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In the future we envision systems that will provide video
information delivery services to customers on a very large scale.
These systems must provide customers with mechanisms to
select programs of their choice from live broadcasts. Customers
should also be provided with easy means of browsing and ac-
cessing prerecorded digital data (e.g., distributed digital multi-
media libraries), and downloading data from other information
sources. To be viable for such large information sets, these
systems must understand customer preferences and tailor the
available information to the customer’s needs. To support this
vision, a number of issues must be addressed and obstacles
overcome. Intuitive interfaces, powerful query formulation and
evaluation techniques, comprehensive data models, and flexible
presentation functionalities must be developed. To realize these
components, an effective query evaluation engine with the capa-
bilities of query resolution in different content-specific formats
(e.g., by graphics, by image, by sound) and in different domain-
specific models (e.g., database of movies, database of newsclips)
should be present. Additionally, the digital video database will
require an efficient indexing system for easy access to the stored
information. In this paper we discuss existing research trends
in this area and requirements for future data delivery systems.
An overview of video indexing is presented followed by a discus-
sion on current indexing techniques. © 1996 Academic Press, Inc.

1. INTRODUCTION

Today’s technology cannot effectively deal with the de-
mands made by burgeoning large scale digital data delivery
systems. In the past, information has been collected as
discrete units (e.g., numeric and alphanumeric) and re-
trieved using mechanisms such as structured query lan-
guage (SQL) strings or hyperlinks as used in the World
Wide Web (WWW). In contrast, digital multimedia data
are voluminous and contain such a vast amount of informa-
tion that new technologies are required to effectively re-
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trieve data. Since the potential for applications like live
broadcast, video-on-demand, and digital libraries is enor-
mous, the challenges presented by these applications,
though formidable, must be met. To do so we must consider
and understand the following issues:

+ Why traditional database retrieval techniques are in-
sufficient for multimedia retrieval (e.g., why can we not
just index and retrieve images using keywords?).

* How spatial visual data types differ from alphanumeric
types in terms of data modeling.

* What the roles of the user and the system are in per-
forming queries.

Visual data are perceived differently by different people.
Because of the visual nature of video data, we end up with
numerous interpretations of the same data. To represent
all the different interpretations by keywords (text) is an
impossible task as one cannot foresee all possible interpre-
tations of the data during indexing. Also, representation
of a small segment of video data by a large number of
keywords will lead to space explosion during indexing.
Keywords cannot successfully represent the temporal na-
ture of video data nor do they support semantic relation-
ships (inference rules, hierarchy, and similarity descriptors
(“like this™), e.g., find me the image containing vases simi-
lar to the given vase shape, find the images containing
colors similar to the given image). The large number of
keywords necessary to formulate a query makes the pro-
cess of data retrieval long, tedious, and inefficient.

As the size of the database increases, so do the problems
faced by the user in retrieving data. Often a user can use
a priori knowledge of the database contents to retrieve
data efficiently. However, a large data space strains the
user’s ability to understand the data content [11]. Users
need to explore large amounts of data to find the desired
content. A knowledge of the database schema and the
data model is necessary to do so. Possessing such detailed
information about a large database is difficult. Therefore,
we need to provide the user with intuitive ways of under-
standing the contents of a database.

In addition to the problem of possessing knowledge
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about a large database. there is a problem of storing large
amounts of video data. Due to the limited storage capaci-
ties of existing storage devices. multiple storage devices
must be used. Moreover. the data need not be stored at a
single site as illustrated in Fig. 1: therefore, it is important
to be aware of data existing at different sites [41].

Only after the information is modeled and extracted
from the data can a user possess knowledge about the
information in the stored data. Therefore, before the raw
video data can be used to issue queries they must be in-
dexed by content and their indices stored as metadata.

ire 2 depicts the various stages of preprocessing that
law video data undergo. First. the video data should be
broken into manageable segments and then their features
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database of movies, database of newsclips). The metadata-
base should be used to store the extracted information to
speed up the data retrieval process from the video archive.
If some information about the video data content is not
stored in the metadatabase, the user should be able to
extract the information on-the-fly, and store them in the
metadatabase.

In this paper we discuss different components that make
up a successful video delivery application (Fig. 2). In Sec-
tion 2 we describe the issues and requirements for video
indexing. Existing video data models are discussed in Sec-
tion 3. Image dynamics for compressed video and their
applications in modeling the data are discussed in Section
4. Section 5 discusses methods for segmentation of video
data into smaller units. In Section 6 we discuss the tech-
niques for data representation and organization. Finally in
Section 7 we present an example of how the integration
of different aspects of the video computation mentioned
can be achieved. Section § concludes the paper.

2. VIDEO DATA INDEXING

Using video as a primary multimedia data source re-
quires effective ways of retrieving the desired video data
from a database. To do so, a model that classifies video
data on the basis of its semantic properties must be devel-
oped. Then the video data based on the model should be
organized for easy access. We require a good indexing
mechanism for this purpose. The large information content
present in a video data makes manual indexing (informa-
tion extraction) labor intensive, time consuming, and prone
to errors. The errors introduced are generally of two types.
The first are perceptual, made by the person indexing the
data, and the second are simple errors introduced due to
level of alertness, ambient conditions, fatigue, motivation,
etc. Two primary approaches, preprocessing the video data
and dynamic interaction with the data, form the basis for
indexing in these systems. The first approach uses preex-
tracted indices; i.e., they are created a priori by manual
or batch-mode (manual/automatic) processes. The second
approach is much more flexible but as automatic parsing
techniques are used, it is difficult to achieve and requires
significant computational power.

A number of visual systems have been proposed for the
retrieval of multimedia data. These systems fall broadly
under four categories: query by content [12, 23, 29, 30, 34],
iconic query [8, 17, 69], SQL query [53, 57], and mixed
queries [1, 17, 41, 58]. The query by content is based on
images, tabular form, similarity retrieval (rough sketches),
or by component features (shape, color, texture). The
iconic query represents data with “look alike” icons and
specifies a query by the selection of icons. SQL queries
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FIG. 3.

Photograph of a busy street.

are bascd on keywords, with the keywords being conjoined
with the relationship (AND, OR) between them, thus
forming compound strings. The mixed queries can be speci-
fied by text and as well as icons. All of these systems
are based on different indexing structures as discussed in
Section 6.

The interpretation of video data depends on the percep-
tion of the viewer. A single image can convey different
meanings to different people depending on what a person
is looking for. For example, consider the image in Fig. 3.
It can be interpreted as a picture of a busy street. a picture
of people walking. a picture of a chapel, a picture of cars
moving, or a train [1]. Therefore, a flexible process for
video indexing is required.

To browse and retrieve data from a large multimedia
data source the system must support a strong access tech-
nique. As the most complex form of multimedia data is
video data, to develop an application for accessing informa-
tion (e.g., digital libraries) we must understand the proper-
ties of digital video data for indexing purposes. The
adaptation/indexing process for video can be subdivided
nto five steps, i.e.. modeling, segmentation, extraction, rep-
resentation, and organization. As mentioned before, video
data are broken into logical/temporal interconnected seg-
ments. In the extraction process the content information
is retrieved and then represented as text, strings, or data
tokens. In the last stage the extracted information is mod-
e*eci based on domain-specific attributes.

3. VIDEO DATA MODELING

(Dlll; 4 conventional database management system
well \ll\) access to data is based on distinct attributes of
cli-defined data developed for a specific application. For

unstructured data such as audio, video, or graphics, similar
attributes can be defined. A means for extracting informa-
tion contained in the unstructured data is required. Next,
this information must be appropriately modeled in order
to support both user queries for content and data models
for storage (see Fig. 4).

From a structural perspective, a motion picture can be
modeled as data consisting of a finite-length of synchro-
nized audio and still images. This model is a simple instance
of the more general models for heterogeneous multimedia
data objects. Davenport et al. [16] describe the fundamental
film component as the shot: a contiguously recorded audio/
image sequence. To this basic component, attributes such
as content, perspective, and context can be assigned, and
later used to formulate specific queries on a collection of
shots. Such a model is appropriate for providing multiple
views on the final data schema and has been suggested by
Lippman and Bender [40]. Bender er al. [6]. and Loeb
[42, 43].

Smith and Davenport [64. 65] use a technique called
stratification for aggregating collections of shots by contex-
tual descriptions called strata. These strata provide access
to frames over a temporal span rather than to individual
frames or shot endpoints. This technique can then be used
primarily for editing and creating movies from source
shots. It also provides a quick access and a view of desired
blocks of video. Figure 5 shows an example of this stratifi-
cation technique.

Because of the linearity of the medium we cannot get
a coherent description of an item but as a result of the
stratification method the related information is lumped
together. The linear integrity of the raw footage is erased,
resulting in contextual information which relates the shot
with the environment. A method which retains this contex-
tual information is required. In Fig. 5. the first column is
the tape identification number. the second column contains
the frame number, the third column is the content marker,
and the fourth column contains the keywords. With key-
words. we can consistently find related strings of words.
The keywords “AP1” and ““AP2” remain constant while
the content markers change; therefore, the keywords pro-
vide the context to the content marker. The patterns
formed in the figure after the frame numbers are sorted
to illustrate the contextual relationship among the continu-
ously recorded video frames. Tracing this pattern provides
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Application Information Model!
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FIG. 4. First stage in video data adaptation: data modeling.
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| news03/15/95 | 14321 | President visits Iraq APt [1AP2 T Logo 1
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news03/15/25 | 15789 | Hillary dances with Remo in India . NewDelhi TiHilary 7 Dance
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news03/15/35 | 16600 | Motaba the new terror I AP2 : Logo !

news03/15,55 | 17100 | Wearable computers: the look of the future ? —AP2 = Logo

AP1 -- First Anchor Person
AP2 -- Second Anchor Person

FIG. 5. Example of stratification on newscast video.

us with information about shots. e.g.. where and what was
shot. As shown in Fig. 5. each layer of stratum represents
discrete distinctive contents of the medium. When these
threads are layered one on top of another they produce a
descriptive strata from which an inference about the con-
tent of each frame is drawn.

Rowe et al. [38] have developed a video-on-demand
system for video data browsing. In this system the data
are ~ndeled based on a survey of what users query for.
Ti  types of indices were identified to satisfy the user
queries. The first is a textual bibliographic index which
includes information about the video and the individuals
involved in the making of the video. The secondisa textual
structural index of the hierarchy of movie, i.e., segment,
scene, and shots. The third is a content index which in-
cludes keyword indices for the audio track, object indices
for significant objects, and key images in the video which
represent important events.

The above model does not utilize the semantics associ-
ated with video data. Different video data types have dif-
ferent semantics associated with them. We must take ad-
vantage of this fact and model video data based on the
semantics associated with each data type.

4. INFORMATION EXTRACTION

For video data to become “‘usable” (ie., accessed
through an application), information contained in the data
needs to be extracted (see Fig. 6). The information at the
physical (pixel) level can be extracted by parsing the data
automatically, manually, or a combination of the two (hy-
brid). Automatic extraction depends heavily on techniques
(e.g.,image processing tools) used in computer vision. Con-
tent of unstructured data such as imagery or sound is easily

tified by human observation; however, few attributes
l. . to machine identification. Therefore, we are more
dependent on hybrid (i.e., combination of automatic and

manual) extraction techniques. The shortcomings of auto-
matic extraction techniques can be handled manually.

We need to define distinct attributes of video data for
content-based retrieval of the data. The information con-
tained in the data is extensive and diverse: therefore. ex-
tracting the data can be a difficult task. It is easier to
extract information from smaller data segments. Hence.
depending on their dynamics, video data must be seg-
mented into smaller logical units. In the next section we
discuss the dynamics of video data in detail.

4.1. Video Scene Dynamics

The data comprising a video stream can be modeled
as a sequence of still digital frames. The still frames are
composed of pixels. A 640 X 480 image “still”” contains
307,200 such pixels. If pixels are used to compare successive
frames for the purpose of detecting scene transitions,” the
resulting process would be extremely slow and require
significant time. However, when a compression scheme
such as the JPEG standard [70] is applied to the frames,
a significant amount of information about the shots in the

Domain Specific Information to Extract

Manual and/or Automatic Parsing ’
Video Dat A ) .
ideo Data Segmentation Information © Video Archive
Extraction A

Domain-Specific Extracted Information

FIG. 6. Second stage in video data adaptation: information ex-
traction.

2 We use “scene transition” to refer to any change (scene or shot) in
the video data stream.
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FIG. 7. Image size dynamics for JPEG-compressed movie.

frames can be extracted. This is due to short-term temporal
consistency within the frames of a shot. Because there is
dttle change in the overall image content of a shot, the
compressed frames of the shot are similar in size (in bytes);
i.e., frames within a single scene exhibit consistent intra-
frame image complexity. Therefore, by studying the file
size dynamics of the compressed frames, we can find transi-
tions from one shot to the next. However, a filtering scheme
based purely on size will fail when two shots of similar
complexity follow each other. It may also erroneously de-
tect changes when none exist. When such situations occur,
more complex algorithms must be employed. The image
size dynamics for two sample JPEG-compressed video se-
quences are shown in Fig. 7 [18].

Figure 7 illustrates the differences in the characteristics
of compressed video for two different videos sequences.
The more dynamic (bursty) sequence is from a movie clip
with significant action (motion and complex image se-
quences shot over water). The second, less bursty sequence
is from a video-taped classroom and is representative of
“talking head” video dynamics. This sequence has little
motion compared to the action movie. Consequently, the
scene and shot transitions are more easily identifiable in
the first case where changes are abrupt and quite promi-
nent. Two different kinds of scene changes are illustrated
in Fig. 8. The first is a “merge” and “dissolve” where
the images are superimposed over each other at a shot
boundary. This yields a composition of two images at the
scene transition which is difficult to compress and results
in a spike in the compressed frame size plot. The second

type of change is a ““cut.” In this case, an abrupt change
from one frame to the next due to the cut causes a positive
or negative step in the compressed frame size plot.

An number of people are working on techniques for
automating the identification of shot transitions and the
generation of indices for their location [36-38, 48, 72, 73].
Two stages have been proposed for this task:

* Shot detection: Video data have been isolated into
meaningful segments to serve as units to be indexed. This
is achieved by detecting the camera transitions. There are
two type of transitions. abrupt transitions or camera break
and gradual transitions, e.g., fade-in, fade-out, dissolve,
and wipe.

* Feature extraction: The semantics of the video content
are extracted during this stage.

Video data are hierarchical in nature, (i.e., video, scenes,
shots. and frames) and this property is exploited when in-
dexing the video. Fundamentally, most approaches use the
concept of partitioning the continuous video data into se-
quences for indexing. Video are segmented primarily on the
basis of camera breaks or shots; therefore, each sequence is
a segment of data having a frame or multiple consecutive
frames. Automatic isolation of camera transitions requires
support of tools that provide accurate and fast detection.
Abrupt camera transitions can be detected quite easily as
the difference between two consecutive frame is so large
that they cannot belong to the same shot. A problem arises
when the transition is gradual; the shot does not change
abruptly but over a period of few frames. The difference
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FIG. 8. Illustration of various scene transitions.

between consecutive frames is not so large as to declare it a
camera break. The gradual transitions become more diffi-
‘0 detect because the frame content shares the same
se,uantic properties as frames with object motion or special
camera effects such as wipe, dissolve, fade-in, fade-out.

5. VIDEO SCENE SEGMENTATION

Seyler [61] developed a frame difference coding tech-
nique for television signals. The technique is based on the
fact that only a fraction of all picture elements change in
amplitude in consecutive frames. Since then a number of
digital video data segmentation techniques based on this
concept have been developed. A number of metrics have
been suggested for video scene segmentation for both the
raw data and compressed data. The metrics used to detect
the difference between two frames can be divided broadly
into four classes: pixel or block comparison, histogram
comparison (of gray levels or color codes) [36, 48, 72],
using the DCT coefficients in MPEG-encoded video se-
quences [2, 63, 73], and the subband feature comparison
method [37]. Some of the methods are discussed below.

5.1. Pixel-Level Change Detection

The change between the two frames can be detected by
comparing the differences in intensity values of corre-
sponding pixels in the two frames. The algorithm counts

- number of the pixels changed, and the camera break
. declared if the percentage of the total number of pixels
changed exceeds a certain threshold [36, 48, 72]. Mathe-

matically. the difference in pixels and threshold calcula-
tion can be represented by Egs. (1) and (2). In Eq. (1),
Fi(x, y) is the intensity value of the pixel in frame / at the
coordinates (x, y). If the difference between the corre-
sponding pixels in the two consecutive frames is above
a certain minimum intensity value, then DP;(x, y), the
difference picture, is set to one. In Eq. (2). the percentage
difference between the pixels in the two frames is calcu-
lated by summing the difference picture and dividing by
the total number of pixels in a frame. If this percentage is
above a certain threshold T, a camera break is declared.

DP,(x,y) = {1 if lFi(X,y) — Fia(x. y)‘ >t M

0 otherwise

XY
Y Dp.
z’ilfﬂ%_(ﬁy_)*loo>]*‘ )

Camera movement, €.g., pan or zoom, can have the effect
of a large number of pixel changes, and hence a segment
will be detected. Fast moving objects also have the same
effect. If the mean intensity values of the pixel and its
connected pixels are compared [72] then the effects of
camera and object motion are reduced.

5.2. Likelihood Ratio

Detecting changes at the pixel level is not a very robust
approach. A likelihood ratio approach is suggested based
on the assumption of uniform second-order statistics over

Tdt
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a region [36, 47, 72]. The frames can be subdivided into
blocks and then the blocks can be compared on the basis
of the statistical characteristics of their intensity levels.
Equation (3) represents the formula that calculates the
likelihood function. Let u; and w;.; be the mean intensity
values for a given region in two consecutive frames and §;
and S;.; be the corresponding variances. The number of
the blocks that exceed a certain threshold ¢ are counted.
If the number of blocks exceeds a certain value (dependent
on the number of blocks) a segment is declared. A subset
of the blocks can be used to detect the difference between
the images so as to expedite the process of block matching:

)= [((0; + 03:1)12) + (i — pie1)/2))*]
g, * O+
(3)
1 ifA>¢

0 otherwise.

DP,(k,[) = {

This approach is better than the previous approach as
itincreases the tolerance against noise associated with cam-
era and object movement. It is possible that even though
the two corresponding blocks are different they can have
the same density function. In such cases no change is de-
tected.
In another block matching technique that has been pro-
- posed by Shahraray [63], a typical frame is divided into 12
nonoverlapping blocks. Block matching is performed on
the image intensity values and the matched parameters are
normalized between the values of zero and one where zero
indicates a perfect match. The match coefficient between
the two images is defined as#n Eq. (4). Let / be the block
number, K the total number of blocks, /; the element of
the ordered set of the match values, and ¢; a predetermined
coefficient for each block:

4)

Methods for detecting gradual scene transition and in-
tershot scene changes induced by the camera are also ex-
plained in the paper by Shahraray but no performance
measures have been given to evaluate the efficacy of
these techniques.

Histogram Comparison. The sensitivity to camera and
object motion can be further reduced by comparing the
gray level histograms of the two frames [48, 72]. This is
due to the fact that two frames with not much difference
in their background and some amount of object motion
have almost the same histograms. The histogram is ob-
tained from the number of pixels belonging to each gray
level in the frame. In Eq. (5) G is the number of gray
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levels, j is the gray value, i is the frame number, and H,()
is the histogram for the gray level j:

G
; |Hi(j) = Hia(j)] > t. 5

If the sum is greater than the given threshold ¢ then a
transition is declared.

Histogram comparison using color code is also suggested
[48,72]. A color code value is derived from the three color
intensities. To reduce the bin size, instead of representing
the code by 24 bits, the upper two bits of each color are
used to compose the color code. The jin the above equation
is replaced by the code value. The color histogram metric
is more robust as it eliminates the necessity of converting
the color level to gray level.

An y’-test comparison of color histograms is proposed
by Nagasaka and Tanaka [48]. The function uses the square
of the difference between the two histograms so as to
strongly reflect the difference:

2
>1.

:ilHi(j) — Hii())

2T HLO) (®)

The x? test enhances the difference between the camera
breaks and also small changes due to camera or object
motion [72]. Therefore, this method may not be more effi-
cient than the gray and color histogram comparison tech-
iques.

5.3. Twin Comparison

Special camera effects make it difficult to detect camera
breaks by means of any of the above methods and transi-
tions can go undetected. This is because the threshold set
in the above methods is higher than the difference found
between the frames in which transition takes place due to
special effects. Lowering the threshold does not solve the
problem because the difference value due to the special
effects can be smaller than those which take place within
the shot. For example, object motion and/or camera mo-
tion might contribute more changes than the gradual transi-
tion. Making the value of the threshold even smaller will
lead to false detections due to camera and object motions.
The beginning and end frames for the gradual transitions
need to be detected; the frames in the transition can be
declared as a separate segment.

The twin-comparison method [72] takes into account
the cumulative differences between the frames for gradual
transitions. This method (Fig. 9) requires two cutoff thresh-
olds, one higher threshold (T7,) for detecting abrupt transi-
tions and a lower one (7)) for gradual transitions. In the
first stage a higher threshold is used for detection of abrupt
transitions. In the next stage a lower threshold is used on
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FIG. 9. Illustration of twin-comparison.

the rest of the frames: any frame that has the difference
more than this threshold is declared as a potential start
(F,) of the transition. This frame is then compared with

“sequent frames and the difference added. Usually this
*_ .ference value increases and when this value increases
to the level of the higher threshold, camera break is de-
clared at that frame (F,). If the value falls between the
consecutive frames then the potential frame is dropped
and the search starts all over. There are some gradual
transitions in which the difference falls below the lower
threshold. The user can set a tolerance value which will
allow a certain number of consecutive frames to fall below
the threshold.

The gradual transitions so detected might include special
effects due to camera panning and zooming. A commonly
used technique in computer vision, optical flow, is used to
detect the camera movements. Motion vectors are com-
puted to detect the changes due to pan and zoom.

5.4. Detection of Camera Motion

To detect the camera motion, optical flow techniques
are utilized. Optical flow gives the distribution of velocity
with respect to an observer over the points in an image.
Optical flow is determined by computing the motion vector
of each pixel in an image. The fields generated by zoom,
pan, and tilt are shown in Fig. 10. Detecting these fields
helps in separating the changes introduced due to the cam-
era movements from the special effects such as wipe, dis-

slve, fade-in, fade-out.

As seen in Fig. 10 most of the motion vectors between
consecutive frames due to pan and tilt point in a single

direction, thus exhibiting a strong modal value correspond-
ing to the camera movement. Disparity in direction of some
of the motion vectors will result from object motion and
other kinds of noise. Thus, a single modal vector is exhib-
ited with respect to the camera motion. As given by Eq.
(7), a simple comparison technique can be used to detect
pan and tilt. Pan and tilt are detected by calculating the
difference between the modal vector and the individual
motion vectors. Let §, be the direction of the motion vectors
and 6,, the direction of the modal vector. If the sum of the
differences of all vectors is less than or equal to a threshold
variation ©, then a camera movement is detected. This
variation should be zero if no other noise is present:

N

2 IB[ - Bm| = ®p- (7)

!

Motion vectors for zoom have a center of focus. i.e.,
focus of expansion (FOE) for zoom-in and focus of contrac-
tion (FOC) for zoom-out. Due to the absence of noise, it
is easy to detect the zoom because the sum of the motion
vectors around the FOC/FOE will be zero. But it is difficult
to find the center of focus of zoom since it could be present
across two consecutive frames. Zhang er al. [72] assume
that the FOE/FOC lies within a frame: therefore. it is not
necessary to locate it for vector comparison. A simple
comparison technique can be used, the vertical vectors
from the top (V{?) and the bottom rows (V™) can be
compared for magnitude. and horizontal vectors from the
left-most (U?) and right-most (U°"™) vectors at the
same row can be compared. In the case of zoom. the vectors
will have opposite signs, and the magnitude of the differ-
ence of these components should exceed the magnitude
of the highest individual component. This is due to the
fact that in every column the magnitude of the difference
between these vertical components will exceed the magni-
tude of both components:
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FIG. 10. Optical flow field produced by pan, tilt and zoom.
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When both Egs. (8) and (9) are satisfied, a zoom is
declared. Thus, the camera movements can be separated
from the gradual transitions detected by other techniques
(Section 5.3).

5.5. Using DCT Coefficients in MPEG-Encoded Video

In this method the compressed video data are used for
detecting camera breaks [2], and the amount of the data
to be processed is reduced considerably. Compression of
the video is carried out by dividing the image into a set of
8 X 8 pixel blocks. The pixels in the blocks are transformed
into 64 coefficients using the discrete cosine transform
(DCT). which are quantized and Huffman entropy en-
coded. The DCT coefficients are analyzed to find frames
where camera breaks take place. The coefficients in the
frequency domain are mathematically related to the spatial
domain: therefore, they can be used in detecting the
changes in the video sequences.

Given 8 X 8 blocks of a single DCT-based encoded video
frame f. a subset of blocks is chosen a priori. The blocks
are chosen from # connected regions in each frame. Again
a subset of the 64 coefficients for each block is chosen.

- The coefficients chosen are randomly distributed among

the AC coefficients of the block. Taking coefficients from
each frame a vector is formed.

Vf ={cy, 2, C3, ..}

The vector V; represents the frame f of the video se-
quence in DCT space. The inner product is used to find
the difference between the two frames. In Eq. (10), Viis
the vector of the frame being compared, V}., is the vector
of the successor frame:

- VR (10)

Vil V7l

A transition is detected when 1 — |¥| > r, where ¢ is
the threshold.

Zhang et al. [73] have also experimented with motion-
based segmentation using the motion vectors in the MPEG
compressed data as well as DCT coefficients. Meng et al.
[45] extend this concept further by performing more de-
tailed operations on the MPEG/MPEG-2 compressed
data. The compressed data consists of I-, P-, and B-frames.
An I-frame is completely intraframe-coded. No motion
compensation is performed. A P-frame is predictively
coded with motion compensation from past I- or P-frames.
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Backward Prediction Forward Prediction

Forward Prediction

FIG. 11. A typical MPEG compressed video sequence.

Both these frames are used as a basis for bidirectionally
motion compensated B-frames.

If a break occurs on a B-frame. most of the motion
vectors will come from the following anchor frame and
very few will come from the previous anchor frame (refer
to Fig. 11). Based on the ratio of backward and forward
motion vectors a scene cut is detected. P-frames have only
forward motion compensation; therefore. when a scene
change occurs here then the encoder cannot use mac-
roblocks? [31] from the previous anchor frame for motion
compensation. Based on the ratio of macroblocks without
motion compensation to marcroblocks with motion com-
pensation the scene break is detected. Since I-frames are
completely intracoded without motion vectors. any of the
previous methods can be used for break detection.

5.6.  Segmentation Based on Object Motion

Video data can also be segmented based on the analysis
of encapsulated object motion [38]. The dynamic-scene
analysis is based on recognizing the objects and then calcu-
lating their motion characteristics. Objects in video data
are recognized either by their velocity or by their shape.
size. and texture characteristics.

The motion which we perceive is the effect of both an
object and camera motion. Camera motion information
can be exploited in the scene segmentation process based
on object motion. For example, if the camera is in motion
then the image has nonzero relative velocity with respect
to the camera. The relative velocity can be defined in terms
of the velocity of the point in the image and the distance
from the camera. For segmenting moving-camera scenes,
the component of the motion due to camera motion should
be removed from the total motion of an object. Accumula-
tive-difference pictures [33] can be used to find areas that
are changing (usually due to object motion) and hence
imply scene segmentation. Velocity components of the
points in an image can be used for segmenting a scene into
different moving objects. This is due to the fact that points
of an object optimistically have the same velocity compo-
nents under certain camera motions and image surfaces
[49]. Equation (11) can be used for calculating the image

3 The four 8 by 8 blocks of luminance data and the two, four, or eight
corresponding 8 by 8 blocks of chrominance data coming from a 16 by
16 section of the luminance component of the picture.
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nsity velocity, where I(x, y, f) is the image intensity,
Jx and al/dy denote the image-intensity gradient, and
dx/dr and dy/dt denote the image velocity:

dlldt = 9l/dx = dx/dt + al/dy = dyldt + allat.  (11)

If the image intensity velocity changes abruptly, a scene
change can be declared. This method is much more compu-
tationally intensive as an object must be tracked through
a sequence of frames. This is much more difficult in the
presence of noise. Hough transforms have also been used
to segment the scene into different moving objects [22]:
however, this technique is not robust in the presence of
noise.

5.7.  Segmentation Based on Subband-Coded
Video Data

Lee and Dickinson [37] have developed a method for
feature indexing of subband coded video. Subband coding
refers to a technique in which the input signal is decom-
posed into several narrow bands by splitting with the help
of low-pass and high-pass filters. Temporal segmentation

is performed on the lowest subband. Four different metrics
for segmentation of video data have been developed as
follows:

1. Difference of histogram: measures absolute sum of
the histograms of two frames.

2. Histogram of difference image: measures the histo-
gram of difference between two frames.

3. Block histogram difference: block histogram differ-
ence is obtained by computing histograms of each block
and summing the absolute difference of these block histo-
grams between the two frames.

4. Block variance difference: same as 3, except this
method uses the block variance.

5.8.  Segmentation Based on Features

Work on feature-based segmentation is being done by
Zabih et al. [71]. The segmentation process involves analyz-
ing intensity edges between two consecutive frames. Dur-
ing cut and dissolve operations, new intensity edges appear
far from the old ones due to change in content. Thus, by
counting the new and old edge pixels, cuts, fades, and
dissolves are detected and classified. Canny’s edge detector
is used in their algorithm. The image is smoothed by a
Gaussian matrix and the gradient thresholded by a certain
value. Motion compensation is also provided in the algo-
rithms to give better results in presence of camera and
object motion.

Hampapur et al. [28] use a model-driven approach to
digital video segmentation. Chromatic scaling models are
used to classify editing effects in the video production.

This model is used by feature detectors for finding editing
effects. Otsuji and Tonomura [54] have proposed a cut
detection method that uses an isolated sharp peak de-
tecting filter.

The techniques mentioned above segments video with
varying degrees of accuracy and robustness. The effective-
ness of an algorithm also depends on the kind of video
being segmented. If an animated video is used then the
scene changes are usually abrupt; i.e., there are few camera
effects or light flashes present. Any simple algorithm can
be successfully used to segment this type of video data,
whereas if a video contains complicated camera motions
and effects (e.g., dissolves, wipes, fades. zooms) sophisti-
cated algorithms must be used. The performance of these
algorithms depends greatly on the noise level in the digi-
tized video during processing, e.g.. sudden changes in light-
ning. A proper threshold must be established such that no
camera breaks lower than the threshold are missed or no
false breaks are detected. Basically, acompromise between
speed and robustness must be made. The processing time
can be reduced either by reducing spatial resolution or by
reducing temporal resolution. For spatial resolution only
a subset of pixels is used which leads to information loss,
which can result in camera break detection failure. For
temporal resolution frames are skipped and a subset of
frames is used for detection. This speeds up the process
and at the same time it helps in detecting gradual camera
breaks, as the difference between the frames across the
skipped frames is greater than the lower threshold. But if
a large number of frames are skipped then it can lead to
many false detections.

Zhang et al. [72] use a multipass approach for reducing
overall processing time. In this approach a fast pass is made
with a lower threshold along with temporal resolution re-
duction. The breaks detected are declared as potential
break candidates. In the second pass the processing is re-
stricted to the vicinity of these breaks. The authors com-
pared the twin-comparison techniques. pair-wise pixel,
likelihood ratio, gray and color histogram comparison, and
%2 test, using the twin-comparison method and the
multipass method. They found that the histogram compari-
son, based on gray level and color, gave high accuracy,
and the computation time was considerably reduced using
the multipass system. Approximately 90% of the breaks
and transitions were detected. Contrary to Nagasaka and
Tanaka [48], the x? test did not do so well in terms of
either speed or accuracy. Performing segmentation on the
compressed data is faster than uncompressed data. None
of these methods work when there is substantial change in
the intensities (camera motion, object motion, light flashes)
between pairs of frames. Histogram methods are not effec-
tive in the presence of motion. Hampapur et al. [28] do
not use histogram methods; rather, they compute the chro-
matic difference between consecutive frames. Their



38 AHANGER AND LITTLE

method detects dissolves if the change due to the editing
is much more than the change due to motion. The feature.-
based method [71] is much more robust than the previous
methods in detecting dissolves in the presence of motion,
but does not handle sudden changes in brightness. Also,
motion compensation techniques do not handle multiple
object motion.

6. DATA REPRESENTATION AND ORGANIZATION

Much work has been done in automating indexing and
searching of data in databases (e.g., text [59], automated
offices [44, 68], newspapers and magazines [35], archives
and libraries [46, 51], image databases [9, 12, 23-25, 52)).
Faloutsos [19] has discussed retrieval methods for text as
well as formatted data. Some of the methods are summa-
rized below as they relate to digital libraries.

* Full Text Scanning. A complete document is scanned
for the specified strings. If a query is a composition of a
number of strings in conjunction, then more than one step
is required to satisfy the strings in the Boolean function.

* Inversion of Terms. This is a keyword approach to
accessing data. Contents of a document can be described
by an array of words. The data organization is divided into
two components, the index and the data records or data
leaves. The information is indexed, and the data are stored
in leaves. The structure can be a hash table, tree, or a
combination of the two.

* Multiauribute Retrieval Methods. These approaches in-
volve superimposed coding techniques. If, for some data,
n attributes are chosen, then each attribute is hashed to a
fixed-length bit pattern. A prespecified number of bits are
set to 1’s and then these n patterns are superimposed to
get aresulting big pattern. This pattern is called a signature.
This signature then can be used to locate a data record.
Multiattribute hashing [27] and signature files [20, 21] are
some of the multiattribute attribute retrieval methods.

* Clustering. In clustering similar data are grouped to-
gether into clusters. The reasoning behind this technique
is that similar data are pertinent to the same request. Each
document is represented by an n-dimensional vector,
where 7 is the number of attributes of the data. Using a
similarity matrix, these vectors are clustered. The data are
retrieved by comparing a cluster descriptor and a query de-
scriptor.

Full text scanning time is linearly dependent on the size
of the text document; the greater the size of the document
and the database, the greater is the search time as it is
a sequential access method. There are no extra storage
overheads for indexing structures in this method as there
are in inverted files. On the other hand, inverted files pro-
vide speedy data access mechanisms, though it is expensive
to update the index structure. Inverted files incorporate a

random access mechanism; i.e., the indices direct the search
to the small part of the database containing the item. The
index structure is a file, so if the file grows larger it can
slow down the search. Therefore, another index is built on
top of the existing index and the resulting hierarchy spec.’
up the access.

B-trees [15] are an example of an inverted file. This
general-purpose index mechanism was developed in the
late 1960s when people were competing for access mecha-
nisms. Each node in the B-tree of order 5 consists of 25
keys and 2n + 1 pointers. The advantage of this tree lies
in the fact that deletion and addition of records always
leave it balanced unlike binary trees which become unbal-
anced (long paths and some short paths) on random inse:-
tion and deletion. There are other variations of the B-tree.
The B*-tree [4, 15] increases the storage utilization as the
splitting of the node is delayed until the two sibling nodes
are full. This not only utilizes the space efficiently but also
speeds up the access process. In the B--tree [15], all the
keys reside in the leaves. Therefore. during sequential ac-
cess, no node will be visited twice and. at most, space for
one node is required in the memory. The number of ac-
cesses are also reduced, requiring only access for the nev:
consecutive operation. The index part is only the guide to
the leaf nodes; therefore, there is no need for using actual
kevs in the index which requires considerable space. As
the space utilization is reduced, the number of keys in the
nodes can be increased. The branches per node increase
but at the same time the depth of the tree decreases, Thus.
the data access time is reduced considerably. Other varia-
tions of the B-tree have been suggested. such as compress-
ing the keys and the pointers, binary B-trees, and multiway
trees [4, 15]. The B-tree is a one-dimensional key ordering
structure designed for single-key access. Thus, it is of not
much use in indexing multidimensional video data.

Multidimensional data structures have been developed
to overcome the shortcomings of the B-tree. Pixel-based
data structures have been suggested by [14]. This is a grid-
ded data structure where pixel information from each grid
cell is stored as a record. Relational databases have also
been used in pictorial queries [9] as well as video queries
[41. 58]. Chang and Kunii [12] have used 2-D strings to
represent pictures in a pictorial database. Images are pro-
jected into a 2-D coordinate system, and a 2-D string is
derived which preserves the spatial knowledge of the ob-
jects in an image. Lee and Shan [39] have further extended
the 2-D string method. Along with the 2-D string, a signa-
ture is associated with each image. Instead of processing
the 2-D string file, the image signature preselector prunes
a large set of signatures whose 2-D strings will not satisfy
the query. After this step the remanent strings are pro-
cessed, making the processing more efficient. Bimbo e al.
[8] have extended the 2-D strings to represent 3-D scenes
which seems more relevant to video data as scene descrip-
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. can also be made by including reference to the relative
wopth of an object.

Quadtrees [60] have been used as multi-indexing struc-

qres for large databases. The quadtree is a multidimen-
sional generalization of a binary tree which utilizes the
grid file mechanism, but the quadtree has a number of
limitations. First, at each node all the keys must be
tested; second, there are a number of null links that use
space resources; and third, the node sizes tend to be
large. K-d trees [7] have been developed to overcome
some of these deficiencies. However, both structures
suffer from page faults [26]; i.e., when a node is referenced
which is present in a page but not in the memory cache
a fault occurs. In these tree structures, the pointers must
be followed with great potential for page faults. This
problem can be overcome by using methods that collect
the pointers into sets which correspond to the storage
units (pages) of the disks. The access to these sets
(buckets) can be organized by use of a directory to help
in address calculation. This technique is called the bucket
method [60]. The goal of this method is to ensure efficient
access to the disk data. The nodes in the B-tree can be
used as buckets, but B-tree nodes do not correspond to
an n-dimensional space. Video data require a multidimen-
sional indexing structure for the various attributes they
-~n be indexed under. and due to the size of the video

:a the contents of the tree nodes will be considerably
large. Therefore, a multidimensional indexing structure
using bucket methods will be appropriate for the video
data such that page faults do not occur while reading
the data. Robinson [36] developed a k-d-b-tree structure
to overcome the limitation of the B-tree. It uses k-d-
tree partitions to arrange the contents of each B-tree
node. But the performance of the B-tree cannot be
ensured. Chang and Li [10] adapted the 2-D strings to
a quadtree data structure and came up with a new
structure called 2-D-H string. This structure is used to
represent hierarchical symbolic pictures by employing
new spatial relation operators. Again, this structure also
provides limited capabilities for indexing the video data
as not all of the features can be organized by this struc-
ture.

Nievergelt et al. [50] proposed a variation of the grid
method called grid files. Grid files handle range queries.
This structure adapts very well to insertion and deletion
and, therefore, can retrieve records with a maximum of
two disk accesses. Jagadish [32] uses rectangles for feature
extraction of the spatial data. The 4k vectors thus derived
are then indexed by using grid files, k-d-b-trees, etc. Voro-
noi diagrams [3] have also been widely used to represent
the spatial data using the nearest-neighbor rule. Spatial

ata objects are not represented very well with point data.
r-tree [26] and its family (R*-tree [67] and R*-tree [5])
overcome this limitation. The R-tree is a derivation of

the B~-tree that stores complete multidimensional objects
without transformation or clipping. But the R*-tree is de-
signed with optimization of area covered by a directory
rectangle; i.e., the dead space between the bounded rectan-
gles is minimized such that the maximum information can
be stored. It maximizes the space by minimizing the mar-
gins of the rectangle. The margin is the sum of the lengths of
a rectangle; objects with the smallest margins are squares.
Thus, by minimizing the margin the directory rectangles
will have a more quadratic shape and more rectangles
can be incorporated. The overlaps between the directory
rectangles are reduced which decreases the number of the
paths to traverse.

In the QBIC project [23] the retrieval of images is based
on color, texture, and shape as basic image feature. The
indexing system is derived by computing the numerical
index keys based on color distribution. color histograms,
and segmentation based on main color regions. These in-
dex keys are organized by using the R*-tree structure,
which is more robust for the higher dimensions and is much
faster. Zhang et al. [73] have also used the same techniques
in their tools for video indexing and retrieval. They essen-
tially utilize the spatial information for indexing the repre-
sentative frames and ignore the temporal information in
the video. Higher level indexing is based on event indexing:
€.g., a zooming sequence is retrieved by processing the
motion vectors.

The tree types of indices identified for the video-on-
demand system by Rowe et al. [58] are organized using a
relational database. The Chabot project [52] also uses a
relational database to store and retrieve images.

In the next section we discuss a few examples of how
various video data types can be indexed for storage and re-
trieval.

7. EXAMPLES

Consider a system designed to retrieve digital video data
from a large repository (newscast, instruction, video con-
ferencing, and surveillance). For a video to be in a user
accessible format (queriable), raw video data must be pro-
cessed several times to extract information for content-
based retrieval. Before the process of segmentation and
feature extraction is applied we are required to model the
video data. However, the semantics of interpretation are
different for different video data types. In movie data each
scene is logically connected to the previous and the follow-
ing scenes but in surveillance video data does not possess
such semantics. Likewise, not all video data have camera
breaks in them; segmentation based solely on camera
breaks is not possible. But video data must be segmented
for better management of data and disk utilization. Refer
to Fig. 2 for the model of video data indexing. A model
for the data is developed, and based on this model the
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video data are broken down into manageable segments.
This is achieved by applying any of the algorithms men-
tioned in Section 5. For example, the color histogram
method can be used for detecting abrupt scene changes
and the twin-comparison method can be used for detecting
gradual transitions. If required, the false detections due to
camera effects can be eliminated by using the optical flow
techniques. After segmentation, feature (content) informa-
tion contained in these segments must be extracted. Some
of the features like shape, color, and texture information
can be retrieved by known image processing methods.
Some examples of how video data belonging to different
data types can be modeled and segmented are given
below.

Example 1. Consider newscast video data. A news ses-
sion consists of a number of disjointed news items pre-
sented sequentially. There is usually little logical connec-
tion between them, and the news items can be presented
in any order without effecting the overall presentation.
Therefore, the access mechanism is much more effective
if a segment consists of a complete news item. These seg-
ments can be indexed based on their content. Various
queries can be performed on the newscast video data, e.g.,
retrieve clips of some important event as it evolves, retrieve
clips of a favorite newscast, retrieve clips of sports news

in which a favorite baseball team is mentioned, and retrieve

field clips of events happening in a certain country. Before
performing such queries, the information needed for re-
trieval of these clips from the database must be extracted
from the video data. The query for a certain important
event from a particular broadcast station requires the seg-
ments to be indexed with the information pertaining to
the event.

Example 2. Inadistance learning application the infor-
mation can have a more rigid structure. They are composite
in nature with temporal associations. For example, con-
sider a database consisting of course material on various
subjects. Each course is composed of various topics and
each topic is further composed of subtopics. Each topic or
subtopic is taught in a temporal sequence, e.g., “before”
or “after”. One or more topics can be taught per class.
Querying for a course does not involve complicated in-
dexing but if the user tries to retrieve a topic taught in a
course on ‘“networking” which was taught after the
protocols topic then a more complicated query must be
formulated. For such a query an indexing structure which

encompasses both the temporal as well as content is
required.

Example 3. Many high security areas, public places,
and buildings are equipped with surveillance cameras. A
large amount of video data from these sources can be
stored in a database on a daily basis. There are no camera

breaks present in the recorded data and segmentation
based on camera breaks does not apply. If the segments
are made based on content change, then we will get a
break every few frames as the content can be very dynamic.
Therefore, the video can be segmented based on activity.
Sometimes the recorded material does not contain infor-
mation of much importance; hence, data which do not
contain very useful information can be edited out. Hierar-
chy, generalization, and specialization concepts cannot be
employed because there is not semantic flow from one
event to another. Prominent information in each segment
(events, people) and the time associated with the segments
can be indexed. Queries based on timing information, e.g.,
retrieve clips taken at 5 p.m. on Saturday, March 1993, can
be executed. Queries base } on events, e.g., retrieve clips
in which people are running across the camera view, can
be executed. Queries based on different camera views, e.g.,
get the clips from the camera situated near the back door,
can also be executed.

8. CONCLUSION

Existing systems treat video data as having rigid hierar-
chical structures, i.e., scenes, shots, and frames. Video
data can be retrieved based on the information content
present in the scenes or shots and the bibliographic data
associated with the video. This is true for certain kinds
of data (movies) but we cannot apply such a generic
model to all video data types. Each video data type has
different associated semantics. Treat all the video data
types as a rigid hierarchical structure is not effective in
the retrieval of video data. For example, segmenting the
newscast video data based on the camera breaks is not
useful. The user might try to retrieve data via a news
item which might involve several scenes (scene of the
anchor person talking about the item and a field view
of the item). The user will likely retrieve data on an
event basis, i.e., an entire story. The event could happen
over a number of days by a number of broadcast stations.
Therefore, we would require more information than is
present in a single shot or a scene. Future applications
should exploit the different semantics associated with
individual data types. While developing a video data
retrieval system we need to take a bottom-up approach;
we must first understand the semantics present in the
data type and then model the data. The applications
must be built around the video data rather than tailoring
the data to an application. This results in efficient and
effective data retrieval mechanisms. It also resolves many
issues such as the accuracy of the segmentation process
which will not only segment the video data based on
camera breaks but also try and identify the types of
camera breaks. If a suitable data model is utilized for
an application, we can identify the places where the data
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1d be segmented and this would reduce considerably
amount of time for segmentation of the video data.

We will also know what features need to be extracted
from the data, thereby reducing the information to be
stored. Simple indexing techniques can be used for model-
ing the metadatabase so we will not require very large
multidimensional indexing structures.

Emerging information retrieval technologies that have

significant content in digital video form will require access
to large “virtual” libraries [66]. The demand for such
systems is continually increasing and these systems must
be able to acquire large amounts of data, store them,
and then make them available to customers. Hence, the
indexing process should be fast and efficient and allow
effective data access.
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