ECE511/PSY511 PSYCHOPHYSICS

A Joint Offering by the School of Electrical and Computer Engineering And the Department of Psychological Sciences

Purdue University Fall 2005

HW #2 (Assigned: 09/13/05; Due: before lecture on 09/20/05)

Topic: A Decision Model for Psychophysics

(Hit and False-alarm Rates, Sensitivity Index d', Bias c)

(1) Derive the relationships d'=z(H)-z(F) and c=-0.5[z(H)+z(F)]. You will need to use the assumption of Gaussian probability density functions with equal variance for $p(x|S_1)$ and $p(x|S_2)$. Also recall that the z-scores are defined by:

$$H = \int_{-\infty}^{z(H)} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \qquad F = \int_{-\infty}^{z(F)} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

[Hint: Try to express z(H) and z(F) in terms of M_1 , M_2 , k and σ first.]

Suppose d'=1. What is H if F = 0.01, 0.02, 0.10, 0.25 and 0.50? Same for d'=0.5, 2.0 and 3.0. Present your results in a table like shown below. Please briefly explain the key steps in your calculations.

$F \setminus d'$	0.5	1.0	2.0	3.0
0.01				
0.02				
0.10				
0.25				
0.50				

(3) For the following data matrices shown in lecture, find d' and c. Compare and discuss the results.

1

(a)
$$R_1 R_2$$

 $S_1 48/50 2/50$
 $S_2 1/50 49/50$

b)
$$R_1 R_2$$
 $S_1 5/50 45/50$
 $S_2 1/50 49/50$

(c)
$$R_1 R_2$$

 $S_1 2/50 48/50$
 $S_2 49/50 1/50$

- $(4) \qquad \text{Suppose } (H_{\text{old}}, F_{\text{old}}) = (0.6, 0.2). \ \text{If } d'_{\text{new}} = 2d'_{\text{old}}, \text{ find } (H_{\text{new}}, F_{\text{new}}) \text{ if }$
 - a. $c_{new} = c_{old}$
 - b. $c'_{new} = c'_{old}$
 - c. $ln(\beta)_{new} = ln(\beta)_{old}$

[Hint: Refer to Macmillan & Creelman's book for definitions of c' and $ln(\beta).]$

What is the percent-correct score for a 1-I experiment when d'=1.0? You may assume that bias c=0 in your derivation. If you have made any *additional* assumptions, please state them explicitly and clearly.