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THOMAS J. SAGER

ABSTRACT: A perfect hash function PHF Is an injection
F from a set W of M objects into the set consisting of the
first N nonnegative integers where N>=M. IfN =M, then
Fis ¢ minimal perfect hash function, MPHF. PHFs are
useful for the compact storage and fast retrieval of
frequently used objects such as reserved words in a
programming language ov commonly employed words in a
natural language.

The mincycle algorithm for finding PHEs executes with an
expected time complexity that is polynomial in M and has
been used successfully on sets of cardinality up to 512.
Given three pseudorandom functions he, hy, and ha, the
mincycle algorithm searches for a function g such that

Fiw) = (hofw) + § ® Ma(w) + g © hofw)) mod N is a PHE.

1, INTRCDUCTION

A perfect hash function PHF is an injection F from a set
W of M objects into the set consisting of the first N
tonseculive nonnegative integers where N >= M. If
N = M then we say that F is a minimal perfect hash
function, MPHF. Minimal perfect hash functions are
useful for compact storage and fast retrieval of fre-
quently employed sets of objects such as reserved
words in a programming language or commonly used
words in a natural language.

This article presents the mincycle algorithm for find-
ing minimal perfect hash functions. Unlike the algo-
tithms for generating perfect hash functions presented
by Sprungnoli [8]. Cichelli 2. and Jaeschke [6] whose

the mincycle algorithm’s expected execution time is
polynomial in M. It is, therefore, practical to use the
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expected execution time is exponential in M = card(W).

A Polynomial Time Generator
for Minimal Perfect Hash

mincycle algorithm to find FHFs for considerably larger
sets than those on which previously known algorithms
for this purpose are practical. We have used the mincy-
cle algorithm successfully on sets of cardinality up to
512,

More recently, Chang [1] has discovered an algorithm
which appears to have time complexity O(M%log(M))."
This method requires the existence of an injection p
from W into the set of prime integers. Chang, however,
gives no general method for finding such injections.
Given W = lwy, wa. . . . . wa) and such an injection p,
Chang's algorithm finds an integer C such that V1|
1<=j<=M, i~ 1=Cmod plw). Unfortunately, the
number of bits required to represent C appears to be
proportional to M log (M). Given pw;) = the ith prime
number and M = 64, the approximate value of C would
be 1.92 % 10 and the binary representation of C
would require 413 bits. Assuming a 32-bit word, each
application of the MPHF generated by Chang's algo-
rithm would require fetching 13 memory words and
executing 13 divide operations. In contrast, the MPHF
for the same set generated by the mincycle algorithm
would require fetching only two memory words and
executing no divide instructjons.

The mincycle algorithm and Cichelli’s algorithm can
be viewed as variations on the same basic theme. In
fact, the mincycle algorithm was discovered while
searching for optirnizations to Cichelli’s algorithm.

In Section 2. terminglogy is discussed and in Section
3. the mincycle algorithm is introduced. Section 4 con-

e consider that the number of bils B required to represznt the product of
the first M primes is praportional to M logiM) and {hat the time required ta do
arithmetic operations on B bil integers is propertional to B.

Communications of the ACM 52:




Research Contributions

S

tains a brief discussion and analysis of the mincycle
algorithm. In Section 3, Cichelli’'s algarithm is pre-
sented and the similarities and differences between
Cichelli’s algorithm and the mincycle algorithm are dis-
cussed. Finally, in Section 6, & moral is presented.

2. TERMINOLOGY

In this section the terminology used in subsequent sec-
tions of this article is introduced. It is assumed that the
reader is familiar with the basics of graph theory. An
excellent introduction to graph theory can be found in
Harary [4].

Iis the set of all integers and [i .. j] = jx e [|x >=
and x <= j}. We use angular brackets, { }, to denote
ordered pairs. card(X} is the cardinality of the set X. We
use (Zf(x), x ¢« X) or (Zfif), == a to b by ¢} to denote
summations instead of the more commonly used forms.
f: A— B means that fis a function from the domain A
into the set B.

A tower of subsets of W is a sequence of subsets of W:
Wo, Wh oo W such that Wn = 9, Wy=W and ¥ie
[1..Kk]. Wiy © W, If the set inclusion is always proper,
then we call the tower a monotonic tower. k is the
height of the tower.

A multiset is, loosely speaking, a set which can con-
tain a given element zero or more times. More pre-
cisely, a multiset A is denoted by its characteristic func-
tion ¢ from a universal domain into the nonnegative
integers. If ¢ is the characteristic function of a multiset
A, aeA and ¢(a] =i, then we say that i is the multi-
plicity of 2 in A.

A graph H is an ordered pair {V. E} where V is called
the vertex set and E is called the edge set. We use the
term graph synonymously with the term undirected
graph with no loops. Thus, V is a finite set of objects
and £ is a multiset where each member of E is a subset
of V of cardinality exactly 2.

A path p over the graph H = (V, E} is a sequence of
edges eo, &), ..., ¢ such that ¥i ¢ [0 .. 1], ¢ has positive
multiplicity and 3 a sequence, ¢ =g, 1y, . .., 0. OVer
V.VWie[l. . vjeeiNey, vgeeg ey €6 and each
member of the sequence g is distinct except possibly vg
= V1. If ¥ = vyyq. then p is called a cycle. f + 1 is the
length of p. We use the term path (cycle) synonymously
with the term elementary path (cycie).

Sometimes we wish to discuss how many cycles of a
given length m an edge e = {v, v’} lies on. We define
this concept as follows: Let ¢ be the characteristic func-
tion of E. If ¢(e) = 0, then ¢ is on no cycles of any
length. Let ¢(e) > 0. Then ¢ is on no cycles of length
less than 2 and exactly (e} — 1 cycles of length 2. Now
let m > 2 and n be the cardinality of the set of all
distinct paths of length m — 1 from v to v* over H. Then
¢ is on n cycles of length m. For completeness, we say
that e is on exactly one cycle of length infinity. If there
are no cycles of finite length aver H, then we say that H
is cycle-free.

3. THE MINCYCLE ALGORITHM
We break the problem of finding a PHF down into three
patts. [n Part 1, we choose certain parameters to the
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PHF, F. In Part 2, we choose a monotenic tower of
subsets of W: g = Wo C W, C ... CWi  CWe=W. Iy
Part 3, we perform an exhaustive search for a PHF, Th,
ordering chosen in Part 2 is used to minimize the
amount of work necessary to perform the exhaustive
search. More precisely:

Part 1

We must choose the following parameters:

RyandR; - two disjoint finite sets of elements ang
ho: W-- 1, (where I is the set of integers}

Ry W—R,, and

hz: W—R, - three quickly computable pseudoran.

dom functions.

Letting R = R, U Rz, our praoblem can now be restated
as:

Given W, N, Ry, Rz, ho, 3, and h; satisfying all the
above constraints, find a function g: R —[0. . N - 1]
such that Flw) = (ho(w) + g © h(w) + g © hz(w)) mod N is
a PHF.

In general, unless we have felt a compelling reason to
do otherwise, we have chosen:

Ry =l0..r=-1)]
Rz =fr, 2r-1]
ho{w) = {lengthiw) + (= ord{w[i]), i := 1 to length(w)
by 3))
hy(t) = {Z ord(w]i]). i := 1 to length(w) by 2) mod r and
hz(w) = (Z ord{w([i]). / ;= 2 to length (w) by 2) mod r + 1,

where:

1. r = smallest power of 2 greater than card(W)/3,

2. each w ¢ W is considered as the sequence of charac-
ters wit]. w([2]...., w[length(w)], and

3. ord is the function which maps each character onto
its representation as a binary integer.

The function ord is, of course, system dependent.
The above choices seem to work well in most cases
although they tend to be somewhat conservative. An
example of a case where they did not work well is:

W = the set of all predeciared identifiers in the Pascal
language,

N = card(W) = 40, and

ord uses the EBCDIC character code.

There we found that k, and k. both agreed on the two
predeclared identifiers “ORD” and “READ", and
ho(“ORD") = ho{"READ”) mod 40. Therefore, no PHF of
the type searched for could exist. However, substituting

holw) = (length(w) + (2 ord(w(il)
i := 1 to length(w) by 3)) mod 64
we were able to find a MPHF for this set.

Part 2

Having chosen the parameters R,, Rz, Ho, ky, and hz in
Part 1, we now choose a monotonic tower of subsets of
W:¢I=WUCW1C C"’\"g-] CW1=W.
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Informally, in Part 3 at each step we will, for some
j¢[1 .- k]. attempt to extend the desired function F
from the domain W,_, to the domain W,. We would,
nherefore, like the W.s to be as large as possible and the
gantity of work necessary to extend F as small as
sible. In this regard, Part 2 of the mincycle algo-
fithm is not necessarily optimal, but as will be seen in
section 4. it can be expected to perform “reasonably
well” in most cases. In practice, we have not found a
case vet in which Part 2 of the mincycle algorithm did
not behave adequately.
Rasically. in Part 2, W, is chosen from Wi, s0 that
yrand v e Wi — Wy, F(y) is uniquely determined by F
restricted to W,y U {x} and W; is at least as large as any
qubset of W with the above property.
We will make this notion of uniguely determined more
precise in the following section. Now, consider the se-
quence of graphs: Ho, Ha, ..., Hy where Vie [0 k]

Hi= (Ph Ei)r

p, = the partition of R generated by the smallest equiv-
alence relation containing §{f(w). hz(w]) [w € Wi,
and

E, = the multiset of edges over P; whose characteristic

function is ¢} p. 1) = card{lw « W — W,j{m{w).
ho{w)i G p U ).

algorithm BUILDTOWER;

end BUILDTOWER;

May 1985 Volume 28 Number 5
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Now inductively, W; (and hence H,} is computed from
H,_, as follows:

Choose p and g such that {p, g] is an edge of the graph
H,_; lying on a maximal number or minimal length
cycles over Hiy. Then let X; = lw ¢ W — Wi i (w),
hoAw)t S pUagtand let W, = Wi, U X,

The details of this step are given in Figures 1 and 2,
We note that Algorithm BESTEDGE which finds an
edge lying on a maximal number of minimal length
cycles of the input graph has complexity O{V®) where
V is the cardinality of the vertex set of the input graph.
Since BESTEDGE is executed at most card(R] times and
the size of the input vertex set is bounded above by
card(R), it can be seen that the complexity of Part 2 of
the mincycle algarithm is O(card*(R]).

Part 3
Vie[l.. k] let X, = W, — W,—; and choose arbitrarily a
canonical member x, of X.. In addition, let

Yo=Ix|je[1. ik

We wish to find a function g: R — [0 .. N - 1] which
makes F: W — [0 . . N — 1] a PHF where

Flw) = (ho(w) + g ° hiw) + g ° falw)) mod N.

-- builds tower of subsets of W.

input :
M: integer; -- number of words in W. :
cardR: lnteger; -- number of vertices. ;
mult: array [0..cardR-1, 0..cardR~1] of integer;
.- multiplicity matrix
wrdlists: array [0..cardr—1, 0..cardgk-1] of listofwords;
-~ wrdlistsli,j] = list(|w in W | [h1{w), h2(w)} = {i, 3ID)
output
k: integer; -- height of tower.
X: array [1..cardw] of listofwords: -- tower.
begin
wordsleft := M; k := 0; maxvert := cardR-};
while wordsleft > 0 do
k ;= kt+1;
BESTEDGE{cardR, maxvert, mult, v1, v2);
X[k] := wrdlists([v1, v2];
wordsleft := wordsleft — mult{v1l, v2];
forall i im {0..maxvert] do
multlvl, i] := mule[vl, i] + mult[vz, i}
wrdlists([v1, il := merglists{ wrdlists[v1, i],
wrdlists[v2, i] )
' - endfor;
copy row v} of mult to column vl of mult;
capy row v1 of wrdlists to column vl of wrdlists;
copy row maxvert of mult to row v2 of mult;
copy row maxvert of wrdlists to row v2 of wrdlists;
copy row maxvert of mult to column w2 of mult;
copy row maxvert of wrdlists to column v2 of wrdlists:
maxvert := maxvert —}
endwhile

FIGURE 1. Mincycle Algorithm, Part 2, BUILDTOWER
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algorithm BESTEDGE;

input

cardk: 1nteger;

n;: lnteger;

mult:

multiplicity matrix,

cutput

a, h: ihteger;
internal

finds edge on max number of min length cycles.
assume input graph contains an edge of positive multiplicity.
-- order of multiplicity matrix.

number of vertices in graph - 1.
array [0..cardR-1, 0..cardR—1] of integer:

-- 2 vertices of edge.

paths: array [0..n, 0..n] of record

minlnth: integer;
nminl: integer;
nminli;: integer; --
end paths;
begin
limit = maxint / 2; minmult :=

forall x, ¥y in [0..n] do
with paths[x,y] do

-- length of shortest path.
number of shortest length paths,
number of paths of shortest length + 1.

0;

1f mult(x,y¥] > minmult then

minmult := mult(x,y]; a := x; b := y
endif;
if multix,y} > 0 then minlnth := 1; nminl := 1; pminll := 0
else minlnth := limit; nminl := 0; nminl! := 0,
endif
endwlth
endfor
if minmult = 1 then no cycle of length 2 exists

forail = in [C..n] do

forall y, z xn [0..n] such that x, y and z are distinct do
W := pathsly,x}.minlnth + paths([x,z].minlnth;

1f w <= limit then
with paths|[y,z]

if w = minlnth + 1 then

nminil :=

nminll + 1; limit := w; even := false

elsif w = minlnth then

nminl := nminl + 1;
1f w < 1limit then limit := w; even := true endif
elsif w = minlnth — 1 then
if w=<1limit then
nminll nminl; limit := w + 1; even := false
endif

FIGURE 2. Mincycle Algorithm, Part 2, BESTEDGE

Now Vie[0..kland w ¢ W, let path{w) = yo. y1... .
y: be the unique sequence over Y; such that the se-
quence of edges over the vertex set R,

i (val P2l o), ), ()i, ..., (). byl

forms a path from ;(w) 10 h,(w). That such a unigue
sequence must always exist and that f must always be
even is shown in the following section. Algorithms for
finding such paths are well known.

Now, given an injection. F: W._, — [0.. N — 1] where
{ <<=k, we may atiempt to exlend ¥ to the domain W,
by searching fora value n e [0, . N — 1] with the follow-
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ing property: Yuw « X,, let Flw) = (holw) + (E(—1)/Uly;):
J¢[0. . 1])) mod N where path{w) = yq, v1,. . .. y, and
U: Y.~ [0 .. N]is defined by the equation

Ui = | (Fix) ~ holx,}} mod N if0<j<i
fn ifj=1
Then F: W, — [0 .. N —~ 1] is an injection.

The next step in the mincycle algorithm is to attemp!
10 extend F incrementally from W, = #to Wy =Why
the above method. Since. at each step, there may be n¢
such values n or many such values n, it is necessary (0
use & backtracking algorithm to perform an exhaustive
search. Thus, this step has a potential worst-case time
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minlnth := w; nminl := 1
elsif w < minlnth — 1 then )
minlath := w; nminl := 1; nminll := 0; .
endif 4
endwith o
endif
endfor
endfor
endif;
if limit < maxint / 2 -- min length cycle is finite and > 2.
maxncyec = 0; -« maximum number of cycles.
case even of
true:
forall x, y in [0..n] such that x<y and mult[x,y¥]=1 do
ncye := 0;
forall z in [0..n] do
if (path([x,z).minlnth = limit) and
(path[y,z).minlnth = limit - 1) then
ncyc ncyc + pathix,z].nminl — 1;
endif
endfor;
if necye > maxnecyc then
maxncyc := NCyc; a := ¥; b =y
endif
endfor:
false:
forall x, y in [0..n] such that x<y and mult[x,y]=1 do
ncyc = 0
forall z in {0..n] do
if (path[x,z].minlnth = limit — 1) and
(pathy,z) .minlnth = limit — 1) then
ncyc neye + 15
endif
endfor;
if neyc > maxncyc then
maxncyc := ncyc; a = X; b = y;
endif
endfor
endcasea
endif

end BESTEDGE;

complexity exponential in card(W). Fortunately, since
we have chosen R lo be approximately the same size as
Win Part 1 and chosen the W,s carefully in Part 2, we
find that. at least for sets of size 512 or less, we can, in
practice, expect the axecution time of Part 3 to be dom-
inated by the executicn time of Part 2. Therefore, the
expected time complexity of the entire algorithm is
merely card!(R). The details of this step are given in

. Algorithm SEARCH in Figure 3.

If we are successful in extending the function F to W,
then all that remains is to find a function g such that
Y ¢ W, Flw] = (holw) + g © I(w) + g ° /iz{w)) mod N.
That al least one such funclion g exists is shown in the
following section, Algorithm FINDy of Figure 4 will

May 1985 Volume 28 Number 5

FIGURE 2. (Continued.) Mincycle Algorithm, Part 2, BESTEDGE

find such a function g. On the other hand, if we are
unsuccessful in extending Fto W, then we must return
to Part 1 and choose a different set of parameters.

A short example of an application of the mincycle
algorithm is given in Figure 5.

4. A BRIEF DISCUSSION OF
THE MINCYCLE ALGORITHM
In this section we wish to informally analyze and jus-
tify the correctness of the mincycle algorithm. A more
farmal treatment of this subject has been given by the
author in [7]-

In Section 3. we used the concepl uniquely defermined
loosely. We now make this concept more precise.

Communications of the ACM 527




Research Contributions

s28

Definition: Lelw ¢ W and X C W. Then we say Fiw] is helw). Furthermore, this path is necessarily of odd
uniquely determined by the restriction of F to X or equiv- length. Thus, if
alently, w depends on X [since F does not figure in the ] . ' ‘ .
definition} iff 3 a function. a: X — [0, N=1] ¥ (o). atico)l. tian). afwnll, . (), Faluz )
functions g: R — 0. N ~ 1. is a path over the graph H from A, (w) to ho(w), then ¥
(g © halw) + g o hofo) functions g
h - o o 1 !
= (T a(x)(g © hafx) + g © ha(x)), x ¢ X) mod N, Flw) = thafw) + g = hafw) + g < hafuw)) mod N
= ([ T[{=11] 1] - ) =
Now let w « Wand X C W. Since the graph, H = UBEWIF@) ~hafw)). /= 0 10 2) + hofw)) mod &
(R, {{h1(x), ha(x)}|x ¢« X}) is bipartite, it can be shown Alsc. from the construction of W; from H,_,. it can be
that w depends on X iff 3 a path over H from hylw) to shown that Vie[0. kandweW, we W, iff 3 a path,

algorithm SEARCH; -- tries to find PHF from tower of subsets.
input

N: integer; -- table size.

M: integer; -- number of words.

k: integer; ~- height of tower,

cardW: array [0..k] of integer; -- card of tower members.

path: array [0,.M-1, 1..k] of {~1, 0, 1}
-- jth row represents the path for ith word.
-- path[3,t] = if (x[t] is an even member of path{w[j]]) then 1

E ~- elsif (x[t] is an odd member of path(w([il]l} then —1 else 0.
: ho: array [0..M-1} of integer;

; output

P U: array [1..k] of [0..N}];

: == Uli) represents g(h1(x[3))) + g¢h2(x[i])).

' F: array [0..M-1] of |[0..N—1] -- & PHF.

i success: boolean;

‘ begin

: for i := 1 to k do U[i] := N endfor;

i o= 1;

while 1 1n [1..k] do
Uli] == (U[i] + 1) mod (N4+1);
if U[i] = N then

P L2: i o= i~
a else
noconflict := true;
j := cardwWli-1];
while noconflict and j < cardw{i] do
F[3] := ((Z path[j,t]} =» uit)], t:= 1 to k) +

ho0[3j]) mod N;
if (forall m in [0..3-1], F[m] <> F[i])

then j := 3 + 1
else noconflict := false
endif
endwhile:
if noconflict then
L1: i o= 1i#1
endif
endif
end_while;

Success := 1 > k
end SEARCH;

FIGURE 3. Mincycle Algorithm, Part 3, SEARCH
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arily of odd
algorithm FINDg;

input =
P (wa ), hafws,)) N: integer; -- size of table.
0 hz(w), then ¥ cardR: integer; -- size of vertex set.
Umat: array [0..cardR—1, 0..cardR-1] of [0..N];
-- Umat[i, j] = if there exists t,
mod N —- (hi[x[t]], h2[x[t]1} = {i, j] then U[(t] else N.
+ ho(w)) mod N, output :
i q: array {0..cardR—1] of [0..N-1]; -- desired function.
HIHP4chanbe internal o '
W iff 3 a path, mark: array [0..cardR—1] of boolean;
procedure TRAVERSE(i: {0..cardR—1]};:
begin

mark(i)m:= true;
forall 3 in [0..cardR-1] de
if Umat[i,j] < N and not mark(j] then

: “g(jy = ( Umat([i,3j] — g(i) } mod N;

f TRAVERSE( )

: endif B
endfor e

end TRAVERSE; -
begin FINDg
forall i in [0..cardR-1) do mark(i) := false endfor;

then 1 3 forall i in [0..cardR—-1} do
se 0, ! if not mark(i) then
[ g(i) := 0;
TRAVERSE(1i}) .
: endif
E endfor
end FINDg;

FIGURE 4. Mincycle Algorithm, Part 3, FiNDg

3

3

- Given: W = A4, AAD, AB, BAA, BB, FA}.

Choose: N = B, r = 4 and ASCIl character coge.

- . Results:

1 AA AAD AB FA 88 BAA

E 5 hy 67 88 67 72 68 69,
i ¥ 1 1. 1 2 2 3
o S 5 & 6 5 6 5

o %3‘ F 1 L 2 3 0 4 ’ 5

LA 1 2 3 4 5 6 7

X |44, AAD| {AB| {FA, BB} {BAA}

- % AA A8 FA BAA
" un 0 2 0 2

5 P 10] 0 0 2 0 0 2 0

where Uli] = (g ° h;i;:] + g © fplx)) mod N,

FIGURE 5. Example of Application of Mincycie Algofithm
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algorithm CSEARCH; - -

tries to find PHF from tower of subsets.

input
N: integer; table size.
M: integer; -- number of words.
k: ihteger; -~ height of tower.
cardw: array [0..k] of integer; -- card of tower members.
ho: array [0..M-1] of integer;
ht: array [0..M=1]) of [1..k];
- B1[4] = index of array U representing h1[w[j]].
h2: array [0..M—1) of [1..k];
-- h2[3] = index of array U representing h2[w([3j]].
umax: integer; -- highest value of U[i]'s attempted.
cutput
U: array [1..k] of [0, .umax];
-- Uli) represents g(x{i]}.
F: array [0..M-1] of integer a PHF,
Fmin: integer; -+ minimum value of the PHF, F.
success: boolean;
begin
for i := 1 to k do U[i) ;= umax endfor;

i :=1;

while I in [1..k] do

Uli] := (Uli] + 1) mod {umax+1y;
1f U[i] = umax then
L2: 1= 1=
else
noconflict := true;
J = cardwli-1);

while noconflict and 7 < cardW|[i] do
FIJ1 == no[3]) + Ulnt[j]] + Uth2(4]];
1f (forall m in [0..3-1], 0 < abs(F[m] — F[i]) < N)

then 3 := § + t

else noconflict ;=

endif
endwhile;
1f noconflict then

LT: I = 141
endif
endif
end._while;
Fmin := min(r[j},3 in [0..M~1]

sSuccess ;=
end CSEARCH;

1>k

false

3

FIGURE 6. Part 3 of Cichelli's Algorithm

p. over the graph, H; = (R, Hha(wh ha{y)i |y € Y.y from
hi(w) 10 h:(w) where k. H,. W;, and Y, are as defined in
Section 3. Thus, given Y;, W, is as large as possible
subject to the constraint that V w « W, 1 depends on Y,
and furthermore, ¥ i ¢ [0 .. k], the graph, H/ is cycle-
free. Therefore, given the function F restricted lo Y.,
there exists some function g such that v yeYy, Fly) =
(Moly] + g ° 1y(y) + g © hy(y)) mod N. Thus, should the
Algorithm SEARCH succeed in finding an injection
E:W —[0.. N - 1}, this function & is necessarily con-
sistent with F.

Now, il is also shown by the author in [7] that maxi-
mizing the cardinality of each member W, of the tower
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of subsets in Parl 2 of the mincycle algorithm subject to
the constraint that ¥ w « W,, w depends on Y,, minimizes
the expected execution time of Part 3 of Lhe mincycle
algorithm. Unfortunately, such a maximized tower of
subsets may not exist and, even if it does, it is not clear
that there exists an algorithm of “reasonable” time
complexity for finding it. However, Part 2 of the mincy-
cle algorithm does find a tower of minimal height. This
tower appears to be “reasonably close” 1o the optimal
and. in most cases, appears to behave “almost opti-
mally."

Now. we noted in Section 3 that Par( 2 of the mincy-
cle algorithm has complexity Olcard*(R)) and that the
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worst-case time complexity of Part 3 is exponential in
card(W). However, we also note that if card(R) is “large
enough” with respect to card{W), we can expect to do
very little backtracking in Part 3, (execution of state-
ment L2: in Algorithm SEARCH), and Part 2 will there-
fore dominate Part 3.

We have determined experimentally that if card(R} =
card(W) <= 512, then Part 2 can, indeed, be expected to
dominate Part 3. We can also show formally that 3 a
function f(r)} O(f{r)) = n*/* and if card(R) = f(card(W}),
then Part 2 can always be expected to dominate Part 3.2
we do not know whether there exists a function f’(r)
such that O(f ' (n)) < n*/? and if card(R} = f ' (card(W)).
{hen Part 2 can always be expected to dominate Part 3.
However, from the above discussion, it can be seen that
the mincycle algorithm has an expected time complex-
ity no worse than proportional to card®(W).

5. CICHELLI'S ALGORITHM

The mincycle algorithm grew out of an attempt to opti-
mize Cichelli's algorithm for generating PHFs. To com-
pare the two algorithms, we present Cichelli's algo-
rithm here in a form similar to the presentation of the
mincycle algorithm in Section 3. Cichelli’s original
presentation of his algorithm [2] was ina considerably
different form.

Like the mincycle algorithm, Cichelli’s algorithm can
be broken down into three parts. In Part 1, some gen-
eral parameters are chosen. Cichelli allows for some
slight variation in the choice of these parameters, but
in general he chooses:

R: the set of all characters,
hy W —1 is defined by the equation ho(w} =
length(w),

2] wish to acknowledge my thanks lo Ralph W. Wilkerson of the Deparimenl
of Computer Science at the Uiniversily of Missouri-Rolla and Selden Trimble
of the Department of Mathematics at the Universily of Missouri-Rolla for their

_ helpin proving this result.
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hy: W — R s defined by the equation ki (w) = first(w)
and '
h,: W—R is defined by the equation hz(w) = last (w).

In Part 2. Cichelli constructs a tower of subsets of W
which is not necessarily monctonic by the following
procedure:

1. ¥ ¢ ¢ R, let p(c) = card({w e« W | firstw) = ci) +
cardijw ¢ W] last(w) = c}).

2. LetR' =lceR|plc) >0})and k = card(R ).

3. Rename the members of R": xy, Xz, . .., X¢ s0 that if 1
<= | <= j <=k then p(x) >= p(x;).

4. ViefD. k. letW,={weW| first{w), last{w)} ©
fxiljell.. i

In Part 3, Algorithm CSEARCH in Figure 6 is exe-
cuted, CSEARCH is practically identical to SEARCH ex-
cept that:

1. The input. path, is replaced by the inputs h1 and h2.

2. The test for conflict has been changed to 0 < abs(F[i]
~F/D<N.

3. The maximum value allowed in the array U is arbi-
trary and has been replaced by the input, umax. U[f}
now represents g {x).

4. CSEARCH actually searches for a functicn of the
form Flw) = holw) + g @ m(w) + g © fa(w) whose
range is [Fmin . . Fmin + N — 1] for some nonnega-
tive integer. Fmin. Fmin is an cutput of CSEARCH.

In Figure 7. a short example of an application of
Cichelli's algorithm is given.

We now list six similarities and differences between
the mincycle algorithm and Cichelli’s algorithm.

1. Cichelli's algorithm places a strict upper bound on
card{R) whereas in the mincycle algorithm card(R) can
be increased without bound.

2. The mincycle algorithm always minimizes the
height of the chosen tower of subsets of W whereas
Cichelli’s algorithm does not necessarily do this.

£ Given: W = A4, AAD, AB. BAA, BB, FA} and N = 6.

o Results:

P *

) | A4 AB BAA 88 AAD FA
o 2 2 3 2 3 2 :
hy A A 8 8 A F
he A 8 A B D A
F 2 4 5 8 3 7
i | 1 2 3 4
X A B8 D F
W, - Wi, A} |AB, BAA, 8B] {AAD] {FA}
UL = gt 0 2 0 5

FIGURE 7. Exampie of Application of Cicheli’s Algorithm
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~Mincycle—
Cichelli
Dataset Size Time? r Code Time?
Pascal reserved words’ 36 55 8 EBCDIC 183
Pascal predeciared identifiers 40 201 16 EBCDIC 3499°
Pascal resarved words and 76 326 16 EBCDIC >50K?
predeciared identifiers : .
ASCIl control mnemonics 34 145 16 EBCDIC 1125
8 First 120 words in the Prologue 120 36420 32 EBCDIC >50K*
: to Chaucer's Canterbury Tales ' o
; {truncated to nine characters) . -t . _
: 256 most commonly used words 256 45058 - 128 ASCH >S50
in the English language I .
. according to Dewsy [3].
 Vincludes OTHERWISE. .

! Compled under PASCAL 8000 comolier with T+ option and run on an
function ' ’ t

' 3.0DD was omitisd since fip, by, and hs agree on ORD and 00D,

FIGURE 8. Some Statistics f

3. Given equality of the heights of the towers chosen
by the two algorithms, for fixed i the cardinality of the
ith member of the tower of subsets chosen by the min-
cycle algorithm tends to be larger than the cardinality
of the ith member of the tower of subsets chosen by
Cichelli’s algorithm.

4. Cichelli’s algorithm allows very few possible
choices for the functions kg, ky, and #,. The mincycle
algorithm allows for a much wider variety of choices.
Cichelli’s algorithm (as noted by Jaeschke and Oster-
burg [5]) might fail on a certain W because hy, k,, and
h; behave pathologically on that particular W. The min-
cycle algorithm, however. can adjust these three func.
tions as necessary to avoid such pathological behavior,

5. Although Cichelli's choices for kg, hy, and k,
might appear simpler and faster than those chosen in
the mincycle algorithm, the mincycle algorithm could
choose, for example: ho{w) = length(w), by (w) =
ord(first(w}}, and h,(w) = 256 + ord{last{w)}. Now, if
&(h{w)) were implemented as a lookup in a different
table than gih,(w})), the resulting function would be
equaily fast.

6. For sets of cardinality 20 or more, the mincycle
algorithm tends to be faster than Cichelli’s algorithm.
For sets of cardinality 60 or more, Cichelli’s algorithm
is often impractical, whereas the mincycle algorithm is
practical for sets of cardinality 512 or more, provided
that the cardinality of R is increased to an appropriale
value.

We have coded both algorithms in standard Pascal,
performing, in both cases, considerable although equiv-
elent optimizations aver the algorithms as presented in
this article. Some typical results are summarized in Fig-
ure 8. ’

6. MORAL

Cichelli 2] draws the moral. “When all eise fails, try
brute force."® from his research on minimal perfect
? Cichelli stiributes (his statement to | Gillogly.

Communications of the ACM

_ ‘mmmwmm.mm.uqmmmbmmmm

IBM 4341. Tirms 5 in riliseconds of CP me as reprted by the CLOCK

or Minimal Perfect Hash Functions

hash functions. From my own research in the same
area, | feel this moral is inappropriate. I would, there.
fore. like to suggest the following moral, “With ade.
quate forethought, brute force solutians can usually be
avoided.”
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