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procedure for large pending event lists. It is shown to be
roughly comparable to the time-indexed procedure and
to be operationally more useful since the need for exter-
nal parameter definition is eliminated. The two-level
procedure created by Franta and Maly is probably faster
than either the time-indexed or the two-list procedure.
However, the two-list procedure can be made transparent
to the user by the inclusion of an arbitrary initial interval
and an adaptive smoothing mechanism. The two-list
procedure appears to be ideal for any simulation lan-
guage or large scale program that does not utilize ad-
vanced synchronization procedures. The use of balanced
trees to maintain File 1, such as Franta and Maly have
done with the TL structure, might be a nice enhancement
to the two-list procedure.
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Reciprocal Hashing:
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Generating Minimal
Perfect Hashing

Functions

G. Jaeschke
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A method is presented for building minimal perfect
hash functions, i.e., functions which allow single probe
retrieval from minimally sized tables of identifier sets.
A proof of existence for minimal perfect hash functions
of a speciai type (reciprocal type) is given. Two
algorithms for determining hash functions of reciprocal
type are presented and their practical limitations are
discussed. Further, some application results are given
and compared with those of earlier approaches for
perfect hashing.
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L. Introduction

A refinement of hashing [5] which allows retrieval of
an item (= key) in a static table with a single probe is
calied “perfect hashing” [2, 7]. Here the hashing function
transforms the identifiers of a set of items into unique
addresses. If W is the set of identifiers (which may be
assumed to be positive integers), then

h: W— 1

is called a “perfect hashing function” (or “collision-free
hashing function™) if it is an injective mapping from W
into some interval 7 = {0, 1, ..., M} of positive integers.

A simple way of perfect hashing is to determine an
integer M such that the residues w mod M for w € Ware

Permission to copy without fee all or part of this material is
granted provided thal the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

* Former Editor of Programming Techniques and Data Structures
of which Ellis Horowitz is the current editor.

Author’s Present Address: G. Jaeschke, Heidelberg Scientific Cen-
ter, Niederlassung Heidelberg, Germany.
© 1981 AUM 0001-0782/81/1200-0829 300.75.

Communications Decernber 1981
af Volume 24
the ACM Number 12

——



all different from each other. However, it turns out that
such integers M lead to hash tables with a small loading
factor | W|/M. In order to avoid sparse hash tables,
several methods for generating perfect hashing functions
have been developed, mainly by Sprugnoli {7]. In these
methods the occurring constants (for the hashing func-
tions) are determined such that the corresponding hash
table size is as small as possible but minimum table size
cannot be guaranteed.

Consequently. we are interested in hashing functions
that are perfect and minimum, ie., that no collisions
occur and that the size of the hash table is equal to the
number of identifiers in W (loading factor = ). We
prove in Sec. II that to any given finite set W of positive
integers there exist three constants C, D, E such that the
function k with

R{w)=[C/(Dw+ E)) mod n, n=|Wj

is a minimal perfect hashing function. The function 4 is
then a bijective mapping from W onto the set {0, I,

.»n— 1}.In order to determine the constants C, D, £
one needs special algorithms which are preseated in Secs.
IIT and IV.

Algorithm C of Sec. III determines for a given set W
= {w;, ..., w,} of integers an integer C such that the
residues [ C/wy ], [ C/wal, ..., [ C/w.] are different mod
n. Such a number C exists if the wy, wo, ..., W, are
pairwise relatively prime. In the general case (where the
w2 are not necessarily pairwise relatively prime), it may
happen that no such C exists (actually out of 3000
observed cases with various distributions of the identi-
fiers this happened in only two linearly independent
cases (cf. [3].}

For such a case Algorithm DE in Sec. IV determines
foragivenset W= {w, ..., w,)} of integers, two integers
D, E such that

Dw,+ E.Dwy+ E, ..., Dw, + E

are pairwise relatively prime.

A general procedure to finding the constants C, D, E
is outlined at the end of Sec. IV, Further, some results
on the efficiency of the suggested algorithms for recip-
rocal hashing are given in Secs. II1 and IV, In Sec. III
we alse discuss the case of larger identifter sets (| W] >
20}.

In Sec. V we compare reciprocal hashing with Sprug-
noli’s methods [7] and Cichelli’s approach [1] with re-
spect to the obtained results and running times of the
implemented algorithms.

IL. Theorems of Reciprocal Hashing

The theorem which guarantees the existence of a
minimal perfect hashing function A for a given set W can
be formulated as follows.

THEOREM. Given a finite set W = {wy, wa, ..., wy) of
positive integers, there exist three integer constants C, D,
E such that h defined by

330

hiw) = | C/(Dw + EY mod n

is a minimal perfect hashing function.

This theorem is a consequence of the following lemma,
(Throughout the paper we assume the elements w; of W
to be in ascending order: w; < -+« < wy).

LEMMA. For any set W= {wy, ..., wa) of positive integers
there exist two integer constants D, E such that

Dwiy+ E Dw,+ E, ..., Dw, + E

are pairwise relatively prime.
Proor. Since the statement of the lemma is obvious for

= 2 we assume in the following 1 = 3. For n = 3 put
D = 1. Otherwise put
D=1 ¢4

geEQn

where Q. is the set of all primes =<t n/2, Let further P, be
the set of all primes > n/2 which divide the product

A= H {'Wg - W_,').
iy

From a theorem of Chebychev (¢f. {6, Theorem 6-24])
it follows that P, is not empty. This theorem states that
for any natural number m there exists a prime between
m and 2m. Therefore, for any natural number n = 3 a
prime p exists for which n/2 < p < r holds, and all these
primes divide A. For any p € P, we have n < 2p and
therefore not all residues mod p occur more than once
among the residues —Dwy, ..., —Dw, med p. So we take
ro to be the smallest nonnegative residue mod p which
does not occur twice or more among the residues —Dw;
mod p. |

Now let £ be a solution of the following system of
simultaneous congruences

E=lmod D (1)

E=rpmodp forallp € P,.

This system is solvable since its moduli are pairwise
relatively prime (Chinese remainder theorem, ¢f. [6,
theorem 3-13}.) Then E has the desired property as we
now demonstrate. Suppose Dw; + E and Dw; + E are
not coprime for some patr i, j with i # /, and let g;; be the
greatest common divisor of Dw; + E and Dw, + E. If
now p is a prime which divides g, then p must belong
to the set P, because from

Dw;+ E= Dw;+ E=0mod p (2)

it follows that D(w; ~ w,) = 0 mod p.and by £ = 1 mod
D, D = 0 mod p cannot hold; hence A = 0 mod p and p
> n/2.

Since by Eg. (2) we have Dw; = Dw; mod p for i # ]
we have by construction of r, for p € P, the incongruence
rp ¥ —Dw; mod p which implies by Eq. (1) Dwi + E# 0
mod p, a contradiction. Thus g, = 1 and Dw; + E, Dw;
— E are relatively prime which proves the lemma. [J
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PROOF OF THE THEOREM. Assume now that D, E have
been determined according to the proof of the lemma.
Since Eq. (1) has infinitely many solutions, E can be
chosen such that

Then all Dw, + E are greater than # and consequently
there exist numbers a; such that

(i — Y Dw; + E) < a; < i(Dw; + E),

ai—a;=0modn foralli,j=1,...,n

Then by a generalization of the Chinese remainder theo-
rem for nonpairwise relatively prime moduli {6, Theorem
3-12] there exists a number € such that C satisfies all
congruences (Eq. 3):

C=a; mod n( Dw, + E}, i=1,...,n (3)
For this number C we have with integers A,

C=An(Dwi+ E)+ a; fori=1,...,n

Therefore
C/{Dw;+ EY=Ain+ a;/(Dw; + E)
LC/(Pwi+ E)J=Ain+i—1=i—1modn,

This means that the residues | C/( Dw; + E)| mod » are
all different and | C/{Dw + E)! mod »# is a minimal
perfect hashing function for W. This proves our theo-
rem. {1

I11. Algorithm C

Let W= {w,, wa, ..., wr} consist of positive integers
with w; < - .- < w,. Then Algorithm C tries to find an
integer C such that the following condition is satisfied

[C/w:] #£ | C/w]l mod n
foralli,with | <i<j=n (4)

The algorithm starts with an arbitrary positive integer
C = Cy (see below). Then the residues of { C/w; | mod n
are calculated. If they are all different from each other
the alporithm terminates successfully. Otherwise the ac-
tual Cis increased conveniently (see below) by a certain
amount a(C, W), and the new C is examined in the
same way. Algorithm C terminates unsuccessfully if C
exceeds a prescribed limit L.

Now let us discuss which increment o(C, W) and
which values Cy and L are convenient for Algorithm C.
In most cases it suffices to take Cy = 1. However, for
identifier sets W with a small difference w, — w, possibly
unnecessary C values are inspected if we put Gy = 1,
since | C/w1] — | C/wa} = n — 1 is a necessary condition
for Eq. (4). Therefore C must satisfy this inequality,
which means that

Com [M] (5)

Wy — W)
is a reasonable start.

i

We make the following observations with respect to
the increment a (C, BW). We need examine only such
integers C that are multiples of at least one element w, of
W. This is clear because a C value that is not a multipte
of any element of W gives a remainder

ri= C mod w, (0 <ri<w)

and by taking the minimum of these r;, say r,, the
quotients | C/w;] equal the quotients | C'/w, | where C’
= C — ry; C'is a multiple of w;,. This means that a(C,
W) should be one of the numbers

W), —F,Wo—Fy...,Wg—Tn

with r; = C—| C/w. {-wi.

Our aim is to examine as few as possible C values
and to find the smallest one being greater than C,. If, for
example,

LC/w:] =1L C/w,} mod n
for some 4, j, then no integer C* exists with
C<C' < C+min{w — 7, w—r)}

such that | C'/w;]| # | C'/w; ] mod n as is easy to be seen.
If we therefore define

8y = min{w: — ri, w; — 1}
K(C,Wy={(i D1 =i<j=nA|C/w}
= | C/w;] mod n}
a'(C, Wy= max §

e K C W)
then «'( C, W} would be an appropriate increment of C.
However, experiments show that it is more efficient to
work with

a’(Cs W) = 8'}1}11

as increment of C instead of a’(C, W) where j, is the
greatest index j for which there exists an 7 with (§, j) €
K(C, W), and s is the greatest index ¢ with {f, ju) € K(C,
W). The reason is that i, ju can be determined in less
time than the maximum of possibly many 8.

It remains to discuss why a limit L has to be used
and how L shall be chosen appropriately. A natural limit
for the C values to be inspected is

L=n.scm(w, ..., w,) (6)

where scm means “smallest common multiple” because
if a C > L of the desired kind exists then C — L is also
a C value which satisfies Eq. (4) (since |{C — L)/wi} =
[ €/w;] mod n}. That means if no C < L satisfies Eq. (4),
then no C exists at all such that Eqg. (4) holds, The
number L determined by Eq. (6) is generally very large
and therefere not adequate for the termination of Algo-
rithm C. Therefore the user of Algorithm C has to
prescribe a limit L for the C values to be examined such
that the algorithm terminates in ecopomical time, or such
that the C values to be examined will not be too large.
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Given W = {w,, ..., w.} with w; < ... < w, and
integers Co, L, we perform the following steps.

Step 1. Put C = (4,
Step 2. Determine the residues
|C/wy]mod n oo | C/wa] mod n.
If they are all different from each other the algorithm terminates
successfully.
Step 3. If C = L, then the algorithm terminates unsuccessfully.

Step 4. Determine
Jo=max{j]3 {0 C/wi] = | C/w Jmod n))
ip=max {{|| C/w,] = C/w, Jmod n}

a{C. W)= min{w, — Cmod w,, w; = C mod w;)

C=C+ e(C, W)and return 10 step 2.

In the following we discuss the efficiency of the
algorithm to compute C. Let W = {w;, ..., ws]} with
1wy < .. < w,=bwhere b is a constant, and define
% w to be the class of all € for which Eq. (4) holds. Since
€w is possibly empty, n.scm (w,, ..., ws) is an upper
bound for the C values to be tested. The maximal number
of iterations (C inspections) to find a value C € €y is
therefore bounded by ™. This bound does not repre-
sent the real complexity of the problem since experiments
yield much better results. If the integers w; are chosen at
random from the interval (1, 1,000,000), an average
number of about 1.82" is obtatined for n =< 15. In detail
we have the following results. Let e, denote the number
of experiments with sets {wy, ---, w.}, 1 = w =<
1,000,000. and let yt, be the smallest, », the greatest, and
8, the average number of iterations which were actually
necessary. Then we obtain Table LA for random w,.

The proof of existence in Sec. I shows that there is
not only one congruence system of the form (Eq. 3)
which yields C values of the desired kind. Thus one can
prove by statistical assumptions for the distribution of
the C values that satisfy Eq. (4) for a given set W that
the average number of iterations to obtain the smallest
Cis not greater than n”/n!. It can be seen easily that this
bound is better than 5”*! but worse than the experimen-
tal result 1.82"

Table LB is obtained by choosing logarithmically
distributed values w.. An average of 1.49" is therefore
obtained for the number of iterations if the identifiers w,
are logarithmically distributed.

In the following we discuss the behavier of Algorithm
C when the number of identifiers becomes larger. If the
number of identifiers w; is greater than 20, Algorithm C
is not efficient in the case of not logarithmically distrib-
uted values w;. For 20 < n = 40 one can apply “reciprocal
hashing with a cut.” This means that we divide W into
two sets {/y and U, with », and m; elements, respec-
tively, such that all elements of U/, are smaller than those
of U;. We determine C, and C: for U/, and U, and put

h(x)=1[C1/x]mod m,

for x = wy,
(7)
h(x)=m, + | C:/x]mod m2 for x > Wp,.

8§32

Table 1. Random and Logarithmically Distributed Values of w;,

n en En ¥ &

A. Random Values of w,

5 500 2 389 21
10 108 15 2628 408
15 100 39 20248 710

B. Logarithmically Distribuled Values of w;

5 100 2 15 6
10 1080 6 F165 55
15 100 & 1027 380

By this approach we could easily solve the case of the 31
most frequently used English words (see [3].)

If n becomes greater than 40 we apply “reciprocal
hashing with grouping” as suggested by Sprugnoli. A
grouping function g maps the set W of identifiers wy, wy,

..,waontoasel {1,2,...,m} with2 = m<n If g(w)
= k, then we say that w; belongs to the kth group G,
with respect to g and W. Let g¢ be the number of
elements of W belonging to the kth group Gi. For each
group G, we determine a number C; with Algorithm C
and put

he(w) ={ Cie/w]mod g, for w € Gs.
If

k-1
h(w) = he(w) + Y gy with k = g(w)

=

then 4 is obviously a minimal perfect hashing function
for the set W.

The only problem that arises in connection with
grouping is to limit the group cardinalities by a number
= 15 in order not to be inefficient. Therefore we deter-
mine the smallest integer mq such that the number of
elements w; which yield the same residue mod mo is
always = |5, and we then take g(w) = I + w mod mo as
a grouping function. By reciprocal hashing with grouping
we solved (see [3]) several problems up to 1003 identifiers
(resulting of coded text) where maximally 163 groups
have been used and less than 5000 C iterations were
necessary.

For larger identifier sets (n = 2000) reciprocal hash-
ing with grouping will hardly be efficient with respect to
time and storage requirements.

A final remark concerning the constructive proof of
existence in Sec. II is made here. Assume the identifiers
w; to be pairwise coprime. Then a C value of the desired
kind can be obtained by determining convenient num-
bers a; and solving the system of congruences (Eq. 3) by
an adequate algorithm. We have programmed such an
algorithm which is called the “congruence method” of
reciprocal hashing. Its only disadvantage is that it gen-
erally returns very large values for C (see [3]). Thus the
congruence method seems to be of no importance for
practical purposes.
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IV. Algorithm DE

Given a set W of positive integers wi, wa, ..., w,
Algorithm DE determines integers D) and £ such that the
values

Dwi+ E Dw,+E, ..., Dw,+ E

are pairwise relatively prime.
Let 2 be the set of all primes.

Step 1. Determine the set
L={plpEPNrp=n/l}
Step 2. Determine the set

Pr={plpEif AB(p) =1}
where

Bip) =0r;1"i£p|{i]wi- v mod p}].

Then P contains all primes = n/2 such that at least one residue ¥y mod
p occurs at most once among the residues w; mod p.
Step 3. Determine £y = [, — Py and put

D=lifPy=@ D= [ potherwise.

PEF,
Step 4, Determine for cach p € P; the set
Mipy={-Dvmodp|0=v<pA|{ilwm=vymodp)| =1}

M{p) is not empty for all these p.
Step 5. Examine all integers £ for which

(£ mod p) € M{p) forpE P,

(£ mod p) % 0 forpe P,

whether the Dw, + E are pairwise relatively prime or not. The algorithm

terminates successfully before E has reached the upper bound 5 =

Tlrcrp where T=1, U (plAd=0mod p} and & = J[%; {w: — w).
By counting the number of E tests in Algorithm DE

when it is applied 100 times for each number n with 5

= n < 20 and randomly chosen identifiers w; smaller
than §,000,000, we obtained Table IL

VY. Comparison with Earlier Approaches of Perfect
Hashing

In [7] Sprugnoli offers two methods for generating
perfect hash functions: (1) the quotient reduction
method, and (2) the remainder reduction method. Nei-
ther method guarantees finding minimal perfect hash
functions. The quotient reduction method yields no com-
pact tables even for smaller identifier sets W(n = | W}
= 12); however, the load factor is generally > 0.5 and
can be improved by introducing a “cut” up to >0.75. In
the case of larger sets W (experiments have been made
for n = 20) it turns out that load factors <1/300 are not
unusuai, especially if the numerical keys are not uni-
formly distributed (¢f. Tables I.A and B.}

By the remainder reduction method a minimal per-
fect hash function was found in all analyzed cases (where
n = 12), but there is no proof that this is always the case.
For larger n(n > 12} no minimal perfect hash functions
could be obtained in acceptable running times.

Table II.
n Minimum  Average  Maxitnum
5 1 8 29
] { 7 1%
7 1 10 83
8 1 16 113
9 1 26 245
1G 1 17 67
11 l 17 9l
12 | 3% 157
13 1 41 277
14 1 2% 143
15 1 36 163
16 1 L 221
17 l 62 181
18 11 88 41
19 13 13 341
20 11 154 601

It is obvious that reciprocal hashing is always optimal
with respect to the load facior of the hash tables. With
respect to running times it is usually only slightly better
than Sprugnoli’s methods, but in the case of nonuni-
formly distributed identifier sets it is essentially better,
which means that the ratio of running times lies between
/10 and 1/1000,

The approach proposed by Cichelli [1] for alphanu-
merical keys yields simply computable hash codes, but
in some cases it requires much time to compute the
mapping g from the alphabet into the set of natural
numbers such that the codes

h(key) = length (key) + g (first letter of key) + g (last
letter of key)

for the keys of a given set of keys yield successive
numbers. In fact, the claimed mapping g does not exist
in infinitely many nontrivial cases, as is pointed out in
[41.

Examples for reciprocal hashing can be found in [3].
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