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EE 368

Weeks 5 (Notes)
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Chapter 5:  Trees

Skip pages 273 - 281, Section 5.6

- If A is the root of a tree and B is the root of a subtree of that tree, then A is 
B’s parent (or father or mother) and B is A’s child (or son or daughter).

- A node with no children is a leaf/terminal node.

- The node A is the ancestor of node B if A is B’s parent or is the parent of 
some ancestor of B.  Then ancestors of a node are all the nodes along the 
path from the root to that node.

- Siblings (brothers, sisters)  Two nodes are siblings if they are children of 
the same parent.
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Some Definitions

Degree of a node:  The numbers of children of this node.

Degree of a tree:  Maximum degree of nodes in that tree

Level: Node at Level i has its children at level i + 1.  Root’s level is 0.

Height (depth): Maximum level of leaves in a tree
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Binary Trees:
Types:

Strictly Binary Tree

Complete Binary Tree

Almost Complete Binary Tree

Advanced Binary Trees:  Balanced and AVL

Others

Applications:

Expression Trees 

Heaps 

Search Trees 

Counting Trees

Huffman Coding

Representing General Trees
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Binary Trees:(cont.)

Representation:

Arrays

Linked Lists

Threaded Binary Trees
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Binary Tree:  More Definitions

- Left child.

- Right child.

- A node with no children is a leaf node.

- left and right descendants

- B is a left descendant of A if B is a left child of A or is a descendant of a 
left child of A.

- similarly for right descendants
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Some Binary Trees:
Strictly Binary Tree: Every non-leaf node has exactly two children

Complete Binary Tree of height d is a strictly binary tree whose all leaves

are at level d.  Its size is 2d + 1 - 1

Almost Complete Binary Tree of depth d:

1. Each leaf in the tree is either at level d or at level d - 1.  Any node at level less 
than d - 1 has two sons.

2. For any node (x) in the tree if there is a right descendant at level d, it must have 
a left son and every left descendant of (x) is either a leaf at level d or has two 
sons.
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More Definitions

- A complete binary tree of depth d is a strictly binary tree whose leaves 
are all at level d.

Example:                       {a level 0 complete binary tree}

Example: {complete binary tree of depth 1}

Example: {complete binary tree of depth 2}
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Size of a Complete Binary Tree

If # of nodes at level k = m

How many nodes at level k + 1?

Finding the maximum # of nodes in a binary tree of height d (to be done in 
class):
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Labeling (Numbering) of Binary Trees

The nodes of a complete and an almost complete binary tree can be labeled 
intelligently. Let the label for the root be 1.  

Then the left son’ label = (2 * parent’s label number) 

Right son’s label= (2 * parent’s label number) + 1

This rule is applied to every node.
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Summary of Binary Trees:
Strictly Binary Tree:

Every non-leaf node has two children.

If n leaf nodes, it has 2n - 1 nodes.

Complete Binary Tree:

All levels are full.  Therefore, leaf nodes only at the last level.  Its size is 

2d + 1 -1

Almost Complete Binary Tree:

1. Each leaf in the tree is either at level d or at level d - 1.  Any node at level 
less than d - 1 has two sons.

2. For any node (x) in the tree if there is a right descendant at level d, it must 
have a left son and every left descendant of (x) is either a leaf at level d or 
has two sons.

2d - 1 <  number of nodes  < 2d + 1 - 1



12

Applications of Binary Tree

1 To encode information where 2-way decisions are made at each point 
(Huffman Coding) Binary

2 Expression trees

3 Sorting (Heaps) (to be discussed later on)

4 Search (to be discussed later on)
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Applications of Binary Tree

Two phases for the application on binary trees:

1. Building

2. Traversal
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Huffman Coding
Suppose we want to code a message with letters A . . . D using bits.  A

sequence of 2 bits is appropriate.

Symbol Code (Code 1)

______________________

A 00

B 01

C 10

D 11

To code a message with n symbols 

(out of k distinct symbols) will always require  ??   bits.
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Huffman Coding
Suppose we want to minimize the amount of storage for a string of symbols.

With a variable length of code depending on how frequent the symbol is in the

message, we can achieve a savings!

Reason:  We will be using a variable length code, we must not allow one code

for a certain letter be the prefix of another (Ambiguity!)
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Example
Consider Code 2:

Symbol Code

______________________

A 0

B 110

C 10 Variable Length Code

D 111
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Example
Compare Code 1 with Code 2 for the message: ABACCDA

A B A C C D A

Code 1 00 01 00 10 10 11 00

14 bits

Code 2 0 110 0 10 10 111 0

13 bits

With Code 2, since no string is a prefix of another, we can recover the original

symbols by scanning the bit stream from left to right!
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Huffman Coding Procedure

Generation of Huffman code for alphabets A, B, C, D to encode the message 

A B A C C D A 

How do we choose code word for the alphabet? Depends on the message!

Two Steps:

• Build a binary tree (Huffman Tree).

• Generate code for each alphabet from the tree.
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Huffman Tree Generation
Bottom up Approach:

• From the given message, find frequency of each symbol.

• Select two symbols with the smallest frequency, join them to generate a 
single “symbol” having a frequency as the sum the two corresponding 
frequencies.

• Repeat Step 2, until all the symbols in the message are merged to form a 
single symbol.

This process allows us to build a binary tree (Huffman Tree).

Each leaf represents a symbol of original alphabet.

Each non-leaf node is a “symbol”.



20

Huffman Coding Procedure
Once the tree is generated, traverse and encode it as follows:

- To root, do not assign any bit.

- Start from root and move downward and assign

- 0 to each L child

- 1 to each R child

- Traverse path from root to each leaf node to identify the Huffman Code for 
each leaf node.
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Example
For the message, ABACCDA, we find:

_____________________________________

symbol A    B     C      D

_____________________________________

frequency 3 1 2   1   

_____________________________________

- Select two symbols with the smallest frequency, B and D, and make a 
single “BD” node with frequency 2.

symbol A    BD     C      

_____________________________________

frequency 3 2 2   

_____________________________________
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Example
- Again  select two symbols with the smallest frequency, joining them, BD 

and C --> CBD with the frequency 4.

symbol A    BDC     
_____________________________________

frequency 3 4

_____________________________________

- Again, we pick two symbols to finish up.

“ACDB” --> frequency = 7

Use this bottom up approach to build the Huffman coding tree.
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Huffman Coding Procedure 
(to be discussed in class)

Assign 0 and 1 to nodes (root is assigned nothing “e”) and traverse paths from 
root.

A - 0

C - 10

B - 110

D - 111
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Binary Tree Representation
- Arrays. Tree labels for the complete and almost complete binary tree can 

be mapped into index values of a 1-dimensional array. (see homework 
problem)

- linked list (ECE264 material, see notes on the Web)
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