SECTION 8

Hmings

V4 Poestponing the Work 271

On one computer, this algorithm requires 930 milliseconds to generate the 40,320 per-
mutatiens of 8 objects, whereas the linked-list algorithm accomplishes the task in 660
milliseconds, an improvement of about 30 percent. With other implementations these
numbers will differ, of course, bul it is safe to conclude that the linked-list algorithan is
at least comparable in efficiency. The correctness of the linked-list method, moreover,
is obvious, whereas a proof that this other method actually generates all n! distinct
permutations of 1 objects is much more involved.

8.2.2 Backtracking: Nonattacking Queens

1. Solving the Puzzie

For our second example of an algorithm where recursion allows the postponement of all
but one case, let us consider the puzzle of how to place eight queens on a chessboard
so that no queen can take another. Recall that a queen can take another piece that lics
on the same row, the same column, or the same diagonal (cither direction) as the queen.
The chessboard has eight rows and columns.

It is by no means obvious how to solve this puzzie, and its complete solution defied
even the great C. I Gavss, who attempted it in 1850, It is typical of puzzles that do not
scem amenable to analytic solutions, but require either luck coupled with trial and error,
or else much exhaustive {(and exhausting) computation. To convince you that solutions
to this problem really do exist, two of them are shown in Figure 8.5.

Figure 8.5. Two configurations showing eight nonattacking queens

A person attempting 1o solve the Eight Queens problemn will usoally soon abandon
attempls to find all {or even one) of the solutions by being clever and will start o
put queens on the board, perhaps randomly or perhaps in some logical order, but always
making sure that no queen placed can take another already on the board. If the person
is lucky encugh to get eigli queens on the board by procceding in this way, then he has
found a solution; if not, then one or more of the queens must be removed and placed




212 Recursion

outline

2. Backtracking

CHAPTER &8

elsewhere 10 continue the search for a solution. To start formulating a program ler us
sketch this method in algorithmic form. We denote by n the number of queens on the
board; initially 1z == 0. The key step 1s described as follows.

void AddQueen (void)
{
for (every unguarded position p on the board) {
Place a queen In position p;
N4
if (n==8)
Print the contiguration;
else
AddQueen();
Remove the queen from position p;
A

}

This sketch itbustrates the use of recursion to mean “Continue to the next stage and repeat
the task.” Placing a queen in posilion p is only tentative; we leave it there ouly if we
can continue adding queens until we have eight. Whether we reach eight or not, the
function will return when it finds that it has finished or there arc no further possibilities
to investigate. After the inner call has returned, then, it is time to remove the queen

from position p, because ali possibilities with it there have been investigated.

This function is typical of a broad class called backiracking algorithms that attempt 10
complete a search for a solution to a problem by constructing partial solutions, always
ensuring that the partial solutions remain consistent with the requirements of the problem.
The algorithm then attempts to extend a partial solution toward completion, but when
an inconsistency with the requirements of the problem occurs, the algorithm backs up
(backtracks) by removing the most recently constructed part of the solution and trying
another possibility. '

Backtracking proves useful in situations where many possibilitics may first appear,
but few survive further tests. kn scheduling problems, for example, it wiil likely be easy
1o assign the first few matches, but as further matches are made, the constraints drastically
reduce the number of possibilities. Or consider the problem of designing a compiler. In
some languages it is impossible to determine the meaning of a statement until almost all
of it has been read. Consider, for example, the pair of Forran statements

DO17K=1,6
DO17K=1.6

Both of these are legal: the first initiates a loop, and the second assigns the number 1.6 10




SECTION 8.

parsing

2 Postponing the Work 273

the variable DO17K. In such cases where the meaning cannot be deduced immediately,
backtracking is a useful method in parsing (that 15, splitting apart to decipher) the text
of a program.

3. Refinement: Choosing the Data Structures

square Boolean
array

square inleger array

pigeonhole principle

array of locations

To fill in the details of our algorittum for the Eight Queens problem, we must first decide
how we will determine which positions are unguarded at each stage and how we will
loop through the unguarded positions. This amounts 1o reaching some decisions about
the representation of data in the program.

A person working on the Eight Queens puzzle with an actual chessboard will prob-
ably proceed to put queens into the squares one at a time. We can do the same in a
computer by introducing an 8 X 8 array with Boolean entries and by defining an eniry
to be true if a queen is there and false if not. To determine if a position is guarded, the
person would scan the board to sec if a queen is guarding the position, and we could do
the same, but doing so would involve considerable searching.

A person working the puzzle on paper or on a blackboard often observes that when
a queen is put on the board, time will be saved in the next stage if all the squares that the
new queen guards are marked off, so that it is only necessary to look for an unmarked
square to find an unguarded position for the next queen. Again, we could do the same
by defining each entry of our array to be true if it is free and false if it is guarded.
A problem now arises, however, when we wish to remove a queen. We should not
necessarily change a position that she has guarded from false to true, since it may well
be that some other queen still guards that position. We can solve this problem by making
the entries of our array integers rather than Boo]can ¢ach emry denoting the number of
queens gmrdmg the posmon Thus 16 add a queen we increase the count by 1 for each
Position on the $ame row, column, or diagonal as the gueen, and 10 remove a queen we
reduce the appropriate counts by t. A position is unguarded if and only if it has a count
of 0.

In spite of its obvious advantages over the previous attempt, this method still in-
volves some searching to find unguarded positions and some calculation to change all the
counts at each stage. The algorithm will be adding and removing queens a great many
times, so that this calculation and searching may prove expensive. A person working on
this puzzle soon makes another observation that saves even more work.

Once a queen has been put in the first row, no person would waste time searching
to find a place to put another queen in the same row, since the row is fully guarded by
the first queen. There can never be more than one queen in each row. But our goal is to
put eight queens on the board, and there are only cight rows. It follows that there must
be a queen, exactly one queen, in every one of the rows. (This is called the pigeonhole
principle: I you have n pigeons and n pigeonholes, and no more than one pigecn ever
gocs in the same hole, then there must be a pigeon in every hole.)

Thus we can proceed by placing the queens on the board one row at a time, starting
with the first row, and we can keep track of where they are with a single array

int col[8];

where cot[i] gives the column containing the queen in row i. To make sure that no




274

Recursion

guards

matn program

CHAPTER 8

two queens are on the same column or the same diagonal, we need not keep and search
through an 8 x 8 array, but we need only keep track of whether each cofumn is free
or guarded, and whether each diagonal is likewise. We can do this with three Boolean
arrays, coliree, upfree, and downfree, where diagonals from the lower left to the upper
right are considered upward and those from the upper left to lower right are considered
downward.

How do we identify the positions along a single diagonal? Along the main (down-
ward) diagonal the entrics are

(0,0}, [E.1], ..., [7.7)

which have the property that the row and column indices are equal; that, is, their differ-
ence is 0. It turns out that along any downward diagonal the row and column indices
will have a constant difference. This difference is 0 for the main diagonal, and ranges
from O — 7 = —7 for the downward diagonal of length 1 in the upper right comer, o
7 — 0 = 7 for the one in the lower left comer. Similarly, along upward diagonals the
sum of the row and column indices is constant, ranging from 0+ 0=01t0 7+ 7 = 14.

After making all these decisions, we can now define all our data structures formally,
and, at the same time, we can write the main program.

int col {8]; Ix column with the queen */
Boolean_type colfree [8]; 1* Is the column free? */
Boolean. type upfree[15]; 1% Is the upward diagonal free? */
Boolean.type downfree{15]; /% Is the downward diagonal free? */
int row = —1; I* row whose queen is currently placed  */
int sol = 0; I+ number of solutions found */

i* Solve the Eight Queens problem. */
void main (void)

{
int i;
tor (i=0;i<8;i++)
colfree [i1 = TRUE;
for (i=0;i<15; i++) {
upfree [i] = TRUE;
downifree [i] = TRUE;
}
AddQueen( };
}

Translation of the sketch of the function AddQueen into a program is straightforward,
given the use of the arrays that have now been defined.




SEETION 8.2 Postponing the Work 275

recursive funciion ¥ AddQueen: attempls to place queens, backiracking when needed +/
void AddQueen (void)

{
int c; /* column being tried for the queen *{
row-F-+;
for (c=0; c<8; ¢+
if (colfree [c] && upfree [row + ¢] k& downiree [row—c + 71) {
col[row] = c; /* Put a queen in (row, c). *f
colfree [c] = FALSE;
uptree [row + ¢] = FALSE;
downtree [row—c + 7] = FALSF;
it (row == 7) I* termination condition */
WriteBoard ( ) ;
else
AddQueen(); /* Proceed recursively. */
coliree[c] = TRUE;  /* Now backtrack by removing the queen. */
upfree [row + ¢] = TRUE;
downfree [row—c + 7] = TRUE;
}
row ——;
}

4. Local and Glebal Variables

Note that in the Eight Queens program almost all the variables and arrays are declared
globally, whereas in the Towers of Hanoi program the variables were declared in the
recursive function. If variables are declared within a function, then they are local to
the function and not available outside it. In particular, variables declared in a recursive
function are local to a single occurrence of the function, so that if the function is called
again recursively, the variables are new and different, and the original variables will
be remembered after the function returns. The copies of variables set up in an outer
call are not available to the function during an inner recursive call. In the Eight Queens
program we wish the same information about guarded rows, columns, and diagonals to be
available to all the recursive occurrences of the function, and 1o do this, the appropriate
arrays are declared not in the function but in the main program. The only reason for the
array col[ ] is to communicate the positions of the queens to the function WriteBoard.
The information in this array is also preserved in the eight local copies of the variable
¢ set up during the recursive calls, but only one of these local copies is available to the
program at a given time,

5. Analysis of Backtracking

Finally, let us estimate the amount of work that our program will do. If we had taken the
naive approach by writing a program that first placed all cight queens on the board and




276

Recursion

reduced count

effectiveness of
backtracking

CHAPTER 3

then rejected the illegal configurations, we would be investigating as many configurations
as choosing eight places out of sixty-four, which is

64
(8 ) = 4,426,165 ,368.

The observation that there can be only one queen in each row immediately cuts this
number 10
8% = 16,777,216.

This number is still large, but our program will not investigate nearly this many positions.
Instead, it rejects positions whose cotlumn or diagonals are guarded. The requirement
that there be only one queen in each column reduces the number to

8! = 40,320

which is quile manageable by computer, and the actual number of cases the program
considers will be much less than this (see projects), since positions with guarded diagonals
in the early rows will be rejected immediately, with no need 1o make the fruitless attempt
to fill the later rows.

This behavior summarizes the effectiveness of backiracking: positions that are early
discovered to be impossible prevent the Iater investigation of many fruitless paths,

Another way to express this behavior of backtracking is to consider the tree of
recursive cails to function AddQueen, part of which is shown in Figure 8.6. It appears
formally that each vertex might have up to eight children corresponding to the recursive

JR60 Q6
1030 D7

1019

603Q 06

4 O —~—— Solution 6 O ———- Solution

Figure 8.6. Part of the recursion tree, Eight Queens problem




SECTION 8.

Exercises
8.2

Programming
Projects
8.2

maolecrular weight

2

Postponing the Work 277

calls to AddQueen for the eight iterations of the for loop. Even at levels near the root,
however, most of these branches are found te be impossible, and the removal of one
vertex on an upper level removes a multitude of its descendents. Backtracking is a most
cffective tool fo prune a recursion tree 1o manageable size.

E1. What is the maximum depth of recursion in the Eight Queens program?

E2. Starting with the following partial configuration of five queens on the board, con-

struct the recursion tree of all situations that the Eight Queens program will consider
in trying to add the remaining three queens. Stop drawing the tree at the point where
the program will backirack and remove one of the original five queens.

E3. Medify the linked-list algorithm for generating permutations so that the position

Pl

P2

occupied by each number does not change by more than one to the left or to the
right from any permutation to the next one generated. [This is a simplified form of
one rile for campanelogy (ringing changes on church bells).]

Run the Queen program on your computer. You will need to write function Write-
Board 10 do the output. In addition, find out exactly how many positions are inves-
tigated by inctuding a counter that is incremented every time funciion AddQueen
is started. [Note that a method that placed all cight queens before checking for
guarded squares would be equivalent to eight calls to AddQueen.]

Write a program that will read a molecular formula such as HaSO4 and will write
out the molecular weight of the compound that it represents. Your program should
be able 1o handle bracketed radicals such as in Al,(SOy4);. (Hint: Use recursion to
find the molecular weight of a bracketed radical. Simplifications: You may find 1t
helpful to enclose the whole formula in parentheses(. .. ). You will nced to set up a
table of atomic weights of elements, indexed by their abbreviations. For simplicity
the table may be restricted 1o the more common elements, Some elements have
one-letter abbreviations, and some two. For uniformity you may add blanks to the
one-letter abbreviations. ]




