
1

1

Advanced C Programming

Trees

2

Trees
♦ Until now, we've only looked at lists that have 

only one "dimension": forward/backward or 
next/previous.

♦ Consider a structure that acts as a "parent" and has 
at most two "children" (a binary tree)
struct Node {

int Value;
struct Node *Left;
struct Node *Right;

};



2

3

What does a tree look like?
(Lots of children)

Root      

Value = 15
Left

Right

Value = 11
Left

Right

Value = 17
Left

RightValue = 5
Left

Right

4

Interesting properties of trees

♦ Trees are fun to use because you can easily add 
more children to the existing children.

♦ With the trees we're working with, the left child 
always has a Value less than or equal to the 
parent's Value.  The right child always has a Value 
greater than the parent's Value.

♦ You can always add a new child in the proper 
position (to the left or right of the parent).

♦ The tree is always fully sorted (how)?
♦ The tree is easily searchable.



3

5

Creating an ordered binary tree

♦ Creating a binary ordered tree from a random data 
set: (also called binary search tree)

♦ First element stored in the root node
♦ Compare the second element with the root node, if 

the new value is less than the parent’s value, then 
move left (e.g. Pointer = Pointer->Left). Otherwise 
go right.

♦ Keep on comparing new value and keep on 
moving (left or right) until you reach a NULL 
pointer. Append the new node at that location.

6

Creating an ordered binary tree 
21  44  5  7  3  10  100  5  65  80   

21

5 44

3 7 100

5 10 65    

80



4

7

More about trees

♦ Searching an ordered binary tree is just as easy as 
inserting something in a tree:

1 Set a Pointer to point at the root structure.
2 If the value we're looking for == the Pointer value,

return the Pointer.
3 If the value we're looking for is < the Pointer value,

go left. (e.g. Pointer = Pointer->Left)  And goto (2)
4 Otherwise go right and goto (2)
5 If the Pointer is ever NULL, return NULL to indicate 

that the value was not found in the tree.

8

Tree processing and more trees

♦ Recursive methods for creating, searching, 
and traversing trees.

♦ Higher order trees. A node may have more 
than two children.

♦ For example: In a tertiary tree, maximum 
three children nodes per node



5

9

Recursive techniques for trees

♦ Most of the tree functions can be 
implemented using recursion.

♦ The code is easily readable and 
understandable.

10

Tree Functions (create)

struct Node *Create_Node(int Value)
{
struct Node *Ptr = NULL;

Ptr = malloc(sizeof(struct Node));
assert(Ptr != NULL);

Ptr->Left = NULL;
Ptr->Right = NULL;
Ptr->Value = Value;

}



6

11

Tree functions (Insert)
(Iterative Version)

void Insert_Node(struct Node *Root, struct Node *New)
{   while(1) {

if (New->Value <= Root->Value)
if (Root->Left == NULL) 
{         Root->Left = New; 

return;
}
else    Root = Root->Left;

else
if (Root->Right == NULL) 
{   Root->Right = New; 

return;
}

else Root = Root->Right;
}

}

12

Tree Functions (Insert)
(Recursive Version)

void Insert_Node(struct Node *Root,    struct Node *New)
{

if (New->Value <= Root->Value)
if (Root->Left == NULL) {
Root->Left = New; return;

}
else
Insert_Node(Root->Left, New);

else
if (Root->Right == NULL) {
Root->Right = New; return;

}
else
Insert_Node(Root->Right, New);

}



7

13

More about trees

♦ Searching an ordered binary tree is just as easy as 
inserting something in a tree:

1 Set a Pointer to point at the root structure.
2 If the value we're looking for == the Pointer value,

return the Pointer.
3 If the value we're looking for is < the Pointer value,

go left. (e.g. Pointer = Pointer->Left)  And goto (2)
4 Otherwise go right and goto (2)
5 If the Pointer is ever NULL, return NULL to indicate 

that the value was not found in the tree.

14

Recursive version of Tree_Find
struct Node *Tree_Find(

struct Node *Root,
int Value)

{
if (Root == NULL)

return NULL;  /* Not found */
if (Value == Root->Value)

return Root;  /* Found it */
if (Value < Root->Value)  /* Go left */

return Tree_Find(Root->Left, Value);

return Tree_Find(Root->Right, Value);
}



8

15

How do we get at the sorted 
content of a tree?

♦ We know that an ordered binary tree is fully 
sorted.  We'd like to take advantage of that.

♦ The "least" element in the tree is at the far 
left.

♦ The "greatest" element is at the far right.
♦ Our tree nodes do not point back to their 

parents.
♦ How can we start at the far left and go 

through each node in order???

16

Tree Traversal

♦ Accessing each of the nodes of a tree in order 
is often called Tree Traversal or Iterating 
over a Tree.  We can do this in several ways.

♦ Least to greatest:
For each node, access the left node 
recursively, then the node itself, then the 
right node recursively.  (Abbreviated L-N-R)

♦ Greatest to least: Same way except R-N-L.
♦ Prefix: N-L-R
♦ Postfix: L-R-N



9

17

Example of ordered printing

void Print_Tree(struct Node *Ptr)
{

if (Ptr == NULL)
return;

Print_Tree(Ptr->Left);  /* Go left */

printf("%d\n", Ptr->Value); /* Node */

Print_Tree(Ptr->Right); /* Go right */
}

18

Example of tree traversal
21  44  5  7  3  10  100  5  65  80   

21

5 44

3 7 100

5 10 65    

80



10

19

Example of tree traversal
LNR output: 3  5  5  7  10  21  44  65  80 100   

21

5 44

3 7 100

5 10 65    

80 
RNL output: 100  80  65  44  21  10  7  5  5  3


