ECE511/PSY511 PSYCHOPHYSICS

A JOINT OFFERING BY THE SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

AND THE DEPARTMENT OF PSYCHOLOGICAL SCIENCES

PURDUE UNIVERSITY

FALL 2005

STUDY GUIDE FOR FINAL EXAM

The final exam will be held from 3:00 to 5:00 p.m. on Friday, Dec. 16, 2005 in MSEE184.

Prof. Tan will hold office hour from 9:00 am to 12:00 noon on Thursday, Dec. 15, 2005 in her office (MSEE272).

DISCLAIMER:

THIS IS NOT AN EXHAUSTIVE LIST OF TOPICS THAT WILL BE INCLUDED IN THE FINAL.

The final exam will cover the course materials presented after the mid-term exam. You are expected to be able to:

(Speed-accuracy Tradeoff)

- Discuss how the Speed-Accuracy Tradeoff (SAT) is different from the classical psychophysical methods or the Signal Detection Experiment.
- Describe how to set up an SAT experiment.
- Compare SATF with ROC. What are the similarities and differences in terms of experimental methods and data analyses?

(Adaptive Methods)

- Describe the simple and transformed up-down methods.
- Calculate the probability of convergence given the rules for increasing/decreasing stimulus levels.
- Describe how to estimate AL and DL using adaptive psychophysical methods.

(Perception as Inverse Problems)

- Define the forward and the inverse problem in visual, auditory or haptic perception.
- Provide two perceptual phenomena that can be adequately studied by treating the percept as a forward problem (Fechnerian psychophysics) or as an inverse problem, respectively. Discuss.
- Discuss the use of Bayesian rule in formulating a model of perceptual interpretation.
- Discuss the concept of a cost function in applying a regularization method to model perception.

(Information Theory and Absolute Identification Experiment)

- Calculate the uncertainty of a particular outcome. Calculate the average uncertainty of a set of events (when the events are equally likely, or when their *a priori* probabilities are known).
- Define the concept of information in terms of uncertainty.
- Describe the key steps in setting up an absolute identification (AI) experiment.
- Calculate IS, IR and IT given a confusion matrix.
- Know how to interpret IT results. The use of 2^{IT}.
- Define and calculate cumulative d'. Describe the relationship between cumulative d' and IT for a given experiment.
- Review the practical issues in conducting an absolute identification experiment

(Multidimensional Scaling)

- Describe how to set up a Multidimensional Scaling experiment. Explain one method of obtaining dissimilarity scores.
- Explain how to select the dimensionality of an MDS space calculated by a statistics package.
- Interpret MDS solutions.
- Know the limitation of the MDS method.
- Describe at least one way to verify an MDS solution.