LOW FREQUENCY HYBRID – PI MODEL ## INSTRUCTIONAL OBJECTIVES Given a 2N3704 transistor and circuit diagram for a test circuit, you should be able to: - a. construct the test circuit; - b. construct resistor combination to form R_C to obtain the specified values of I_C. - c. measure the data required to compute β_{dc} , β_o , r_n , and g_m at $V_{CE} = 2V$; - d. obtain and interpret natural and log-log plot of the parameters. #### 1.0 PRELAB ACTIVITIES 1.1 The basis for this experiment is shown by beginning with the formal definition of β_{o_i} adding the small-signal equivalent, and ending with the ratio of small measurable quantities: $$\beta_{o} = h_{fe} = \begin{array}{c|c} \hline \partial \ I_{C} \\ \hline \partial \ I_{B} \end{array} \bigg| \begin{array}{c|c} V_{CE} = constant \end{array} \bigg| \begin{array}{c|c} i_{C} \\ \hline i_{B} \end{array} \bigg| \begin{array}{c|c} V_{CE} = 0 \end{array} \begin{array}{c|c} \Delta I_{C} \\ \hline \Delta I_{B} \end{array} \bigg| \begin{array}{c|c} \Delta V_{CE} \approx 0 \end{array}$$ Write similar equations for r_n , and g_m . - Give two reasons why the parameters determined by this experiment are approximate. (The first reason: Measurement error) - Data sheets for the 2N3702 and 2N3704 are given at the end of Experiment 9B. (Pages 9-12). Which maximum free-air specification for the 2N3704 might be violated when working with the circuit? (Collector-Base Voltage, Collector-Emitter Voltage, Emitter-Base Voltage, etc.) #### 2.0 INVESTIGATION OF A 2N3704: β_{dc} , β_{o} , r_{n} , and g_{m} vs. I_{C} at V_{CE} =2V The circuit shown in Figure 2-1 is designed to safely test a 2N3704 at V_{CE} = 2 Volts. The worst case power dissipation occurs when testing for I_C = 30 mA, I_C = 15 mA, V_{CE} = 2.5 V can occur during that test to produce 37.5 mW. Voltages and currents are well below maximum specifications. Fig. 2.1. Test Circuit and Monitor Display Fig. 2.2. Two Load Lines for the Test Circuit The goal of the circuit is to measure the low frequency small signal parameters of a 2N3704 transistor as a function of I_C at = V_{CE} = 2 volts. Available equipment yields reasonably accurate results for $I_{CM} \leq I_{CM} \leq 1$ mA. A different circuit is required for $I_{CM} \leq 1$ mA. The strategy is based on holding V_{CC} constant at 5 volts, choosing an appropriate I_C , choosing R_C for the correct load line, adjusting I_B to obtain the desired operating point, and measuring six voltages to obtain the data needed to compute the small signal parameters at that operating point. An oscilloscope is used as an aid in adjusting $V_{CE}\approx 2~V$ and adjusting ΔV_{CE} to approximately 1 volt peak-to-peak at each operating point. The scope also monitors V_{CE} and ΔV_{CE} during the test. The voltage measurements (three dc and three ac) are made with a $\pm DMM$. The nominal values of I_C shown in Table 3-1 are chosen to cover a wide range and facilitate comparison with the h_{FE} vs. I_C curve given in the data sheet for the 2N3704. The equation given in Figure 2.2., I_C = 3V / R_C , is used to compute the nominal values of R_C . All resistor values needed to construct R_C are in the CK-1 kit. $(3k\Omega = 1.5 \text{ k}\Omega + 1.5 \text{ k}\Omega, 600 \Omega = 1 \text{ k}\Omega \parallel 1.5 \text{ k}\Omega, \text{ etc})$ #### PROCEDURE: - (1) Measure $R_S \approx 33.0 \text{ k}\Omega$ and adjust $V_{CC} \approx 5.00 \text{V}$. Record this data in Table 3-1. - (2) Construct R_C for the nominal I_C . Measure R_C . Record R_C in Table 3-1. Install R_C . - (3) Observing the scope, adjust the E3631A +25V supply to obtain the operating point and the 33120A amplitude to obtain a display similar to Figure 2.1. Set V_{CE} at slightly less than 2 volts. (Allows measurement with 4 digit precision) Set ΔV_{CE} at about 1 volt peak-to-peak. - (4) Using the DMM (dc), measure and record V_{CE} , V_{RS} , and V_{BE} in Table 3-1. - (5) Using the DMM (ac-rms), measure and record ΔV_{CE} , ΔV_{RS} , and ΔV_{BE} in Table 3-1. - (6) Go to (2) ### 3.0 EXERCISES Table 3-1. Measurements | | | DMM MEASUREMENT | | | | | | | | | | |-------------|-------------|-----------------|------------|-------------|----------|----------|----------|-----------------|-----------------|-----------------|--| | NOMINAL | | DC | | | DC | | | AC | | | | | $I_{\rm C}$ | $R_{\rm C}$ | V_{CC} | R_S | $R_{\rm C}$ | V_{CE} | V_{RS} | V_{BE} | ΔV_{CE} | ΔV_{RS} | ΔV_{BE} | | | (mA) | (Ω) | (Vdc) | (Ω) | (Ω) | (Vdc) | (Vdc) | (Vdc) | (Vrms) | (Vrms) | (Vrms) | | | 0.5 | 6000 | | | | | | | | | | | | 1.0 | 3000 | | | | | | | | | | | | 2.0 | 1500 | | | | | | j, | | | | | | 5.0 | 600 | | | | | | | | | | | | 10.0 | 300 | | | | | | | · | | | | | 30.0 | 100 | | | | | | | <u> </u> | | | | Table 3-2. Calculations | I_{C} (mA) | $I_{B}\left(\mu A\right)$ | β_{dc} | $\Delta I_{C} (mA)$ | $\Delta I_{B} (\mu A)$ | βο | $r_n(\Omega)$ | g _m (mmho) | |---------------------|----------------------------|---|---------------------|------------------------|-------------------------|-------------------|-----------------------| | V_{CC} - V_{CE} | V_{RS} | I_{C} | ΔV_{CE} | ΔV_{RS} | ΔI_{C} | ΔV_{BE} | βο | | | *** | | | | ***** | | ******* | | R_{C} | R_{S} | I_{B} | $R_{\rm C}$ | R_S | ΔI_{B} | $\Delta I_{ m B}$ | r_{Π} | | | | *************************************** | | | | | | | | | | | | | | | | | ~~~ | - 3.1 Construct the circuit of Figure 2-1. Be sure to set $V_{CC} \approx 5.00$ V and don't change it! Follow the procedure given in Section 2.0 to obtain the data for Table 3-1. - *3.2 Compute the values for Table 3-2 using the data in Table 3-1. - *3.3 Plot β_{dc} and β_{o} vs. I_{C} (on the same graph) using a natural scale. Plot β_{dc} and β_{o} vs. I_{C} (on the same graph) using a log-log scale. - *3.4 Plot $r_{\pi \text{ vs.}}$ I_C using a log-log scale - *3.5 Plot g_{m vs.} I_C using a natural scale - 3.6 Discuss the β_{dc} and $\beta_{o\ vs.}$ I_C plots. How do β_{dc} and β_o vary with I_C in the region above 10 mA? How does the maximum value of β_o in this region compare with the value of β_{dc} at 30 mA? How does the h_{FE} vs. I_C plot on the data sheet resemble the β_{dc} vs. IC log-log plot? - 3.7 Discuss the r_n vs. I_C and $g_{m \text{ vs.}}$ I_C plots. Do these parameters vary as expected - * The measurement can be accomplished in an hour. The computations can be done manually in about 20 minutes, the plots will take longer. See program for Student Matlab (DOS) on next page. ``` % DOS Student Matlab Program to Plot Hybrid-Pi Parameters clear; clg; load data; % Filename for data = data.mat. % All units in volts or ohms. % Format for each row of data.mat: % VCC, RS, RC, VCE, VRS, VBE, vce, vrs, vbe [N,M]=size(data); % Automatic sense # rows = N, M = 9 or error. for J = 1:1:N, % For Data Row J Ic(J,1) = (data(J,1) - data(J,4))/data(J,3); % Ic vector Ib(J,1)=data(J,5)/data(J,2); % Ib vector Bdc(J,1) = Ic(J,1)/Ib(J,1); % BETAdc vector ic(J,1)=data(J,7)/data(J,3); % ic vector ib(J,1)=data(J,8)/data(J,2); % ib vector Bo(J,1)=ic(J,1)/ib(J,1); % BETAo vector rpi(J,1)=data(J,9)/ib(J,1); % rpi vector gm(J,1) = Bo(J,1)/rpi(J,1); gm vector Vbe(J,1)=data(J,6); Vbe vector end; IC = 1000 * Ic; % scale to mA subplot(221), plot(IC, Bdc, IC, Bo, '--'); subplot(222), loglog(IC,Bdc,IC,Bo,'--'); subplot(223), plot(IC,gm,IC,38.9*IC,'--',IC,19.45*IC,'--'); subplot(224), loglog(IC,rpi); end; ``` 11-4