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EE 368

Weeks 4 (Notes)
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Recursion and Backtracking
Read Chapter 3

Recursion

- Recursive Definition

- Some Examples

- Pros and Cons

A Class of Recursive Algorithms (steps or mechanics about performing some 
computation).

1.Divide and Conquer Algorithms

2.Backtracking   
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A function invoking itself
void Countdown(int N)
{

if (N >= 0)
{

printf("%d...\n", N);
Countdown(N-1);

}
return;

}
int main()
{

Countdown(10);
return 0;

}
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Recursion vs Iteration
• When you write a function that invokes itself, the 

practice is called recursion. (the function recurs). 
Postponement of work.

• For many computations, there is a way to write it 
recursively and a way to write it iteratively.

• The iterative version is often more efficient.
• The recursive way is often more convenient.
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Iteration
• Iterative function:  in which a computation is 

“unfolded” into smaller repeated steps. Explicit 
repetition of the same process until a certain 
condition is met.

• Example: iterative definition of factorial
prod = 1;
for ( x =n; x > 0; x--)
prod *=  x;
return(prod);
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Recursion 

• Recursive function: computation is expressed in 
terms of a simpler version of itself.

• Example: Recursive definition of factorial

1 n= =0
n! = 

n * (n-1)! n > 0
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Factorial

int Factorial(int N)
{
if (N == 0)
return 1;

return N * Factorial(N-1);
}
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How does recursion work
Calling 
Main 

Program 

Calling 
Program A

Calling 
Program X
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Fibonacci sequence
/* * Compute one number in the
* Fibonacci sequence:
* 1 1 2 3 5 8 13 21 34 55 89 144... 
*/

int Fibonacci(int N)
{

if (N == 0)
return 1;

if (N == 1)
return 1;

return ( Fibonacci(N-1) + Fibonacci(N-
2) );

}

It is Divide & Conquer algorithm
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When using recursion...
• You always need to tell the function when to 

stop invoking itself.
• Don't return a pointer to something on the 

stack (i.e. don't return an address of a local 
variable)

• Don't perform recursion too deeply... you 
will run out of stack space.
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The Towers of Hanoi

Object: Move all Disks from peg A to C using peg B.

Algorithm?

Number of Moves?

Note:

Only smaller disks can be placed on larger disks and disks can only be moved one at 
a time.

Way to solve recursively is to consider how to move bottom disk to peg C.
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Recursive Solution
Step 1:  Move tower 

of 4 blocks to Peg B

using Peg C.

Step 2:  Move largest

disk from Peg A to 

Peg C.

Step 3:  Move tower of 4 

blocks from Peg B to Peg

C using Peg A.
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General Recursive Solution
Consider case:  n disks & 3 pegs.

Pegs will be designed as frompeg, topeg, auxpeg depending on their 
role in our solution.

Algorithm:

IF n = 1, then move single disk from A to C

Else 

1. Move n-1 disks from A to B using C as auxiliary peg

2. Move remaining disk from A to C.

3. Move n-1 disks from B to C using A as auxiliary disk.
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Implementation
# include  < stdio.h >

main ( )

{ int  n;

scanf ( “%d”,  & n );

towers ( n,  ‘A’,  ‘C’,  ‘B’ );

} /* end main */

towers ( n,  frompeg,  topeg,  auxpeg )

int  n;

char auxpeg, frompeg, topeg;

{ /* If only one disk, make the move and return. */

if ( n  ==  1 ) {

printf ( “ \n%s%c%s%c”,  “move disk 1 from peg “,  frompeg,“ to peg “,  topeg);

return;

} /* end if */

/* Move top n - 1  disks from A  to B, using C  as */

*/ auxiliary */

towers ( n - 1,  frompeg,  auxpeg,  topeg );

/* move remaining disk from A to C */

printf ( “ \n%s%d%s%c%s%c”,  “move disk “,  n,  “ from peg “,

frompeg,  “ to peg “,  topeg );

/* Move n - 1,  disk from B  to C  using  A  as */

/* auxiliary */

towers ( n - 1,  auxpeg,  topeg,  frompeg );

} /* end towers */ 

Note:  re-execution of the algorithm itself.
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Recursion Tree
Tree exhibiting recursive calls.  Can be used to find the total amount of

computation (steps) of the algorithm

Example:  The Towers of Hanoi (to be done in class)
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Solving Recurrence Equations

(closed form expression for complexity)

1. Expanding Recurrences

2. Using General Solution

(homogeneous and particular solution, identical to 
solving partial differential equations)
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Example of Expanding Recurrence
(Towers of Hanoi)

Number of moves needed to move a stack with n disks is given by:

2 M (n - 1) + 1 n > 1

Moves M (n) =

1 n = 1

n 1 2 3 4 5 …

_________________________________________________________

M (n)  1 3 7 15 31 …

It looks like M (n) = 2n - 1

Exponential number of moves
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Backtracking
Attempt to find a solution to a problem by constructing partial solutions 
which are consistent with the requirements of the problem.  If an attempt 
to further extend the solution fails, backtrack and look for other 
possibilities.

Good for those types of problems, where many possibilities exist, but 
few survive for further test.

Searching for all or even one solution.

Technique is used to prune a recursion tree to a manageable size.  
Situations that are already checked out can be used to prevent the later 
investigation of fruitless efforts.
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Example:  Eight-Queens Problem
Problem:  Place eight queens on a chessboard so that no queen can 
attack any other queen.

Some configurations showing the solution
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Search Procedure

Start with an exhaustive search on a 8 x 8 array.

Use Pigeonhole Principle to reduce search space:

Exactly one queen per row.

Also exactly one queen per column.
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An Implementation
static  short  int  board  [ 8 ] [ 8 ];

#define  TRUE  1

#define  FALSE  0

main ( )

{ int i,  j;

for ( i = 0;  i < 8;  i ++ )

for ( j = 0;  j < 8;  j ++ )

board [ i ] [ j ]  =  FALSE;

if (try ( 0 )  ==  TRUE )

drawboard ( );

} /* end main */

try (n)

int n;

}

int i;

for ( i = 0;  i < 8;  i ++ ) {

board [ n ] [ i ]  =  TRUE;

if ( n  ==  7  &&  good ( )  ==  TRUE )

return  ( TRUE );

if ( n < 7  &&  good ( )  ==  TRUE  &&  try ( n + 1 )  == TRUE

return  ( TRUE );

board [ n ] [ i ]  =  FALSE

} /* end for */

return  (FALSE);

} /* end try */



22

Complexity and Improvements

(to be done in class)
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Using Stack for Recursion
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