
1

EE 368

Weeks 4 (Notes)

2

Recursion and Backtracking
Read Chapter 3

Recursion

- Recursive Definition

- Some Examples

- Pros and Cons

A Class of Recursive Algorithms (steps or mechanics about performing some
computation).

1.Divide and Conquer Algorithms

2.Backtracking

3

A function invoking itself
void Countdown(int N)
{

if (N >= 0)
{

printf("%d...\n", N);
Countdown(N-1);

}
return;

}
int main()
{

Countdown(10);
return 0;

}

4

Recursion vs Iteration
• When you write a function that invokes itself, the

practice is called recursion. (the function recurs).
Postponement of work.

• For many computations, there is a way to write it
recursively and a way to write it iteratively.

• The iterative version is often more efficient.
• The recursive way is often more convenient.

5

Iteration
• Iterative function: in which a computation is

“unfolded” into smaller repeated steps. Explicit
repetition of the same process until a certain
condition is met.

• Example: iterative definition of factorial
prod = 1;
for (x =n; x > 0; x--)
prod *= x;
return(prod);

6

Recursion

• Recursive function: computation is expressed in
terms of a simpler version of itself.

• Example: Recursive definition of factorial

1 n= =0
n! =

n * (n-1)! n > 0

7

Factorial

int Factorial(int N)
{
if (N == 0)
return 1;

return N * Factorial(N-1);
}

8

How does recursion work
Calling
Main

Program

Calling
Program A

Calling
Program X

9

Fibonacci sequence
/* * Compute one number in the
* Fibonacci sequence:
* 1 1 2 3 5 8 13 21 34 55 89 144...
*/

int Fibonacci(int N)
{

if (N == 0)
return 1;

if (N == 1)
return 1;

return (Fibonacci(N-1) + Fibonacci(N-
2));

}

It is Divide & Conquer algorithm

10

When using recursion...
• You always need to tell the function when to

stop invoking itself.
• Don't return a pointer to something on the

stack (i.e. don't return an address of a local
variable)

• Don't perform recursion too deeply... you
will run out of stack space.

11

The Towers of Hanoi

Object: Move all Disks from peg A to C using peg B.

Algorithm?

Number of Moves?

Note:

Only smaller disks can be placed on larger disks and disks can only be moved one at
a time.

Way to solve recursively is to consider how to move bottom disk to peg C.

12

Recursive Solution
Step 1: Move tower

of 4 blocks to Peg B

using Peg C.

Step 2: Move largest

disk from Peg A to

Peg C.

Step 3: Move tower of 4

blocks from Peg B to Peg

C using Peg A.

13

General Recursive Solution
Consider case: n disks & 3 pegs.

Pegs will be designed as frompeg, topeg, auxpeg depending on their
role in our solution.

Algorithm:

IF n = 1, then move single disk from A to C

Else

1. Move n-1 disks from A to B using C as auxiliary peg

2. Move remaining disk from A to C.

3. Move n-1 disks from B to C using A as auxiliary disk.

14

Implementation
include < stdio.h >

main ()

{ int n;

scanf (“%d”, & n);

towers (n, ‘A’, ‘C’, ‘B’);

} /* end main */

towers (n, frompeg, topeg, auxpeg)

int n;

char auxpeg, frompeg, topeg;

{ /* If only one disk, make the move and return. */

if (n == 1) {

printf (“ \n%s%c%s%c”, “move disk 1 from peg “, frompeg,“ to peg “, topeg);

return;

} /* end if */

/* Move top n - 1 disks from A to B, using C as */

*/ auxiliary */

towers (n - 1, frompeg, auxpeg, topeg);

/* move remaining disk from A to C */

printf (“ \n%s%d%s%c%s%c”, “move disk “, n, “ from peg “,

frompeg, “ to peg “, topeg);

/* Move n - 1, disk from B to C using A as */

/* auxiliary */

towers (n - 1, auxpeg, topeg, frompeg);

} /* end towers */

Note: re-execution of the algorithm itself.

15

Recursion Tree
Tree exhibiting recursive calls. Can be used to find the total amount of

computation (steps) of the algorithm

Example: The Towers of Hanoi (to be done in class)

16

Solving Recurrence Equations

(closed form expression for complexity)

1. Expanding Recurrences

2. Using General Solution

(homogeneous and particular solution, identical to
solving partial differential equations)

17

Example of Expanding Recurrence
(Towers of Hanoi)

Number of moves needed to move a stack with n disks is given by:

2 M (n - 1) + 1 n > 1

Moves M (n) =

1 n = 1

n 1 2 3 4 5 …

M (n) 1 3 7 15 31 …

It looks like M (n) = 2n - 1

Exponential number of moves

18

Backtracking
Attempt to find a solution to a problem by constructing partial solutions
which are consistent with the requirements of the problem. If an attempt
to further extend the solution fails, backtrack and look for other
possibilities.

Good for those types of problems, where many possibilities exist, but
few survive for further test.

Searching for all or even one solution.

Technique is used to prune a recursion tree to a manageable size.
Situations that are already checked out can be used to prevent the later
investigation of fruitless efforts.

19

Example: Eight-Queens Problem
Problem: Place eight queens on a chessboard so that no queen can
attack any other queen.

Some configurations showing the solution

20

Search Procedure

Start with an exhaustive search on a 8 x 8 array.

Use Pigeonhole Principle to reduce search space:

Exactly one queen per row.

Also exactly one queen per column.

21

An Implementation
static short int board [8] [8];

#define TRUE 1

#define FALSE 0

main ()

{ int i, j;

for (i = 0; i < 8; i ++)

for (j = 0; j < 8; j ++)

board [i] [j] = FALSE;

if (try (0) == TRUE)

drawboard ();

} /* end main */

try (n)

int n;

}

int i;

for (i = 0; i < 8; i ++) {

board [n] [i] = TRUE;

if (n == 7 && good () == TRUE)

return (TRUE);

if (n < 7 && good () == TRUE && try (n + 1) == TRUE

return (TRUE);

board [n] [i] = FALSE

} /* end for */

return (FALSE);

} /* end try */

22

Complexity and Improvements

(to be done in class)

23

Using Stack for Recursion

	EE 368
	Slide Number 2
	A function invoking itself
	Recursion vs Iteration
	Iteration
	Recursion
	Factorial
	How does recursion work
	Fibonacci sequence
	When using recursion...
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

