

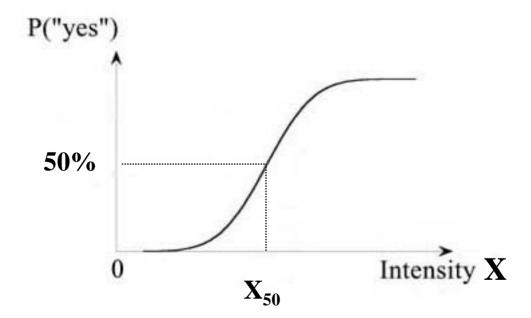
Outline

- Simple Up-Down Method (also known as Staircase Method)
- **■** Transformed Up-Down Methods
 - Overview
 - **◆ The 3-interval 1-up 3-down Method**
- **Interleaved Adaptive Methods**
 - **◆ Double-Random Staircase (i.e., interleaved simple up-down method)**
 - ◆Interleaved 3I 1-up 3-down method

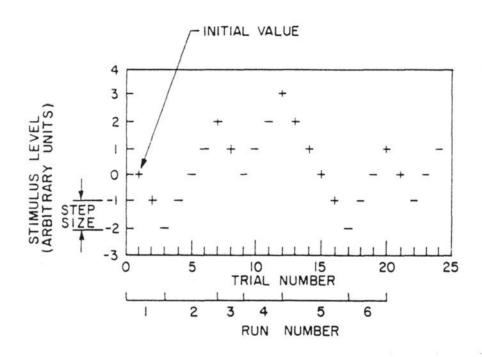
What Do We Mean by "Adaptive"?

■ The stimulus intensity level on any one trial is determined by the preceding stimuli and responses

■ Do we already know any adaptive method?


Why Adaptive Method?

- Compared with other methods (e.g., constant stimuli, signal detection), adaptive method places most of the stimuli at intensity levels close to the threshold that is being measured
- Adaptive method allows for more efficient estimation of thresholds


Simple Up-Down Method (Staircase Method)

- Adaptive methods reduce the number of trials at the stimulus intensity levels at which the proportion of responses YES is close to zero or close to one.
- Staircase method is analogous to the method of limits, except that
 - an ascending (descending) sequence does not terminate after the first <u>reversal</u> from NO to YES (YES to NO) response.
 - **◆** Instead, the experiment continues until many reversals are obtained around the value to be estimated.

■ Staircase method estimates the 50% point of the psychometric function.

Data Analysis (Staircase Method)

- The concept of *initial value*, step size, run
- Estimate of X_{50} : midpoint of every 2^{nd} run; or equivalently, average of peak-valley pairs.

Discussion of the Simple Up-Down (Staircase) Method

- Advantage
 - ◆ Most stimulus intensity levels are placed around X₅₀
- Disadvantage
 - ◆ Difficulty with steps that are too small (takes forever) or too large (low precision)
 - **♦** Can't estimate levels other than X₅₀
 - Solution: Transformed Up-Down Methods (see also 10/18/05)
 - Subject can anticipate the stimuli and adjust responses accordingly
 - **☞ Solution: Double-Random Staircase Method (see 10/18/05)**

Adaptive Step Size

- At the start of an experiment, a large step size is used
- The step size is gradually decreased during the course of the experiment
 - **◆ Robbins and Monroe (1951): c/n (c: constant, n: trial number)**
 - **◆** Half the step size after a fixed number of trials
- When in doubt, aim at a larger initial step size
 - ◆Efficiency is reduced by 25% if initial step is twice the optimum value
 - ◆ Efficiency is reduced by 100% if initial step is half the optimum value.

Transformed Up-Down Methods

Transformed methods are used to estimate percentile points other than 50%. The stimulus level is increased or decreased after specific sequences of stimuli and responses.

Comparing the Simple and Two Transformed Up-Down Methods

	Simple	Transformed (70.7% percentile)	Transformed (84.1 percentile)
		1-up 2-down	1-up 4-down
Increase	_	+ - or -	+++-or
Level			+ + - or
after			+ – or
			_
Decrease level after	+	++	++++
P(UP)=P(DOWN)=.5	P(X)	$[P(X)]^2$	$[P(X)]^4$
P(X)	0.5	0.707	0.841

References

■ Macmillan, N. A., & Creelman, C. D. (2004).

Detection Theory: A User's Guide (2nd ed.). New York: Lawrence Erlbaum Associates.