EE 368

Weeks 5 (Notes)

Chapter 5: Trees

Skip pages 273 - 281, Section 5.6

- If A is the root of a tree and B is the root of a subtree of that tree, then A is B's **parent** (or father or mother) and B is A's **child** (or son or daughter).
- A node with no children is a **leaf/terminal node**.
- The node A is the **ancestor** of node B if A is B's parent or is the parent of some ancestor of B. Then ancestors of a node are all the nodes along the path from the root to that node.
- **Siblings** (brothers, sisters) Two nodes are siblings if they are children of the same parent.

Some Definitions

Degree of a node: The numbers of children of this node.

Degree of a tree: Maximum degree of nodes in that tree

Level: Node at Level i has its children at level i + 1. Root's level is 0.

Height (depth): Maximum level of leaves in a tree

Binary Trees:

Types:

Strictly Binary Tree

Complete Binary Tree

Almost Complete Binary Tree

Advanced Binary Trees: Balanced and AVL

Others

Applications:

Expression Trees

Heaps

Search Trees

Counting Trees

Huffman Coding

Representing General Trees

Binary Trees:(cont.)

Representation:

Arrays

Linked Lists

Threaded Binary Trees

Binary Tree: More Definitions

- Left child.
- Right child.
- A node with no children is a **leaf node**.
- left and right descendants
 - B is a **left descendant** of A if B is a left child of A or is a descendant of a left child of A.
 - similarly for **right descendants**

Some Binary Trees:

Strictly Binary Tree: Every non-leaf node has exactly two children

Complete Binary Tree of height d is a strictly binary tree whose all leaves are at level d. Its size is 2^{d+1} - 1

Almost Complete Binary Tree of depth d:

- 1. Each leaf in the tree is either at level d or at level d 1. Any node at level less than d 1 has two sons.
- 2. For any node (x) in the tree if there is a right descendant at level d, it must have a left son and every left descendant of (x) is either a leaf at level d or has two sons.

More Definitions

- **A complete binary tree of depth d** is a strictly binary tree whose leaves are all at level d.

Example: {a level 0 complete binary tree}

Example: {complete binary tree of depth 1}

Example: {complete binary tree of depth 2}

Size of a Complete Binary Tree

If # of nodes at level k = m

How many nodes at level k + 1?

Finding the maximum # of nodes in a binary tree of height d (to be done in class):

Labeling (Numbering) of Binary Trees

The nodes of a complete and an almost complete binary tree can be labeled intelligently. Let the label for the root be 1.

Then the left son' label = (2 * parent's label number)

Right son's label= (2 * parent's label number) + 1

This rule is applied to every node.

Summary of Binary Trees:

Strictly Binary Tree:

Every non-leaf node has two children.

If **n** leaf nodes, it has **2n - 1** nodes.

Complete Binary Tree:

All levels are full. Therefore, leaf nodes only at the last level. Its size is $2^{d+1}-1$

Almost Complete Binary Tree:

- 1. Each leaf in the tree is either at level d or at level d 1. Any node at level less than d 1 has two sons.
- 2. For any node (x) in the tree if there is a right descendant at level d, it must have a left son and every left descendant of (x) is either a leaf at level d or has two sons.

 2^{d} - 1 < number of nodes < 2^{d+1} - 1

Applications of Binary Tree

- To encode information where 2-way decisions are made at each point (Huffman Coding) Binary
- 2 Expression trees
- 3 Sorting (Heaps) (to be discussed later on)
- 4 Search (to be discussed later on)

Applications of Binary Tree

Two phases for the application on binary trees:

- 1. Building
- 2. Traversal

Huffman Coding

Suppose we want to code a message with letters A... D using bits. A sequence of 2 bits is appropriate.

Symbol	Code	(Code 1)
A	00	
В	01	
C	10	
D	11	

To code a message with n symbols (out of k distinct symbols) will always require ?? bits.

Huffman Coding

Suppose we want to minimize the amount of storage for a string of symbols.

With a variable length of code depending on how frequent the symbol is in the message, we can achieve a savings!

Reason: We will be using a variable length code, we must not allow one code for a certain letter be the prefix of another (Ambiguity!)

Example

Consider Code 2:

	Symbol	Code	
_	A	0	
	В	110	
	C	10	Variable Length Code
	D	111	

Example

Compare Code 1 with Code 2 for the message: ABACCDA

	A	В	A	C	C	D	A
Code 1	00	01	00	10	10	11	00
						14	bits
Code 2	0	110	0	10	10	111	0
						13	bits

With Code 2, since no string is a prefix of another, we can recover the original symbols by scanning the bit stream from left to right!

Huffman Coding Procedure

Generation of Huffman code for alphabets A, B, C, D to encode the message

ABACCDA

How do we choose code word for the alphabet? Depends on the message!

Two Steps:

- Build a binary tree (Huffman Tree).
- Generate code for each alphabet from the tree.

Huffman Tree Generation

Bottom up Approach:

- From the given message, find frequency of each symbol.
- Select two symbols with the smallest frequency, join them to generate a single "symbol" having a frequency as the sum the two corresponding frequencies.
- Repeat Step 2, until all the symbols in the message are merged to form a single symbol.

This process allows us to build a binary tree (Huffman Tree).

Each leaf represents a symbol of original alphabet.

Each non-leaf node is a "symbol".

Huffman Coding Procedure

Once the tree is generated, traverse and encode it as follows:

- To root, do not assign any bit.
- Start from root and move downward and assign
 - 0 to each L child
 - 1 to each R child
- Traverse path from root to each leaf node to identify the Huffman Code for each leaf node.

Example

For the message, ABACCDA, we find:

symbol A B C D
frequency 3 1 2 1

- Select two symbols with the smallest frequency, B and D, and make a single "BD" node with frequency 2.

symbol	A	BD	C
frequency	3	2	2

Example

- Again select two symbols with the smallest frequency, joining them, BD and C --> CBD with the frequency 4.

symbol	A	BDC	
frequency	3	4	

- Again, we pick two symbols to finish up.

"ACDB" \rightarrow frequency = 7

Use this bottom up approach to build the Huffman coding tree.

Huffman Coding Procedure

(to be discussed in class)

Assign 0 and 1 to nodes (root is assigned nothing "e") and traverse paths from root.

A - 0

C - 10

B - 110

D - 111

Binary Tree Representation

- Arrays. Tree labels for the complete and almost complete binary tree can be mapped into index values of a 1-dimensional array. (see homework problem)

- linked list (ECE264 material, see notes on the Web)