EE 368

Weeks 2 (Notes)

FIFO (First In First Out) Queues (ordered-list)

Scheduling Batch Jobs on a Single Computer

Queue for Bank Tellers

Queues for Grocery Stores

Road Toll Booths

FIFO Queues (ordered-list)

A snapshot of a Queue at a particular time X E Front Rear FIFO List

Operations of FIFO Queues

- Add Queue (adding elements to the rear)
- Delete Queue (de-queue from the front)
- Empty
- Full
- Size

Implementation of FIFO Queues

Implementation of FIFO Queues		
(implementation using Arrays and Linked-List		
using pointers, trade-offs)		
Front	A	Array
	В	
	C	
Rear>	D	
		$\triangle A[_58]$

Problem with Array-Based Implementation

- 1) Index overflow
- 2) Movement of array elements is costly

One option:

Use Circular Array.

Priority Queue (ordered collection)

- Need
- Implementation using Arrays and Linked-List using pointers, trade-offs for various operations.

Introduction to Queuing Theory

Random Variable

Discrete

Continuous

Density Function (PDF)

Discrete:

Bernoulli

Binomail

Geometric

Poisson

Introduction to Queuing Theory (cont.)

Exponential

Normal Continuous

Uniform

Parameters of Interest

Mean or Expected Value

Variance

Standard Deviation

Queuing Theory

Use: To model and evaluate various physical systems where resources are shared and waiting takes place.

Notation for Queuing System: A/B/C/D (Kendal's Notation)

M, D, G
A: Inter-arrival time PDF

B: Service Time PDF

C: Number of Servers

D: Buffer Size

Example: M/M/1, M/G/1, M/M/2/40 $D = \infty$

Queuing Theory (cont.)

A: M (Exponential),

—> Arrival Process is Poisson.

B: M (Exponential),

Service Time Distribution is Exponential.