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Dimensionality
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How to Achieve High IT

IT for uni-dimensional stimuli is limited
IT(multi-D) is not limited by “7±2”
In general, try

Lots of dimensions
A few values (2 to 3) per dimension
Examples?

Speech perception
Face recognition
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How do you define dimensionality?

From literature – never explicitly defined
Read between lines – number of 
independently manipulated physical 
variables
But physical and perceptual 
dimensionality may not be the same!!
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Dimensionality – a Visual Example

Orientation of lines:  1D or 2D?
IT for direction, or angle of inclination is 3.3 
bits for a 5-sec exposure time (ref. p. 86, 
Miller’s 7±2 paper)
This is clearly at the high end of 7±2 (23.3=9.8)
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Dimensionality – an Auditory Example
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Dimensionality – a Haptic Example
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IT and Channel Capacity
For Different Sensory Modalities

AL and DL are in modality-specific 
physical units
IT and channel capacity are in bits:
We can compare apples with oranges!
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Cumulative d′ and
its Relationship to IT
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Overview
Based on two papers:
“Intensity perception I & II,” by Durlach & Braida 
(Journal of the Acoustical Society of America, 1969 & 1972)
Goal:
Towards a theory for interpreting the relation between our 
ability to discriminate between two intensities that differ 
only by a small intensity increment, and our inability to 
identify an intensity from among a large set of intensities 
that differ by very large increments (the 7±2 phenomenon)
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The Formal Theory

Decision model 
Internal-noise model

Quantifies M and σ in the decision model in 
terms of sensory and memory noise
Sensory noise is mainly due to the subject’s 
inability to maintain the image or the trace of the 
sensation precisely
Memory noise is due to the subject’s inability to 
remember the general context of sounds in the 
experiment, and the inability to determine or 
represent the relation of the sensation to this 
context precisely.
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Decision Model Revisited

Assume that Weber’s Law holds, then

=M2−M1σd′

Mi = K⋅logIi (i=1, 2) 

Assume that the variance σ2 is the sum of sensory 
noise β2 (independent of I), and memory noise G2R2

where G=constant, R=log(Imax/Imin), i.e.

σ2 = β2 + G2R2

It follows that
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Resolution in One-Interval Paradigms 

Can be extended to a wide variety of one-interval 
experiments, including the discrimination and absolute 
identification paradigms, to measure the sensitivity 
index between any pair of stimuli Ii and Ij:
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d′ in AI Experiments

Sensitivity index d′ is additive
d′(I3;I1) = d′(I2;I1) + d′(I3;I2)
i.e.,
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Cumulative d′
Links 1I-2AFC and AI Experiments

Cumulative d′, or total sensitivity, can be 
expressed as:
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Cumulative d′ is a function of R only!
When R is large, Δ′≈K/G (i.e., constant)!
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Cumulative d′ vs. R

Circles:  experimental data
Curve:  derived with K/G=13.7 and K/β=8.1
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Predicting IT from Δ′

Assumptions
The means of the density functions on the decision axis 
are equally spaced
The number of responses equals the number of stimuli
The response criteria are placed midway between 
adjacent means

The stimulus-response confusion matrix can be predicted 
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IT vs. Cumulative d′

Crosses:  one subject, AI experiments with N=10
Curve:  theoretical prediction
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A New Interpretation of “7±2”

Maximum Δ′ ≅ 12–15
(estimated from experimental data)
Therefore, IT for intensity is limited.
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Readings

N. I. Durlach and L. D. Braida, “Intensity 
perception I.  Preliminary theory of 
intensity resolution,” The Journal of the 
Acoustical Society of America, vol. 46, pp. 
372–383, 1969.
L. D. Braida and N. I. Durlach, “Intensity 
perception II. Resolution in one-interval 
paradigms,” The Journal of the Acoustical 
Society of America, vol. 51, pp. 483–502, 
1972.
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