For the key set 17, 138, 173, 294, 3006, 472, 540, 551, and 618, Sprugnoli’s
algorithm finds the quotient reduction hash function (key + 25)/64, which yields
the hash values 0, 2, 3,4,5,7,8,9, and 10. The function is not minimal, since it
distributes the 9 keys to a table of 11 positions. Sprugnoli’s algorithm does, however,
find the quotient reduction perfect hash function with the smallest table size.

An improvement to the algorithm yields a minima) perfect hash function of

the form

h(key) = (key + s)/d if key <=t
h(key) = (key + s + ry/d if key > t

where the values s, d, r, and r are determined by the algorithm. However, the
algorithm to discover such a minimal perfect hash function is O(rn) with a large
constant of proportionality so that it is not practical for even very small key sets.
A slight modification yields a more efficient algorithm that produces near-minimal
perfect hashing function of this form for small key sets. In the foregoing example,

such a function is

h(key) = (key - 7y/72 if key <= 306
h(key) = (key - 4ey/ie if key » 30b

-which yields the hash values 0, 1,2,3,4,5,6,7,and 8 and happens to be minimal.
A major advantage of quotient reduction hash functions and their variants is that they
are order preserving.

Sprugnoli also presents another group of hashing functions, called remainder
reduction perfect hash functions, which are of the form

h(key) = ((r + S * key) % x)/d

and an algorithm to produce values r, s, x, and d that yield such a perfect hash
function for a given key set and a desired minimum load factor. If the minimum load
factor is set to 1, a minimal perfect hash function results. However, the algorithm
does not guarantee that a perfect remainder reduction hash function can be found in
reasonable time for high load factors. Nevertheless, the algorithm can often be used
1o find minimal perfect hash functions for small key sets in reasonable time.
Unfortunately, Sprugnoli’s algorithms are all at least O(n%) and are therefore
only practical for small sets of keys (12 or fewer). Given a larger set of keys,
k, a perfect hash function can be developed by a technique called segmentation.
This technique involves dividing & into a number of small sets, ko.k2, . - - kp, and
finding a- perfect hash function h; for each small set k;. Assume a grouping function
sef such that key is in the set Kot (kevy - 1 1 is the maximum value of s; on ki
and b; is defined as i + mo + ¥ - + m_,, we can define the segmented
hash function h as h(key) = Diertkery T Ryer ko) (KEY).- Of course, the function sef

that determines the grouping must be chosen with care to disperse the keys reason-

ably.
Jaeschke presents a method for generating minimal perfect hash functions using
a technique called reciprocal hashing. The reciprocal hash functions generated by

496 » Searching Chap. 7

Jaeschke’s algorithm are of the form
h(key) = (c/(d * key + e)) % tablesize

for some constants ¢, d, and e, and tablesize equal to the number of keys. Indeed,
if the keys are all relatively prime integers, a constant ¢ can be found that yields a
minimal perfect hash function of the form

(c/key) % tablesize

by the following algorithm. Assume that the keys are initivailly in a sorted array k(0)
through k(rn — 1) and that f(c, key) is the function (ctkey) %o n.

c = ((n - 2) * k(0) * k(n = 1))/ (k(n - 1) - k(0));
while (TRUE) {
/* check if ¢ yields a perfect hash function */
bigi = -1; /* these will be set to the largest values
bigj = -1; /* such that f(c, k(bigi)) = f(c, k(bigj))
for (i = 0; 1 < n; 1i++)
val(i) = f(c, k(i));
for (i = n - b; bigi < 0 &% 1 >= 0; 1i--) {
vi = val(i);
j=1-1;
while (bigi < 0O && j >= D)
if (vi == val(j)) {
bigi = 1i;
bigj = 7;
}
else
J—
} /% end for */
if (bigi < 0)
return;

/ * increment ¢ */
x = k(bigj) - (¢ % k(bigj));
y = k(bigi) - (¢ % k(bigi));

(x < Yy) ? Cc += X I C += Y;
} /% end while */

Applying this algorithm to the key set 3, 5, 11, 14 yields ¢ = 1l and the
minimal perfect hash function (11/key) % 4. For the key set 3, 5, 11, 13, 14 the
algorithm produces ¢ = 66. In practice one would set an upper limit on the value
of ¢ to ensure that the algorithm does not go on indefinitely.

If the keys are not relatively prime, Jaeschke presents another algorithm to
compute values d and e so that the values of d * k(i) + e are relatively prime, so
that the algorithm can be used on those values.

For low values of n, approximately 1.82" values of ¢ are examined by this
algorithm, which is tolerable for n <= 20. For values of n up to 40, we can divide
the keys into two sets sl and s2 of size nl and n2, where all keys in s1 are smaller

Sec. 7.4. Hashing 497

*/
*/

than those of s2. Then we can find values cl, dl, el and ¢2, d2, €2 for each of the
sets individually and use

h(key) = (cl/(dy * key + el)) % nb
for keys in sl and
h(key) = ny + (c@/(de * key + e2)) % ne

for keys in s2. For larger key sets, the segmentation technique of Sprugnoli can be
used.

Chang presents an order-preserving minimal perfect hash function that depends
on the existence of a prime number function, p(key), for the set of keys. Such a
function always produces a prime number corresponding to a given key and has the
additional property that if keyl is less than key2, p(keyl) is less than p(key2). An
example of such a prime number function is

P(X)=X8—x+41, for 1, <= x <= 40

1
;
If such a prime number function has been found, Chang presents an efficient "
algorithm to produce a value ¢ such that the function h(key) = ¢ % p(key) is an order- \
preserving minimal hash function. However, prime number functions are difficult 'l
to find, and the value c is t00 large to be practically useful. _ .

Cichelli presents a very simple method that often produces a minimal or near-
minimal perfect hash function for a set of character strings. The hash function
produced is of the form ;

h(key) = val(keylD1) + Val(key[length(key) - L1) + length(key)

where val(c) is an integer value associated with the character ¢ and key[i] is the
ith character of key. That is, add integer values associated with the first and last
characters of the key to the length of the key. The integer values associated with
particular characters are determined in two steps as follows.

The first step is to order the keys so that the sum of the occurrence frequencies
of the first and last characters of the keys are in decreasing order. Thus if e occurs
ten times as a last or first character, g occurs six times, t occurs nine times, and
o occurs four times, the keys gare, goat, and ego have occurrence frequencies 16 !
6 + 10), 15 (6 + 9), and 14 (10 + 4), respectively, and are therefore ordered
properly.

Once the keys have been ordered, attempt to assign integer values. Each key
is examined in turn. If the key’s first or last character has not been assigned values,
attempt to assign one Or two values between 0 and some predetermined limit. If
appropriate values can be assigned to produce a hash value that does not clash with
the hash value of a previous key, tentatively assign those values. If not, or if both
characters have been assigned values that result in a conflicting hash value, backtrack
to modify tentative assignments made for a previous key. To find a minimal perfect

498 Searching ~ Chap. 7

SECTION 22.2 Application: Hashing Functions 787

To illustrate Theorem 22.6, suppose that we have a string-matching problem
with the pattern X being of length n = 200, which corresponds to 25 8-bit ASCII-
encoded characters, and with the text string Y being of length 32000 corresponding to
4000 ASCII characters. Then ¢ = 31801 and M = nt? < 200(32000) = 21 10% ~
211 . 2266 238 5o that the base 2 computer representations of the primes p; and
corresponding residues will have fewer than 38 bits. If k = 4, then the probability of
a false match will be less than about 2 - 10728,

The Karp and Rabin algorithm is a real-time algorithm requiring the same com-
putation time for each text character. It also requires a constant amount of storage
depending only upon n, k, and ¢. The algorithm can be proved to have a small proba-
bility of error. In addition, the method easily generalizes to apply to multidimensional
problems. Other “fingerprinting” functions besides N, may be appropriate.

We note that Karp and Rabin give other similar but different probabilistic pattern-
searching algorithms in the reference cited earlier. For comparison purposes, infor-
mation about some efficient nonprobabilistic searching algorithms may be found in
(1) “Fast Pattern Matching in Strings,” by D. E. Knuth, J. H. Morris, and V. R. Pratt
[65];-(2) “A Fast String Searching Algorithm,” by R. S. Boyer and I. S. Moore [12];
(3) by Jack Purdum “Pattern Matching Alternatives: Theory vs. Practice” [93]; and
(4) “A Very Fast Substring Search Algorithm,” by Daniel M. Sunday {111].

B EXERCISES

1. Prove thatif W and V are bit strings of length 7, then [N (W) — N(V)| < 2".

2. In Theorem 22.2, the product of all primes less than or equal to w was shown
to be greater than 2% as long as w > 29. Determine which positive integers
w < 29 have the property of the conclusion of this theorem.

3. InTheorem 22.3, two inequalities were shown to hold for every positive integer
w > 17. By direct computation, determine which positive integers w < 17 also
satisfy these inequalities.

4. For a pattern X of length n = 160 and a text of length m = 20000, use The-
orem 22.6 to determine an upper bound on the probability of a false match for
k=1,2,3 and 4.

5. Assume that the pattern length » bits is given, that the number of primes k has
been given, that M is such that all fingerprinting primes and their residues have
fewer than 32 bits, and that the updating described in the discussion will be
used. Determine the number of 32-bit computer words of information storage
are needed to implement the Karp and Rabin algorithm.

®22.2 APPLICATION: HASHING FUNCTIONS

In computer applications the situation frequently occurs in which there are n sets of
information Iy, I, ... , I, where each set is “named” with a key, say k1, k2. ... , kx,
respectively. It is desirable to be able to find the information [; quickly when the
key k; is given. The keys may be considered to be integers even though they may
be finite sequences of alphabetic characters. Searching lists of keys may require too

788 CHAPTER 22 Applications of Number Theory

much time; moreover, if a search for information using the keys must be conducted
many times, the computational work may be considerable. A compiler is a computer
program that converts another computer program written in a high-level computer
language such as FORTRAN or Pascal into a machine language program. During
the process of “compiling,” the compiler must produce tables and find items with the
associated information in the tables many times. The important idea here is that the
“lookup” table is created once but is used many times. Since there may be many such
tables, one also needs to use the least storage feasible.

One solution to the “location” problem is to use a hash function h : K —
{0,1,...,m} where K = {k1, ky, ..., ky} and where m + 1 > n. We then provide
m + 1 computer storage locations where the n sets of information are kept. Thus,
to find /;, we calculate h(k;) and go to the location h(k;) where I; is kept. It is
generally difficult to find an ideal hash function, that is, one where A(k,) # h(ks)
when k, # k; and where m + 1 = n. Hash functions that are often used map K
into a set much larger than n elements and are not one-to-one. For i not one-to-
one, provision must be made for what to do when there is collision, that is, when k,
and kg are distinct keys but h(k,) = h(k;). Donald E. Knuth in Volume 3 of The
Art of Computer Programming [64] discusses various choices for hash functions and
methods of dealing with collisions. G. Jaeschke in “Reciprocal Hashing: A Method
for Generating Minimal Perfect Hashing Functions” [51] describes a particular type
of minimum hashing function, that is, a hash function that is one-to-one and uses
minimum storage (minimum perfect hashing function). Jaeschke’s hashing function
requires that one be able to map the keys {k1, k2, . . . , k,}, which may not be relatively
prime to one another, to a set of integers { f (k1), f(k2), ..., f(k,)} that are pairwise
relatively prime. He proved the following theorem.

THEOREM 22.7 Let K = (ky, ko, ... , k) be a set of n distinct positive integers.
There exist two integers D and £ such that if f(x) is defined by f(x) = Dx+E, then
the members of the set of positive integers { f(ky), f{k2), ..., f(k,)} are pairwise
relatively prime. Thus, the integers Dk; + E, Dky + E, ..., and Dk, + E are
pairwise relatively prime.

PROOF The proof is longer than we can present here (see Jaeschke’s 1981 paper
[51]); however, we will consider a special case later that will be adequate for our
purposes.

Jaeschke’s main result is the next theorem, where |w] is the greatest positive
integer less than or equal to w.

THEOREM 22.8 1Iftheset K = {ki, ka, ..., k,)} has distinct positive integer keys,
then there exist integers C, D, and E such that

C C
hx) = H {Dx T EJ “ = be T EJ (mod)

where x € K, is a minimum perfect hashing function.

[e A e T e S SU

SECTION 22.2 Application: Hashing Functions 789

PROOF Letk; < ky < - < ky, and let the integers D and E be given by Theo-
rem 22.7 so that f(k;) = Dk; + E and ged(f(k;), f(k;)) = 1 fori # j. Since D
and E may be chosen so that f(k;) > n for each j, it is possible to choose n integers
ai,az, ..., an suchthata; # a; (mod n) and such that

(i—1) - (Dki+E)<a; <i-(Dki+ E)
Then, by the version of the Chinese remainder theorem applicable to nonrelatively
prime moduli (Theorem 10.14), there is a number C such that
C=a; (mod n(Dk)+ E))
C=ay (modn(Dky+ E))

C=a, (modn(Dk,+ E))

Therefore, there are integers «; such that C = g;[n(Dk; + E)] + a; for all i. Conse-
quently,

',WJ =gn+(@—-1)=i-1 (modn)

This result implies that the function 4 defined in the theorem has the property h(k;) #
h(k;) when i # j so that h is one to one. Further, the range of the function £ is
{0,1,...,(n— D} B

Jaeschke gives algorithms for computing C, D, and E; however, the methods
are exhaustive in nature. On the other hand, C. C. Chang and J. C. Shieh in “Pairwise
Relatively Prime Generating Polynomials and Their Applications” [19] give a way to
calculate a required polynomial of the form f(x) = Dx + 1 where E = 1. The proof
of the next lemma is left to the reader.

LEMMA 22.9 If a and b are positive integers, @ > b, and d is a multiple of ¢ — b,
then d(a — b) and da + 1 are relatively prime.

THEOREM 22.10 Let K = {k;, k2, ... , k) be a set of n distinct positive integers

with k; < kigp. If {1y, 00, ... 6} = {k —-kj 1 < j < i < nj}is the set of
s = n(n—1)/2 differences, then D = w-Iem(t, 1, . . . , £5), where w is any positive
integer, has the property that Dky + 1, Dkp + 1, ... , Dk, + | are pairwise relatively
prime.

PROOF Since ged(a, b) = ged(a — b, a) when a and b are integers for which
both ged(a, b) and ged(a — b, b) are defined, we obtain ged(Dk; + 1, Dkj + 1) =
ged(D(k; —k;), Dk;+1) fori > j, where D is as given in the theorem. By definition
of D, D is a multiple of (k; — k;); therefore, Lemma 22.9 gives ged(Dk; + 1, Dk; +

s

1):1fOIi>j. [

We note that the proof of Theorem 22.10 requires only that D be a multiple of
all of 11, 15, ..., t;. Ordinarily, one would probably choose as small a D as possible
(w = 1); however, the proof of Theorem 22.8 requires a D such that f(k;) = Dk; +
1 > n. Such a D can always be obtained by selecting w large enough.

790 CHAPTER22 Applications of Number Theory

TV LY IERY Suppose that K = {3, 6,7, 12}. Then

ki —kj:1<j<i<d4) = {6~3,7-3,12-3,7-6,12-6,12-7)
J
= {3,4,9,1,6,5}

sothat D =1Icm(3,4, 9, 1, 6, 5) = 180. Thus, f(x) = 180x + 1 and

By inspection, any two of 541, 1081, 1261, and 2161 are relatively prime. B

In order to implement Jaeschke’s reciprocal hashing we must be able to com-
pute the integer C. Fortunately, C. C. Chang and J. C. Shieh in “A Fast Algorithm for
Constructing Reciprocal Hashing Punctions” [18] provide an algorithm for comput-
ing the integer C.

In the rest of this section we use both the greatest integer function [w | described
earlier and the ceiling function [w1, which is the least positive integer greater than or
equal to w. Thus, [5.23] = 6 and [8] = 8.

THEOREM 22.12 Ir

(@) my, ma, ..., m, are pairwise relatively prime integers,
(b) my >nforalli,1 <i <n,

(c) M=

n
my,
o

J
M
@ M;=n]m = foralli,

J# i
(e) b; issuch that M;b; = n (mod nm;), and
D
) N; = ,'(l—ﬂ-l for each ¢,
n
then
1.
n
M;jbjN,
=1
d =({—1) (mod n) forall i
m;
2.

n
C= Z M;b;N;
j=1 nM

PRSI

SECTION 22.2 Application: Hashing Functions
. o C . .
is the smallest positive integer such that | — | = ((— 1) (mod r) for all i.
i

PROOF Leta; = N; -n. Then g; is the smallest multiple of 7 such that (i —1)-m; <
a; <i-m;forallianda; # a; (mod n) wheni 3 j. Thesum) %_; M;b;N;isa
solution of the n congruences

x =-.a; (mod nm1)

Il

ay (mod nmy)

x =a, (modnm,)

because if j # i, then M contains the factor nm;; so MjibjN; =0 (mod nm;) and

n
ZMjijj = MibiNi (mod nmi)
=nN; =a; (mod nm;)

Therefore,

n n
> MjbjN; } M;jbiN; :
Wi = j=1 _ J# n M;b;N; Tt M;b;N;

m; m; n mi

for an appropriate integer J;. Since M;b; = n (mod nm;), there exists an ihteger t
such that M;b; = t;(nm;) + n so that

N;
W; = nlJ; + tinN; + il
m;

Thus, because ((— 1) -m; <a; <1i-m;,
niN; a; .
=|—|=(0G{(—1) (modn)
m; m;
which is part 1.

LetC = [[Z’;:l MjijjﬂnM. We need to show the congruence L%J =@(-1

LWil

(mod n) for 1 < i < n. By the division algorithm there is an integer J such that
n -

> M jbjN; = J(nM Y+ C. For 1 <i < n, again using the division algorithm, there

j=1

are integers g; and r; with 0 < r; < m; such that

n
ZMjijj =qim; +1;
j=1

791

792 CHAPTER22 Applications of Number Theory

so that

Therefore, by the result of part 1, there is an integer #; such that

gi =0 —1)+5n
gim; = (i — D)m; + t;nm;
gimi +ri = (@ — Dm; + tinm; +r;
JmM)+ C = — D)m; + t;nm; +1;

so that

C JM i
T=(l'—1)+<fi————>n+i

i m; m;

o =0 (o= 3)
— =00—-D4+{ti——)n
m; m;

{SJ =(G—-1) (modn)
m

and

1

It is left to the reader to show that if C’ is any other positive integer such that L% J =
(i—1) (modn)foralli,1 <i <n,then C' > C.

Finally, we combine the last several results into the following theorem.

THEOREM 22.13 Let K = {k1, ko, ... , k) be a set of n distinct positive integers;
and let D and E be the integers, and f(x) = Dx + E the function, described in
Theorems 22.8 and 22.10. Also, assume that C is given by part 2 of Theorem 22.12

where m; = f(k;). Then
C
o=z,

is a minimum perfect hashing function.

PROOF Ifm; = f(k), Theorem 22.12 implies that

hk;) = H‘in»JH =@(-Nforl<i<n

Thus, & is one-to-one and onto {0, 1, ... , (n — 1)}. 5

SECTION 22.2 Application: Hashing Functions 793

We now continue Example 22.11 where K = {k1, k2, k3, ka} = {3,6,7,12) and FUNVEIRIVYIRL
F(x) = 180x + 1. We found that (f(k1), f(k2), f(ks), f(ka)} = (541,1081, :

1261,2161}. Let m; = f(k;). The m;’s are pairwise relatively prime and m; >
n = 4. Using Theorem 22.12, we obtain the following table:

. N,j ZW,'I),'N,'

For example, to find b3 we solve 5055192724 - b3 = 4 (mod 5044), which is equiva-
Jent to solving 1263798181-b3 = 1 (mod 1261) or to solving 22-b3 = 1 (mod 1261).
Therefore, we want b3 and y such that 22b3 + 1261y = 1. Using the Buclidean Al-
gorithm and back substitution, we obtain the result 22 - 172 + (=3) - 1261 = 1.
Thus

i SIS R e S

n
C= Z M;b;N; = [[67985053993349241], 4y = 3183904723300
j=1

dnM
Next we use C, f, and h to hash k3 = 7.

3183904723300
1261

h(ks) = h(7) = H: JH = [{2524904618]], = 2
- 4

Jaeschke’s reciprocal hashing function generates large integers. The computa-
tional effort necessary to implement it should be compared to the resources required
for using a nonminimal and nonperfect hashing function: (1) possible large mem-
ory requirements, (2) dealing with collisions, and (3) using search algorithms to find
items in a table. :

BEEXERCISES

1. If @ and b are integers for which both ged(a, b) and ged(a — b, a) are defined,
prove that gcd(a, b) = ged(a — b, a).

2. PFor each of these sets, find a polynomial f(x) = Dx + 1 that maps the set
one-to-one and onto a set of pairwise relatively prime integers:
(a) {12, 15,18, 24}
(b) {5, 15,20, 25}

3. Letay, aa, ... , a, ben distinct positive integers. Prove or disprove: ged(ag, az,

., an) = 1 if and only if ged(a;, a;) = 1 foralli # j.

4. In the proof of Theorem 22.12, show that a; = N;n is the smallest multiple of
nsuchthat (— 1) -m; <a; <i-m;.

5. Verify the numbers in the table of Example 22.14.

802 Bibliography

[14] R. P. Brent and J. M. Pollard, “Factorization of the Eighth Fermat Number,”
Math. of Comput., Volume 36, No. 154 (1981), 627-630.

[15] Richard A. Brualdi, Introductory Combinarorics, Prentice-Hall, Upper Saddle
River NJ, 1999,

[16] E Cajori, A History of Mathematics, 2nd ed., Macmillan, New York, 1961.

[17] R.D. Carmichael, “On Composite Numbers P Which Satisfy the Fermat Con-
gruence a’~! =1 mod P’ Amer. Math. Monthly, Volume 19, No. 2 (1912),
22-27.

[18] C. C. Chang and J. C. Shieh, “A Fast Algorithm for Constructing Reciprocal
Hashing Functions,” Proc. Internat. Symp. New Directions Comput. (1985),
232-236.

[19] C. C. Chang and J. C. Shieh, “Pairwise Relatively Prime Generating Polyno-
mials and Their Applications,” Proc. Internat. Workshop Discrete Algorithms
Complexity, November ,1989), 137-139.

[20] Nan-xian Chen, “Modified Mobius Inversion Formula and Its Application to
Physics,” Phys. Rev. Lett., Volume 64, No. 11 (1990), 1193-1195.

[21] L. W. Cohen and G. Ehrlich, The Structure of the Real Number System, Van
Nostrand Reinhold, New York, 1963.

[22] H. Cohn, Advanced Number Theory, Dover, New York, 1980.

[23] D. Coppersmith, “Cryptography,” IBM J. Res. Develop., Volume 31, No. 2
(1987), 244-248,.

{24} R. Crandall, J. Doenias, C. Norrie, and J. Young, “The Twenty-Second Fermat
Number Is Composite,” Math. Comput., Volume 64 (1995), 863-868.

[25] T. Dantzig, Number: The Language of Science, 4th ed., Macmillan, New York,
1954,

[26] H. Davenport, The Higher ABithmetic, 6th ed., Cambridge University Press,
New York, 1992.

[271 L. E. Dickson, Studies in the Theory of Numbers, Chelsea, New York, 1957.

(28] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans.
Inform. Theory, Yolume IT-22, No. 6 (1976), 644-654.

[29] H. W. Eves, In Mathematical Circles, Quadrants I and II, Prindle, Weber &
Schmidt, Boston, 1969.

[30] William Feller, An Introduction to Probability Theory and its Applications,
Wiley, New York, 1950. '

