LECTURE 33: Energy Considerations in Magnetically Coupled Circuits

Part 1 Main Points/Summary of Lecture

1. **Passivity Principle:** a passive circuit (or circuit element) cannot deliver average power.

2. **Conclusion 1:** Passivity principle implies \(M = M_{12} = M_{21} \).

3. **Conclusion 2:** For the coupled inductors below, the instantaneous stored energy is:

\[
W(t) = \frac{1}{2} L_1 i_1^2(t) + \frac{1}{2} L_2 i_2^2(t) \pm M_1(t)i_1(t) + M_2(t)i_2(t) \quad \text{(B is + and C is -)}
\]

4. **Conclusion 3:** The coefficient of coupling, \(k \), satisfies

Qualitatively Speaking: \(W(t) = \) Individually Stored Energy \(\pm \) Mutual Stored Energy
\[0 \leq k = \frac{M}{\sqrt{L_1 L_2}} \leq 1 \]

which measures the \% of maximum possible coupling achieved by the coil construction. Transformers using iron cores generally have a coefficient of coupling approximately 1 meaning that they achieve the maximum possible degree of coupling given their physical construction.

Part 2. Two Examples

Example 1. \(i(t) = 2 \cos(2t) \) A. Find \(W(t) \) and \(W_{\text{max}} \).

![Position B Analysis](image)

Position B Analysis:

\[
W(t) = \frac{1}{2} 4i^2(t) + \frac{1}{2} 5i^2(t) + \frac{1}{2} 6i^2(t) + M i^2(t) \\
= \left(2 + 2.5 + 3 + 3\right) 4 \cos^2(2t) = 42 \cos^2(2t) \text{ J} \\
W_{\text{max}} = 42 \text{ J}
\]

Exercise. Repeat for position C.

Example 2. A lab experiment to determine the coupling inductance.
Student Measurements:

(i) Primary L: \(L_1 = 4 \) H

(ii) Secondary L: \(L_2 = 9 \) H

(iii) Series Aiding Configuration:

\[
L_{eq} = L_1 + L_2 + 2M = 19 \text{ H} \quad \Rightarrow \quad M = 3 \text{ H} \quad \Rightarrow \quad k = \frac{M}{\sqrt{L_1L_2}} = \frac{3}{6} = 0.5
\]

Part 3. Use passivity assumption to show \(M_{12} = M_{21} = M \) heuristically speaking.
Step 1. Suppositions: \(i_1(t) = \sin(t) \) A and \(i_2(t) = \cos(t) \) A.

Conclusions:

\[
v_1 = L_1 \frac{di_1}{dt} + M_{12} \frac{di_2}{dt} = L_1 \cos(t) - M_{12} \sin(t)
\]

and

\[
v_2 = M_{21} \frac{di_1}{dt} + L_2 \frac{di_2}{dt} = M_{21} \cos(t) - L_2 \sin(t)
\]

Step 2. Compute the instantaneous power delivered to the coils:

\[
p(t) = v_1 i_1 + v_2 i_2
\]

\[
= L_1 \cos(t) \sin(t) - M_{12} \sin^2(t) + M_{21} \cos^2(t) - L_2 \sin(t) \cos(t)
\]

\[
= \left(L_1 - L_2 \right) \sin(t) \cos(t) - M_{12} \sin^2(t) + M_{21} \cos^2(t)
\]

\[
= \left(\frac{L_1 - L_2}{2} \right) \sin(2t) - \frac{M_{12}}{2} \left(1 - \cos(2t) \right) + \frac{M_{21}}{2} \left(1 + \cos(2t) \right)
\]
Step 3. Compute average power noting that the average value of the integral of \(\sin(2t) \) and \(\cos(2t) \) over one period is zero. Thus, by the passivity principle

\[
P_{\text{ave}} = \frac{1}{T} \int_{0}^{T} p(\tau) d\tau = 0.5 \left[M_{21} - M_{12} \right] \geq 0
\]

Conclusion: \(M_{21} \geq M_{12} \).

Step 4. A symmetric argument implies that \(0.5 \left[M_{12} - M_{21} \right] \geq 0 \) in which case \(M_{12} \geq M_{21} \).

Step 5. Combining the conclusions of steps 3 and 4 yield: \(M_{12} = M_{21} = M \) as we have assumed all along.

Part 4. Stored Energy in coupled inductors:

\[
W(t) = \frac{1}{2} L_{1} i_{1}^{2}(t) + \frac{1}{2} L_{2} i_{2}^{2}(t) \pm M i_{1}(t)i_{2}(t) \quad (+ \text{in B and } - \text{in C})
\]
Derivation with dot at B:

\[W(t) = \int_{0}^{t} p(\tau) \, d\tau = \int_{0}^{t} \left[v_1(\tau)i_1(\tau) + v_2(\tau)i_2(\tau) \right] d\tau \]

\[= \int_{0}^{t} \left[L_1i_1 \frac{di_1}{d\tau} + Mi_1 \frac{di_2}{d\tau} \right] d\tau + \int_{0}^{t} \left[Mi_1 \frac{di_1}{d\tau} + Mi_2 \frac{di_2}{d\tau} \right] d\tau \]

\[= \int_{0}^{t} L_1i_1 \, di_1 + \int_{0}^{t} L_2i_2 \, di_2 + \int_{0}^{t} Mi_1(i_1i_2) \]

(noting that \(di_1i_2 = i_2 \frac{di_1}{d\tau} + i_1 \frac{di_2}{d\tau} \))

\[= \frac{1}{2} L_1i_1^2(t) + \frac{1}{2} L_2i_2^2(t) + Mi_1(t)i_2(t) \]

Part 5. Derivation of the coupling coefficient, \(0 \leq k = \frac{M}{\sqrt{L_1L_2}} \leq 1 \).

Exercise. Look this up and do it.