exists a rotation reduction phf
{(3.3) for .

Since (d + w) mod M = {d + (w mod M) mod M),
the set d + [, = {{d + w) mod Mlw, € [} is a
rotation of 7,; we call d the rotation value. Thus, in
other words, [, is rotationallv reducible by N iff there
exists a rotation value ¢ such that d + 7, has a
quotient reduction phf of the form A(w) = {w/N|.

Therefore, in a sense, a rotation reduction phf is
analogous to a quotient reduction phf in which the
translation has become a rotation. However, a rotation
reduction phf has a remarkable advantage over a
quotient reduction phf. In fact, the rotation allows us
to ignore the st difference between the two elements
which become the last and the first elements of the
rotated set. We can choose this difference as the one
which causes trouble for determining N. Thus a rota-
tion reduction phf is more like a cut reduction phf
than it is like a simple quotient reduction phf.

It is possible to verify the validity of these remarks
by an example. Let /4 = {0. 1,4, 6, 8, 12, 14}; it is
rotationally reducible by 3, and a suitable rotation is
14 + 1, ={1,3,7,9,14, 15, 18}

The simplest method to find whether a set 7, is
rotationally reducible is 1o look successively at all the
M possible rotation values; however, we can lock at
them in parallel. Let us consider the extended ser of I,,,
defined as the set of 2n — 1 elements X, = 1,, U (M +
(Tu\{w})) C Z,y, where w is the largest element in J,,.
We always suppose that the elements in X, are ar-
ranged in ascending order. The foliowing theorem is
the basis for finding the rotation reduction phf’s for
Iy, moreover, it tells the whole story about the connec-
tions between rotation and quotient reduction phf's.

THEOREM A. Let [, and X, be as above. I, is
rotationally reducible by N if and only if there exists a
subset X4 = {wi, Wi, . .., Wit Of 1 consecutive
elements of X, which has a quotient reduction phf hiw)
= [{w + 3}/N|such that w,., + s < M,

In fact, if f,, is rotationally reducible, then w,,, is
the element which becomes the first after the rotation.
Since w;_, becomes the last element, the condition
Wien + 5 < M is verified. Conversely, if there exists a
set X§ satisfying the conditions of the theorem, then
either { = 0 and s = 0 so that the rotation value d
equals s, ors < 0 and thend =5 + M,

For the set 7,4, we have X, = {0, 1, 4, 6, 8, 12,
14, 19, 20, 23, 25, 27, 31} and we try to find a
quotient reduction phf for N = 3 as shown in Table 1.

In order that a quotient reduction phf exist for a
subset X'{, condition (2.2} must hold. We have circled
the differences violating the condition; so the differ-
ences in the dark shaded area can be ignored during

846

Table I{1.
o1 4 B B 12 14 19 20 23 25 27 31 Nik=11+1
ter=iiff. T30 2 o8 L o1 o3 2 o2 4 1
dna-difl . 4 5 4§ 6 & 7 & 4 3 4 g]
Irg-diff. 7
41 - lAff, 10
Sth=diff 13
Grh=gaff) 16
LT A P

Trh-giff. 15315 1q41 9tj1°t1q;_ 19

the computation. Moreover, in the tuple of kth differ-
ences there must be n — k consecutive differences
satisfying (2.2); so the differences in the light shaded
area can also be ignored. Usually these properties
provide a fast way to decide that a set is not rotationally
reducible.

In cur example, we have three candidate sets X%,
X¥, and X\¥, corresponding to the (n — 1)th differ-
ences not enclosed in the shaded areas. We have the
following sets of admissible increments: J(4) = {0, 1},
J6) = J(12} = {1, 2}, J(19) = {1}; so 1 is the only
admissible increment for all the three sets.

For X% we haves = 1; however, wy,. + v = 20 >
19, and the last condition of Theorem A is violated.

For X itiss = —2 and w,,. + 5 = 18 < 19; so we
have the reducible rotation (19 — 2} + [, = 17 + .
Finally, for X{§,itiss = —5and w,,, + 5 = 18 < 19;

so we have the reducible rotation (19 — §) + /,, = 14
+ I, which is the rotation we have considered already.

At this point we can state an algorithm for finding
rotation reduction phf’s.

Algorithm T (Rotation reduction): Given a {scrambled) set /,,, this
algorithm finds all the rotation vatues ¢ corresponding to rotation
reduction phf’s for f,, by a given integer N

(a) [extended set] Xy—Iy U (M+i],,~{max TR
{(b) [initialize V] V « [1. n] (a1 the end of step (c), V will contain
the indices i corresponding to sets XYV for which the first
condition of Theorem A is satisfied);
(c) [delermine V] Yk &[2, n—1] do:
(c1) [knh differences] compute the set A of kth differences (A
contains 2n -k —1 elements);
{c2) [verify condition (2.2)] let D be the set of indices ¢ of 5, €A
such that §, >Nk -1).
(c3) {update V] VeVN{i<[l, nl|[i, i+n—k) CD} (D has to
contain (7 —k) censecutive differences satisfving (2.2));
(c4) [no reductian] if V=2, exit (the set J,; does not have any
rotation reduction phf by ¥):
(d} [initialize {] let i be the first element in V (we consider X411,
{e) [find J] Jo—00i2r* {ir~w,.,) mod N|w,EX,, and O0=r<3)};
(f) [no common admissible increment] if /=, go 1o step (k);
(g) [find ¢] let ¢ be the element in J corresponding to the least value
of {{w,+r} mod NjrES;
(h) [determine 5] s« ~N{(w,+11/N];
(i) [no rotation value] if w,.,_,+s=M, go 10 stap {k) {the last
condition of Theorem A is violated};
{i} [find rotation value] output s« mod N;
(k) [loop on V] let i be the next element in V; if there are no more
elements, exit; else go to step (e).

We remark that the rotation reduction phf by N
can be (almost) minimal if M = Nr; so we can consider
N as determined by M and n.

Communications November 1977

of Vaolume 20
the ACM Number 11

rof
ele
sut
pri
dis
am
qi,
fol
dif

hy

wit
jus
int
rec
of

set
bui

cor
sat

q).

Foi
hiw
wh
the
M)
plic
the
qui
to
put
the
ele:
by
son
can

For
use
alle
Tha
for
par

twe
foll

847

TR WA el

e

i

CErrep ey oy MR I

Given the set {,,. Algorithm T may fail in finding a
rotation reduction phf for f,. However, if g is any
element in Gy, the set gly = {gw mod M|w € I} isa
subset of Z, with a distinct elements because g is
prime to M. In general, ifg, ' € Gy and g # gq', the
distributions of gl and g'fy in Z, may be different,
and we have the possibility of investigating many sets
gfy for a rotation reduction phf. Actually, by the
following theorem, at most &(M)/2 sets giy have
different distributions.

THEOREM B. The ser qly is rotationally reducible
by N if and only if (M — q} 1y is also.

Intuitivelv the ditferences of (M — g)y coincide
with the differences of g/, but in reverse order, This
justifies Theorem B, but a formal preof is rather
intricate. We sketch it here: If g/, is rotationally
reducible, let Xy be the set satistying the conditions
of Theorem A. Depending on [, it is possible to find a
set X' satisfving the first condition of Theorem A,
but not necessarily the last one {w., + § < M.
Passing to (M — gq) [y, we may consider the sets
corresponding to X%/ and X§} and prove that either
satisfies all the conditions of Theorem A. Hence (M —
g) I, is rotationally reducible.

We may now return to remainder reduction phf’s.
Formula (3.2} can be written:

hiw} = [(((w + d')g) mod M}/N] 3.4)
where d’ = dg™' € Z, and g~' Is the inverse of g in
the multiplicative group Gy, that is gg~' = 1 {modulo

M). This formula requires two divisions and one multi-
plication. Computationally this is usually worse than
the one comparison, two sums, and one division re-
quired by a cut reduction phf, However, it is possible
to improve the performance of {3.4) on binary com-
puters with shifting operations. In fact, if M is odd,
the integer 2 is prime to M and we can consider the
elements g € G, belonging to the subgroup generated
by 2. In this case we have g = 2¢ (modulo M) for
some ¢' (0= g < ¢ (M), and the multiplication by g
can be replaced by a shifting of g’ positions.

Obviously the shift cannot be of indefinite length.
For example, in System/370 doubie shifting can be
ased, but the subsequent division by M may not be
allowed to produce a fixed-point divide exception.
Thus, in what follows, we consider an upper bound K
for the length of shifting operations. K depends on the
particular computer on which the remainder reduction
phf has to be implemented.

Now, if in {3.4) we have N = 2™ for some integer
m'. the last division also can be replaced by a shift.
We say that the set [has a computational remainder
reduction phi iff there exists a perfect hashing function
(3.2) for I such that M is odd, N = 2™ for some
integer m', and ¢ = 29 (modulo M) for some integer
g (0=gq =K<o(M).

For example, the set of the abbreviations of the
(welve months considered in the Introduction has the
following computational remainder reduction phi:

847

——E

hiw) = (3w + 4) mod 23)/2]
= [({tw + 9)2%) mod 23)/2'] (3.5}

where w is obtained from the EBCDIC coding of the
2nd and 3rd characters of every month.

Now, in order that the elements in f can be mapped
onto different values, it must be that Nz — 1) < M.
Hence, for any M & D, there is only a finite number
of values for g, d, N corresponding to possible compu-
tational remainder reduction phf's for /. Thus a proce-
dure can be devised to perform an exhaustive search
for such parameters. However, we are looking for an
almost minimal hashing function; that is, the resulting
table must have a loading factor not less than a given
value @. A sufficient condition is to have M = N
[#/a]; so we propose:

Algorithm R {Remainder reduction). Given a set /, this algorithm is

looking for a computational remainder reduction phf for I which

gives a table with a loading factor greater than or equal 10 a. The

algorithm stops unsuccessfully if m' becomes larger than a predefined

value #t.

(a) [intalize N} m -0} Ne—1;

{b) [initialize M] M«N (n—-1}+1;

(¢} {check whether MED] if ¥w,, w,&l (i#§), w,Ew; (modulo M),
then go to step ([} (as a hy-product we get the scrambled set fy):

(d} (increment M} M«—M+1+(m'>0) (increment by Lift¥V=1,by2
N1

(e} [loop on M]if M<N [r/a], then go 10 step (c). else go to step (k):

(N [initialize g) g+1: g"<0;

(g) [rotation reduction phi] apply Algorithm T to gfy; if a rotation
reduction if found, output M, N.d, and ¢ and exit, else continue;

(k) [update ¢] g«—{2g) mod M:g'+g'~1;

{i) [looponglifg#landg=M-1 and g =K, go to step {g);

(j} [update ¥ m'em' + 1] Ne2N;

{k} [loop on N if m’=ri go to step (b); else exit unsuccessfully.

Several remarks may be made about this algorithm:

(i} Algorithm R may fail ip finding a computational
remainder reduction phf for some set [, Actually we
have not been able to prove that the algorithm will
eventually stop if we do not introduce an upper limit
. to the loops on m’. Many experiments were made
selecting at random 12 items out of a set of 93
identifiers coded in EBCDIC. Algorithm R always
found a minimal (a = 1) function. This is by no means
conclusive, and presumably there is an upper bound
on the size of the sets / for which a minimal (computa-
tionat) remainder reduction phf can be found.

(ii) Tt is necessarily a rather complex procedure to
evaluate the set D. Hence we have introduced step
(¢), which applies relation (3.1).

(iii)y When m’ = 0O, it is not necessary 1o apply
Algorithm T. In fact, we try (o reduce f by M = n, n
+ 1, ..., |n/a}, and whenever condition (3.1) 1s
satisfied, we get the simple function A(w) = w mod M.
If M = n the table is minimal. If M = n + 1, we can
always make the table minimal by a rotation, taking
the empty position to the end of the table. t M =n +
2. there are two empty positions in the table, say
positions A and w. It is possible to take them to the
last two positions in the table if there exists ¢ such that

Communications November 1977
of volume 20

the ACM Number 11

—

gh = gp + 1 (modulo M). Obviously such a g exists if
(A — w) is prime to M, so thatg = (A — w)~'in G,,.
(iv) Whenm' = 1 (i.e. N = 2}, the application of
Algorithm T can be greatly simplified by using the
following result as a substitute for Theorem A:

TueorREM A’. Given a (scrambled) set T let us
consider the set of its st differences {8,, &, . . . , 8.},
where 8§, = M + w, — w,; I is rotationally reducible
by N = 2 if and only if there is an index t & 1, n] such
that:

(1) ¥i <¢, the w/'s with §; = 1 have the same parity P,
and Vi > t the w/s with §; = 1 have the same parity
P',with P+ P’ and

(2) if 8 = 1then 8,,, # 1.

The proof is rather obvious: we rotate Iy in such a
way that w, becomes the iast element and every w, (i #
1) such that §, = 1 becomes odd. This is possible
because M is odd, P # P', and, by (2), if w,,, is
changed into ¢ by the rotation, it does not influence
the positions of the elements w; with §, = 1.

The example concerning the abbreviations of the
months can be developed by hand. If we consider the
EBCDIC coding of the second and third characters of
every month, we get the set 1 = {49621, 50626,
49625, 55257, 49640, 58581, 58579, 58567, 50647,
50147, 55013, 50627}, For better referencing we have
arranged the elements in their natural order, rather
than in ascending sequence. With a = 0.85 we have
the situation of Table IV after step (c) of Algorithm
R. Now we have 1o multiply 7,; successively by ¢ = 1,
¢ = 2,4 = 4 and so on. By Theorem B we have at
most 11 different distributions, as shown in Table V.,
On the right and up to ¢ = 13 we have written the
elements with §;, = 1 which violate the first condition
of Theorem A’ concerning parity. When g = 3 = 2¢
(modulo 23), the condition is verified for w, = 17 and
w, = 18. However, the last condition of the same
theorem excludes w, = 18. Thus the set has to be
rotated in such a way that w,,, = 19 becomes the first
element and 3, 9, 17 remain odd. This implies d = 4,

and we get the minimal computational remainder re-
duction phf (3.5),

Obviously 377 = 8 because 3 x 8 = 24 = |
(modulo 23). In general, since g is prime to M, g!
can be computed by means of the Euclidean Algorithm
as the solution of the congruence gx = 1 (modulo M);
se¢, ¢.g. [4] and [6). Also Euler's Theorem:

a®® = 1 (modulo M) ifa, M are coprime

can be used because & = 2 and M is odd. If we set q =

29, it is g7 = 29UM¢" (modulo M). In our example,
we have by construction that 3 = 2* (module 23); 23
is a prime number; hence ¢(23) = 22 and 37 = 222-3

= (27)* = 13* = 8 (modulo 23).

Finally, we point out that it is not necessary to
check the addresses obtained by a perfect hashing
function generated by the remainder reduction method
since these addresses always point into a well-defined
limited interval.

4. Segmentation

When the set [is very small, the problem of
determining whether w € / is usually solved by means
of a linear search. Hashing with a perfect hashing
function is an improvement over this direct method.,
However, when we try 10 extend our results to larger
sets, we are faced with two major problems:

(t) As the number n of the elements in J increases,
the probability of a reasonably uniform distribution of
1 or of the sets ¢/, decreases very rapidly (in the case
of 1y, Knuth calls this the “birthday paradox").

(i) The run time of our algorithms is always
greater than O(n?}; so they may become impractical
when n becomes large.

So let us consider the following approach, which
will be called segmentation. In fact, the set 1 will be
divided into “segments,” something like buckets in
ordinary hashing.

LetI={w,, wy, ...,w,). Agrouping function for
I 1s a function p:N — N such that g on [takes its
values in Zy for some positive integer K < n. For

Table IV.
JAN FEB MAR APR MAY JUN JUL _AUG SEP OCT NOV DEC
M=12 1 10 5 9 & 9
M=13 0 4 4 m' =1
M=14 5 2 9 13 10 5
M=23 10 3 i4 11 3] 0 21 9 i 7 20 4 m' =1
Table ¥V
g=1 10 3 14 il 6 0 21 9 1 7 20 4 01, 374, 9710411
g =2 20 6 5 22 iz 0 19 18 2 14 17 g 5¢6, 1741819420
g =4 17 12 10 21 1 ¢ 15 13 4 5 11 i6 0/1, 4/5, 10/11/12713
g=2=8 11 1 20 19 2 0 7 3 8 10 22 9 0714242
g = 16 12 2 17 15 4 0 14 & 16 20 21 18 14/15/16/17/18
g=29 21 4 11 7 8 0 5 12 9 17 19 13 415, 71819
g =18 19 8 22 14 16 0 10 1 18 11 15 3 O/1. 1411, 14/15/16, 18419
g =13 15 16 21 5 g 0 20 2 13 22 7 6 5567, 15416
g=3 7 9 19 10 18 0 17 4 3 21 14 12 344, 9010, 17/18/19

848

Communications November 1977

of Valume 20
the ACM Number 11

L T P T

— T

s

- B o e . L I 7 T T T e i

b T o T Y o T B S

b |

—

Lo oL - B A =T o T) L

=

-]

Ll I L

L SRR

L

e A

every | € Zy, the ith segment of I is the set §, = {w €
flp(w) =} = 1N p~'{i). Let us suppose that for every
i €& Zy the segment S; contains a small number of
elements (say, at most 10-12) and there exists a
perfect hashing function for §,. If we define the base of
the /th segment as b, = i + Y !Z} max h,(S;), where an
empty summation evaluates to zero, we get the perfect
hashing function:

hiw) = b, + hiw) wherei = piw).

As will be clear from the examples below, it may
be convenient to apply p and k, to some functions of
w. 1f we denote these functions by ¥ and ;, respec-
tively, we have the more general expression for A:

hiw) = b; + h{d(w)) where = p(¥{w)).

Now let us remark that every hashing function can
be used as a grouping function for /. In fact, if two or
more items are mapped onto the same address i, they
constitute the ith segment. This allows a rough compar-
ison between ordinary hashing and our method, where:
(a) the ordinary hashing function becomes the grouping
function; (b) the function used to resolve collisions is
replaced with the perfect hashing functions k;; {c) as
soon as we have obtained k(w), we are sure that if w €
{ it is located at position A(w) in the table; this is not
true of ordinary hashing.

Hence our method can be worse than ordinary
hashing only if the cost of a probe is sufficiently low or
the average number of probes (for ordinary hashing) is
very close to 1. Usually this is obtained at the cost of
sparse tables. Besides, in external searching, it may be
useful to know in advance that a single probe is
sufficient to locate the relevant record or page of
records.

One possible form of grouping function is piw) =
[(w + $})/R], where R and § are two integers. Just as
for the integer s in quotient reduction phf’s, a suitable
value of § can give an optimal distribution of the
segment lengths. The remainder {w + S) mod R is
obtained at no extra cost and can be used as the
unique function ¢ = , ¥i € Z,. Note that if the
perfect hashing functions are all quotient reduction
phf’s, then the function 4 is monotonic.

A second kind of grouping function is p(w) = w
mod R for some integer R. In this case the quotient
[w/R] can be used as the unique function & = ¢, ¥i €
Zx.

There are several variants of these techniques. As
an example, let us consider the set of the 31 most
frequent words in English, as given in [4]. Using the
collating sequence for characters given by Knuth, we
developed this example by hand in about two hours.
For the function ¥ we used the first character in the
words and for the grouping function p we used p(w) =
w mod 4. This creates four segments: in the first
segment there are grouped the words beginning with
H, O. Y. in the second, words beginning with A, I; in
the third, words beginning with B, F. W in the fourth,
words beginning with N, T.

849

We used a single function §, fori = 0, 1, 2, 3, that
is the value of the first three characters in each word.
Then, we looked for four computational remainder
reduction phf’s with the same ¥ to simplify implemen-
tation. We obtained four minimal perfect hashing
functions:

holw) = [(({w + 33)2*) mod 75)/23]
haw) = [({{w + 68)2°) mod 71)/25]
holw) = [({{w + 51)2%) mod 67)/2%]
hyw) = [{{{(w + 38)2") mod 41)/2°]

The bases of the segments are 0, 9, 18, and 26,
respectively, and the hash table is given in Table VI,
By using the packing capabilities and the instructions
of a binary MIX computer, it is possible to code h very
efficiently and achieve a remarkable saving of space
and computing time over [4].

Finally, as a third kind of grouping function, we
mention folding. It can be applied to integers of any
precision (i.e. to identifiers of any length) and is
known to produce good results. The function ¥ is the
identity. Moreover, in each segment S, there are only
a few identifiers. Usually two {or at most three)
characters are sufficient to identify an item in its
segment. Then, for every segment §;, we can record
the posttions of the relevant characters and use as the
functions , the value obtained selecting these charac-
ters.

Table V1.

TABLE HE
+1 HAVE
+2 OF
+3 HAD
+4 HER
+5 ON
+6 HIS
+7 YOou
+8 OR
+9 IS
+10 I
+11 AND
+12 AT
+13 AS
+14 A
+15 IN
+16 ARE
+17 IT
+18 WITH
+19 FOR
+20 FROM
+21 BY
+22 WHICH
+23 WAS
+24 BUT
+25 BE
+26 NOT
+27 TO
+28 THAT
+29 THE
+30 THIS

Coemmunications November 1977
of Volume 20}
the ACM Number 11

