A Decision Model for Psychophysics

Reading: Macmillan & Creelman, Chaps. 1 & 2

Three Things to Learn

- Procedure
 - What are the stimuli?
 - ♦ How do you present them?
 - What are the responses?
 - ♦ How do you organize the data?
- Model
 - What are the assumptions?
 - What is the model based on these assumptions?
- Data Processing
 - How do you process the data?
 - ♦ What are the results (e.g., threshold)?

Introduction to Signal Detection Theory (SDT)

- Tanner & Swets, 1954
- Key Properties of SDT
 - Noise in perception
 - Probabilistic / stochastic approach
 - Decision process (a priori info, bias)
 - Experimental procedure
 - Popular in literature

Why Do We Care About SDT?

- It provides a means to separate decision processes (e.g., bias) from perception.
- We will develop a decision model for psychophysics

The Procedure for One-Interval (1-I) Experiments

■ Name:

- **♦** One-Interval, Two-Alternatives (1I 2A)
- ◆Also known as the "yes-no" experiment (see Macmillan&Creelman's book)
- There are two stimuli S_i (i=1, 2); e.g.,
 - \bullet S₁="softer tone", S₂="louder tone"
 - ◆S₁="softer spring", S₂="harder spring"
 - \bullet S₁="new face", S₂="old face" (M&C)
 - \bullet S₁="noise", S₂="signal embedded in noise"

(cont.)

- On each trial, S_i is presented with an *a priori* probability of $P(S_i)$, where $P(S_1)+P(S_2)=1$
- There are two admissible responses R_j (j=1, 2); e.g.,
 - ◆ R₁="softer tone", R₂="louder tone"
 - **⋄** R₁="1", R₂="2"
 - R_1 ="no", R_2 ="yes" (hence "yes-no" exp.)
- For simplicity, we assume that R_1 is the correct response to S_1 , and R_2 is the correct response to S_2
- Trial-by-trial correct-answer feedback is optional

Data from a 1-I Experiment

 R_1 R_2

 S_1

 S_2

n ₁₁ Correct Rejections	n ₁₂ False alarms
n_{21}	n ₂₂
Misses	Hits

- $f(R_1|S_1)=n_{11}/(n_{11}+n_{12})$: frequency of responding R_1 given S_1 . We use frequency to estimate probability.
- $P(R_1|S_1)$: probability of responding R_1 given S_1
- $\mathbf{p}(\mathbf{R}_1|\mathbf{S}_1)$: probability density function
- There are only two *independent* measures: F and H.

Three Examples

(2)

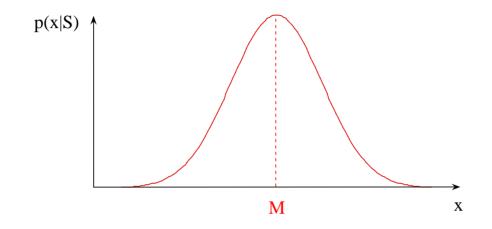
(1)

 $egin{array}{c|cccc} R_1 & R_2 \\ S_1 & 5 & 45 \\ S_2 & 1 & 49 \\ \hline \end{array}$

 $egin{array}{c|cccc} R_1 & R_2 \\ S_1 & 2 & 48 \\ S_2 & 49 & 1 \\ \hline \end{array}$

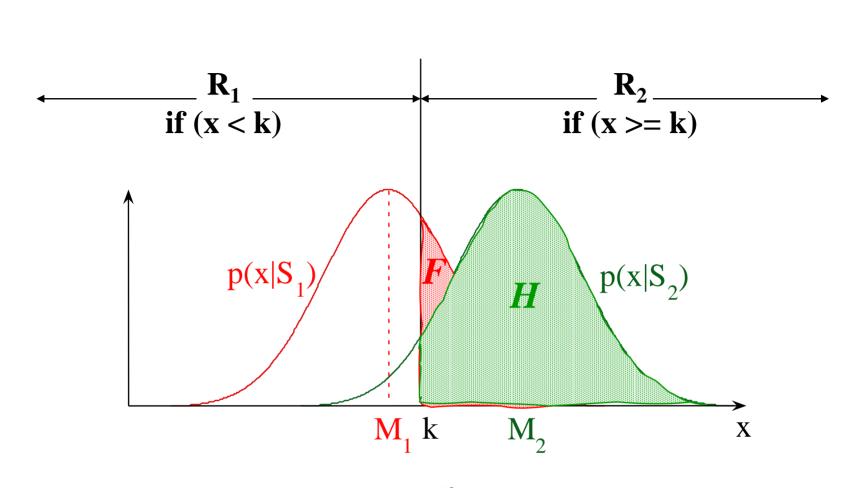
(3)

In-Class Demo: 1-I Experiment


- Go to "Online Expeirments"
- Go down to "Part II. Decision Model for Psychophysics"
- Go to "One-interval Experiment"
- Select "1. Curvature detection"

Discussion of In-Class Demo

- Summarize the procedure
 - What are the stimuli?
 - How do you present them?
 - What are the responses?
 - ♦ How do you organize the data?
- Sample output


■ Email your results to "hongtan@purdue.edu"

Decision Model for 1-I Exp.

- A (Perceptual) Decision Space
 - x: random variable ("decision axis")
 - **◆** Each stimulus presentation determines a value of x
 - \bullet p(x|S): conditional probability density function
 - **◆ M:** mean/expected value

$$M = \int_{-\infty}^{+\infty} x \ p(x \mid S) \ dx$$

$$F = P(R_2 \mid S_1) = \int_k^\infty p(x \mid S_1) dx$$
$$H = P(R_2 \mid S_2) = \int_k^\infty p(x \mid S_2) dx$$