Balanced Trees

« Why balanced tree?

— If all keys equally likely to be

searched, a balanced binary search
tree is most efficient

* Generating balanced tree (AVL)

Example

Example

(a) Original tree.

(¢c) Left rotation.

Toodn TRevbot 15 Q ave (§7\
ol Ccare, .

Balance
W

The balance of a node is defined as the hclght of

its left subtree minus the helght of its nght subtree' |

An AVL node can only have a balance of -1, 0, or

. '—"—"

Note: height of anode is the max level of its leaves
+ 1 (A null @Ptree has height of -1).

Example

[
i L
U9 wIe Uil un

Operations on AVL
~ Insertion: Can we insert a node in the AVL tree
and maintain the balance requirements?
Look at the previous Example
B — maintains balance
U —doesn’t

A tree becomes unbalanced when the inserted
node is the left descendent of a node whose bal-
ance was 1 or the right descendent of a node whose
balance was —1 |

Insertion in AVL

Suppose we have a balanced tree:

Insertion in AVL

Case 1 is ok on balance requirement but Case 2
and 3 require adjusting the tree in some manner to
make it balanced {-1,0,1}, while maintaining the
same inorder listing!

To maintain a balance tree, we
must find some transformation that
we can apply to the tree such that

1. The transformed tree meets balance require-
ment.

2. The inorder transversal is the same for the
original trees.

— We will use rotation to achieve these 2 goals

Observations

—Rotations are always carried out with respect to
the closest parent of the new node having a bal-

ance of + 2 .

— Four different kinds of rotations (characterized
by the nearest ancestor A of the new node Y,

whose balance factor becomes =+ 2).
—LL
—RR
—LR
—RL

LL and RR are symmetric, as are LR and RL

Summary of Insertions and Transformation

LL : new node Y is inserted in the left subtree of

the left subtree of A.
Balanced subtree Unbalanced following rotation Rebalanced subtree
insertion type
+ 0
7\' A B
0 Ag 1 Ag By)
B : T ‘ B LL A
h h¥2 h+2
B.| |Bg l L B.| |Bs l Bg Ag
mu

Height of B, increases
to h+li

Summary of Insertions and Transformation

RR :newnode Y is inserted in the right subtree of
the right subtree of A.

i] height h+2 ’
0 height h+2 AL
2 (@) | &R Q)
B.| |Bs B ‘BR, Al 1B
Height of By increases | Height- ot subtrees of B

1o h+l remain h+l

Summary of Insertions and Transformation

LR : new node Y is inserted in the right subtree of

the left subtree of A.
Unbalanced foliowing | rotation .
Bolanced subtree insertion type Rebalanced subtree

() | (&)
8 8 LR(a)

*1

o
S
o
o
7 ol

l.-—-—:r.-———tl

[
c

wo
>

LR (b)

——

Summary of Insertions and Transformation

LR : new node Y is inserted in the right subtree of
the left subtree of A.

New ldentifier

After

Insertion

Example

(i) MARCH

(ii) MAY

(iii) NOVEMBER

@

RR

After Rebalancing

No rebalancing needed

-

No rebalancing needed

- Example

{iv) AUGUST @ No reboloncihg needed

(v) APRIL

Example

(vi) JANUARY

No rebalancing needed

{vii) DECEMBER

(viii) JULY @ ‘ No rebalancing needed lf

Example

((((((((

-Example

Complexity of AVL

— What is the time to insert a node in a balanced
binary tree? |

— What is the time needed to rebalance?

— The maximum height of any balanced search
treeis 1.44 logn. In actual practice, they behave
much better — log n + .25 search time for large n.

— On the average a rotation is required in some-
thing less than half the insertions — 46.5% of the
insertions.

— The algorithm to delete is much harder — A
deletion requires more than 1-2 rotation at each
level of the tree — O (log n) rotations. Average
found is .214 (single or double rotations) per dele-
tion.

