
Perception Viewed
as 

an Inverse Problem



Fechnerian Causal Chain of 
Events - an evaluation

• Fechner’s study of outer psychophysics assumes that the 
percept is a result of a causal chain of events:

Distal stimulus proximal stimulus percept

• In this framework, the percept is a mental measurement of 
the physical stimulus.

• It seems reasonable to think that some properties of the 
proximal stimulus can be measured by the perceptual 
system (intensity, distance etc.)



• Consider the percept of a 
3D object from a single 
image, like that shown on 
the left.

• There exists an infinite 
number of different 3D 
interpretations, 
corresponding to 3D 
objects that could produce 
this 2D image.

• Yet, we usually perceive 
only one 3D object.  Here, 
the percept corresponds 
to a cube.

It is less obvious 
how properties of 
the distal stimulus 
(e.g., 3D shape) can 
be measured by the 
perceptual system



• Even if we assume that everything about the 2D 
retinal image can be perfectly “measured,” there is 
still not enough information to account for a unique 
(and usually, “veridical”) percept of a 3D object.

• To avoid the theoretical and experimental 
problems related to the inadequacy of the ‘causal 
chain of events’ framework, researchers often 
limited psychophysical studies to the case of 
simple stimuli (e.g. light and sound intensity), 
where the assumption about the ‘mental 
measurement’ seemed reasonable.

• To study complex stimuli, however, one needs to 
reformulate Fechnerian framework.



A New Approach
Distal stimulus Proximal stimulus

This mapping is called a forward (direct) problem
A forward problem is expressed in the rules of physics.

The task (goal) for the perceptual system is to infer 
(reconstruct) the properties of the distal stimulus given the 
proximal stimulus:

Proximal stimulus Percept

This mapping is called an inverse problem.



New Framework

Let X be a distal stimulus and Y a corresponding 
proximal stimulus.  Let A be a (linear) transformation.  
Then, the forward problem is formally expressed as 
follows:

Y = AX

Most forward problems are well-posed and well-
conditioned.



Forward Problems are
well-posed and well-conditioned

• A problem is well-posed when
– There is a solution
– The solution is unique
– The solution depends continuously on the 

data
• A problem is well-conditioned when

– The solution is computationally stable in the 
presence of noise in the data



Inverse Problems
• The inverse problem of perceptual 

reconstruction of the distal stimulus from the 
proximal stimulus is formally expressed as 
follows:

X´ = A-1Y
A-1 may not exist, may not be unique, or it 
may be unstable.  All interesting inverse 
problems in science (and engineering) are 
ill-posed and/or ill-conditioned.



The Role of Constraints
• A standard way to solve ill-posed inverse 

problems is to impose a priori constraints on the 
family of possible solutions (interpretations).

• For the percept to be unique, stable and 
accurate (veridical), the constraints should reflect 
the properties of (regularities in) the natural 
environment.

• Examples of regularities present in objects from 
our environment: continuity and piece-wise 
smoothness of surfaces, symmetry, familiarity.



3D Percept from a 2D Image

An image of a regular 
polyhedron in the 
observer’s eye can be 
produced by an object 
whose edges are 
curved, and faces 
non-planar.  But we 
perceive a regular 
(simple) polyhedron.



Solving Inverse Problems

• Inverse problems are ill-posed and/or ill-
conditioned 

• In order to produce a unique, stable and 
accurate interpretation, the visual system 
has to impose constraints on the family of 
possible interpretations (regularization, 
MAP methods).



Two concave octagons or two convex hexagons?

The visual system tests two hypotheses and 
“chooses” the “simpler”.

Koffka 
(1935)

Contributions of Gestalt Psychology



Spatially Global Relations vs. 
Spatially Local Interpretations

Koffka (1935)



Experience in Perception

When presented with two perceptual hypotheses, 
the simpler wins over the more familiar.

Koffka (1935)



Street (1931)

Familiarity (Experience) in Perception



Familiarity as a Constraint:
Transactional Psychology

We usually operate in a familiar environment.  
Perhaps we just learned how the objects look 
like. 

Ames, 1952



The Role of Experience in 
Perception

Ittelson & Kilpatrick, 
1961

• If perceptual learning were the source of constraints, it 
would be easy to demonstrate the effect of experience on 
perception.

It is not!



Penroses’ (1958) triangle

Gregory (1970)

It looks like an impossible object!



Gregory’s Construction

Impossible interpretation cannot be the simplest or the 
most likely, when there is an object which is a possible 

interpretation…

Gregory (1968)



Example
• Consider the problem of determining a 3D object 

from the image of a cube.  This ill-posed problem 
can be solved by finding an object, which: is 
consistent with the given image, has planar faces, 
and has minimum variance of interior angles:

E(X)=||AX-Y||+λ1||Dpl(X)||+ λ2||Varα(X)||

The global minimum of E(X) 
corresponds to a cube.  This 
solution agrees with the 
percept. 



Examples

• Cuboid illusion:
http://bigbird.psych.purdue.edu/~pizlo/cuboid_illusion/

• Magniphi:
http://psych.purdue.edu/Magniphi/



Computational Methods –
Regularization

• This method of solving inverse problems is 
called regularization.  
– In standard regularization (Tikhonov, 1963), 

the constraints are represented by a linear 
combination of the first p derivatives of the 
distal stimulus X.  This corresponds to 
‘smoothness’ of X.

– λ is a parameter, whose value depends on 
how reliable is the proximal stimulus relative to 
constraints.



Computational Methods – MAP
• The stochastic version:

p(X|Y) = p(Y|X)·p(X)/p(Y)
– p(X|Y) is the posterior, p(Y|X) is the likelihood, 

and p(X) is the prior.  The prior represents 
knowledge about distal stimuli.  p(Y) is the 
probability density of obtaining the proximal 
stimulus.  It is a normalizing constant and, thus 
can be ignored.

• The inverse problem is solved by finding an 
X´ which maximizes the posterior (MAP 
estimate).



Regularization and MAP
Regularization:  E = ||AX-Y|| + λ||PX||    (1)

• MAP:  p(X|Y) = p(Y|X)·p(X)/p(Y)
or equivalently, 

− log p(X|Y) = − log p(Y|X) − log p(X) (2)
• Under some assumptions (quadratic norms, 

Gaussian pdf’s), equations (1) and (2) are 
mathematically equivalent.

• The regularizing parameter λ in (1) is 
implicitly represented by the ratio of the 
variances of p(Y|X) and p(X) in (2).



Contemporary View of Perception

Y X

Percept(Y) = arg min (||Y-X||2 + λ||dκX/ds||2) 
X

Retinal data is almost never sufficient for a 
unique and veridical percept (inverse problem 
is difficult)

This is a quadratic variational problem



Minimum Principle in Physics

• Minimum (Simplicity) Principle in 
perception corresponds to the Minimum 
Principle in physics:
– Hamilton’s least action principle in dynamics
– Fermat’s least time principle in optics
– Maxwell’s minimum heat theorem in electricity



Minimum Principle in Optics

Law of reflection:

α β

α=β

A B



Minimum Principle in Optics

Law of refraction:

α

β

u / v = sin(α) / sin(β)

u

v

A

B



Minimum Principle
in Electrical Circuits

• Kirchhoff’s laws for electrical circuits:

I1 R1

I2 R2

min_heat = min(I12R1 + I22R2)

I=I1+I2 I

I1/I2 = R2/R1



Köhler’s (1920)
Physiological Model

• The brain is a volume conductor whose 
minimum state (minimum heat) corresponds 
to perceptual simplicity

• This model was discredited in 1951 in 
experiments where short-circuiting the 
surface of the brain by metal plates, and 
inserting isolating plates into the brain of 
monkey did not affect her visual perception



Relevance of Köhler’s Model
• For every quadratic variational problem with a 

unique solution, there exists a corresponding 
electrical network consisting of resistances 
and voltage or current sources having the 
same solution (Poggio & Koch, 1985)

• Electrical network (i.e., analog system) solves 
the minimum problem instantly, compared to 
a time-consuming process of solving a 
nonlinear optimization problem on a digital 
computer.



Köhler’s Simplicity Principle

• Köhler was right! - except for his claim about 
physiological relevance of the electrical 
network.

• Electrical network is a physical model of 
perceptual processes.

• Different perceptual mechanisms require 
different electrical networks, representing 
different cost functions.



Examples of the Application of 
the Minimum Principle in Vision



Edge Detection

dxfif xx
22 )()[( λ∫ +−

f(x) – percept

i(x) – image



Optical Flow (edges)

∫ ∂∂+−⋅ dsVVNV s
N ]))/(()[( 22 λ

s – arc length

V – perceived velocity

VN – normal velocity component

N – normal unit vector to the contour



Optical Flow (area)

i(x,y,t) – image

(u,v) – perceived velocity field

∫ ++++++ dxdyvvuuiviui yxyxtyx )]()[( 22222 λ



Surface from Depth

d(x,y) – depth data

f(x,y)  – perceived surface

∫ +++− dxdyfffdf yyxyxx )]2()[( 2222 λ



Perceived Depth
(Binocular Disparity)

d(x,y) – perceived depth

L(x,y)  – left image

R(x,y) – right image

dxdydyyxdxRyxLG })())]),,((),((*{[ 222 ∇++−∇∫ λ



Binocular shape reconstruction

• In the absence of visual noise, binocular 
reconstruction is a well-posed problem (assuming 
known correspondence)

• In the presence of noise, however, the problem is 
ill-conditioned:
http://bigbird.psych.purdue.edu/binshape/
To stabilize the solution, several constraints are 
used, such as compactness and planarity.

http://bigbird.psych.purdue.edu/binshape/
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