1 December 2021		Name:___________________
1 December 2021		ECE 638 Exam No. 2
ECE 638	Exam No. 2	Fall 2021
This is a take-home exam. You may use whatever resources you have at your disposal. However you may not consult anyone else about any aspect of the exam. You have 48 hours to work the following four problems that are worth a total of 170 pts. (Please see the last page of the exam for a summary of the point assignment.) To obtain maximum partial credit, be sure to show the complete derivation of your answers. Also, please be sure to include any code that you use to solve any problem. Please e-mail your solution to Min Zhao (zhao724@purdue.edu) by 11:59p EST on Friday 3 December. If you have questions about any aspect of the exam, please send an e-mail to me Professor Allebach (jpallebach@gmail.com). I will endeavor to reply to all e-mails as promptly as possible. If necessary, I will schedule a one-on-one Zoom meeting with you address your questions.
1.
[bookmark: OLE_LINK1](50 pts.) Consider the infinitely periodic pattern for the image shown below, which has value 1 in the blue-shaded areas, and value 0, elsewhere.
[image:]
a.

(10) Using standard operators and functions, find a simple expression for . Hint: express as the sum of two separate periodic patterns.
b.

 (10) Based on your answer to part (a) above, find a compact expression for the CSFT of .
c.
(10) Sketch accurately enough to show that you know what it looks like. Be sure to take into account any cancelation of terms that can be observed.

Now, consider the image with finite extent shown below, which also has value 1 in the blue-shaded areas and value 0, elsewhere.
[image:]
d.
(5) Based on your answer to part (a) above, and using standard operators and functions, find a simple expression for .
e.

 (5) Based on your answers to parts (b) and (d) above, find a compact expression for the CSFT of.
f.
(10) Based on your answers to parts (c) and (e) above, sketch accurately enough to show that you know what it looks like.

2. (45 pts.) The next two problems deal with a concept known as pulse-width modulation (PWM) with natural sampling. In this problem, we introduce the concept, and establish some notation.

Consider a continuous-parameter, continuous-amplitude signal that is scaled to lie between 0 and 1, i.e. . For simplicity, we will work with functions of one independent variable , although the extension to functions of and is straightforward.

Let us define a threshold signal according to where

a.
(5) Sketch .

Now, let us define the binary-valued PWM signal according to

b.

(10) Sketch for the specific continuous-amplitude signal for .
Next, let us define the dot profile function

		(2.1)

that is the resulting PWM signal when has constant value , i.e. when , then . Here, .
c.

(15) Sketch separately for each case: for .
d.
(10) Derive an expression for in terms of a standard function.
e.

(5) Compute the average of the dot profile as a function of over the interval , i.e.

		(2.2)
Note that PWM with natural sampling is analogous to a continuous-parameter, periodic, clustered-dot halftoning process.
3.

(60 pts.) Now, we will use our continuous-parameter PWM process defined in the previous problem to determine a closed form expression for the CSFT of in terms of the CSFT of the input signal for an arbitrary input . Here again, for simplicity, we will work with functions of just one independent variable , although the extension to functions of two independent variables and is straightforward. The derivation is actually quite tricky, although the final result has a relatively simple interpretation. So I will lead you through it.

We start with the expression for the dot profile function that we obtained in Problem 2:

. We note that we can also write for an arbitrary continuous-amplitude signal .

Now, let us use the sifting property of the impulse function to write

		(3.1)

Here, we put the dummy variable of integration below the integral sign, since we will soon be working simultaneously with multiple integrals. Next, we consider the Fourier transform of , which is defined as

		(3.2)

Then, we substitute (3.1) into (3.2) and interchange the order of integration to yield

		(3.3)

Now comes the trickiest part. Instead directly applying the sifting property of the impulse function to evaluate the integral with respect to , we consider this integral to be the Fourier transform of the product of two functions that depend on : and . Here, we are treating as having a fixed value. According to the Product Theorem, this will be the convolution of the Fourier transforms of these two functions. Let the variable of integration for this convolution be .

a. (15) Using (2.1) from Problem 2, show that (3.3) can then be written as

		(3.4)

Here, is the Fourier transform of with respect to . Note that for fixed , is periodic in with period .
b.

(10) Now we are ready to apply the sifting property of the impulse function. Applying this property to the evaluation the integral with respect to , and then integrating with respect to , we obtain

		(3.5)

where is the CSFT of with respect to . Carry out this derivation to obtain (3.5), and show the steps you used.

The rest of this problem concerns the interpretation of (3.5). First, we note that for fixed , is the result of processing through the nonlinear transform where the input variable is .
c.

(15) For the dot profile function that you determined in Problem 2, determine expressions for, and sketch, for . Discuss the relation between (2.2) from Problem 2 and the characteristics of .
d.

(15) Suppose that . Sketch for .
e.

(5) Suppose we wish to recover from by simply filtering with an ideal low-pass filter that rejects all frequencies for which . Discuss how well this will work, in terms of the contributions of the term and the aliases for which in the expansion given by (3.5).
Please note that the sketches for all parts of this problem only need to be sufficiently accurate to convince one that you know what the function looks like.

4.	(30 pts.) Consider the discrete-parameter, continuous-tone image shown below

[bookmark: _GoBack]

Compute the halftone image corresponding to by error diffusion when is processed by starting in the upper left corner and proceeding to the lower right corner row-by-row, and then column-by column. Use the following error diffusion kernel:

where the denotes the pixel currently being processed. Your solution should provide a separate modified continuous-tone image and halftone image array for each of the 16 stages in the process of binarizing the pixel image . You may do this manually, or by writing a simple program in Matlab, C, or Python. If you choose to write a program, please turn in your code with your solution to the problem. When you reach the right edge of the image, you may discard any error terms that are diffused beyond the boundary of the image.

1.	_______ (out of 50 pts.)
2.	_______ (out of 45 pts.)
3.	_______ (out of 60 pts.)
4. 	_______ (out of 30 pts.)
Total	_______ (out of 185 pts.)

oleObject1.bin

oleObject45.bin

image48.emf

 x

x

oleObject46.bin

image49.emf

 x

x

oleObject47.bin

image50.emf

 y

y

oleObject48.bin

image51.emf

 p[x;b]= repX p0[x;b]⎡⎣ ⎤⎦

p[x;b]=rep

X

p

0

[x;b]

é

ë

ù

û

oleObject49.bin

image52.emf

 g(x) = p[x; f (x)]

g(x)=p[x;f(x)]

image2.tiff

oleObject50.bin

image53.emf

 f (x)

f(x)

oleObject51.bin

image54.emf

g(x) = p[x; f (s)]

s
∫ δ (x − s)ds

g(x)=p[x;f(s)]

s

ò

d(x-s)ds

oleObject52.bin

image55.emf

 G(u)

G(u)

oleObject53.bin

image56.emf

 g(x)

g(x)

oleObject54.bin

image57.emf

G(u) = g(x)e− j2πux

x
∫ dx

G(u)=g(x)e

-j2pux

x

ò

dx

image3.emf

 g(x, y)

g(x,y)

oleObject55.bin

image58.emf

G(u) = p[x; f (s)]δ (x − s)e− j2πux dx

x
∫

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪s

∫ ds

G(u)=p[x;f(s)]d(x-s)e

-j2pux

dx

x

ò

ì

í

î

ï

ü

ý

þ

ï

s

ò

ds

oleObject56.bin

image59.emf

 x

x

oleObject57.bin

image60.emf

 x

x

oleObject58.bin

image61.emf

 p[x; f (s)]

p[x;f(s)]

oleObject59.bin

image62.emf

 δ (x − s)

d(x-s)

oleObject2.bin

oleObject60.bin

image63.emf

 s

s

oleObject61.bin

image64.emf

µ

m

oleObject62.bin

image65.emf

G(u) = 1

X
P0 k

X
; f (s)

⎡

⎣
⎢

⎤

⎦
⎥

k=−∞

∞

∑ δ (µ − k
X

)e− j2π (u−µ)s dµ
µ
∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪s
∫ ds

G(u)=

1

X

P

0

k

X

;f(s)

é

ë

ê

ù

û

ú

k=-¥

¥

å

d(m-

k

X

)e

-j2p(u-m)s

dm

m

ò

ì

í

ï

î

ï

ü

ý

ï

þ

ï

s

ò

ds

oleObject63.bin

image66.emf

 P
0[u, f (s)]

P

0

[u,f(s)]

oleObject64.bin

image67.emf

 p
0[x; f (s)]

p

0

[x;f(s)]

image4.emf

 g(x, y)

g(x,y)

oleObject65.bin

image68.emf

 x

x

oleObject66.bin

image69.emf

 s

s

oleObject67.bin

image70.emf

 p[x; f (s)]

p[x;f(s)]

oleObject68.bin

image71.emf

 x

x

oleObject69.bin

image72.emf

 X

X

oleObject3.bin

oleObject70.bin

image73.emf

µ

m

oleObject71.bin

image74.emf

 s

s

oleObject72.bin

image75.emf

G(u) = 1

X
Fk

k=−∞

∞

∑ u − k
X

⎛
⎝⎜

⎞
⎠⎟

G(u)=

1

X

F

k

k=-¥

¥

å

u-

k

X

æ

è

ç

ö

ø

÷

oleObject73.bin

image76.emf

 Fk (u)

F

k

(u)

oleObject74.bin

image77.emf

fk (x) = P0 k

X
; f (x)

⎡

⎣
⎢

⎤

⎦
⎥

f

k

(x)=P

0

k

X

;f(x)

é

ë

ê

ù

û

ú

image5.emf

 G(u,v)

G(u,v)

oleObject75.bin

image78.emf

 x

x

oleObject76.bin

image79.emf

 k

k

oleObject77.bin

image80.emf

 fk (x)

f

k

(x)

oleObject78.bin

image81.emf

 f (x)

f(x)

oleObject79.bin

image82.emf

P0 k

X
;b⎡

⎣
⎢

⎤

⎦
⎥

P

0

k

X

;b

é

ë

ê

ù

û

ú

oleObject4.bin

oleObject80.bin

image83.emf

 b

b

oleObject81.bin

image84.emf

P0 k

X
;b⎡

⎣
⎢

⎤

⎦
⎥

P

0

k

X

;b

é

ë

ê

ù

û

ú

oleObject82.bin

image85.emf

 k = 0,1,2,and3

k=0,1,2,and3

oleObject83.bin

image86.emf

 P
0 0;b⎡⎣ ⎤⎦

P

0

0;b

é

ë

ù

û

oleObject84.bin

image87.emf

f (x) = 1

2
+ 1

2
cos(2π x / (10X)

f(x)=

1

2

+

1

2

cos(2px/(10X)

image6.emf

 g(x, y)

g(x,y)

oleObject85.bin

image88.emf

 fk (x)

f

k

(x)

oleObject86.bin

image89.emf

 k = 0,1,and 2

k=0,1,and2

oleObject87.bin

image90.emf

 f (x)

f(x)

oleObject88.bin

image91.emf

 g(x)

g(x)

oleObject89.bin

image92.emf

 g(x)

g(x)

oleObject5.bin

oleObject90.bin

image93.emf

u > 1

2X

u>

1

2X

oleObject91.bin

image94.emf

 k = 0

k=0

oleObject92.bin

image95.emf

 k > 0

k>0

oleObject93.bin

image96.emf

 f (m,n)

f(m,n)

oleObject94.bin

image97.emf

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

image7.emf

 G(u,v)

G(u,v)

oleObject95.bin

image98.emf

 g(m,n)

g(m,n)

oleObject96.bin

image99.emf

 f (m,n)

f(m,n)

oleObject97.bin

image100.emf

 f (m,n)

f(m,n)

oleObject98.bin

image101.emf

X 1
2

1
2 0

X

1

2

1

2

0

oleObject99.bin

image102.emf

 X

X

oleObject6.bin

oleObject100.bin

image103.emf

 4× 4

4´4

oleObject101.bin

image104.emf

 4× 4

4´4

oleObject102.bin

image105.emf

 4× 4

4´4

oleObject103.bin

image106.emf

 f (m,n)

f(m,n)

oleObject104.bin

image8.emf

 h(x, y)

h(x,y)

oleObject7.bin

image9.tiff

image10.emf

 h(x, y)

h(x,y)

oleObject8.bin

image11.emf

 H (u,v)

H(u,v)

oleObject9.bin

image12.emf

 h(x, y)

h(x,y)

oleObject10.bin

image13.emf

 H (u,v)

H(u,v)

oleObject11.bin

image14.emf

 f (x)

f(x)

oleObject12.bin

image15.emf

 0 ≤ f (x) ≤1

0£f(x)£1

oleObject13.bin

image16.emf

 x

x

oleObject14.bin

image17.emf

 x

x

oleObject15.bin

image18.emf

 y

y

oleObject16.bin

image19.emf

 t(x)

t(x)

oleObject17.bin

image20.emf

 t(x) = repX t0(x)⎡⎣ ⎤⎦

t(x)=rep

X

t

0

(x)

é

ë

ù

û

oleObject18.bin

image21.emf

t0(x) =
2x
X

, −X / 2 ≤ x ≤ X / 2

0, else

⎧

⎨
⎪

⎩
⎪

t

0

(x)=

2x

X

,-X/2£x£X/2

0,else

ì

í

ï

î

ï

oleObject19.bin

image22.emf

 t(x)

t(x)

oleObject20.bin

image23.emf

 g(x)

g(x)

oleObject21.bin

image24.emf

g(x) =

1, f (x) ≥ t(x)
0, else

⎧
⎨
⎪

⎩⎪

g(x)=

1,f(x)³t(x)

0,else

ì

í

ï

î

ï

oleObject22.bin

image25.emf

 g(x)

g(x)

oleObject23.bin

image26.emf

f (x) = 1

2
+ 1

2
cos(2π x / (10X)

f(x)=

1

2

+

1

2

cos(2px/(10X)

oleObject24.bin

image27.emf

 0 ≤ x ≤10X

0£x£10X

oleObject25.bin

image28.emf

p[x;b]= repX p0[x;b]⎡⎣ ⎤⎦

p[x;b]=rep

X

p

0

[x;b]

é

ë

ù

û

oleObject26.bin

image29.emf

 g(x)

g(x)

oleObject27.bin

image30.emf

 f (x)

f(x)

oleObject28.bin

image31.emf

 0 ≤ b ≤1

0£b£1

oleObject29.bin

image32.emf

 f (x) ≡ b

f(x)ºb

oleObject30.bin

image33.emf

 g(x) = p[x;b]

g(x)=p[x;b]

oleObject31.bin

image34.emf

 p
0[x;b]= 0, x > X / 2

p

0

[x;b]=0,x>X/2

oleObject32.bin

image35.emf

 p[x;b]

p[x;b]

oleObject33.bin

image36.emf

 b = 0.0, 0.25, 0.5, 0.75, and 1.0

b=0.0,0.25,0.5,0.75,and1.0

oleObject34.bin

image37.emf

 −X ≤ x ≤ X

-X£x£X

oleObject35.bin

image38.emf

 p
0[x;b]

p

0

[x;b]

oleObject36.bin

image39.emf

 p[x;b]

p[x;b]

oleObject37.bin

image40.emf

 b

b

oleObject38.bin

image41.emf

− X

2
≤ x ≤ X

2

-

X

2

£x£

X

2

oleObject39.bin

image42.emf

pavg (b) = 1

X
p[x;b]dx

− X /2

X /2

∫

p

avg

(b)=

1

X

p[x;b]dx

-X/2

X/2

ò

image1.emf

 g(x, y)

g(x,y)

oleObject40.bin

image43.emf

 G(u)

G(u)

oleObject41.bin

image44.emf

 g(x)

g(x)

oleObject42.bin

image45.emf

 F(u)

F(u)

oleObject43.bin

image46.emf

 f (x)

f(x)

oleObject44.bin

image47.emf

 f (x)

f(x)

