A Decision Model for Psychophysics (*Cont***.)**

1. How to Test the Decision Model 2. Relating d′ **to DL 3. Estimation of** $\sigma_{d'}$

© Hong Z. Tan & Zygmunt Pizlo 2005 ¹

How to Test the Decision Model? — the Idea

- **Pang, Tan and Durlach (***1991***)**
- **A study of manual force discrimination**
- **Q: Is ROC a straight line with slope of 1?**
- **Approach: Measure isosensitivity curve by** using $P(S_1)=1/10$, $3/10$, $5/10$, $7/10$ and $9/10$.

 Apparatus: A Linear Force Grasper Stimuli: $S_1 = 5 N$, $S_2 = 5.5 N$ \mathcal{L}_{max} **Responses: "smaller" or "larger" force**

How to Test the Decision Model? the Results

© Hong Z. Tan & Zygmunt Pizlo 2005 ⁴

Difference Threshold *DL***, Sensitivity Index** *d***´, Just Noticeable Difference** *JND***, and their Relationship**

JND

- **Just-Noticeable-Difference**
- **JND = AL (detection) or DL (discrimination)**
- **It is defined as** δ $JND = \frac{1}{2}$
- $\overline{\delta}$ is the average of **d´/(** Δ**S/S 0) over several values of** Δ**S for a given S 0**
- \bullet (**S**₁=**S**₀, **S**₂=**S**₀+ Δ **S**)

Estimating DL from d′

- From a 1-I experiment, we get d'
- In theory, DL can simply be computed as **DL=**Δ**S/d**′
- **However, estimating DL from one pair of (**Δ**S, d**′**) values is not reliable**
- **In practice, draw d**′ **vs.** Δ**S for many pairs of (**Δ**S, d**′**), then compute DL as the inverse of the d**′**=**Δ**S/DL slope.**
- **DL is the same as JND in a discrimination exp.**
	- ◆ Be very careful with units (pixel, gram, vs. [%])

 \bullet Be aware of the reference signal level S_0

Real Data

From Pang, Tan & Durlach (1991)

Estimation of $\sigma_{d'}$

The Problem

- $σ_{d'}$ can not be estimated directly from 1-I or **2-I experiments**
- We can always find a cumulative Gaussian **curve that goes through 2 points EXACTLY**

■ We can always find a straight line that goes **through 1 point EXACTLY**

 Therefore, we can NOT measure the goodness of fit in either case with rms error

Two Ways to Estimate σ_{d'}

- 1. When you only collect one pair of (H, F) \blacktriangleright **Need assumptions to estimate** $\sigma_{a'}$
- 2. When you measure multiple pairs of (H, F) **Use the rms error of ROC curve fitting**
	- **There are two ways to estimate ROC**
		-)**Run multiple experiments. Ask subjects to use different** *k* **in different sessions.**
			- *or*
		-)**Rating paradigm. Ask subjects to maintain multiple** *k* **in the same session.**

The Main Idea

■ Given that

$$
d'=z(H)-z(F)
$$

■ We have

$$
\sigma_{d'} = \sqrt{\sigma_{z(H)}^2 + \sigma_{z(F)}^2}
$$

 \blacksquare Therefore, to estimate $\sigma_{d'}$, we need to **estimate** σ _{**z**(**H**)} **and** σ _{**z**(**F**)} **first.**

Method 1: Estimate σ_d , with **One Pair of (H, F) Values**

Assumptions

- **The only source of variability in d**′ **is sampling error (therefore we are getting a lower-bound estimate)**
- **Binomial distribution approximates Gaussian with sufficient number of trials. This is true if**
	-) *p* **(probability of responding "yes") is not extreme; or**
	-) *N* **(number of trials) is large when** *p* **is extreme**

It then follows that the variability of H and F are:

$$
\sigma_F = \sqrt{\frac{F(1-F)}{N_1}}
$$

$$
\sigma_H = \sqrt{\frac{H(1-H)}{N_2}}
$$

- where \mathbf{N}_1 or \mathbf{N}_2 is the number of times stimulus \mathbf{S}_1 **or S2 has been presented, respectively.**
- **All we need to do now is to estimate** σ **_{z(H)}** and σ _{z(F)}.

Summary of Method 1

$$
\sigma_{z(F)} = \sigma_F \cdot \sqrt{2\pi} \cdot e^{\frac{1}{2}[z(F)]^2} = \sqrt{\frac{2\pi F(1-F)}{N_1}} \cdot e^{\frac{1}{2}[z(F)]^2}
$$
\n
$$
\sigma_{z(H)} = \sqrt{\frac{2\pi H(1-H)}{N_2}} \cdot e^{\frac{1}{2}[z(H)]^2}
$$
\nFinally, $\sigma_{d'} = \sqrt{\sigma_{z(H)}^2 + \sigma_{z(F)}^2}$

It should be clear that $\sigma_{d'}$ is inversely proportional to N_1 and N_2 !

Method 2: Estimate $\sigma_{d'}$ with ROC

- No explicit **assumptions are needed**
- **E** Estimate σ _{*z*(H)} and $\sigma_{\rm z(F)}$ as the rms **error of straight line fitting**

How??

■ Then compute $\frac{2}{z(F)}$ 2 $\sigma_{\nu} = \sqrt{\sigma}$ $\sigma_{d'} = \sqrt{\sigma_{z(H)}^2 + \sigma_{z(F)}^2}$ **z**(**F**)

Two Ways of Obtaining ROC

■ Multiple sessions with different *k* values **see Pang et al. 1991 Same session with multiple** *k* **values Rating Experiment**

Reading

■ Pang, Tan and Durlach, "Manual **discrimination of force using active finger motion,"** *Perception & Psychophysics***, 49(6), 531–540, 1991.**