
ECE49595NL Lecture 16: Parsing—II

Jeffrey Mark Siskind

Elmore Family School of Electrical and Computer Engineering

Spring 2024

© 2024 Jeffrey Mark Siskind. All rights reserved.

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 1 / 13



Some Abstractions

(define rule-lhs first)
(define rule-rhs1 third)
(define rule-rhs2 fourth)
(define entry-word first)
(define entry-category second)

(define (empty? word-string) (null? word-string))

(define (singleton? word-string)
(= (length word-string) 1))

(define (head word-string) (first word-string))

(define (tail word-string) (rest word-string))

(define (ith-word word-string i)
(list-ref word-string i))

(define (lookup word lexicon)
(define (lookup lexicon)
(when (null? lexicon) (fail))
(if (string-ci=? word (entry-word (first lexicon)))

(either (entry-category (first lexicon))
(lookup (rest lexicon)))

(lookup (rest lexicon))))
(lookup lexicon))

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 2 / 13



Top Down Recognizer

FAILIFNOTPHRASE(w, c)
▶ Base case: w contains a single word

▶ fail if CATEGORY(w) ̸= c
▶ Inductive case: w contains more than one word

▶ choose a rule A → BC where A = c
▶ split w into lr
▶ FAILIFNOTPHRASE(l,B)
▶ FAILIFNOTPHRASE(r,C)

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 3 / 13



Top Down Recognizer in Lisp

(define (split word-string)
(define (split left right)
(when (null? right) (fail))
(either (list left right)

(split (append left (list (first right)))
(rest right))))

(when (null? word-string) (fail))
(split (list (first word-string)) (rest word-string)))

(define (top-down:is-sentence? word-string rules lexicon)
(define fail-if-not-phrase
(lambda (word-string category)
(cond
((singleton? word-string)
(unless (eq? (lookup (head word-string) lexicon)

category)
(fail))

#t)
(else (let ((rule (a-member-of rules)))

(unless (eq? (rule-lhs rule) category)
(fail))
(let ((word-strings (split word-string)))
(fail-if-not-phrase (first word-strings)

(rule-rhs1 rule))
(fail-if-not-phrase (second word-strings)

(rule-rhs2 rule))))))))
(one-value (fail-if-not-phrase word-string ’s) #f))

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 4 / 13



Recursive Descent Recognizer

PEEL(w, c)
▶ fail if w is empty
▶ either

▶ base case
▶ fail if first word of w not of category c
▶ return tail of w

▶ inductive case
▶ choose a rule A → BC with A = c
▶ let w′ = PEEL(w,B)
▶ return PEEL(w′,C)

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 5 / 13



Recursive Descent Recognizer in Lisp

(define (recursive-descent:is-sentence?
word-string rules lexicon)

(define peel
(lambda (word-string category)
(when (empty? word-string) (fail))
(either
(begin
(unless (eq? (lookup (head word-string) lexicon)

category)
(fail))
(tail word-string))

(let ((rule (a-member-of rules)))
(unless (eq? (rule-lhs rule) category) (fail))
(peel (peel word-string (rule-rhs1 rule))

(rule-rhs2 rule))))))
(one-value (begin (unless (null? (peel word-string ’s))

(fail))
#t)

#f))

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 6 / 13



Shift Reduce Recognizer

SHIFTREDUCE

▶ Termination Condition
▶ fail unless buffer is empty and stack has a single entry
▶ return top of stack

▶ Shift
▶ fail if buffer is empty
▶ pop off first word in buffer and push its category on the stack
▶ SHIFTREDUCE

▶ Reduce
▶ fail if stack has less than two entries
▶ choose a rule A → BC where B = next of stack and C = top of stack
▶ pop off top two entries from stack
▶ push A on the stack
▶ SHIFTREDUCE

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 7 / 13



Shift Reduce Recognizer in Lisp

(define (shift-reduce:is-sentence?
word-string rules lexicon)

(define shift-reduce
(lambda (stack word-string)
(either (begin

(unless (and (empty? word-string)
(= (length stack) 1))

(fail))
(first stack))
(begin (when (empty? word-string) (fail))

(shift-reduce
(cons (lookup (head word-string)

lexicon)
stack)

(tail word-string)))
(begin
(when (< (length stack) 2) (fail))
(let ((rule (a-member-of rules)))
(unless (and (eq? (rule-rhs1 rule) (second stack))

(eq? (rule-rhs2 rule) (first stack)))
(fail))

(shift-reduce
(cons (rule-lhs rule) (rest (rest stack)))
word-string))))))

(one-value
(begin (unless (eq? (shift-reduce ’() word-string) ’s)

(fail))
#t)

#f))

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 8 / 13



Complexity of Top Down Recognizer

OBSERVATION: Halts since length of word-string decreases at each recursive call and can never be less than zero.

Let p(n) be the number of recursive calls to fail-if-not-phrase needed to process a word-string of length n.

p(1) = 1

p(n) = 1 +

n−1∑
i=1

p(i)p(n − i)

Exponential in n.

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 9 / 13



Recognition vs. Parsing

▶ Recognizer returns TRUE/FALSE
▶ Parser returns a parse tree
▶ Any recognizer can be turned into a parser

independent of strategy, memoization, partial evaluation, . . .

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 10 / 13



Top Down Recognizer ⇒ Parser

FAILIFNOTPHRASE(w, c)
▶ Base case: w contains a single word

▶ fail if CATEGORY(w) ̸= c
▶ Inductive case: w contains more than one word

▶ choose a rule A → BC where A = c
▶ split w into lr
▶ FAILIFNOTPHRASE(l,B)
▶ FAILIFNOTPHRASE(r,C)

⇓

APARSEOF(w, c)
▶ Base case: w contains a single word

▶ fail if CATEGORY(w) ̸= c

▶ otherwise return

c

w
▶ Inductive case: w contains more than one word

▶ choose a rule A → BC where A = c
▶ split w into lr
▶ let t1 be APARSEOF(l,B)
▶ let t2 be APARSEOF(r,C)

▶ return

A
��HH

t1 t2

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 11 / 13



Recursive Descent Recognizer ⇒ Parser

PEEL(w, c)
▶ fail if w is empty
▶ either

▶ base case
▶ fail if first word of w not of category c
▶ return tail of w

▶ inductive case
▶ choose a rule A → BC with A = c
▶ let w′ = PEEL(w,B)
▶ return PEEL(w′,C)

⇓

PEEL(w, c)
▶ fail if w is empty
▶ either

▶ base case
▶ fail if first word of w not of category c

▶ return ⟨TAIL(w), t⟩ where t is

c

w
▶ inductive case

▶ choose a rule A → BC with A = c
▶ let ⟨w′, t1⟩ = PEEL(w,B)
▶ let ⟨w′′, t2⟩ = PEEL(w′,C)

▶ return ⟨w′′, t⟩ where t is

A
��HH

t1 t2

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 12 / 13



Shift Reduce Recognizer ⇒ Parser

SHIFTREDUCE

▶ Termination Condition
▶ fail unless buffer is empty and stack has a single entry
▶ return top of stack

▶ Shift
▶ fail if buffer is empty
▶ pop off first word in buffer and push its category on the stack
▶ SHIFTREDUCE

▶ Reduce
▶ fail if stack has less than two entries
▶ choose a rule A → BC where B = next of stack and C = top of stack
▶ pop off top two entries from stack
▶ push A on stack
▶ SHIFTREDUCE

⇓

SHIFTREDUCE

▶ Termination Condition
▶ fail unless buffer is empty and stack has a single entry
▶ return top of stack

▶ Shift
▶ fail if buffer is empty

▶ pop off first word w in buffer and push ⟨c, t⟩ on the stack where c is the category of w and t is

c

w
▶ SHIFTREDUCE

▶ Reduce
▶ fail if stack has less than two entries
▶ pop ⟨c, t2⟩ off the stack
▶ pop ⟨b, t1⟩ off the stack
▶ choose a rule A → BC where B = b and C = c

▶ push ⟨A, t⟩ on the stack where t is

A
��HH

t1 t2
▶ SHIFTREDUCE

Siskind (Purdue Elmore Family ECE) ECE49595NL Lecture 16: Parsing—II Spring 2024 13 / 13


