A Decision Model for Psychophysics (Cont.)

How to Test the Decision Model
 Relating d' to DL
 Estimation of σ_{d'}

© Hong Z. Tan & Zygmunt Pizlo 2005

How to Test the Decision Model? — the Idea

- Pang, Tan and Durlach (1991)
- A study of manual force discrimination
- Q: Is ROC a straight line with slope of 1?
- Approach: Measure isosensitivity curve by using P(S₁)=1/10, 3/10, 5/10, 7/10 and 9/10.

Apparatus: A Linear Force Grasper
Stimuli: S₁ = 5 N, S₂ = 5.5 N
Responses: "smaller" or "larger" force

How to Test the Decision Model? — the Results

© Hong Z. Tan & Zygmunt Pizlo 2005

Difference Threshold DL, Sensitivity Index d', Just Noticeable Difference JND, and their Relationship

JND

- Just-Noticeable-Difference
- JND = AL (detection) or DL (discrimination)
- It is defined as $JND = \frac{1}{\delta}$
- δ is the average of d'/(ΔS/S₀) over several values of ΔS for a given S₀

$$(\mathbf{S}_1 = \mathbf{S}_0, \mathbf{S}_2 = \mathbf{S}_0 + \Delta \mathbf{S})$$

Estimating DL from d'

- From a 1-I experiment, we get d'
- In theory, DL can simply be computed as DL=∆S/d'
- However, estimating DL from one pair of (ΔS, d') values is not reliable
- In practice, draw d' vs. ΔS for many pairs of (ΔS, d'), then compute DL as the inverse of the d'=ΔS/DL slope.
- **DL** is the same as JND in a discrimination exp.
 - Be very careful with units (pixel, gram, vs. %)

◆ Be aware of the reference signal level S₀

Real Data

From Pang, Tan & Durlach (1991)

8

Estimation of $\sigma_{d'}$

The Problem

- σ_{d'} can not be estimated directly from 1-I or
 2-I experiments
- We can always find a cumulative Gaussian curve that goes through 2 points EXACTLY

We can always find a straight line that goes through 1 point EXACTLY

Therefore, we can NOT measure the goodness of fit in either case with rms error

Two Ways to Estimate $\sigma_{d'}$

- 1. When you only collect one pair of (H, F)
 Need assumptions to estimate σ_{d'}
- When you measure multiple pairs of (H, F)
 Use the rms error of ROC curve fitting
 - There are two ways to estimate ROC
 - Run multiple experiments. Ask subjects to use different k in different sessions.
 - or
 - Rating paradigm. Ask subjects to maintain multiple k in the same session.

The Main Idea

Given that

$$d' = z(H) - z(F)$$

We have

$$\sigma_{d'} = \sqrt{\sigma_{z(H)}^2 + \sigma_{z(F)}^2}$$

Therefore, to estimate σ_d, we need to estimate σ_{z(H)} and σ_{z(F)} first.

Method 1: Estimate σ_{d'} with One Pair of (H, F) Values

Assumptions

- The only source of variability in d' is sampling error (therefore we are getting a lower-bound estimate)
- Binomial distribution approximates Gaussian with sufficient number of trials. This is true if
 - *p* (probability of responding "yes") is not extreme;
 or
 - $\sim N$ (number of trials) is large when p is extreme

It then follows that the variability of H and F are:

$$\sigma_F = \sqrt{\frac{F(1-F)}{N_1}}$$
$$\sigma_H = \sqrt{\frac{H(1-H)}{N_2}}$$

- where N_1 or N_2 is the number of times stimulus S_1 or S_2 has been presented, respectively.
- All we need to do now is to estimate $\sigma_{z(H)}$ and $\sigma_{z(F)}$.

Summary of Method 1

$$\sigma_{z(F)} = \sigma_{F} \cdot \sqrt{2\pi} \cdot e^{\frac{1}{2}[z(F)]^{2}} = \sqrt{\frac{2\pi F(1-F)}{N_{1}}} \cdot e^{\frac{1}{2}[z(F)]^{2}}$$
$$\sigma_{z(H)} = \sqrt{\frac{2\pi H(1-H)}{N_{2}}} \cdot e^{\frac{1}{2}[z(H)]^{2}}$$
Finally, $\sigma_{d'} = \sqrt{\sigma_{z(H)}^{2} + \sigma_{z(F)}^{2}}$

It should be clear that $\sigma_{d'}$ is inversely proportional to N_1 and N_2 !

Method 2: Estimate $\sigma_{d'}$ with ROC

- No explicit assumptions are needed
- Estimate σ_{z(H)} and σ_{z(F)} as the rms error of straight line fitting

How??

Then compute

$$\sigma_{d'} = \sqrt{\sigma_{z(H)}^2 + \sigma_{z(F)}^2}$$

Two Ways of Obtaining ROC

Multiple sessions with different k values
see Pang et al. 1991
Same session with multiple k values
Rating Experiment

Reading

Pang, Tan and Durlach, "Manual discrimination of force using active finger motion," *Perception & Psychophysics*, 49(6), 531–540, 1991.