Data Analysis for an Absolute Identification Experiment

Randomization with Replacement

- Imagine that you have k containers for the k stimulus alternatives
- The i_{th} container has a fixed number of copies (n_i, proportional to P(S_i)) of the i_{th} stimulus
- On each trial, one of the Σn_i (i=1, ..., k) stimuli is selected to be presented to the subject
- That stimulus is immediately replaced in its corresponding container
- Then, the *a priori* probability for S_i (i=1, ..., k) remains the same for all trials
- **The stimulus uncertainty remains the same on all trials**

$$IS = -\sum_{i=1}^{k} P(S_i) \log_2 P(S_i)$$

Randomization without Replacement

- Imagine that you have k containers for the k stimulus alternatives
- The i_{th} container has a fixed number of copies (n_i, proportional to P(S_i)) of the i_{th} stimulus
- On each trial, one of the Σn_i (i=1, ..., k) stimuli was selected to be presented to the subject
- That stimulus is NOT replaced in its corresponding container
- Then, the *a priori* probability for S_i may change from trial to trial
- **The stimulus uncertainty IS may change from trial to trial**
- On the last trial, the subject knows exactly what stimulus to expect (whichever stimulus is the last one left in a container)

More on Randomization

- We prefer the method of "randomization with replacement" because
 - It ensures constant IS for each trial
 - It makes data analysis easier
- With the method of "randomization with replacement," equal *a priori* probability no longer guarantees equal number of occurrences for all stimulus alternatives.
- Note that frequency of occurrence ≠ probability
- The advantage of "randomization without replacement" is that the experimenter controls the *exact* number of times each stimulus alternatives is presented.

	R ₁	R ₂	R ₃	R ₄	R ₅	
S ₁	14	3	2	0	1	20
S ₂	0	13	2	3	1	19
S ₃	4	3	11	1	0	19
S ₄	2	0	2	15	1	20
S_5	5	3	2	0	12	22
	25	22	19	19	15	100

Estimation of IT — IT_{est}

Average information transfer:

$$IT = \sum_{j=1}^{k} \sum_{i=1}^{k} P(S_i, R_j) \log_2 \frac{P(S_i | R_j)}{P(S_i)}$$

Its maximum-likelihood estimate:

$$IT_{est} = \sum_{j=1}^{k} \sum_{i=1}^{k} \binom{n_{ij}}{n} \log_2(\frac{n_{ij} \cdot n_{ij}}{n_i \cdot n_j}) \quad \text{where} \quad n_i = \sum_{j=1}^{k} n_{ij} \quad n_j = \sum_{i=1}^{k} n_{ij} \\ n = \sum_{i=1}^{k} \sum_{i=1}^{k} n_{ij} = \sum_{i=1}^{k} n_i = \sum_{i=1}^{k} n_i$$

Interpretation of 2^{IT} or $2^{IT_{est}}$ (compare with $k=2^U$)

Channel Capacity

Maximum Information Transmission

- Mathematically, $IT \leq IS$.
- Intuitively, if the input and output are perfectly correlated, then IT = IS (= IR).
- Assume that there exists a *maximum* information transmission
 - For small values of IS, IT = IS.
 - As IS increases, IT = constant regardless of the value of IS.
- This maximum *IT* is accepted as the *channel capacity*.

The Magic Number 7±2

What does the "Magic Number" Mean?

- The "magic number" is derived from an *IT* range of 2.3 3.2 *bits*
- The "magic number" summarizes the typical channel capacity for uni-dimensional stimuli
- Uni-dimensional stimuli
 - Only one physical variables (*target*) is manipulated to form the stimulus set
 - Other physical variables (*background*) are either held constant or randomized

How "Magic" is the Magic Number?

The "Magic Number" does NOT apply to
Absolute pitch
Over-learnt stimuli
Human face recognition
Multi-dimensional stimuli