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1. INTRODUCTION

The parallel parsing and evaluation of arithmetic expressions has been the focus
of research for many years. References [1, 2, 10, 11, 13] are some of the important
papers written on the parallel evaluation of arithmetic expressions. The most
significant result here is due to Brent [1]. He has shown [1] that arithmetic
expressions containing n operands, n = 1; operators (+, *, and /); and parentheses
can be evaluated in 4 logon + 10(n — 1)/p time when p processors are available.
Parallel parsing of arithmetic expressions has been considered by Fischer [5],
Krohn [8], Lipkie [12], and Schell [16] (among others). Fischer’s work is restricted
to vector (or pipelined) computers. While Krohn’s work was intended primarily
for pipelined computers (specifically for the CDC STAR-100), the ideas contained
in [8] can be extended to parallel multiprocessor computers. Krohn, however,
does not consider the asymptotic performance that could be obtained from his
parallel parsing algorithm. Lipkie [12] and Schell [16] explicitly consider parsing
on parallel multiprocessor computers. Lipkie [12] provides some grammar rules
for parallel parsing but does not develop a formal algorithm. Schell [16] is a
thorough study of parallel techniques for several of the phases normally encoun-
tered in compiling (scanning, syntax analysis, parsing, error recovery, etc.). Schell
develops a parallel LR parser. The complexity of this parser is, however, quadratic
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in the input size (under some constraints, he shows that its complexity becomes
linear). Schell also discusses the applicability of his techniques-to precedence

grammars.
In this paper, we study the following problems:

(1) parallel generation of the postfix form,;
(2) parallel generation of the binary tree form.

In both cases, we start with the infix form of the expression. Further, we assume
that the input infix expression is syntactically correct. The reader unfamiliar with
the postfix and tree forms of an expression is referred to [6].

The study of the two problems cited above is motivated by the following
considerations:

(1) We could conceivably build a special-purpose infix-to-postfix chip that
could be used like a peripheral on a very high-speed number cruncher. The use
of this parallel translator chip would speed compilation of programs.

(2) Most code optimizers for single-processor machines start with the tree form
of an expression. Hence, a high-speed special-purpose chip that performs the
translation from infix to tree form could be used in the context of (1).

(3) If the program is to be executed on a parallel machine, it can also be
compiled on that machine using a parallel compiler. Such a compiler will need to
be able to translate in parallel, from the infix form to a more usable form. The
postfix and tree forms are two such forms. In fact, the parallel evaluation methods
suggested in [1, 2, 10, 11, 13] all begin with the tree form of the arithmetic
expression.

(4) While the length of individual arithmetic expressions in typical programs
is small [7], Kuck [9] has shown that optimizing compilers for parallel machines
can generate very long expressions even when the input program contains only
short expressions. Furthermore, it is possible to view the entire program as a
single expression and obtain its postfix form.

The model of parallel computation that we use here is commonly referred to as
the shared memory model (SMM). This has the following characteristics:

(1) There are p processing elements (PEs) or processors. These are indexed 0,
1, ..., p — 1, and an individual PE may be referenced as PE(i). Each PE is
capable of performing the standard arithmetic and logical operations. In addition,
each PE knows its index.

(2) There is a common memory that is shared by all the PEs. All p PEs can
read and write into this memory in the same time instance. If two PEs attempt
to read the same word of memory simultaneously, a read conflict occurs. Simi-
larly, if two PEs attempt to write simultaneously into the same word of memory,
a write conflict occurs. In this paper, we assume that read and write conflicts are
prohibited.

(3) The PEs are synchronized and operate under the control of a single
instruction stream.

(4) An enable/disable mask can be used to select a subset of the PEs that are
to perform an instruction. Only the enabled PEs will perform the instruction.
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Line procedure POSTFIX(E, P, n, m)
//Translate the infix expression E(1:n) into postfix form. The postfix form is output in//
//P(1:m). “~o” is used as bottom of stack character and has ISP = 0.//

1 declare n, E(1:n), P(1:m), top, STACK(), i, m
2 STACK(1) «‘—=’;top <1  //initialize STACK//
3 me0
4 fori—1ltondo
5 case
6 :E(i) is an operand: m «m + 1; P(m) < E(i);
7 :E(i)=")’:while STACK(top) » ‘(’ do
//unstack until ‘(" //
8 m «—m + 1; P(m) « STACK(top); top « top — 1
9 endwhile
10 top «—top — 1
11 :else: while ISP(STACK (top)) = ICP(E(i)) do
12 m «m + 1; P(m) «— STACK (top); top « top — 1
13 endwhile
14 top « top + 1; STACK (top) « E(i)
15 endcase
16 endfor

17 while top > 1 do //empty stack//

18 m «—m + 1; P(m) « STACK (top); top « top — 1
19 endwhile

20 end POSTFIX

Fig.2. Sequential infix-to-postfix algorithm of [6].

The remaining PEs will be idle. All enabled PEs execute the same instruction.
The set of enabled PEs can change from instruction to instruction.

Much work has been done on the design of parallel algorithms using the SMM.
The reader is referred to [3, 4] and the references contained therein.

While one can talk of obtaining the postfix and tree forms for an entire program,
we limit our discussion here to simple expressions. These are permitted to contain
only operands (constants and simple variables), operators (only the binary
operators +, —, +, /, and 1 are permitted), and parentheses (‘(’ and °)’).

The parallel algorithms that we develop here are closely related to the common
priority-based sequential infix-to-postfix algorithm. We make explicit reference
to the version of this algorithm that is presented in [6]. This algorithm utilizes a
stack as well as a dual priority system. The in-stack priority (ISP) of an operator -
or parenthesis is the priority associated with the operator or parenthesis when it -
is inside the stack. The incoming priority (ICP) is used when the operator or
parenthesis is outside the stack. For the operator and parenthesis set we are
limited to, the priority assignment of Figure 1 is adequate.

The infix-to-postfix algorithm of [6] is reproduced in Figure 2. This algorithm
assumes that the infix expression is in E(1: n) where E(i) is an operator, operand,
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983. .
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Table I. Summary of Key Arrays Used in the Parallel Postfix Algorithm
- AFTER(i) Indexin E(1:n) of token that immediately precedes E(i) in postfix form

C(i) Used to compute S(1: n)
E@) ith token in the infix expression
G(i) Used to compute the depth of nesting of parentheses
K@) Bit used to designate whether or not the position of E(i) in the postfix form has been
determined
LG@) Depth of nesting of parentheses in which token E(i) is contained
LUG) Index of last operator to be unstacked by E(i) (cf. algorithm of Figure 2)
P(i) ith token in the postfix form of E(1 : n)
POS(i) Position of E(i) in the postfix form
S(i) Number of tokens in E(1 : i) that are not extraneous right parentheses
U(@) Index of token that pops E(i) from the operator stack (cf. Figure 2) -
1 if E@)="‘(;
Step I: G(i) « -1 if E@) =), 1=si<n;

Fig. 3. Computation of L. 0 othe ’

Step 2. L(i) <« Z‘: G(j), 1=i=n.
Je1
Step 3: L(I) <« L) +1 fEG="), 1l=si=sn.

or parenthesis, 1 < i < n (in practice, E(i) will be a pointer into a symbol table).
For example, the expression A + B * Cisinput as E(1) = A, E(2) = +, E(3) =
E(4) = +, and E(5) = C. The postfix form is output in P(1:m), m < n. For our
example, we have P(1) = A, P(2) = B P(3) = C, P(4) = =, and P(5) = +. The
sequential time complexity of procedure POSTFIX is O(n).

In Section 2, we see that the algorithm of Figure 2 can be effectively parallelized.
In Section 3, we see how the tree form of an infix expression may be obtained in
parallel.

2. PARALLEL GENERATION OF THE POSTFIX FORM

Let the infix expression be given in E(1: n) as described in Section 1. For every
E(i) that is an operator or an operand, we define a value AFTER(i) such that
E(i) comes immediately after E(AFTER(i)) in the postfix form of E(1:n). For
the first operand in the postfix form, we define the AFTER value to be zero.
Note that, since parentheses do not appear in the postfix form, an AFTER value
for them need not be defined. As an example, consider the expression (A + B) =
C. Its postfix form is AB+C+. Since E(1:7) = (‘(, A, +, B, ©)’, %, C), AFTER(1:7)
=(-,0,4,2,-,7,3).

Table I provides a convenient summary of all the variables to be used by our
parallel algorithm.

Our parallel algorithm to obtain the postfix form of E(1:n) consists of two
Phases. In the first, the values AFTER(1: n) are computed. In the second phase,
the postfix form is obtained using these values. In order to determine
AFTER(1:n), first we need to compute the level L(i) of each token in the
expression. Informally, the level of a token gives the depth of nesting of paren-
theses in which this token is contained. So, if a token is not within any paren-
theses, its level is 0. More formally, the level L is defined by the algorithm of
Flgure 3.
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In Figure 4, we give an example arithmetic expression together with the L()
values associated with each token (row 3).

Let us sequence through procedure POSTFIX (Figure 2) as it works on the
example expression of Figure 4. When i = 1, E(1) = ‘(’, and ‘(’ gets put onto the
stack. Next, i = 2, and E(2) = A is placed into the postfix form. When i = 5, the
postfix form has P(1:2) = (A, B), and the stack has the form —c, (, *. During this
iteration, * is unstacked (as ISP(+) = ICP(E(5))). We say that E (3) gets unstacked
by E(5). E(5) gets added to the stack, and on the next iteration E(6) = C is placed
in the postfix form. When i = 18, the stack has the form -, +, 1, (, —, *, 1, 1, and
P(1:9) = (A, B, %, C, D, E, F, G, H). During this iteration, E(16) = 1, E(14) =1,
E(12) = *, and E(10) = — get unstacked (in that order) That is, E(16), E(14),
E(12), and E(10) get unstacked by E(18). Furthermore, E(10) is the last operator
to get unstacked by E(18).

For each i such that E(i) is an operator, we may define U(i) to be the index in
E of the operator or parenthesis that causes E(i) to get unstacked. In case E(i)
gets unstacked during the while loop of lines 17-19 of procedure POSTFIX, then
U(i) = n + 1. For our example, U(3) = 5; U(10) = U(12) = U(14) = U(16) = 18.

Also, for each i such that E(i) is either an operator or a right parenthesis, we may
define LU(i) to be the index of the last operator that gets unstacked by E(i). .

If no operator is unstacked by E(i), then LU(i) is set to 0. For our example,

LU@B) =0,LU®B) =3, LU(7) = LU(10) = LU(12) = LU(14) = LU(16) = 0, and

LU(18). = 10.
Continuing with pur example, we see that, when i = 19, P(1:13) = (A, B, +, C,

D,E,F, G, H,1,1, * —), and the stack has the form —x, +, 1. At this time, E(7)
= 1 is unstacked and E(19) = = is stacked. So, LU(19) = 7 and U(7) = 19. Rows -

6 and 7 of Figure 4 give the U and LU values for all the operators and parentheses

of our example. Note that U is defined only for operators and LU only for -

operators and right parentheses.

An examination of procedure POSTFIX and our definition of the level L of a
token reveals that, if E(i) is an operator, then

U(i) = least j, j > i, such that ISP(E(i)) = ICP(E(j)) and L(i) = L(j). If

there is no j satisfying this requirement, then U(i) = n + 1.

From the definition of U, it follows that, if E(i) is an operator or a right
parenthesis, then LU(i) is given by ]

LU(i) = least j, j < i, such that U(j) = i. If there is no j with U(j) = i,

then LU(i) = 0.

Before proceeding to determine AFTER, it is useful to eliminate extraneous .

A

right parentheses. An extraneous right parenthests is formally defined to be one -

for which the LU value is 0. Extraneous right parentheses together with their
matching left parentheses serve no useful function but may be present in E
nonetheless. Examples of occurrences of such parentheses are (A), ((A + B))+C, -
and (((A + B))) (extraneous right parentheses have been underlined).

The elimination of extraneous right parentheses may be accomplished in the
following way. Define C(1: n) as below:

. _ |0 if E(@)=°‘) and LU() =0,
CG) = { otherwise.
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Let S(i) be the sum Y-, C(j), 1 <i =< n. S(i) gives the number of tokens in
E(1:7).that are not extraneous right parentheses. The replacement

(E(SG)), USR)), LU(S(G))) « (E@), UG), LUG))

carried out for all i such that E() is not an extraneous right parenthesis results
in the elimination of all extraneous right parentheses from E.
As an example, consider the expression

(((A + B + C)) + D)=(((E)))

The extraneous right parentheses are underlined. Following the elimination of
these parentheses, the expression E takes the form

((A+B+C)+D)+(((E

As we see below, following the determination of the levels L(1:n), the left
parentheses serve no useful function in our algorithm. Hence, they could be
eliminated when the extraneous right parentheses are. To accomplish this, we
need only define C(1:n) as

CG) = 0 if E@)=‘C or (E(F)=°*)and LU@)=0),
= otherwise,

and proceed as before. ,
Once the extraneous right parentheses have been eliminated, AFTER may be

computed as described below. In the following discussion of the computation of

AFTER, we assume that n has been updated to the value S(r) defined above.

Case 1. E(i) Is an Operand. In this case, we determine the largest j, j < i,
such that either E(/) is an operand or LU(j) is defined and greater than 0 (note
that, as extraneous parenthesis pairs are not permitted, if E(j) = ¢)’, then LU(j)
> 0). Such a j does not exist iff E(i) is the first operand in the expression. From
procedure POSTFIX and our definition of LU, it follows that

0 if no j as above exists,
AFTER(i) = 3Jj if E(Jj) is an operand,
LU(j) otherwise.

Case 2. E(i) Is an Operator. In this case, we see that, if there exists a j such
that j > i and U(j) = U(i), then AFTER(i) is the smallest j with this property.
So, in our example expression, U(10) = U(12) = U(14) = U(16) = 18. Also, in P,
E(10) comes immediately after E(12), which comes immediately after E(14).
E(14) comes immediately after E(16).

For E(16), however, there is no j such that j > 16 and U(j) = U(16). For
operators with this property, there are two possibilities: either U(i) — 1 is an
operand or U(i) — 1is a right parenthesis. If U(i) — 1 is an operand, then E(U(i)
= 1) is the token placed in P just before the unstacking caused by E(i) begins.
Hence, AFTER(i) = U(i) — 1. If E(U(i) — 1) is a right parenthesis, then this
right parenthesis would have caused at least one operator to get unstacked (by
assumption, extraneous parenthesis pairs are not permitted). Hence, LU(U(i) -
1) # 0, and E(LU(U(i) — 1)) is the operator that immediately precedes E(i) in P.

ACM Transactions on ngrgmn\ing Languages and Systems, Vol. 5, No. 3, July 1983.
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So, we get
J «least j, j > i, such that U(j) = U(i);
Ua) -1 if jis undefined and E(U(i) — 1) is an
operand,
AFTER(i) =< LU(U(@I) - 1) if jis undefined and E(U(i) — 1) = *)’,
J if jis defined.

Row 8 of Figure 4 gives the AFTER values for all the operators and operands
in our example expression. The AFTER values link the E(i)’s in the order they
should appear in the postfix form. This linked list is shown explicitly in Figure 5.
From this linked list, we wish to determine the position, POS, of each operator
and operand in the postfix form. For one of the operands, that is, the one with
AFTER(i) = 0, this position is already known (it goes into P(1)). With each E@),
let us associate a one-bit field K(i). K(i) = 0 iff the position of E() in P(i) has
not been determined. Initially, K(i) = 0 for all but one of the tokens (i.e., the one
with AFTER(i) = 0).

For any node i in the linked list defined by the AFTER values, POS(i) is one
more than the number of nodes preceding it in that list (the node with AFTER
value 0 is the first node in the list; so the list is linked backward). The POS
values may be obtained by recursively splitting this linked list. The first time the
List is split, we get two lists (A and B) consisting of alternating elements from the
original list. The POS value of the first element in list A is already known, and
that for the first element of list B is now known to be 2. Figure 6a shows the
resulting lists when we start the lists of Figure 5. The lists A and B are split
again. When list A of figure 6a is split, we get the lists A1 and A2 of Figure 6b. At
this time, the POS value, that is, 3, for the first node of list A2 becomes known.
Each time a list is split, we get two lists of about half the length. So, following
[log n] splits, all lists will be of size 1, and all the POS values will be known. The
formal algorithm to determine POS is given in Figure 7.

Let us work out a complete example using the algorithm of Figure 7. We start
with a smaller list than that of Figure 5. The example list of figure 8 has 8 nodes
in it. AFTER is shown by an arrow or link. The number inside a node gives its
POS value (if known). Initially, the first (leftmost) node has K = 1; the remaining
nodes have K = 0. The K values are shown outside and below the nodes. Node
indices are shown outside and above the nodes. In the first iteration of step 2, the
linked list splits into two as shown in Figure 8b, and POS(2) is updated to 2. This
agrees with the fact that node 2 is the second node (from the left) in Figure 8a.
In the next iteration, each of the two lists of Figure 8b is split into two, POS(4)
is set to 3, and POS(1) is set to 4. Again, we see that nodes 4 and 1 are,
respectively, the third and fourth nodes in Figure 8a. In the last iteration the four
lists of Figure 8¢ split into two each, giving the configuration of Figure 8d. All the
POS values now give the position of the respective node in the original linked
list.

The correctness of the algorithm of Figure 7 may be established formally by
providing a proof by induction on the length of the initial linked list. We omit
that proof here.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.
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step 1 //initialize//
case
:AFTER(i) is undefined: K (i) « undefined
:AFTER(i) = 0: K (i) « 1; POS(i) « 1
celse: K(i) «0
end case
step 2 //split lists apd compute POS//
) - nldo
Fig. 7. Algorithm to compute POS. fo;ft}“i)lgtg {l:fn}*_ AFTER(i)
AFTER(i) « AFTER(j)
if K(j) = 1 then
K@) «1
POS(i) « POS(j) + 2*}
endif
endif
endfor

2 4 1 3 5 8 7 Index
IIH.H Il S ]

1 0 0 T 0 0 0
(b
mﬁi 8 4 2 5
1 ] [3 f{ 1] L2 e ] i4|¢—i |
1 0 0 1 0 1 0

(d)
Figure 8

Once the POS values have been computed as described above, the postfix form
P is obtained by executing the following instruction:

if AFTER(i) is defined then P(POS(i)) « E(i)

2.1 Complexity Analysis

First, let us consider the computation of the levels L() (Figure 3). Step 1 can be
done in O(1) time using n PEs (each PE is assigned to compute a different G(i)).
It can also be done in O(log n) time using (n/log n) PEs (each PE sequentially
computes log n of the G()’s). The L(i)’s of step 2 may be computed in O(log n)
time using (n/log n) PEs and the partial sums algorithm of [4]. Finally, step 3 can
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L 1 2 2 3 3 1
.  ( ) ( ) € ( ) )
Position a b c d e f g h i j
(a)
L 112222223 3
C)Yy ) ) ) ()
Position a j bcde figh

(b)

Fig.9. (a) Before sort. (b) After sort.

be performed in O(log n) time using (n/log n) PEs. Hence, the levels L( ) may be
obtained in O(log n) time using (n/log n) PEs.

Next, consider the computation of U and LU. One possibility is to use mp PEs
to first make m copies of each of the p operators and right parentheses in E (m
is the number of operators in E). This takes O(log m) time. Note that O(log n)
time is needed to avoid read conflicts. Each operator now has a copy of the
operators and right parentheses in E for itself. Each operator E (i) is assigned p
PEs to work with. These are first used to eliminate operators and right parenthe-
ses E(j) withj =< i. Next, the level and ISP of E (i) is transmitted to the remaining
operators and right parentheses. This takes O(log p) time (again having no read
conflicts) with p PEs. Operators and right parentheses with a different level
number or with ICP > ISP(E(i)) are eliminated. The operators and right
parentheses not yet eliminated are candidates for U(i). The one with least j can
be determined in O(log p) time using a binary tree comparison scheme and p
PEs. If there are no candidates, U(i) = n + 1. LU may now be determined in a
similar manner. This strategy to compute U and LU takes O(n?*) PEs and O(log
n) time. Using the techniques of [4], it can be made to run in O(log n) time using
only O(n?/log n) PEs.

An alternative strategy is to first collect together all operators and right
parentheses that have the same level number. This can be done in O(log’n) time
using n PEs as follows. First, each left parenthesis determines the position of its
matching right parenthesis. This is done by simply sorting the left and right
parentheses by their level numbers. If a stable sort is used, each left parenthesis
will be adjacent to its matching right parenthesis following the sort (Figure 9).
The sort can be accomplished in O(log’n) time using n PEs [15]. Now, each left
parenthesis can determine the address, M (i), of its matching right parenthesis.

Once M(i) has been determined for each left parenthesis E(i), we can link
together all operators and right parentheses with the same level as needed in the
computation of U. There are only two possibilities for any operator i. These are
as follows:

E(@i + 1) =‘(’: In this case, E(f) is linked to M(i + 1) + 1.
E(@+1)#‘(: Inthis case, i + 2=n + 1, or E(i + 2) is an operator. Regardless,
E(i) is linked to i + 2.
Performing this linkage operation on the example of Figure 4 gives the linked
lists of Figure 10. Now, each linked list can be treated independently. For
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3, July 1983.
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operators with the highest ISP (i.e., 1), the U value is obtained by collapsing
together consecutive chains of 1 so that all 1 point to the nearest non-1. The U
value equals the link value. So, U(7) = 19, and U(14) = U(16) = 18. For operators
with the next highest ISP, the U values are obtained by removing all nodes
representing the operator {. The link values give the U value. Doing this on the
lists of Figure 10 yields the lists of Figure 11. So, U(3) = 5, U(19) = 21, U(12) =
18, and U(28) = 30. Now, by eliminating all nodes that represent * and / and
collapsing the lists we can determine the U value for the next ISP class. We
obtain U(5) = 21, U(21) = 32, U(10) = 18, and U(25) = 27. Each elimination and
collapsing operation above can be performed in O(log n) time using n PEs and
the strategy used in Figure 7 to compute POS. Since the number of ISP classes
is a constant, the time needed to determine U is O(log n).

" It should be evident that LU can be computed during the computation of U.
Each operator and right parenthesis keeps track of the farthest operator it
unstacks from each ISP class. In comparing the two strategies to obtain U and
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LU, we note that the first strategy takes O(log n) time but requires O(n*/log n)
PEs, while the second strategy takes O(log’n) time and requires only n PEs. So,
the log n speedup of the first strategy over the second is obtained through ]
considerable increase in the number of processors used.

The extraneous right parentheses can be eliminated in O(log n) time using
(n/log n) PEs. The initial values of AFTER may now be computed. First, each
operand determines the nearest (on its left) binary operator, right parenthesis,
and operand. These are shown in Figure 12 for our example of Figure 4. Zeros
indicate the absence of a nearest quantity on the left. These three sets of nearest
values can be determined in O (log n) time using n PEs. For example, to get the
nearest operands, we eliminate all E (i)’s that are not an operand. The remaining
E(i)’s are concentrated to the left. This enables each operand to determine its
nearest left operand. Next, the operands are distributed back to their original
spots (see [14] for an O(log n) distribution algorithm).

If E (i) is an operand and has no nearest operand on the left, AFTER (i) = 0.
If the nearest binary operator (on the left) has LU > 0, then AFTER (i) equals
this LU value. If E (i) has a nearest right parenthesis (on the left), then AFTER (i)
is the LU value of this parenthesis. Otherwise, AFTER (i) is the location of the
nearest operand on the left.

If E (i) is an operator, we can determine the smallest j, j > i, such that U(j)
= U(i) during the computation of U and LU. So, if such a j exists, AFTER has
already been computed. If no such j exists, AFTER (i) is to be set to either U (i)
= lor LU(U(@) — 1). Both these quantities are already known. So, the compu-
tation of AFTER for operators takes O(1) additional time.

The computation of POS (Figure 7) requires only O(log n) time and n PEs.
The formation of P takes O(1) time and n PEs. Hence, using n PEs, the postfix
form may be computed in O(log®n) time (the second strategy to compute U and
LU must be used as only n PEs are available). The complexity is dominated by
the sort step. Another complexity measure worth computing is the EPU (effec-
tiveness of processor utilization). This is

complexity of fastest known sequential algorithm
complexity of parallel algorithm *+ number of PEs

n
=Qf—
(Iogln * n)
1
a Q(log”n ) )

Note also that by using n” PEs and the first étrategy to compute U and LU, the
postfix form can be computed in O(log n) time. The EPU of the resulting
algorithm is Q(1/(n log n)).

EPU =

3. PARALLEL GENERATION OF THE TREE FORM

As mentioned in Section 1, most code optimizers work on the tree form of an
expression. This tree form is easily obtained from the postfix form by considering
the algorithm to evaluate postfix expressions. This algorithm is given in Figure 13
(see [6] for an explanation).
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Figure 15

Define the degree of an operator to be the number of operands it needs. Let
D(i) be the degree of operator P (i). So, D(P(i)) = 1if P (i) is unary; D(P(@i)) =
2 if P(i) is a binary operator. Define W(i) as below:

1 if P(Z) is an operand,

W) = 1-D@) otherwise.

Note that W (i) gives the change in the stack height when procedure EVAL
processes P () (an operand increases the height by 1, while an operator reduces
it by D(i) — 1). The stack height, H (i), following the processing of P(i) is
given by

HG) =T W0). (1)
i

Let us make the simplifying assumption that we have no operator of degree
greater than 2.

The tree form of the expression P(1:n) consists of n nodes. Each node has -
three fields: LCHILD, RCHILD, and P. It is easy to see that LCHILD(i) =
RCHILD(i) = 0 for every i such that P(i) is an operand. Also, if P(i) is an
operator, then RCHILD (i) = i — 1. If P(i) is a unary operator, LCHILD (i) = 0.
This leaves us with the task of determining LCHILD (i) when P (i) is a binary
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operator. It is not too difficult to see that in this case, LCHILD (i) is the largest
J»J < i, such that H(j) = H(@).

The LCHILD values for binary operators can therefore be obtained by first
computing H (i) as given by (1). This can be done in O(log n) time using either
n or (n/log n) PEs and the partial sums algorithm of [4]. Figure 14 shows the
postfix form of our example of Figure 4. The W values are given in row 2 and the
H values in row 3. '

Next, the H(i)’s are sorted using a stable sort method. This takes O (log®n)
time and O (n) PEs [15]. This sort brings a parent and its left child (if the parent
is a binary operator) together. So, in our example P(7) and P(9) are brought
together. So also are P(6) and P(10); P(5) and P(11); P(4) and P (12); etc. Hence
every binary operator can now easily determine its left child. The expression tree
that results for our example is shown in Figure 15.

The additional time needed to obtain the tree is O(log n), and the number of
PEs needed is n. Using the postfix algorithm of Section 2, the tree form may be
obtained from the infix form in O(log?n) time using n PEs. The EPU of the
resulting tree form algorithm is £(1/log’n).

4. CONCLUSIONS

We have shown that it is possible to parallelize the postfix and tree form
algorithms effectively. Our parallel algorithms run in O(log®n) time when n PEs
are available. If only n/k PEs are available, our algorithms can still be used. The
complexity will be O(k log’n).

‘The results of this paper nicely complement the work reported on the parallel
evaluation of expressions (see [1, 2, 10, 11, 13]).
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