Activity Networks, Topological Sort, and Critical Paths 379

Critical Paths

An activity network closely related to the AOV network is the activity on edge or
AOE network. The tasks to be performed on a project are represented by directed edges.
Vertices in the network represent events. Events signal the completion of certain activi-
ties. Activities represented by edges leaving a vertex cannot be started until the event at
that vertex has occurred. An event occurs only when all activities entering it have been
completed. Figure 6.33(a) is an AOE network for a hypothetical project with 11 tasks or
activities @y, ..., ;. There are nine events vy, vy, . . ., vo. The events v; and vy may
be interpreted as ‘‘start project’” and ‘‘finish project,’” respectively. Figure 6.33(b) gives
interpretations for some of the nine events. The number associated with each activity is
the time needed to perform that activity. Thus, activity a, requires 6 days while a;
requires 4 days. Usually, these times are only estimates. Activities a;, a,, and a5 may
be carried out concurrently after the start of the project. a4, as, and ag cannot be started
until events v,, v3, and v, respectively, occur. a; and ag can be carried out con-
currently after the occurrence of event vs (i.e., after a4 and a5 have been completed). In
case additional ordering constraints are to be put on the activities, dummy activities
whose time is zero may be introduced. Thus, if we desire that activities a and ag not
start until both events vs and v¢ have occurred, a dummy activity a,, represented by an

(a) AOE Network. Activity Graph of a Hypothetical Project.

event interpretation

v, " start of project

v, completion of activity a,

Vs completion of activities a, and a;
Vg completion of activities ag and a,
Vg completion of project

(b) Interpretation for Some of the Events in the Activity Gfaph of (a).

Figure 6.33 An AOE network

b

380 Graphs

i"l\imbin'g
10 days
. | spray Ceiling
Form Pour Core Strip Curtain walls =Sash glaze fireproof .ducts & fixtures Test

AR - -
ST T4days Q) 2doys® 14 days @2duys® 5 days @ 5 days @) 5 days @ 5 days Bduys

Insulate_wall etc,

Risers 5 days
IO days
Doors . Port masonry
lday]] 2 days
Electrical walls
16 days
Balance of elevator fittings and frames
3 days

Figure 6.34 AOE network for the construction of a typical floor in a multistory building
[Engineering News-Record (McGraw-Hill Book Company, Inc., Jan. 26, 1961).]

edge <vg,vs> may be introduced. Activity networks of the AOE type have proved very
useful in the performatice evaluation of several types of projects. This evaluation
includes determining such facts about the project as what is the least amount of time in
which the project may be completed (dssuming there are no cycles in the network);
which activities sfiould be speeded up in order to reduce completion time; etc.

Several sophisticated techniques such as PERT (performance evaluation and
review technique), CPM (critical path inéthad), and RAMPS (resource allocation and
multiproject scheduling) have been developed to evaluate network models of projects.
CPM was originally developed in connection with maintenance and construction pro-
jects. Figure 6.34 shows a network used by the Perinia Corporation of Boston in 1961 to
model the construction of a floor in a multistory building. PERT was originally designed
for use in the development of the Polaris missile system.

Since the activities in an AOE network can be carried out in parallel the minimum
time to complete the project is the length of the longest path fromi the start vertex to the
finish vertex: (the length of a path is the sum of the times of activities on this path). A
_path of longest length is a critical path. The path v,,v2,V5,V7,V9 is a critical path in the
network of Figure 6.33(a). The length of this critical path is 18. A network may have
more than one critical path (the path v,v3,Vs,vg,Vg iS also critical). The earliest time
an event v; can occur is the length of the longest path from the start vertex v, to the ver-
tex v;. The earliest time event vs can occur is 7. The earliest time an event can occur
-determines the earliest start time for all activities represented by edges leaving that ver-
tex. Denote this time by e (i) for activity a;. For example, ¢ (7)=e (8)=7. For every

Activity Networks, Topological Sort, and Critical Paths 381

Floor finish
! 5 days i
insulaté Lath Plaster’ @Tiling Paint (part}) Finish paint Caulking & FINISH
@mechunical @3 days@ 5 days '{ 3 days ,5 days @ @cleun up -
3 days } l | '= . 4 days
/ Marble_ § Acoustic |y Finish
/ work tiles mechonical
/ | 3days 5 days 5 days
! H
! o
W g
. |2
\}\ = 3 "
N Elm
\\ i:
N\,
RY,

®

activity g;, we may also define the latest time, 1 (i), an activity may start without increas-
ing the project duration (i.e., length of the longest path from start to finish). In Figure
6.33(a) we have e(6)=5 and [(6)=8, € (8)=7 and [(8)=7. All activities for which
e (i)=1(i) are called critical activities. The difference I(i)—e (i) is a measure of the
criticality of an activity. It gives the time by which an activity may be delayed or slowed
without increasing the total time needed to finish the project. If activity a¢ is slowed
down to take 2 extra days, this will not affect the project finish time. Clearly, all activi-
ties on a critical path are critical and speeding noncritical activities will not reduce the -
project duration. :
The purpose of critical path analysis is to identify critical activities so that
resources may be concentrated on these activities in an attempt to reduce project finish
. time. Speeding a critical activity will not result in a reduced project length unless that
activity is on all critical paths. In Figure 6.33(a) the activity ay; is critical but speeding
it up so that it takes only 3 days instead of 4 does not reduce the finish time to 17 days.
This is so because there is another critical path v1,v2,V5,V7,Y9 that does not contain this
activity. The activities a; and a4 are on all critical paths. Speeding a, by 2 days
reduces the critical path length to 16 days. Critical path methods have proved very valu-
able in evaluating project performance and identifying bottlenecks.
Critical path analysis can also be carried out with AOV networks. The length ofa
path would now be the sum of the activity times of the vertices on that path. For each
activity -or vertex, we could analogously define the quantities e (i) and [(D). Since the
activity times are only estimates, it is necessary to re-evaluate the project during several

o

382 Graphs ;

stages of its completion as more accurate estimates of activity times become available.
These changes in activity times could make previously noncritical activities critical and
vice versa. Before ending our discussion on activity networks, let us design an algorithm o
to evaluate e (i) and [(i) for all activities in an AOE network. Once these quantities are
known, then the critical activities may be easily identified. Deleting all noncritical
activities from the AOE network, all critical paths may be found by just generating all
paths from the start to finish vertex (all such paths will include only critical activities and
so must be critical, and since no noncritical activity can be on a critical path, the network
with noncritical activities removed contains all critical paths present in the original net-
work).

In obtaining the e (i) and I (i) for the activities of an AOE network, it is easier to
first obtain the earliest event occurrence time, ee [j], and latest event occurrence time,
le[j], for all events, j, in the network. Then if activity a; is represented by edge <k,/>,
we can compute e(i) and /(i) from the formulas

e(D=eefk]
and ' (6.1)

[(i)=le [l]-duration of activity g;

The times ee [j] and le [}] -are computed in two stages: a forward stage and a backward
stage. During the forward stage we start with ee [1]=0 and compute the remaining early
start times, using the formula

ee [i]:;gpa()lg){ee [i] + duration of<i, j>} (6.2)
1 .

where P (j) is the set of all vertices adjacent to vertex j. In case this computation is car-
ried out in topological order, the early start times of all predecessors of j would have
been computed prior to the computation of ee [j]. The algorithm to do this is obtained
easily from algorithm TopologicalOrder by inserting the step

if ee[k]1 < ee[j1+ ptrT.dur
c then ee (k] :=ee[j] + ptr 1. dur;

between lines 38 and 39. It is assumed that the array ee is initialized to zero and that dur
is another field in the adjacency list nodes which contains the activity duration. This
modification results in the evaluation of Eq. (6.2) in parallel with the generation of a
topological order. ee(j) is updated each time the ee (i) of one of its predecessors is
known (i.e., when i is ready for output). The step writeln(;) of line 33 may be omitted.
To illustrate the working of the modified TopologicalOrder algorithm let us try it
out on the network of Figure 6.33(a). The adjacency lists for the network are shown in
Figure 6.35(a). The order of nodes on these lists determines the order in which vertices
will be considered by the algorithm. At the outset the early start time for all vertices is O,
and the start vertex is the only one in the stack. When the adjacency list for this vertex is

Activity Networks, Topological Sort, and Critical Paths 383

count

link vertex dur link

1 J276] 3314 F—-{4a15]

1

.élTIniIJ

0 0 N 0O O W

ee
initial

output v,

output v,

output v

output v

output v,

output v

output vg

output v,

output vy

(2) Adjacency Lists for Figure 6.34(a)

©
-
[+
[e]
=~

T A T) S) B - B (T R
o 0 o o0 ©0 o0 0

F Eebeokbez: E

E B E

[

(b) Computation of ee

Figure 6.35 Action of modified topological order

_paths in the original network that are not paths in the graph of Figure 6.38.

384 Graphs

processed, the early start time of all vertices adjacent from v is updated. Since vertices
2,3 and 4 are now in the stack, all their predecessors have been processed and Eq. (6.2)
evaluated for these three vertices. ee [6] is the next one determined. When vertex v is
being processed, ee [8] is updated to 11. This, however, is not the true value for ee [8]
since Eq. (6.2) has not been evaluated over all predecessors of vg (v5 has not yet been
considered). This does not matter since vg cannot get stacked until all its predecessors
have been processed. ee [5] is next updated to 5 and finally to 7. At this point ee [5] has

_been determined as all the predecessors of vs have been examined. The values of ee [7]

and ee [8] are next obtained. "ee [9] is ultimately determined to be 18, the length of a crit-
ical path. You may readily verify that when a vertex is put into the stack its early time
has been correctly computed. The insertion of the new statement does not change the
asymptotic computing time; it remains O(e +n).

In the backward stage the values of Je [i] are computed using a procedure analo-
gous to that used in the forward stage. We start with le [n]=ee [n] and use the equation

le [j]:_rsrsli(x}){le [i] - duration of <j,i>} 6.3)

where S (j) is the set of vertices adjacent from vertex J. The initial values for le [i] may
be set to ee [n]. Basically, Eq. (6.3) says that if <j,i> is an activity and the latest start
time for event i is le [i], then event j must occur no later than le [i] — duration of <j,i>.
Before le[j] can be computed for some event j, the latest event time for all successor
events (i.e., events adjacent from j) must be computed. These times can be obtained in a
manner identical to the computation of the early times by using inverse adjacency lists
and inserting the step le [k]:=min{le [k],/e [j]—ptrT. dur) at the same place as before in
algorithm TopologicalOrder. The count field of a head node will initially be the out-
degree of the vertex. .

Figure 6.36 describes the process on the network of Figure 6.33(a). In case the
forward stage has already been carried out and a topological ordering of the vertices
obtained, then the values of e [i] can be computed directly, using Eq. (6.3), by perform-
ing the computations in the reverse topological order. The topological order generated
in Figure 6.35(b) is v, V4, Vg, V3, V2, Vs, Vg, V7, Vg. We may compute the values of
le[i]in the order 9,7, 8, 5,2, 3, 6,4, 1 as all successors of an event precede that event in
this order. In practice, one would usually compute both ee and le. The procedure would
then be to compute ee first using algorithm TopologicalOrder modified as discussed for
the forward stage and to then compute e directly from Eq. (6.3) in reverse topological
order. :

Using the values of ee (Figure 6.35) and of le (Figure 6.36 and Eq. (6.1)) we may
compute the early and late times e (i) and /(i) and the degree of criticality of each task.
Figure 6.37 gives the values. The critical activities are a;, a4, a7, ds, 410, and ay;.
Deleting all noncritical activities from the network we get the directed graph of Figure
6.38. All paths from v to vy in this graph are critical paths and there are no critical

Activity Networks, Topological Sort, and Critical Paths 385

[&]

nil

2 ! ———-‘ 1] e | nit]
3 (0| {0]4]n]
4 | -—-—-‘ | l 5 lnill
5 2 —1 2|t 31 1 inil
6 P ———-‘. 4|2A|nili
7 1 -——-] 5 l 9 |nil l
8 | ——-l I |:‘——-‘6|4|m|l
o [m J—{7l2] F—{elaln]
(a) Inverted Adjacency Lists for AOE Network of Figure 6.34(a).
le] [@1 e Bl ome [8] [9] stack \
initial % 18 18 18 18 18 18 18 18 Lol
output vg 18 18 18 18 18 18 16 14 18 L?,_I
output vg s 18 18 18 7 10 16 14 18 ‘_ﬂ
output v s 18 18 18 7 10 16 14 18 L;_]
output v, 3 18 18 8 7 10 16 14 18 L7t
output v, ; @ 18 8 7 10 16 14 18 Ls
output v 3 6 6 8 7 10 16 14 18 l_%_l
output v 2 6 6 8 7 10 16 14 18 121
output v, 0 6 6 8 7 10 16 14 18 L
(b) Computation of topologicaldfder Modified to Compute Latest Event Times.
1e[9] = ee[9] = 18
e[7] = min{/e[9] — 2} =
le[8] = min{/e[9] — 4} = 14
le[5] = min{/e[7] — 9, le[8] — T} =
le[2] = min{le[5] — 1}]=26
le[3] = min{/e[5] — 1} =6
le[6] = min{/e[8] — 4 = 10
le[4] = min{le[6] — 2} =
le[1] = min{le[2] — 6, Ie[3] — 4, le[4] — 5} =

(¢) Computation of /e Directly from Equation (6.3) Using a Reverse Topological Order.

Figure 6.36 Computing le for AOE network of Figure 6.33(a)

386 Graphs

i | activity e) [—e
Rl a, 0 0 0
a, 0 2 2
‘ a,] 3 3
a, 6 6 0
as 4 6 2
ag 5 8 3
a, 7 7 0
ag 7 7 0
dg 7 10 3
a 16 16 0
a, 14 14 0

" Figure 6.37 Early, late, and criticality values

SRR A

Figure 6.38 Graph obtained after deleting all noncritical activities

3 v

As a final remark on activity networks we note that the algorithm Topological

‘ Order detects only directed cycles in the network. There may be, other flaws, such as
b vertices not reachable’ from the start vertex (Figure 6.39). When a critical path analysis
is carried out on such networks, there will be several vertices with ee [i] = 0. Since all

| activity times are assumed >0, only the start vertex can have ee[i] = 0. Hence, critical
path analysis can also be used to detect this kind of fault in project planning.

S S e

Enumerating all Paths 387

Figure 6.39 AOE network with some nonreachable activities

6.5 ENUMERATING ALL PATHS

In Section 6.3, we looked at the problem of finding a shortest path between two vertices.
In this section we will be concerned with listing all possible simple paths between two
vertices in order of nondecreasing path length. Such a listing could be of use, for exam-
ple, in a situation where we are interested in obtaining the shortest path that satisfies
some complex set of constraints. One possible solution to such a problem would be to
generate in nondecreasing order of path length all paths between the two vertices. Each
path generated could be tested against the other constraints and the first path satisfying
all these constraints would be the path we were looking for.

Let G=(V,E) be a digraph with n vertices. Let v, be the source vertex and v, the
destination vertex. We shall assume that every edge has a positive cost. Let p; =
r{0Lr[1], ..., r[k] be a shortest path from v; tov,; i.e., py starts at v,g] =V, goes to
Vrp1y and then to vy, . . ., v, = vy If P is the set of all simple v, to v, paths in G, then
it is easy to see that every path in P — {p,} differs from p, in exactly one of the follow-
ing k ways:

(1) It contains the edges (r [11,7[2]), . . ., (r [k—1],7 [k]) but not (» [0],7 [1])
(2) It contains the edges (r [21,7[3]), . . ., (r [k—1],r[k]) but not (r [1],7[2])

(k) It does not contain the edge (r [k—11,r[k])

