ECE368
Weeks 7 and 8 (Notes)
(Incomplete slides will be worked out in class)

Comparing Running Times (adapted from Garey and Johnson)

Given that the program uses 1 microsecond per step (1079), s stands for second,

m for minute, d for day, y for year, and ¢ for century:

Size of Input
Time Complexity 10 20 30 40 50 60

n 00001 s |.00002 s | .00003 s | .00004 s | .00005s | .00006 s
n? 0001 s | .0004s | .0009s | .0016s | .0025 s 0036 s
n? 001s | .008s | .027s | 064s | .125s 216 s
n® 1s 32s | 243s | 1.7m | 52m 13 m

2" 00ls | 10s | 179m | 127d | 357y 366 c

3" 059s | 58m | 65y | 3855¢ [2x10%¢|1.3x 108 ¢

Efficiency Terminology (Summary)

O(1) means a constant computing time.
O(log n) is called logarithmic.

O(n) is called linear.
O(n?) is quadratic.
O(n°) is cubic.

O(2") is exponential.

Space Complexity

- Space required may depend upon the input
(worst-case and average-case complexity)

- If input data has some natural form, the analyze
the additional space requirement.

- O(1) additional space: in place algorithm

Sorting

Arranging elements in a certain order.
Time-space complexity

Stability: Original order among the same values is
preserved.

Sorting

Internal vs External Sorting

Exchange Sort
- Bubble Sort
— Quicksort

- Selection Sort
- Heap Sort

- Insertion Sort
- Shell Sort

- Merge Sort

- Radix Sort

Introductory Example: INSERTION-SORT

INSERTION-SORT/(A)
1. for j « 2 to length|A]
2. do key «— Alj]
> Insert A[j] into the sorted sequence A[l..j — 1]
fe—j—1
while ¢ > 0 and A[i] > key

do Ali + 1] «— Ali]

1—1—1

Ali + 1] «— key

e A sl

SORTED j

IR

7

INSERTION-SORT Example: (6,10,8,5,1,7)

6\’851 7
6517

1 5 6 7 8 10

Pseudocode Notation

e Indentation reflects block structure.

e Looping and conditional constructs have Pascal semantics.
e > is used for comments.

e — is used for assignment.

e Variables are local unless otherwise indicated.

e Array elements are accessed as in Pascal, and we can specify subranges
using: Ali..j]. Arrays are compound data types with a length attribute
accessed using lengthlarray name].

e To access the value of a field in a compound data type, use

field_ name|compound].
e Parameters are passed by value.

e Omit error handling used in real programs.

How to Characterize an Algorithm

What are the resources used in terms of memory and time?

Tools required to answer:
e execution model: RAM (random access machines)
e math tools:

— discrete combinatorics
— elementary probability
— algebraic dexterity

— methods of identifying most significant terms

Goal: Find the running time as a function of the input size.

Analyzing INSERTION-SORT

input size: number of items in the input (or number of bits, number of edges,
etc.)

running time: number of computational steps in RAM model.

INSERTION-SORT(A) cost times

1. for j < 2 to length|A] C1 n

2. do key «— Alj] C3 n—1

3. > Insert Alj] into the sorted

> sequence A[l..j-1]

4. 17— 7 —1 C4 n—1

5. while ¢ > 0 and Ai] > key Cs %275”7
=

6. do Ali + 1] «+ Ai] Ce 'Zg(tj —1)
=

8. Ali + 1] « key Cs n—1

Some Simple Summations

,ﬁlj:1+2+3+...+(n—1)+n
j:

Gauss’s trick for summing n numbers:

Add :
142434+4+...+(n—=1)+n
To:
n+(n—1)+n—-2)+n—-3)+...+2+1
Giving:
m+1)+n+1)+n+1)+n+1)+...+(n+1)+(n+1)

Hence:
o o n(n+1)
j _ —

1 2

1Mz

J
-1
To obtain a solution for ran j, substitute in (n-1) for n to obtain:

n— ! (mn—1((n—=1)+1) nn-1)

1
> j=14243+.. +((n=1)=1)+(n—1) = _
J=1 2 9

Some Simple Summations ., inued

How about the following?

1M
)

Analysis Concepts

The running time of INSERTION-SORT is calculated as follows:
T(n)=cin+ co(n — 1) + caln — 1) + ¢5 _%2;7- + ¢ §2<tj ~1)
j= =

+ o7 §2<tj — 1) +cs(n—1)
J:

Kinds of Time Analysis:

e Worst-case: T'(n) is the maximum time on any input of size n (usually
we use this).

e Average-case: T'(n) is the average time (given some distribution) over
all inputs of size n (we sometimes use this).

e Best-case: T'(n) is the minimum time on any input of size n (never use

this).

Discussion of the INSERTION-SORT Analysis

What is the best-case running time for insertion sort? When does it occur?

Discussion of the INSERTION-SORT Analysis .ontinued

What is the worst-case running time for insertion sort? When does it occur?

Tn)=cn+c(n—1)+c(n—1)+ 65(7”‘(7”‘;]L> —1)
+ 66(M) + C7<M) + Cg(n — 1)

2 2
=G+ +Ini+(atatat+$—9—F+a)n

2
—<CQ + C4 + Cs + Cg)

Discussion of the INSERTION-SORT Analysis .ontinued

What is the average-case running time for insertion sort?

How much space is needed in (best-case, average-case, worst-case)?

Exchange Sort:
Bubble Sort

Algorithm:
1. Keep scanning through the list of numbers

comparing adjacent elements. If they are out of
place exchange.

2. Keep scanning until you hit a scan with no ex-
changes.

Scan0 25 57 48 37 12 92 8 33
(original file)

Designing Algorithms

The INSERTION-SORT algorithm uses an incremental approach (at any
point we have a sorted partial subarray).

Another design approach involves Divide-and-Conquer Algorithms:
Divide a problem into subproblems.

Conquer, i.e., solve the subproblem (either by dividing again or by solving
directly for small inputs).

Combine the solutions of the subproblems.

MERGE-SORT is an example of a divide-and-conquer algorithm.

Shell Sort (diminishing increment sort)

Insertion sort is slow because it exchanges only
adjacent elements -- shell sort is a simple exten-
sion which gets around this by allowing long dis-
tance exchanges.

Insertion sort is efficient for almost sorted files
and by the time we deal with all n elements the file
1s almost sorted.

Shell Sort: Sorts separate subfiles of a file, where
the subfile contains every kth element of the origi-
‘nal file.

- Once a file is k-sorted, we partition the file for
some 1, where i < k.

- We continue the process of partitioning, until
we 1-sort the file.

File Partitioning Rule

Given increment k, we can get the i-th element of
a subfile j using the following rule:

a[(i-1) *k +j - 1]
For example, for k = 3, we get...

subfile 1 : a[0], a[3], a[6],

subfile 2 : a[1], a[4], a[7], ...
subfile 3 : a[2], a[5], a[§]

_" e e

- Sort each subfile by simple insertion

- Repeat the process for all increments with the
final increment = 1.

Example

k=13, 13-sort subfiles (Total 15 elements):
(1) a[0], a[13]

(2) a[l], a[14]
3) a2

(13) a[13]

k-4, 4-sort subfiles

(1) a[0], a[4], a[8], a[12]
(2) a[l], a[5], a[9], a[13]
(3) a[2], a[6], a[10], a[14]
(4) a[3], a[9], a[11]

k=1, 1-sort subfiles
(1) a[0], a[1], .., a[13], a[14]

Example

List: 25 57 48 37

passl:25 57 48 37

span=>5

pass 2
span = 3

pass 3
span =1

12

12

92

92

86
86

33

33

Complexity

- Running times O(n (log n)) with an appropri-
ate series of increments

- Good for moderate-sized files

- Stable? No!

Recommended increments:

Should be relatively prime

One possible approach:
Define a function h recursively, with :

h(l)=1
h(i+1) =3 *h(1) + 1

Let x be the smallest integer such thath(x) = n

Set numinc = x-2,
Set incmnts 1 = h(numinc - 1 + 1)

1 < 1 < numinc

Ex:n=25 h(l)=1 <- incmnts 2
h(2)=4=3*1+1 <-incmnts 1
h(3)=13=3%4+1

x =4 h(4)=40=3*13 *1

Quicksort
(Developed by C.A.R. Hoare in 1960.)

- A divide and conquer algorithm, partitioning a
file into 2 parts, sorting each part independently.

i = partition (*a, Ib, ub);
quicksort(*a, 1b, i-1);

quicksort(*a, i+1, ub);

Comments

- A call quicksort (a, 0, N-1) will sort the elements
inafrom 0to N-1 solong as we are able to define
the partition function.

- Partition divides the file into 2 parts by finding
some a[i] in its correct spot in the array such that:

- a[lb] ... a[1-1] are = ali]
- a[i+1] ... aJub] are > a|i]

List Partitioning and the Algorithm

- Arbitrarily choose some element to put into its
final position, say a[lb]

- Scan the array from L --> R (use index L)
Scan the array from R --> L (use index R)

- Stop L --> R scan whenever we hit an element
> a[lb]

- Stop R -> L scan whenever we hit an element
= a[lb]

- These two elements are out of place so exchange
them.

- Continue until R < L, then R is index of loca-
tion for partition element.

- At this point, we know we got the right place for
a[lb] to go. So, exchange a[lb] with the leftmost
element of a|R].

Quicksort Example

L=0,R =7, aJ0] =25 =pivot

since, 25 > 25 and 33 = 25, so continue both

SCans.

2.

*L *R
25|57 |48 |37 |12 |92 86 | 33
o 1 2 3 4 5 6 7

L =1, R =6,

since, 57 > 25 (stop L) and 86 = 25 (continue
R).

Example (contd’)

3.
Y v
25| 57 | 48 37 12 | 92 86 33
0 1 2 3 4 S 6 7

L =1,R =5, since,92 =< 25 (continue R scan).

4.
Y v
25| 57 | 48 37 12 | 92 86 33
0 1 2 3 4 S 6 7

L =1, R =4, Now 25 = 12, So swap a[L] and

a|R].
Y v
25| 12 | 48 37 57 | 92 86 33
o 1 2 3 4 5 6 7

and continue scan both R and L.

Example (contd’)

3.
oy
25| 12 |48 |37 | 57 |92 86 | 33
6o 1 2 3 4 5 6 7
L =2, R =3,

Now 48 > 25 stop L, But 37 = 25, so continue

R.
6.
Yy
25| 12 |48 |37 | 57 |92 86 | 33
o 1 2 3 4 5 6 7
L =2,R =2,

Now 48 = 25, so continue R (also R < L)

Example (contd’)

7.
y oy
251 12 | 48 37 57 | 92 86 33
0 1 2 3 4 5 6 7

L=2,R=1,Now R <Landweswap a|0] witha|R]

*R_*L

12 || 25| 48 37 57 | 92 86 33

0 1 2 3 4 5 6 7

At this point, every element greater than 25 is on
its Right, and less than equal is on the Left.

Now we can quicksort two sub-arrays a[0] and
a|2..7] by making a recursive call to quicksort.
Pivot Index i1s1 = 1.

Note: a[0] 1s sorted so no more work for that half
of the array!

Note: Every element is eventually put into place
by being used as a partitioning element!

Example

a:| 17]62 |20 40 30 |39 90 7

0 1 2 3 4 5 6 7

(a) Quicksort(a,0,7) find partition :
(partition = 17, L =0, R =7)

*R_*L

a:|| 17 (|7 20 40 30 | 39 90 62
o 1 2 3 4 5 6 7
Partition
(b) Quicksort (a, 0, 0) (c) Quicksort (a, 2, 7)
make 1 call make call
1>1

Done!

Example (contd’)

¢) Quicksort (a, 2, 7)

vy A

20 [40 |30 |39 90 | 62
2 3 4 5 6 7
ILb=2 ub=7 pivot=20
L=2 R=7
v ¢
20 |[40 |30 |39 90 | 62
2 3 4 5 6 7
(d) Quicksort (a, 2, 1) (e) Quicksort (a, 3, 7)
1 > 2 make call

Done

Example (contd’)

Result of Quicksort:

20

30

39

40

62

90

Efficiency of Quicksort:

Assume: n = 2K

Assuming pivot always divides the file exactly in
half, we need:

- n comparisons to split it in 2 subarrays (= n)

- n/2*2 comparisons to split into 4 subarrays (=n)

—11/4*4 =n

-n/n*n =n

Total k such terms

Complexity: O(kn) = O(n log n) comparisons

Efficiency of Quicksort:

Runs inefficiently if file is already sorted
(assumption is not valid).

I file 1s pre-sorted, x[1b] will always be in correct
spot, so we will only knock 1 element off for each
partition.

-n comparisons
- n-1 comparisons

- n-2 comparisons

- 3 comparisons

- 2 comparisons

This is O(n*).

Improvements:

- Remove recursion.

- When we get down to small subfiles, apply a dif-
ferent method rather than doing Quicksort.

- Use a better partitioning element.

(1) use random element to avoid problem of
sorted file

(2) take 3 elements from file and sort them
use middle guy as partition element. (me-
dian of three method) reduces running time
by 5% overall

What about extra space? Depends on # of nested
recursive calls!

Heap Sort (Tree Sort):

Definition: A Descending Heap (Max Heap) of
size n1s an almost complete binary tree of nnodes

such that they key of eachnodeis = the key of
its father. (Heap property)

Examples:

is a descending heap.

is a descending heap.

is a descending heap.

Examples:

is not a descending heap!

is not a descending heap.

1s not a descending Heap!

Heap Generation/Insertion Procedure

Insertion is done by getting the position of next in-
sertion as a leaf node such that an almost complete
binary tree structure is maintained.

Then go up the tree to the 1stelement = the ele-

ment to insert. As we go up the heap, each element
less than the element to be inserted is shifted
down, making room for the new element which is
being inserted.

The root has the largest element.

Example

25 57 48 37 12 92 86 33

Insertion Algorithm
s=k
f=(s-1)/2 /* 1 1s the father of s */
while (s> 0 && dpq[f] <elt)

{
dpq[s] = dpq[f];
s =1; /* advance up the tree */
f=(s-1)/2;
} /* end while */
dpq[s] = elt;

Analysis of Insertion

We can create a heap by inserting elements into
the heap in such a manner that we miantain heap
properties. Each insertion can be done in O(log n).
Therefore, insertion of n elements into a heap can
be done in O(n log n).

Heap Deletion Procedure

1. Remove the Root

2. Move the last element (remove its node) to the
Root node. The new structure is again an almost
complete binary tree.

3. Select among the largest value of the new root
and its i1mmediate children to become the new
root.

4. Apply Step 3 again on the subtree with the root
being the child with the new value.

Heap Sorting

[tis a general selection sort using the input array as
a heap.

Step 1:

Step 2:

Analysis

-Worst case behavior

-Avg. case behavior

- Space needed?

- Stability?

- Performance with sorted data?

Merge Sort

- Take 2 sorted files and merge them. Merge small
files (size 1), then bigger (size 2), then bigger, ...,
till all files are merged into one.

- Recursive Implementation

[25]

25

25

(12

[57]

57]

37

25

[48]

(37

48

33

Merge Sort

[37]

48]

57]

37

[12]

[12

(12

48

[92]

92]

33

57

[86]

33

86

86

[33]

86]

92]

92]

Analysis

- Maximum number of passes : log n

- Each pass requires n or fewer comparisons

- Overall complexity -> O(n log n)

- Requires extra space - O(n) for auxiliary array.
- Is Merge Sort stable? yes

- Sorted Data? Same running time.

- Reverse Sorted Data? Same running time.

Radix Sort
(Radix Exchange Sort)

- Based on the values of the digits of the key

- Base 10 - partition file into 10 groups on leading
digit of key. 9 group > 8 group > ... > 0 group.

- Sort on next most-significant digit
- Repeat until you reach the least significant digit

- Must make room in array for items (array imple-
mentation)

Radix Sort (Alternate Approach)

- Process digits from least significant to most
significant digit.

- Take each record with key, in the order it appears
in the file, and place it in one of 10 queues depend-
ing on value of the digit.

- Return items to file in the order they were placed
onto the queue, starting 0 queue 1st, 1 queue sec-
ond, etc.

- Repeat the process for each digit until it 1s done
on most significant digit -> file 1s sorted.

Algorithm

for (K =least significant to most significant digit)

{

for (1= 0;1 < n; i++)

{

y= x[i]

j = Kth digit of y

place y at rear of queue[j];
} /* end for */

for (qu = 0; qu < 10; qu++)
place elements of queue|[qu]
in next sequential position of x

} /*end for */

Example

Original Data:
25 57 48 37 12 92 86 33

i) First sort on least significant digit, in each bin
(queues in form of linked list)

bin [0O]
bin [1]
bin [2]
bin
bin
bin

P

bin
bin
bin

r Al r 1 r Al r Al r 1 r Al r Al
€ J [J @ J ¢ J [J L J [« J

bin

Example (cont’d)

i1) Now sort on the next most significant digit

12 92 33 25 86 57 37 48
bin
bin
bin
bin [
bin
bin
bin
bin

bin

r Al r Al r 1 r Al r Al r 1 r r Al r Al r 1
¢ J i J L J [« J i J [J [« J ¢ J i J [J

bin

Complexity
(1) Running time:

If d digits and » records and radix (no. of bins or
queues) is r, each pass is O(n+r)

(as n elements are placed O(n) and r bins are ini-
tialized O(r) in each pass).

d passes --> 17
- very efficient if d and r are small relative to n.

(2) Space required? --> queue [0] ... queue [9]

(3) Stability? Yes

(4) Behavior of algorithm with sorted data?

unaffected

How Fast Can We Sort?

Use a Decision/Comparison Tree to sort n
elements.

Decision Tree for Sorting

- Binary tree. A node represents a comparison op-
eration between two elements of the input data set.

- A path from the root to a leaf node represents the
order of the sequence of comparison operations
for a given input data set, that results in the output
sequence represented by the leaf node.

- The order of the sequence of comparison opera-
tions (that is the selection of one of the paths) de-
pends upon the input data set and the sorting algo-
rithm.

- Depending upon the sorting algorithm, the tree
structure may vary.

Example of Decision Tree for Sorting

Decision Tree for Sorting

— Number of leaf nodes =

- Height of the Tree:

---> Complexity of a sorting algorithm.
(Best of the worst case)

Avg. Case Complexity:
= External Path Length/Number of possible out-
put sequences

External Path Length: Sum of the number of
branches (arcs) traversed in going from the root
once to every leaf node in the tree =

---> Avg. Case Complexity:

Sorting Algorithm Time Space
- Exchange Sort

- Bubble Sort o(n*) 0Q1)

- Quicksort O(n log n) & O(n*)
Space Depends on # of nested recursive calls

- Selection Sort o(n*) 0Q1)
- Heap Sort O(n log n) O(1)
- Insertion Sort o(n*) 0Q)
- Shell Sort o(n!®) 0(1)

O(n (log 1))
- Merge Sort O(n log n) O(n)

- Radix Sort o(n*) 0Q1)

- How fast can we sort? O(n log n)

	temp.pdf
	Slide Number 1

