### **EE 368**

Weeks 3 (Notes)

## State of a Queuing System

**State:** Set of parameters that describe the condition of the system at a point in time.

#### Why do we need it?

- Average size of Queue
- Average waiting time

#### How to define it:

M/M/1

Number of items in the system.

## **Introduction to Queuing Theory**

#### A queue is characterized by:

- Inter-arrival Time PDF
- Service Time PDF
- Number of Servers
- The Queuing Discipline FIFO, Priority,....
- Size of Buffer

## Probability Function of the Length of a M/M/1 Queue

 $P_k$  = Probability system has k customers (Queue + Server)

 $\lambda = arrival rate (average)$ 

 $\mu$  = service rate (average)

Assume:  $\lambda < \mu$ 

Let:  $\rho = \lambda / \mu$  < 1

## Probability Function of the Length of a M/M/1 Queue (cont.)

In steady-state:

$$P_{k} = (1 - \rho) \rho^{k}$$

This distribution is Geometric

# Performance Parameters of Queuing System

#### Average size of the queue:

Average size of the system

Average of random variable  $K = N = \rho / (1 - \rho)$ 

Average size of the Queue = N-1

#### Average waiting time in the Queue (Tq):

Average time spent in the system = T

Little's Law:

$$N = \lambda T$$

$$Tq=T-1/\mu$$

## Simulation of a Queuing System

**Simulation:** Modeling of real-world for the purpose of design and evaluation.

Model: An abstract representaion of a system in terms of system state, entities, sets, and events etc.

**Event-Driven:** Occurrence of events changes the simulated situation.

#### Events in a M/M/1 Queue.

- A new Arrival
- Completion of a service

Events in **M/M/k** Queuing System???

### **Concepts of Event-Driven Simulation**

Entity: Any object, such as customer, server

**System:** A collection of entities (example: customers)

**State:** A collection of variables that contain the information to describe the system at any time.

**Event:** An instantaneous occurrence that changes the system's state

**Set:** Collection of related entities, eg. queues of various priorities

### **Concepts for Event-Driven Simulation**

#### **Queues to be maintained:**

- Customer Queues (can be multiple, such as priority queues)
- Future Event Queue (EQ): Maintains evolution of events. It contains all previously scheduled future events and their associated event times.

## Computation of Exponentially Distributed Random Time

#### **Interarrival time PDF**

$$f(r) = \lambda e^{-\lambda r}$$

#### **Service time PDF**

$$f(r) = \mu e^{-\mu r}$$

#### **Computing exponential PDF from unifrom**

$$r = -1/\mu \ (ln \ (1-x))$$

#### **Cumulative Statistics in Simulation**

Average waiting time in the queue =

Total waiting time of all the customers / Total number of customers

Probability (wait) =

Number of customers waited / Total number of customers arrived

Probability of idle server:

Average Service Time:

Average time customer spends in the system:

## **Event-Driven Simulation**

- Simulation is the imitation of the operation of a real-world process over time
- Why simulation is performed?
  - to study the internal interactions of a complex system
  - To experiment with new designs or policies prior to implementation
  - To observe the effect of a change in input on the system's output

# Data structures for simulation of a Queueing System

- An ADT is needed to maintain all the vital information related to the simulated system
- *Entities* in a queuing system are objects and servers
- A waiting queue is needed to represent a *set* of objects, waiting to be processed by the server
- *Event* can be an arrival event or a departure event
- The *state* of the queueing system at time *t* is described by the number of objects waiting in their respective queues and the state of the servers (busy/idle) at time t.
- A list of events to occur in the future is maintained and can be termed as *FEL*. Events in *FEL* are ordered in increasing order of time
- Queueing Model
  - Number of servers
  - Number of queues
  - Objects arrival rate
  - Service rate

## System Snapshot at simulation time t

| Cloc<br>k | System state | Entities and attribute | Set 1 | Set 2 | <br>FEL                                                                          | Cumulative statistics and counters |
|-----------|--------------|------------------------|-------|-------|----------------------------------------------------------------------------------|------------------------------------|
| t         | (x,y, z,)    |                        |       |       | $(A,t_1),$<br>$(B,t_2),(C,t_3),$<br><br>Note:<br>$t \le t_1 \le t_2 \le t_3 \le$ |                                    |

# Event-scheduling/time-advance algorithm

- **Step1**. Remove an event (imminent event) from FEL. Say (event A, time t<sub>1</sub>)
- **Step2**. Advance clock to imminent event time (i.e., advance clock from t to t<sub>1</sub>)
- **Step3**. Execute imminent event: update system state, change entity attributes, and set membership as needed. For example, if the imminent event is an arrival of a new customer and the server is busy, insert the customer in the waiting queue
- **Step4**. Generate future events (if necessary) and place on FEL.
- **Step5**. Update cumulative statistics and counters.

## Example of an M/M/1 Queue

- A small grocery store that has only one checkout counter
- Simulate this queue from t=0 to t=25
- System State variables: Q(t) and S(t)
  - -Q(t) = # of customers in the system at time t
  - S(t) = 1 server busy, 0 otherwise



# Example of an M/M/1 Queue (Contd.)

#### • Events:

```
Arrival (A)
Deprture (D)
Stopping Event (E) Scheduled to occur at time t = 25
```

#### • Event Notices:

```
(A,t) arrival of a customer at future time t (D,t) departure of a customer at time t (E,25) stopping event at t=25
```

## Example of an M/M/1 Queue (Contd.)

#### Activities

Interarrival time, uniformly distributed between 1 to 8 minutes Service time, exponentially distributed with mean time = 3 minutes

```
      Interarrival times 8 6 1 8 3 8 ....

      Service times 4 1 4 3 2 4 ....
```

#### Cumulative statistics

- B, server utilization
- MQ, maximum queue length
- W, cumulative waiting time of all customers





#### Simulation table for checkout counter (Single channel queue)

| t   | Event removed  | System State Q(t) S(t) |   | Future Event List (FEL)                                             | Comment                                                                                                   |       | Cum.<br>Statistics |   |  |
|-----|----------------|------------------------|---|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------|--------------------|---|--|
|     |                |                        |   |                                                                     |                                                                                                           | В     | MQ                 | W |  |
| < 0 |                | 0                      | 0 | $(A_1,0)$ , $(E,25)$                                                |                                                                                                           | 0     | 0                  | 0 |  |
| 0   | $A_1$          | 0                      | 1 | <b>(D<sub>1</sub>,4)</b> , (A <sub>2</sub> ,8), (E,25)              | A <sub>1</sub> occurs (following LHS of FCA) (s=4) schedule D <sub>1</sub> (a=8) schedule A <sub>2</sub>  | 0     | 0                  | 0 |  |
| 4   | $\mathbf{D}_1$ | 0                      | 0 | ( <b>A</b> <sub>2</sub> , <b>8</b> ), (E,25)                        | D <sub>1</sub> occurs.(following RHS of FCD)                                                              | 4     | 0                  | 0 |  |
| 8   | $A_2$          | 0                      | 1 | $(\mathbf{D}_2,9)$ , $(\mathbf{A}_3,14)$ , $(\mathbf{E},25)$        | A <sub>2</sub> occurs, (following LHS of FCA) (s=1) schedule D <sub>2</sub> (a=6) schedule A <sub>3</sub> | 4     | 0                  | 0 |  |
| 9   | $D_2$          | 0                      | 0 | ( <b>A</b> <sub>3</sub> , <b>14</b> ), (E,25)                       | D <sub>2</sub> occurs,(following RHS of FCD)                                                              | 5     | 0                  | 0 |  |
| 14  | $A_3$          | 0                      | 1 | ( <b>A</b> <sub>3</sub> , <b>15</b> ), (D <sub>3</sub> ,18), (E,25) | $A_3$ occurs, (following LHS of FCA)<br>$(s^* = 4)$ schedule $D_3$<br>$(a^*=1)$ schedule $A_4$            | 5     | 0                  | 0 |  |
| 15  | $A_4$          | 1                      | 1 | ( <b>D</b> <sub>3</sub> ,18), (A <sub>5</sub> ,23), (E,25)          | A <sub>4</sub> occurs,(following RHS of FCA) Customer delayed (a*=8) schedule A <sub>5</sub>              | 6     | 1                  | 0 |  |
| 18  | $D_3$          | 0                      | 1 | $(\mathbf{D_4,21}), (A_5,23), (E,25)$                               | $D_3$ occurs,(following LHS of FCD)<br>(s* = 3), schedule $D_4$                                           | 9 1 3 |                    |   |  |