

1. A Gaussian signal $x(t)$ has mean 0 and variance 10. It is to be quantized with a uniform quantizer and encoded into B bit words.
 - a. Find the range of the quantizer which will result in overload 1% of the time.
 - b. Using the range that you determined above and assuming a uniform distribution for the quantization error, find an expression for the signal-to-noise ratio in dB of the quantized signal as a function of the number of bits B .
2. For each of the following two bivariate density functions $f_{XY}(x, y)$, please do the following:
 - i. Sketch $f_{XY}(x, y)$
 - ii. Compute the moments $E\{X\}$, $E\{Y\}$, $E\{XY\}$, $\text{Var}(X)$, $\text{Var}(Y)$, $\text{Cov}(X, Y)$, and the correlation coefficient ρ_{XY} .
 - iii. Find the marginal densities $f_X(x)$ and $f_Y(y)$.
 - iv. Sketch the marginal densities $f_X(x)$ and $f_Y(y)$.
 - v. Are X and Y independent? Are they uncorrelated?
 - a.
$$f_{XY}(x, y) = \begin{cases} 4xy, & 0 \leq x \leq 1, \text{ and } 0 \leq y \leq 1, \\ 0, & \text{else.} \end{cases}$$
 - b.
$$f_{XY}(x, y) = \begin{cases} 2, & 0 \leq x \leq 1, \text{ and } 0 \leq y \leq x, \\ 0, & \text{else.} \end{cases}$$
3. A sequence of random variables X_1, \dots, X_N is identically distributed with mean 0, variance 1, and the following correlation:

$$E\{X_i X_j\} = \begin{cases} 1, & i = j, \\ \gamma, & |i - j| = 1, \\ 0, & \text{else.} \end{cases}$$

Here γ is a constant. A new random variable Y is defined by $Y = X_1 + \dots + X_N$.

- a. Find the mean of Y .
- b. Find the variance of Y .
4. Let X_1, \dots, X_N be an independent, identically distributed sequence of random variables with mean 0 and variance 1. Suppose we form a new sequence of random variables Y_1, \dots, Y_M according to

$$Y_1 = a_{11}X_1 + \dots + a_{1N}X_N$$

⋮

$$Y_M = a_{M1}X_1 + \dots + a_{MN}X_N$$

- a. Find the mean, variance, and covariance of the sequence Y_1, \dots, Y_M .

- b. By defining vectors $\vec{x} = (X_1, \dots, X_N)^T$ and $\vec{y} = (Y_1, \dots, Y_M)^T$ (superscript T denotes transpose), express the relation between \vec{x} and \vec{y} in terms of an appropriately defined matrix \mathbf{A} .
- c. Define the covariance matrix of the sequence Y_1, \dots, Y_M as $\Sigma_{\vec{y}\vec{y}} = E\{\vec{y}\vec{y}^T\}$. Find an expression for $\Sigma_{\vec{y}\vec{y}}$ in terms of \mathbf{A} .