Analysis of Fourier Components in Virtual Haptic Gratings

Steven Cholewiak
Jackie Sutherland
Andrew Lee
Square waves of a given magnitude can be defined as the sum of a series of sinusoidal waves of increasing frequency and decreasing magnitude.

We will analyze the detection thresholds of virtual sinusoidal and square wave gratings.

- Do tactile detection thresholds depend upon the fundamental frequencies of the waveforms?

We will analyze the sinusoidal and square wave discrimination thresholds to determine whether higher-order harmonics contribute to detectability.
Overview

- Background
- Waveform Definition/Fourier Series
- Apparatus
- Procedure
- Hypotheses
Background

- Morley, Goodwin, and Darian-Smith (1983)
 - Similar to our experiment 2 (discrimination)
 - 3 interval forced-decision experiment
 - Quantitative description of tactile discrimination using gratings
 - Alternating grooves and ridges
 - Using fingertips to rub the grating, the subject discriminates the spatial period of grating
 - 75% of time subjects can discriminate two gratings whose spatial period differ by 5.2%
Background

- Campbell & Robson (1968)
 - Measured contrast thresholds of gratings of various waveforms (sine, square, rectangular, saw-tooth).
 - To what extent can the contrast-sensitivity function be used to predict contrast thresholds?
 - Contrast sensitivity for square-wave grating is $4/\pi$ times $>$ contrast sensitivity for a sine-wave grating.
 - Found that sine-wave grating is perceived to be different from square-wave grating when the square-wave’s third harmonic reaches its threshold.
Sinusoidal Wave

- Defined as:
 \[h_{\sin}(x) = A \cdot \sin(2\pi x/\lambda) \]
• Defined as:

 \[h_{\text{square}}(x) = \begin{cases}
 A & \text{if } \sin(2\pi x/\lambda) > 0 \\
 -A & \text{if } \sin(2\pi x/\lambda) < 0
 \end{cases} \]

• Fourier series:

 \[h_{\text{square}}(x) = A \cdot \frac{4}{\pi} \left[\sin(2\pi x/\lambda) + \frac{1}{3}\sin(3 \cdot 2\pi x/\lambda) + \frac{1}{5}\sin(5 \cdot 2\pi x/\lambda) + \ldots \right] \]
Waveform Definition

- **Fundamental Frequency**: $A \times \frac{4}{\pi} \sin\left(\frac{2\pi x}{\lambda}\right)$
- **3rd Harmonic**: $A \times \frac{4}{3\pi} \sin\left(3 \times \frac{2\pi x}{\lambda}\right)$
- **5th Harmonic**: $A \times \frac{4}{5\pi} \sin\left(5 \times \frac{2\pi x}{\lambda}\right)$
Waveform Definition
Methods - Apparatus

- Mini-stick
 - 3-DOF
 - 1µm position resolution
 - Force commands updated at 2kHz
Methods - Procedure

- Three-interval 1-up 3-down adaptive tracking procedure

![Graph showing transformed up-down staircase with positive responses indicated by black squares and negative responses indicated by white circles. The graph depicts the stimulus level in decibels (db) against trial number, with a downward trend indicating adaptation. The reference is Leek (2001).]
Hypotheses

- Lower detection thresholds for square-wave gratings than for sinusoidal gratings
 - Detection threshold for square waves will be $4/\pi$ lower than the detection threshold for the corresponding sinusoidal waves

- Discrimination thresholds for sinusoidal and square wave gratings will be similar to the detection thresholds for sinusoidal gratings translated by a factor of three in spatial frequency and threshold amplitude
 - Due to the contribution of the third harmonic